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PREFACE TO THE FIRST EDITION.

The following pages contain an account of certain mathematical

recreations, problems, and speculations of past and present times. I

hasten to add that the conclusions are of no practical use, and most

of the results are not new. If therefore the reader proceeds further he

is at least forewarned.

At the same time I think I may assert that many of the diversions—

particularly those in the latter half of the book—are interesting, not

a few are associated with the names of distinguished mathematicians,

while hitherto several of the memoirs quoted have not been easily ac-

cessible to English readers.

The book is divided into two parts, but in both parts I have in-

cluded questions which involve advanced mathematics.

The first part consists of seven chapters, in which are included var-

ious problems and amusements of the kind usually called mathematical

recreations. The questions discussed in the first of these chapters are

connected with arithmetic; those in the second with geometry; and

those in the third relate to mechanics. The fourth chapter contains

an account of some miscellaneous problems which involve both num-

ber and situation; the fifth chapter contains a concise account of magic

squares; and the sixth and seventh chapters deal with some unicursal
iii
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problems. Several of the questions mentioned in the first three chap-

ters are of a somewhat trivial character, and had they been treated in

any standard English work to which I could have referred the reader, I

should have pointed them out. In the absence of such a work, I thought

it best to insert them and trust to the judicious reader to omit them

altogether or to skim them as he feels inclined.

The second part consists of five chapters, which are mostly histori-

cal. They deal respectively with three classical problems in geometry—

namely, the duplication of the cube, the trisection of an angle, and the

quadrature of the circle—astrology, the hypotheses as to the nature of

space and mass, and a means of measuring time.

I have inserted detailed references, as far as I know, as to the sources

of the various questions and solutions given; also, wherever I have given

only the result of a theorem, I have tried to indicate authorities where

a proof may be found. In general, unless it is stated otherwise, I have

taken the references direct from the original works; but, in spite of

considerable time spent in verifying them, I dare not suppose that they

are free from all errors or misprints.

I shall be grateful for notices of additions or corrections which may

occur to any of my readers.

W.W. ROUSE BALL

Trinity College, Cambridge.
February, 1892.



NOTE TO THE FOURTH EDITION.

In this edition I have inserted in the earlier chapters descriptions of

several additional Recreations involving elementary mathematics, and

I have added in the second part chapters on the History of the Mathe-

matical Tripos at Cambridge, Mersenne’s Numbers, and Cryptography

and Ciphers.

It is with some hesitation that I include in the book the chapters on

Astrology and Ciphers, for these subjects are only remotely connected

with Mathematics, but to afford myself some latitude I have altered

the title of the second part to Miscellaneous Essays and Problems.

W.W.R.B.

Trinity College, Cambridge.
13 May, 1905.

v



TABLE OF CONTENTS.

PART I.

Mathematical Recreations.

Chapter I. Some Arithmetical Questions.
PAGE

Elementary Questions on Numbers (Miscellaneous) . . . . . . 4
Arithmetical Fallacies . . . . . . . . . . . . . . . . . . . . . . 20
Bachet’s Weights Problem . . . . . . . . . . . . . . . . . . . . 27
Problems in Higher Arithmetic . . . . . . . . . . . . . . . . . 29

Fermat’s Theorem on Binary Powers . . . . . . . . . . . . 31
Fermat’s Last Theorem . . . . . . . . . . . . . . . . . . . . 32

Chapter II. Some Geometrical Questions.

Geometrical Fallacies . . . . . . . . . . . . . . . . . . . . . . . 35
Geometrical Paradoxes . . . . . . . . . . . . . . . . . . . . . . 42
Colouring Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Physical Geography . . . . . . . . . . . . . . . . . . . . . . . 46
Statical Games of Position . . . . . . . . . . . . . . . . . . . . 48

Three-in-a-row. Extension to p-in-a-row . . . . . . . . . 48
Tesselation. Cross-Fours . . . . . . . . . . . . . . . . . . 50
Colour-Cube Problem . . . . . . . . . . . . . . . . . . . . 51

vi



TABLE OF CONTENTS. vii

PAGE
Dynamical Games of Position . . . . . . . . . . . . . . . . . . 52

Shunting Problems . . . . . . . . . . . . . . . . . . . . . . 53
Ferry-Boat Problems . . . . . . . . . . . . . . . . . . . . . 55
Geodesic Problems . . . . . . . . . . . . . . . . . . . . . . 57
Problems with Counters placed in a row . . . . . . . . . . 58
Problems on a Chess-board with Counters or Pawns . . . . 60
Guarini’s Problem . . . . . . . . . . . . . . . . . . . . . . 63

Geometrical Puzzles (rods, strings, &c.) . . . . . . . . . . . . 64
Paradromic Rings . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter III. Some Mechanical Questions.

Paradoxes on Motion . . . . . . . . . . . . . . . . . . . . . . . 67
Force, Inertia, Centrifugal Force . . . . . . . . . . . . . . . . . 70
Work, Stability of Equilibrium, &c. . . . . . . . . . . . . . . . 72
Perpetual Motion . . . . . . . . . . . . . . . . . . . . . . . . . 75
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Sailing quicker than the Wind . . . . . . . . . . . . . . . . . . 79
Boat moved by a rope inside the boat . . . . . . . . . . . . . 81
Results dependent on Hauksbee’s Law . . . . . . . . . . . . . 82

Cut on a tennis-ball. Spin on a cricket-ball . . . . . . . 83
Flight of Birds . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Curiosa Physica . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter IV. Some Miscellaneous Questions.

The Fifteen Puzzle . . . . . . . . . . . . . . . . . . . . . . . . 88
The Tower of Hanoï . . . . . . . . . . . . . . . . . . . . . . . 91
Chinese Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
The Eight Queens Problem . . . . . . . . . . . . . . . . . . . 97
Other Problems with Queens and Chess-pieces . . . . . . . . . 102
The Fifteen School-Girls Problem . . . . . . . . . . . . . . . . 103



viii TABLE OF CONTENTS.

PAGE
Problems connected with a pack of cards . . . . . . . . . . . . 109

Monge on shuffling a pack of cards . . . . . . . . . . . . . 109
Arrangement by rows and columns . . . . . . . . . . . . . 111
Determination of one out of 1

2
n(n+ 1) given couples . . . . 113

Gergonne’s Pile Problem . . . . . . . . . . . . . . . . . . . 115
The Mouse Trap. Treize . . . . . . . . . . . . . . . . . . 119

Chapter V. Magic Squares.

Notes on the History of Magic Squares . . . . . . . . . . . . . 122
Construction of Odd Magic Squares . . . . . . . . . . . . . . . 123

Method of De la Loubère . . . . . . . . . . . . . . . . . . . 124
Method of Bachet . . . . . . . . . . . . . . . . . . . . . . . 125
Method of De la Hire . . . . . . . . . . . . . . . . . . . . . 126

Construction of Even Magic Squares . . . . . . . . . . . . . . 128
First Method . . . . . . . . . . . . . . . . . . . . . . . . . 129
Method of De la Hire and Labosne . . . . . . . . . . . . . 132

Composite Magic Squares . . . . . . . . . . . . . . . . . . . . 134
Bordered Magic Squares . . . . . . . . . . . . . . . . . . . . . 135
Hyper-Magic Squares . . . . . . . . . . . . . . . . . . . . . . . 136

Pan-diagonal or Nasik Squares . . . . . . . . . . . . . . . . 136
Doubly Magic Squares . . . . . . . . . . . . . . . . . . . . 137

Magic Pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Magic Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Card Square . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Euler’s Officers Problem . . . . . . . . . . . . . . . . . . . 140
Domino Squares . . . . . . . . . . . . . . . . . . . . . . . . 141
Coin Squares . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter VI. Unicursal Problems.

Euler’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Euler’s Theorems . . . . . . . . . . . . . . . . . . . . . . . 145
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



TABLE OF CONTENTS. ix

PAGE
Mazes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Rules for completely traversing a Maze . . . . . . . . . . . 149
Notes on the History of Mazes . . . . . . . . . . . . . . . . 150

Geometrical Trees . . . . . . . . . . . . . . . . . . . . . . . . 154
The Hamiltonian Game . . . . . . . . . . . . . . . . . . . . . 155
Knight’s Path on a Chess-Board . . . . . . . . . . . . . . . . . 158

Method of De Montmort and De Moivre . . . . . . . . . . 159
Method of Euler . . . . . . . . . . . . . . . . . . . . . . . 160
Method of Vandermonde . . . . . . . . . . . . . . . . . . . 163
Method of Warnsdorff . . . . . . . . . . . . . . . . . . . . 163
Method of Roget . . . . . . . . . . . . . . . . . . . . . . . 164
Method of Moon . . . . . . . . . . . . . . . . . . . . . . . 167
Method of Jaenisch . . . . . . . . . . . . . . . . . . . . . . 168
Number of possible routes . . . . . . . . . . . . . . . . . . 168

Paths of other Chess-Pieces . . . . . . . . . . . . . . . . . . . 168

• Project • Gutenberg • #26839 •



x TABLE OF CONTENTS.

PART II.

Miscellaneous Essays and Problems.

Chapter VII. The Mathematical Tripos.
PAGE

Medieval Course of Studies: Acts . . . . . . . . . . . . . . . . 170
The Renaissance at Cambridge . . . . . . . . . . . . . . . . . 171

Rise of a Mathematical School . . . . . . . . . . . . . . . . 171
Subject-Matter of Acts at different periods . . . . . . . . . . . 171
Degree Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Oral Examinations always possible . . . . . . . . . . . . . . . 173
Public Oral Examinations become customary, 1710–30 . . . . 174

Additional work thrown on Moderators. Stipends raised . 174
Facilitates order of merit . . . . . . . . . . . . . . . . . . . 175

Scheme of Examination in 1750 . . . . . . . . . . . . . . . . . 175
Right of M.A.s to take part in it . . . . . . . . . . . . . . . 175

Scheme of Examination in 1763 . . . . . . . . . . . . . . . . . 176
Foundations of Smith’s Prizes, 1768 . . . . . . . . . . . . . . . 177
Introduction of a Written Examination, circ. 1770 . . . . . . . 178
Description of the Examination in 1772 . . . . . . . . . . . . . 178
Scheme of Examination in 1779 . . . . . . . . . . . . . . . . . 181

System of Brackets . . . . . . . . . . . . . . . . . . . . . . 181
Problem Papers in 1785 and 1786 . . . . . . . . . . . . . . . . 182
Description of the Examination in 1791 . . . . . . . . . . . . . 183

The Poll Part of the Examination . . . . . . . . . . . . . . 184
A Pass Standard introduced . . . . . . . . . . . . . . . . . . . 185
Problem Papers from 1802 onwards . . . . . . . . . . . . . . . 185
Description of the Examination in 1802 . . . . . . . . . . . . . 186
Scheme of Reading in 1806 . . . . . . . . . . . . . . . . . . . . 188
Introduction of modern analytical notation . . . . . . . . . . . 191
Alterations in Schemes of Study, 1824 . . . . . . . . . . . . . 194
Scheme of Examination in 1827 . . . . . . . . . . . . . . . . . 194
Scheme of Examination in 1833 . . . . . . . . . . . . . . . . . 196

All the papers marked . . . . . . . . . . . . . . . . . . . . 196
Scheme of Examination in 1839 . . . . . . . . . . . . . . . . . 196

• Project • Gutenberg • #26839 •



TABLE OF CONTENTS. xi

PAGE
Scheme of Examination in 1848 . . . . . . . . . . . . . . . . . 197
Creation of a Board of Mathematical Studies . . . . . . . . . 197
Scheme of Examination in 1873 . . . . . . . . . . . . . . . . . 198
Scheme of Examination in 1882 . . . . . . . . . . . . . . . . . 199

Fall in number of students reading mathematics . . . . . . 200
Origin of term Tripos . . . . . . . . . . . . . . . . . . . . . . . 200

Tripos Verses . . . . . . . . . . . . . . . . . . . . . . . . . 201

Chapter VIII. Three Geometrical Problems.

The Three Problems . . . . . . . . . . . . . . . . . . . . . . . 203
The Duplication of the Cube . . . . . . . . . . . . . . . . . . 204

Legendary origin of the problem . . . . . . . . . . . . . . . 204
Lemma of Hippocrates . . . . . . . . . . . . . . . . . . . . . . 205
Solutions of Archytas, Plato, Menaechmus, Apollonius, and

Sporus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Solutions of Vieta, Descartes, Gregory of St Vincent, and

Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
The Trisection of an Angle . . . . . . . . . . . . . . . . . . . . 209
Solutions quoted by Pappus (three) . . . . . . . . . . . . . . . 209
Solutions of Descartes, Newton, Clairaut, and Chasles . . . . 210
The Quadrature of the Circle . . . . . . . . . . . . . . . . . . 211
Incommensurability of π . . . . . . . . . . . . . . . . . . . . . 211
Definitions of π . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Origin of symbol π . . . . . . . . . . . . . . . . . . . . . . . . 213
Methods of approximating to the numerical value of π . . . . 213
Geometrical methods of approximation . . . . . . . . . . . . . 213

Results of Egyptians, Babylonians, Jews . . . . . . . . . . 214
Results of Archimedes and other Greek writers . . . . . . . 214
Results of Roman surveyors and Gerbert . . . . . . . . . . 215
Results of Indian and Eastern writers . . . . . . . . . . . . 215
Results of European writers, 1200–1630 . . . . . . . . . . . 216

Theorems of Wallis and Brouncker . . . . . . . . . . . . . . . 219
Analytical methods of approximation. Gregory’s series . . . . 219

Results of European writers, 1699–1873 . . . . . . . . . . . 219
Geometrical approximations . . . . . . . . . . . . . . . . . . . 221
Approximations by the theory of probability . . . . . . . . . . 221

• Project • Gutenberg • #26839 •



xii TABLE OF CONTENTS.

Chapter IX. Mersenne’s Numbers.
PAGE

Mersenne’s Enunciation of the Theorem . . . . . . . . . . . . 223
List of known results . . . . . . . . . . . . . . . . . . . . . . . 224
Cases awaiting verification . . . . . . . . . . . . . . . . . . . . 224
History of Investigations . . . . . . . . . . . . . . . . . . . . . 225
Methods used in attacking the problem . . . . . . . . . . . . . 229

By trial of divisors of known forms . . . . . . . . . . . . . 230
By indeterminate equations . . . . . . . . . . . . . . . . . 232
By properties of quadratic forms . . . . . . . . . . . . . . 233
By the use of a Canon Arithmeticus . . . . . . . . . . . . 233
By properties of binary powers . . . . . . . . . . . . . . . 234
By the use of the binary scale . . . . . . . . . . . . . . . . 234
By the use of Fermat’s Theorem . . . . . . . . . . . . . . . 235

Mechanical methods of Factorizing Numbers . . . . . . . . . . 235

Chapter X. Astrology.

Astrology. Two branches: natal and horary astrology . . . . . 237
Rules for casting and reading a horoscope . . . . . . . . . . . 237

Houses and their significations . . . . . . . . . . . . . . . . 237
Planets and their significations . . . . . . . . . . . . . . . 239
Zodiacal signs and their significations . . . . . . . . . . . . 241

Knowledge that rules were worthless . . . . . . . . . . . . . . 242
Notable instances of horoscopy . . . . . . . . . . . . . . . . . 245

Lilly’s prediction of the Great Fire and Plague . . . . . . . 245
Flamsteed’s guess . . . . . . . . . . . . . . . . . . . . . . . 245
Cardan’s horoscope of Edward VI . . . . . . . . . . . . . . 246

Chapter XI. Cryptographs and Ciphers.

A Cryptograph. Definition. Illustration . . . . . . . . . . . . . 250
A Cipher. Definition. Illustration . . . . . . . . . . . . . . . . 251
Essential Features of Cryptographs and Ciphers . . . . . . . . 251
Cryptographs of Three Types. Illustrations . . . . . . . . . . 252

Order of letters re-arranged . . . . . . . . . . . . . . . . . 252
Use of non-significant symbols. The Grille . . . . . . . . . 255
Use of broken symbols. The Scytale . . . . . . . . . . . . . 257

• Project • Gutenberg • #26839 •



TABLE OF CONTENTS. xiii

PAGE
Ciphers. Use of arbitrary symbols unnecessary . . . . . . . . . 258
Ciphers of Four Types . . . . . . . . . . . . . . . . . . . . . . 258

Ciphers of the First Type. Illustrations . . . . . . . . . . . 259
Ciphers of the Second Type. Illustrations . . . . . . . . . . 262
Ciphers of the Third Type. Illustrations . . . . . . . . . . 264
Ciphers of the Fourth Type. Illustrations . . . . . . . . . . 266

Requisites in a good Cipher . . . . . . . . . . . . . . . . . . . 267
Cipher Machines . . . . . . . . . . . . . . . . . . . . . . . . . 268
Historical Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 268

Julius Caesar, Augustus . . . . . . . . . . . . . . . . . . . 268
Bacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Charles I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Pepys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
De Rohan . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Marie Antoinette . . . . . . . . . . . . . . . . . . . . . . . 272
The Code Dictionary . . . . . . . . . . . . . . . . . . . . . 273
Poe’s Writings . . . . . . . . . . . . . . . . . . . . . . . . . 274

Chapter XII. Hyper-space.

Two subjects of speculation on Hyper-space . . . . . . . . . . 277
Space of two dimensions and of one dimension . . . . . . . . . 277
Space of four dimensions . . . . . . . . . . . . . . . . . . . . . 278

Existence in such a world . . . . . . . . . . . . . . . . . . 278
Arguments in favour of the existence of such a world . . . 279

Non-Euclidean Geometries . . . . . . . . . . . . . . . . . . . . 283
Euclid’s axioms and postulates. The parallel postulate . . . . 283
Hyperbolic Geometry of two dimensions . . . . . . . . . . . . 284
Elliptic Geometry of two dimensions . . . . . . . . . . . . . . 284

Elliptic, Parabolic and Hyperbolic Geometries compared . 284
Non-Euclidean Geometries of three or more dimensions . . . . 286

Chapter XIII. Time and its Measurement.

Units for measuring durations (days, weeks, months, years) . . 288
The Civil Calendar (Julian, Gregorian, &c.) . . . . . . . . . . 291
The Ecclesiastical Calendar (date of Easter) . . . . . . . . . . 293

• Project • Gutenberg • #26839 •



xiv TABLE OF CONTENTS.

PAGE
Day of the week corresponding to a given date . . . . . . . . . 296
Means of measuring Time . . . . . . . . . . . . . . . . . . . . 296

Styles, Sun-dials, Sun-rings . . . . . . . . . . . . . . . . . 296
Water-clocks, Sand-clocks, Graduated Candles . . . . . . . 300
Clocks and Watches . . . . . . . . . . . . . . . . . . . . . 300

Watches as Compasses . . . . . . . . . . . . . . . . . . . . . . 302

Chapter XIV. Matter and Ether Theories.

Hypothesis of Continuous Matter . . . . . . . . . . . . . . . . 305
Atomic Theories . . . . . . . . . . . . . . . . . . . . . . . . . 305

Popular Atomic Hypothesis . . . . . . . . . . . . . . . . . 305
Boscovich’s Hypothesis . . . . . . . . . . . . . . . . . . . . 306
Hypothesis of an Elastic Solid Ether. Labile Ether . . . . . 306

Dynamical Theories . . . . . . . . . . . . . . . . . . . . . . . 307
The Vortex Ring Hypothesis . . . . . . . . . . . . . . . . . 307
The Vortex Sponge Hypothesis . . . . . . . . . . . . . . . 309
The Ether-Squirts Hypothesis . . . . . . . . . . . . . . . . 309
The Electron Hypothesis . . . . . . . . . . . . . . . . . . . 310
Speculations due to investigations on Radio-activity . . . . 310
The Bubble Hypothesis . . . . . . . . . . . . . . . . . . . . 312

Conjectures as to the cause of Gravity . . . . . . . . . . . . . 313
Conjectures to explain the finite number of species of Atoms . 317
Size of the molecules of bodies . . . . . . . . . . . . . . . . . . 319

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Notices of some works—chiefly

historico-mathematical . . . . . . . . . . . . . . . . . 334

Project Gutenberg Licensing Information . . . . . . 353

• Project • Gutenberg • #26839 •



PART I.

Mathematical Recreations.

“Les hommes ne sont jamais plus ingénieux que
dans l’invention des jeux; l’esprit s’y trouve à son
aise. . . . Après les jeux qui dépendent uniquement
des nombres viennent les jeux où entre la situa-
tion. . . . Après les jeux où n’entrent que le nom-
bre et la situation viendraient les jeux où entre le
mouvement. . . . Enfin il serait a souhaiter qu’on
eût un cours entier des jeux, traités mathématique-
ment.”
(Leibnitz: letter to De Montmort, July 29, 1715.)

1
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CHAPTER I.

SOME ARITHMETICAL QUESTIONS.

The interest excited by statements of the relations between num-
bers of certain forms has been often remarked. The majority of works
on mathematical recreations include several such problems, which are
obvious to any one acquainted with the elements of algebra, but which
to many who are ignorant of that subject possess the same kind of
charm that some mathematicians find in the more recondite proposi-
tions of higher arithmetic. I shall devote the bulk of this chapter to
these elementary problems, but I append a few remarks on one or two
questions in the theory of numbers.

Before entering on the subject of the chapter, I may add that a
large proportion of the elementary questions mentioned here and in
the following two chapters are taken from one of two sources. The first
of these is the classical Problèmes plaisans et délectables, by C.G. Ba-
chet, sieur de Méziriac, of which the first edition was published in 1612
and the second in 1624: it is to the edition of 1624 that the references
hereafter given apply. Several of Bachet’s problems are taken from the
writings of Alcuin, Pacioli di Burgo, Tartaglia, or Cardan, and possi-
bly some of them are of oriental origin, but I have made no attempt
to add such references. The other source to which I alluded above is
Ozanam’s Récréations mathématiques et physiques . The greater por-
tion of the original edition, published in two volumes at Paris in 1694,
was a compilation from the works of Bachet, Leurechon, Mydorge, van
Etten, and Oughtred: this part is excellent, but the same cannot be
said of the additions due to Ozanam. In the Biographie Universelle al-
lusion is made to subsequent editions issued in 1720, 1735, 1741, 1778,

2
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CH. I] ARITHMETICAL RECREATIONS. 3

and 1790; doubtless these references are correct, but the following edi-
tions, all of which I have seen, are the only ones of which I have any
knowledge. In 1696 an edition was issued at Amsterdam. In 1723—
six years after the death of Ozanam—one was issued in three volumes,
with a supplementary fourth volume, containing (among other things)
an appendix on puzzles: I believe that it would be difficult to find in
any of the books current in England on mathematical amusements as
many as a dozen puzzles which are not contained in one of these four
volumes. Fresh editions were issued in 1741, 1750 (the second volume
of which bears the date 1749), 1770, and 1790. The edition of 1750 is
said to have been corrected by Montucla on condition that his name
should not be associated with it; but the edition of 1790 is the earliest
one in which reference is made to these corrections, though the editor is
referred to only as Monsieur M***. Montucla expunged most of what
was actually incorrect in the older editions, and added several historical
notes, but unfortunately his scruples prevented him from striking out
the accounts of numerous trivial experiments and truisms which over-
load the work. An English translation of the original edition appeared
in 1708, and I believe ran through four editions, the last of them being
published in Dublin in 1790. Montucla’s revision of 1790 was translated
by C. Hutton, and editions of this were issued in 1803, in 1814, and (in
one volume) in 1840: my references are to the editions of 1803 and 1840.

I proceed now to enumerate some of the elementary questions con-
nected with numbers which for nearly three centuries have formed a
large part of most compilations of mathematical amusements. They
are given here mainly for their historical—not for their arithmetical—
interest; and perhaps a mathematician may well omit them, and pass
at once to the latter part of this chapter.

These questions are of the nature of tricks or puzzles and I follow
the usual course and present them in that form. I may note however
that most of them are not worth proposing, even as tricks, unless either
the modus operandi is disguised or the result arrived at is different
from that expected; but, as I am not writing on conjuring, I refrain
from alluding to the means of disguising the operations indicated, and
give merely a bare enumeration of the steps essential to the success of
the method used, though I may recall the fundamental rule that no
trick, however good, will bear immediate repetition, and that, if it is
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4 ARITHMETICAL RECREATIONS. [CH. I

necessary to appear to repeat it, a different method of obtaining the
result should be used.

To find a number selected by some one. There are in-
numerable ways of finding a number chosen by some one, provided the
result of certain operations on it is known. I confine myself to methods
typical of those commonly used. Any one acquainted with algebra will
find no difficulty in modifying the rules here given or framing new ones
of an analogous nature.

First Method*. (i) Ask the person who has chosen the number to
treble it. (ii) Enquire if the product is even or odd: if it is even, request
him to take half of it; if it is odd, request him to add unity to it and
then to take half of it. (iii) Tell him to multiply the result of the second
step by 3. (iv) Ask how many integral times 9 divides into the latter
product: suppose the answer to be n. (v) Then the number thought of
was 2n or 2n+ 1, according as the result of step (i) was even or odd.

The demonstration is obvious. Every even number is of the form
2n, and the successive operations applied to this give (i) 6n, which is
even; (ii) 1

2
6n = 3n; (iii) 3× 3n = 9n; (iv) 1

9
9n = n; (v) 2n. Every odd

number is of the form 2n + 1, and the successive operations applied
to this give (i) 6n + 3, which is odd; (ii) 1

2
(6n + 3 + 1) = 3n + 2;

(iii) 3(3n+ 2) = 9n+ 6; (iv) 1
9
(9n+ 6) = n+ a remainder; (v) 2n+ 1.

These results lead to the rule given above.
Second Method †. Ask the person who has chosen the number to

perform in succession the following operations. (i) To multiply the
number by 5. (ii) To add 6 to the product. (iii) To multiply the sum
by 4. (iv) To add 9 to the product. (v) To multiply the sum by 5. Ask
to be told the result of the last operation: if from this product 165 is
subtracted, and then the remainder is divided by 100, the quotient will
be the number thought of originally.

For let n be the number selected. Then the successive operations
applied to it give (i) 5n; (ii) 5n + 6; (iii) 20n + 24; (iv) 20n + 33;
(v) 100n + 165. Hence the rule.

Third Method ‡. Request the person who has thought of the num-
ber to perform the following operations. (i) To multiply it by any
number you like, say, a. (ii) To divide the product by any number,

* Bachet, Problèmes plaisans, Lyons, 1624, problem i, p. 53.
† A similar rule was given by Bachet, problem iv, p. 74.
‡ Bachet, problem v, p. 80.
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CH. I] ELEMENTARY TRICKS AND PROBLEMS. 5

say, b. (iii) To multiply the quotient by c. (iv) To divide this result
by d. (v) To divide the final result by the number selected originally.
(vi) To add to the result of operation (v) the number thought of at
first. Ask for the sum so found: then, if ac/bd is subtracted from this
sum, the remainder will be the number chosen originally.

For, if n was the number selected, the result of the first four op-
erations is to form nac/bd; operation (v) gives ac/bd; and (vi) gives
n + (ac/bd), which number is mentioned. But ac/bd is known; hence,
subtracting it from the number mentioned, n is found. Of course a, b,
c, d may have any numerical values it is liked to assign to them. For
example, if a = 12, b = 4, c = 7, d = 3 it is sufficient to subtract 7
from the final result in order to obtain the number originally selected.

Fourth Method*. Ask some one to select a number less than 90.
(i) Request him to multiply it by 10, and to add any number he pleases,
a, which is less than 10. (ii) Request him to divide the result of step (i)
by 3, and to mention the remainder, say, b. (iii) Request him to multiply
the quotient obtained in step (ii) by 10, and to add any number he
pleases, c, which is less than 10. (iv) Request him to divide the result
of step (iii) by 3, and to mention the remainder, say d, and the third
digit (from the right) of the quotient; suppose this digit is e. Then,
if the numbers a, b, c, d, e are known, the original number can be at
once determined. In fact, if the number is 9x + y, where x ≯ 9 and
y ≯ 8, and if r is the remainder when a − b + 3(c − d) is divided by
9, we have x = e, y = 9 − r.

The demonstration is not difficult. For if the selected number is
9x+y, step (i) gives 90x+10y+a; (ii) let y+a = 3n+b, then the quotient
obtained in step (ii) is 30x+3y+n; step (iii) gives 300x+30y+10n+c;
(iv) let n + c = 3m + d, then the quotient obtained in step (iv) is
100x + 10y + 3n + m, which I will denote by Q. Now the third digit
in Q must be x, because, since y ≯ 8 and a ≯ 9, we have n ≯ 5; and
since n ≯ 5 and c ≯ 9, we have m ≯ 4; therefore 10y + 3n +m ≯ 99.
Hence the third or hundreds digit in Q is x.

Again, from the relations y + a = 3n + b and n + c = 3m + d,
we have 9m− y = a− b + 3(c− d): hence, if r is the remainder when
a−b+3(c−d) is divided by 9, we have y = 9−r. [This is always true, if
we make r positive; but if a−b+3(c−d) is negative, it is simpler to take
y as equal to its numerical value; or we may prevent the occurrence of

* Educational Times, London, May 1, 1895, vol. xlviii, p. 234.
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6 ARITHMETICAL RECREATIONS. [CH. I

this case by assigning proper values to a and c.] Thus x and y are both
known, and therefore the number selected, namely 9x+ y, is known.

Fifth Method*. Ask any one to select a number less than 60.
(i) Request him to divide it by 3 and mention the remainder; sup-
pose it to be a. (ii) Request him to divide it by 4, and mention the
remainder; suppose it to be b. (iii) Request him to divide it by 5, and
mention the remainder; suppose it to be c. Then the number selected
is the remainder obtained by dividing 40a + 45b + 36c by 60.

This method can be generalized and then will apply to any number
chosen. Let a′, b′, c′, . . . be a series of numbers prime to one another,
and let p be their product. Let n be any number less than p, and let
a, b, c, . . . be the remainders when n is divided by a′, b′, c′, . . . respec-
tively. Find a number A which is a multiple of the product b′c′d′ · · ·
and which exceeds by unity a multiple of a′. Find a number B which is
a multiple of a′c′d′ · · · and which exceeds by unity a multiple of b′; and
similarly find analogous numbers C,D, . . . . Rules for the calculation
of A,B,C, . . . are given in the theory of numbers, but in general, if the
numbers a′, b′, c′, . . . are small, the corresponding numbers, A,B,C, . . .
can be found by inspection. I proceed to show that n is equal to the
remainder when Aa + Bb + Cc + · · · is divided by p.

Let N = Aa+Bb+Cc+· · · , and let M(x) stand for a multiple of x.
Now A = M(a′) + 1, therefore Aa = M(a′) + a. Hence, if the first

term in N , that is Aa, is divided by a′, the remainder is a. Again,
B is a multiple of a′c′d′ · · · . Therefore Bb is exactly divisible by a′.
Similarly Cc,Dd, . . . are each exactly divisible by a′. Thus every term
in N , except the first, is exactly divisible by a′. Hence, if N is divided
by a′, the remainder is a. But if n is divided by a′, the remainder is a.

Therefore N − n = M(a′) .

Similarly N − n = M(b′) ,

N − n = M(c′) ,

. . . . . . . . . . . . . . . . . . . . . . .
But a′, b′, c′, . . . are prime to one another.

∴ N − n = M(a′b′c′ · · · ) = M(p) ,

that is, N = M(p) + n .

* Bachet, problem vi, p. 84: Bachet added, on p. 87, a note on the previous
history of the problem.
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CH. I] ELEMENTARY TRICKS AND PROBLEMS. 7

Now n is less than p, hence if N is divided by p, the remainder is n.
The rule given by Bachet corresponds to the case of a′ = 3, b′ = 4,

c′ = 5, p = 60, A = 40, B = 45, C = 36. If the number chosen is
less than 420, we may take a′ = 3, b′ = 4, c′ = 5, d′ = 7, p = 420,
A = 280, B = 105, C = 336, D = 120.

To find the result of a series of operations performed
on any number (unknown to the questioner) without asking any
questions. All rules for solving such problems ultimately depend
on so arranging the operations that the number disappears from the
final result. Four examples will suffice.

First Example*. Request some one to think of a number. Suppose
it to be n. Ask him (i) to multiply it by any number you please (say)
a; (ii) then to add (say) b; (iii) then to divide the sum by (say) c.
(iv) Next, tell him to take a/c of the number originally chosen; and
(v) to subtract this from the result of the third operation. The result
of the first three operations is (na + b)/c, and the result of operation
(iv) is na/c: the difference between these is b/c, and therefore is known
to you. For example, if a = 6, b = 12, c = 4, and a/c = 11

2
, then

the final result is 3.
Second Example†. Ask A to take any number of counters that he

pleases: suppose that he takes n counters. (i) Ask some one else, say
B, to take p times as many, where p is any number you like to choose.
(ii) Request A to give q of his counters to B, where q is any number you
like to select. (iii) Next, ask B to transfer to A a number of counters
equal to p times as many counters as A has in his possession. Then
there will remain in B’s hands q(p+1) counters: this number is known
to you; and the trick can be finished either by mentioning it or in any
other way you like.

The reason is as follows. The result of operation (ii) is that B has
pn + q counters, and A has n − q counters. The result of (iii) is that
B transfers p(n− q) counters to A: hence he has left in his possession
(pn + q) − p(n − q) counters, that is, he has q(p + 1).

For example, if originally A took any number of counters, then (if
you chose p equal to 2), first you would ask B to take twice as many
counters as A had done; next (if you chose q equal to 3) you would ask

* Bachet, problem viii, p. 102.
† Bachet, problem xiii, p. 123: Bachet presented the above trick in a somewhat

more general form, but one which is less effective in practice.
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8 ARITHMETICAL RECREATIONS. [CH. I

A to give 3 counters to B; and then you would ask B to give to A a
number of counters equal to twice the number then in A’s possession;
after this was done you would know that B had 3(2+1), that is, 9 left.

This trick (as also some of the following problems) may be per-
formed equally well with one person, in which case A may stand for
his right hand and B for his left hand.

Third Example. Ask some one to perform in succession the follow-
ing operations. (i) Take any number of three digits. (ii) Form a new
number by reversing the order of the digits. (iii) Find the difference of
these two numbers. (iv) Form another number by reversing the order of
the digits in this difference. (v) Add together the results of (iii) and (iv).
Then the sum obtained as the result of this last operation will be 1089.

An illustration and the explanation of the rule are given below.

(i) 237 100a+ 10b+ c

(ii) 732 100c+ 10b+ a

(iii) 495 100(a− c− 1) + 90 + (10 + c− a)

(iv) 594 100(10 + c− a) + 90 + (a− c− 1)

(v) 1089 900 + 180 + 9

Fourth Example*. The following trick depends on the same prin-
ciple. Ask some one to perform in succession the following operations.
(i) To write down any sum of money less than £12; the number of
pounds not being the same as the number of pence. (ii) To reverse
this sum, that is, to write down a sum of money obtained from it by
interchanging the numbers of pounds and pence. (iii) To find the differ-
ence between the results of (i) and (ii). (iv) To reverse this difference.
(v) To add together the results of (iii) and (iv). Then this sum will
be £12. 18s. 11d.

* Educational Times Reprints, 1890, vol. liii, p. 78.
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CH. I] ELEMENTARY TRICKS AND PROBLEMS. 9

For instance, take the sum £10. 17s. 5d.; we have

£. s. d.
(i) . . . . . . . . . . . 10 17 5

(ii) . . . . . . . . . . . 5 17 10

(iii) . . . . . . . . . . . 4 19 7

(iv) . . . . . . . . . . . 7 19 4

(v) . . . . . . . . . . . 12 18 11

The following work explains the rule, and shows that the final result
is independent of the sum written down initially.

£. s. d.
(i) . . . . . . . . . . . a b c

(ii) . . . . . . . . . . . c b a

(iii) . . . . . . . . . . . a− c− 1 19 c− a+ 12

(iv) . . . . . . . . . . . c− a+ 12 19 a− c− 1

(v) . . . . . . . . . . . 11 38 11

The rule can be generalized to cover any system of monetary units.
Problems involving Two Numbers. I proceed next to give

a couple of examples of a class of problems which involve two numbers.
First Example*. Suppose that there are two numbers, one even

and the other odd, and that a person A is asked to select one of
them, and that another person B takes the other. It is desired to
know whether A selected the even or the odd number. Ask A to multi-
ply his number by 2 (or any even number) and B to multiply his by 3
(or any odd number). Request them to add the two products together
and tell you the sum. If it is even, then originally A selected the odd
number, but if it is odd, then originally A selected the even number.
The reason is obvious.

Second Example†. The above rule was extended by Bachet to any
two numbers, provided they were prime to one another and one of them

* Bachet, problem ix, p. 107.
† Bachet, problem xi, p. 113.
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10 ARITHMETICAL RECREATIONS. [CH. I

was not itself a prime. Let the numbers be m and n, and suppose that n
is exactly divisible by p. Ask A to select one of these numbers, and B to
take the other. Choose a number prime to p, say q. Ask A to multiply
his number by q, and B to multiply his number by p. Request them
to add the products together and state the sum. Then A originally
selected m or n, according as this result is not or is divisible by p. For
example, m = 7, n = 15, p = 3, q = 2.

Problems depending on the Scale of Notation. Many
of the rules for finding two or more numbers depend on the fact that
in arithmetic an integral number is denoted by a succession of digits,
where each digit represents the product of that digit and a power of ten,
and the number is equal to the sum of these products. For example,
2017 signifies (2×103)+(0×102)+(1×10)+7; that is, the 2 represents
2 thousands, i.e. the product of 2 and 103, the 0 represents 0 hundreds,
i.e. the product of 0 and 102; the 1 represents 1 ten, i.e. the product of 1
and 10, and the 7 represents 7 units. Thus every digit has a local value.

The application to tricks connected with numbers will be under-
stood readily from three illustrative examples.

First Example*. A common conjuring trick is to ask a boy among
the audience to throw two dice, or to select at random from a box a
domino on each half of which is a number. The boy is then told to
recollect the two numbers thus obtained, to choose either of them, to
multiply it by 5, to add 7 to the result, to double this result, and lastly
to add to this the other number. From the number thus obtained, the
conjurer subtracts 14, and obtains a number of two digits which are
the two numbers chosen originally.

For suppose that the boy selected the numbers a and b. Each of
these is less than ten—dice or dominoes ensuring this. The successive
operations give (i) 5a; (ii) 5a+7; (iii) 10a+14; (iv) 10a+14+b. Hence,
if 14 is subtracted from the final result, there will be left a number of
two digits, and these digits are the numbers selected originally. An
analogous trick might be performed in other scales of notation if it was
thought necessary to disguise the process further.

* Some similar questions were given by Bachet in problem xii, p. 117; by Oughtred
in his Mathematicall Recreations (translated from or founded on van Etten’s
work of 1633), London, 1653, problem xxxiv; and by Ozanam, part i, chapter x.
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Second Example*. Similarly, if three numbers, say, a, b, c, are
chosen, then, if each of them is less than ten, they can be found by the
following rule. (i) Take one of the numbers, say, a, and multiply it by
2. (ii) Add 3 to the product; the result is 2a+ 3. (iii) Multiply this by
5, and add 7 to the product; the result is 10a + 22. (iv) To this sum
add the second number. (v) Multiply the result by 2. (vi) Add 3 to the
product. (vii) Multiply by 5, and add the third number to the product.
The result is 100a+10b+ c+235. Hence, if the final result is known, it
is sufficient to subtract 235 from it, and the remainder will be a number
of three digits. These digits are the numbers chosen originally.

I have seen a similar rule applied to determine the birthday and
age of some one in the audience. The result is a number of six digits,
of which the first two digits give the day of the month, the middle two
digits the number of the month, and the last two digits the present age.

Third Example†. The following rule for finding a man’s age is of
the same kind. Take the tens digit of the year of birth; (i) multiply it
by 5; (ii) to the product add 2; (iii) multiply the result by 2; (iv) to
this product add the units digit of the birth-year; (v) subtract the sum
from 110. The result is the man’s age in 1906.

The algebraic proof of the rule is obvious. Let a and b be the tens
and units digits of the birth-year. The successive operations give (i) 5a;
(ii) 5a + 2; (iii) 10a + 4 (iv) 10a + 4 + b; (v) 106 − (10a + b), which
is his age in 1906. The rule can be easily adapted to give the age in
any specified year.

Other Problems with numbers in the denary scale. I
may mention here two or three other slight problems dependent on the
common scale of notation, which, as far as I am aware, are unknown
to most compilers of books of puzzles.

First Problem. The first of them is as follows. Take any number
of three digits: reverse the order of the digits: subtract the number so
formed from the original number: then, if the last digit of the difference
is mentioned, all the digits in the difference are known.

For let a be the hundreds digit of the number chosen, b be the tens
digit, and c be the units digit. Therefore the number is 100a+10b+ c.
The number obtained by reversing the digits is 100c + 10b + a. The

* Bachet gave some similar questions in problem xii, p. 117.
† A similar question was given by Laisant and Perrin in their Algèbre, Paris, 1892;

and in L’Illustration for July 13, 1895.
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12 ARITHMETICAL RECREATIONS. [CH. I

difference of these numbers is equal to (100a+c)−(100c+a), that is, to
99(a− c). But a− c is not greater than 9, and therefore the remainder
can only be 99, 198, 297, 396, 495, 594, 693, 792, or 891—in each case
the middle digit being 9 and the digit before it (if any) being equal to
the difference between 9 and the last digit. Hence, if the last digit is
known, so is the whole of the remainder.

Second Problem. The second problem is somewhat similar and is
as follows. (i) Take any number; (ii) reverse the digits; (iii) find the
difference between the number formed in (ii) and the given number;
(iv) multiply this difference by any number you like to name; (v) cross
out any digit except a nought; (vi) read the remainder. Then the sum of
the digits in the remainder subtracted from the next highest multiple
of nine will give the figure struck out.

This follows at once from the fact that the result of operation (iii)—
and therefore also of operation (iv)—is necessarily a multiple of nine,
and it is known that the sum of the digits of every multiple of nine is
itself a multiple of nine.

Miscellaneous Questions. Besides these problems, properly so
called, there are numerous questions on numbers which can be solved
empirically, but which are of no special mathematical interest.

As an instance I may quote a question which attracted some at-
tention in London in 1893, and may be enunciated as follows. With
the seven digits 9, 8, 7, 6, 5, 4, 0 express three numbers whose sum
is 82: each digit, being used only once, and the use of the usual no-
tations for fractions being allowed. One solution is 80.69̇ + .74̇ + .5̇.
Similar questions are with the ten digits, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, to
express numbers whose sum is unity; a solution is 35/70 and 148/296.
If the sum were 100, a solution would be 50, 49, 1/2, and 38/76. A
less straightforward question would be, with the nine digits, 9, 8, 7,
6, 5, 4, 3, 2, 1, to express four numbers whose sum is 100; a solution
is 78, 15, 2

√
9, and 3

√
64.

Problems with a series of things which are numbered.
Any collection of things which can be distinguished one from the
other—especially if numbered consecutively—afford easy concrete il-
lustrations of questions depending on these elementary properties of
numbers. As examples I proceed to enumerate a few familiar tricks.
The first two of these are commonly shown by the use of a watch,
the last three are best exemplified by the use of a pack of playing
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CH. I] ELEMENTARY TRICKS AND PROBLEMS. 13

cards, which readily lend themselves to such illustrations, and I present
them in these forms.

First Example*. The first of these examples is connected with the
hours marked on the face of a watch. In this puzzle some one is asked
to think of some hour, say, m, and then to touch a number that marks
another hour, say, n. Then if, beginning with the number touched, he
taps each successive hour marked on the face of the watch, going in
the opposite direction to that in which the hands of the watch move,
and reckoning to himself the taps as m, (m + 1), &c., the (n + 12)th
tap will be on the hour he thought of. For example, if he thinks of v
and touches ix, then, if he taps successively ix, viii, vii, vi, . . . , going
backwards and reckoning them respectively as 5, 6, 7, 8, . . . , the tap
which he reckons as 21 will be on the v.

The reason of the rule is obvious, for he arrives finally at the
(n + 12 − m)th hour from which he started. Now, since he goes in
the opposite direction to that in which the hands of the watch move,
he has to go over (n−m) hours to reach the hour m: also it will make
no difference if in addition he goes over 12 hours, since the only effect of
this is to take him once completely round the circle. Now (n+12−m)
is always positive, since m < 12, and therefore if we make him pass
over (n+12−m) hours we can give the rule in a form which is equally
valid whether m is greater or less than n.

Second Example. The following is another well-known way of in-
dicating on a watch-dial an hour selected by some one. I do not know
who first invented it. If the hour is tapped by a pencil beginning at
vii and proceeding backwards round the dial to vi, v, &c., and if the
person who selected the number counts the taps, reckoning from the
hour selected (thus, if he selected x, he would reckon the first tap as the
11th), then the 20th tap as reckoned by him will be on the hour chosen.

For suppose he selected the nth hour. Then the 8th tap is on xii
and is reckoned by him as the (n+ 8)th. The tap which he reckons as
(n+ 9)th is on xi, and generally the tap which he reckons as (n+ p)th
is on the hour (20 − p). Hence, putting p − 20 − n, the tap which he
reckons as 20th is on the hour n. Of course the hours indicated by the
first seven taps are immaterial.

* Bachet, problem xx, p. 155; Oughtred, Mathematicall Recreations, London,
1653, p. 28.

• Project • Gutenberg • #26839 •
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Extension. It is obvious that the same trick can be performed
with any collection of m things, such as cards or dominoes, which are
distinguishable one from the other, provided m < 20. For suppose
the m things are arranged on a table in some numerical order, and
the nth thing is selected by a spectator. Then the first (19 −m) taps
are immaterial, the (20 −m)th tap must be on the mth thing and be
reckoned by the spectator as the (n+20−m)th, the (20−m+1)th tap
must be on the (m−1)th thing and be reckoned as the (n+20−m+1)th,
and finally the (20− n)th tap will be on the nth thing and is reckoned
as the 20th tap.

Third Example. The following example rests on an extension of
the method used in the last question; it is very simple, but I have never
seen it previously described in print. Suppose that a pack of n cards
is given to some one who is asked to select one out of the first m cards
and to remember (but not to mention) what is its number from the top
of the pack (say it is actually the xth card in the pack). Then take
the pack, reverse the order of the top m cards (which can be easily
effected by shuffling), and transfer y cards (where y < n − m) from
the bottom to the top of the pack. The effect of this is that the card
originally chosen is now the (y + m − x + 1)th from the top. Return
to the spectator the pack so rearranged, and ask that the top card be
counted as the (x+1)th, the next as the (x+2)th, and so on, in which
case the card originally chosen will be the (y+m+1)th. Now y and m
can be chosen as we please, and may be varied every time the trick is
performed; thus any one unskilled in arithmetic will not readily detect
the modus operandi.

Fourth Example*. Place a card on the table, and on it place as
many other cards from the pack as with the number of pips on the
card will make a total of twelve. For example, if the card placed first
on the table is the five of clubs, then seven additional cards must be
placed on it. The court cards may have any values assigned to them,
but usually they are reckoned as tens. This is done again with another
card, and thus another pile is formed. The operation may be repeated
either only three or four times or as often as the pack will permit of
such piles being formed. If finally there are p such piles, and if the
number of cards left over is r, then the sum of the number of pips on
the bottom cards of all the piles will be 13(p − 4) + r.

* A particular case of this problem was given by Bachet, problem xvii, p. 138.
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For, if x is the number of pips on the bottom card of a pile, the
number of cards in that pile will be 13− x. A similar argument holds
for each pile. Also there are 52 cards in the pack; and this must be
equal to the sum of the cards in the p piles and the r cards left over.

∴ (13− x1) + (13− x2) + · · ·+ (13− xp) + r = 52 ,

∴ 13p− (x1 + x2 + · · ·+ xp) + r = 52 ,

∴ x1 + x2 + · · ·+ xp = 13p− 52 + r

= 13(p− 4) + r .

More generally, if a pack of n cards is taken, and if in each pile
the sum of the pips on the bottom card and the number of cards put
on it is equal to m, then the sum of the pips on the bottom cards of
the piles will be (m + 1)p + r − n. In an écarté pack n = 32, and it
is convenient to take m = 15.

Fifth Example. It may be noticed that cutting a pack of cards
never alters the relative position of the cards provided that, if necessary,
we regard the top card as following immediately after the bottom card
in the pack. This is used in the following trick*. Take a pack, and deal
the cards face upwards on the table, calling them one, two, three, &c. as
you put them down, and noting in your own mind the card first dealt.
Ask some one to select a card and recollect its number. Turn the pack
over, and let it be cut (not shuffled) as often as you like. Enquire what
was the number of the card chosen. Then, if you deal, and as soon as
you come to the original first card begin (silently) to count, reckoning
this as one, the selected card will appear at the number mentioned. Of
course, if all the cards are dealt before reaching this number, you must
turn the cards over and go on counting continuously.

Another similar trick is performed by handing the pack face up-
wards to some one, and asking him to select a card and state its num-
ber, reckoning from the top; suppose it to be the nth. Next, ask him
to choose a number at which it shall appear in the pack; suppose he
selects the mth. Take the pack and secretly move m−n cards from the
bottom to the top (or if n is greater than m, then n−m from the top
to the bottom) and of course the card will be in the required position.

* Bachet, problem xix, p. 152.
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Medieval Problems in Arithmetic. Before leaving the sub-
ject of these elementary questions, I may mention a few problems which
for centuries have appeared in nearly every collection of mathemati-
cal recreations, and therefore may claim what is almost a prescriptive
right to a place here.

First Example*. The following is a sample of one class of these
puzzles. Three men robbed a gentleman of a vase, containing 24 ounces
of balsam. Whilst running away they met in a wood with a glass-seller,
of whom in a great hurry they purchased three vessels. On reaching
a place of safety they wished to divide the booty, but they found that
their vessels contained 5, 11, and 13 ounces respectively. How could
they divide the balsam into equal portions?

Problems like this can be worked out only by trial: there are several
solutions, of which one is as follows.

The vessels can contain . . . . . . 24 oz. 13 oz. 11 oz. 5 oz.
Their contents originally are 24 . . . 0 . . . 0 . . . 0 . . .
First, make their contents . . . 0 . . . 8 . . . 11 . . . 5 . . .
Second, ” ” . . . 16 . . . 8 . . . 0 . . . 0 . . .
Third, ” ” . . . 16 . . . 0 . . . 8 . . . 0 . . .
Fourth, ” ” . . . 3 . . . 13 . . . 8 . . . 0 . . .
Fifth, ” ” . . . 3 . . . 8 . . . 8 . . . 5 . . .
Sixth, ” ” . . . 8 . . . 8 . . . 8 . . . 0 . . .

Second Example†. The next of these is a not uncommon game,
played by two people, say A and B. A begins by mentioning some
number not greater than (say) six, B may add to that any number not
greater than six, A may add to that again any number not greater than
six, and so on. He wins who is the first to reach (say) 50. Obviously, if A
calls 43, then whatever B adds to that, A can win next time. Similarly,
if A calls 36, B cannot prevent A’s calling 43 the next time. In this
way it is clear that the key numbers are those forming the arithmetical
progression 43, 36, 29, 22, 15, 8, 1; and whoever plays first ought to win.

Similarly, if no number greater than m may be added at any one
time, and n is the number to be called by the victor, then the key num-
* Some similar problems were given by Bachet, appendix, problem iii, p. 206;

problem ix, p. 233; by Oughtred in his Recreations, p. 22: and by Ozanam, 1803
edition, vol. i, p. 174; 1840 edition, p. 79. Earlier instances occur in Tartaglia’s
writings.

† Bachet, problem xxii, p. 170.
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bers will be those forming the arithmetical progression whose common
difference is m+ 1 and whose smallest term is the remainder obtained
by dividing n by m + 1.

The same game may be played in another form by placing n coins,
matches, or other objects on a table, and directing each player in turn
to take away not more than m of them. Whoever takes away the last
coin wins. Obviously the key numbers are multiples of m+ 1, and the
first player who is able to leave an exact multiple of (m+ 1) coins can
win. Perhaps a better form of the game is to make that player lose
who takes away the last coin, in which case each of the key numbers
exceeds by unity a multiple of m + 1.

Mr Loyd has also suggested* a modification which is equivalent to
placing n counters in the form of a circle, and allowing each player in
succession to take away not more than m of them which are in unbroken
sequence: m being less than n and greater than unity. In this case the
second of the two players can always win.

Recent Extension of this Problem. The games last described are
very simple, but if we impose on the original problem the additional
restriction that each player may not add the same number more than
three times, the analysis becomes by no means easy. It is difficult in this
case to say whether it is an advantage to begin or not. I have never
seen this extension described in print, and I will therefore enunciate
it at length.

Suppose that each player is given eighteen cards, three of them
marked 6, three marked 5, three marked 4, three marked 3, three
marked 2, and three marked 1. They play alternately; A begins by
playing one of his cards; then B plays one of his, and so on. He wins
who first plays a card which makes the sum of the points or numbers
on all the cards played exactly equal to 50, but he loses if he plays a
card which makes this sum exceed 50. The game can be played men-
tally or by noting the numbers on a piece of paper, and in practice it
is unnecessary to use cards.

Thus, if they play as follows A, 4; B, 3; A, 1; B, 6; A, 3; B, 4;
A, 4; B, 5; A, 4; B, 4; A, 5; the game stands at 43. B can now win, for
he may safely play 3, since A has not another 4 wherewith to follow it;
and if A plays less than 4, B will win the next time. Again, if they play

* Tit-Bits, London, July 17, Aug. 7, 1897.
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thus, A, 6; B, 3; A, 1; B, 6; A, 3; B, 4; A, 2; B, 5; A, 1; B, 5; A, 2;
B, 5; A, 2; B, 3; A is now forced to play 1, and B wins by playing 1.

The game can be also played if each player is given only two cards
of each kind.

Third Example. The following medieval problem is somewhat
more elaborate. Suppose that three people, P , Q, R, select three
things, which we may denote by a, e, i, respectively, and that it is
desired to find by whom each object was selected*.

Place 24 counters on a table. Ask P to take one counter, Q to take
two counters, and R to take three counters. Next, ask the person who
selected a to take as many counters as he has already, whoever selected
e to take twice as many counters as he has already, and whoever selected
i to take four times as many counters as he has already. Note how many
counters remain on the table. There are only six ways of distributing
the three things among P , Q, and R; and the number of counters
remaining on the table is different for each way. The remainders may
be 1, 2, 3, 5, 6, or 7.

Bachet summed up the results in the mnemonic line Par fer (1)
César (2) jadis (3) devint (5) si grand (6) prince (7). Corresponding to
any remainder is a word or words containing two syllables: for instance,
to the remainder 5 corresponds the word devint. The vowel in the
first syllable indicates the thing selected by P , the vowel in the second
syllable indicates the thing selected by Q, and of course R selected the
remaining thing. Salve certa animae semita vita quies was suggested
by Oughtred† as an alternative mnemonic line.

Extension. M. Bourlet, in the course of a very kindly notice‡ of
the second edition of this work, has given a much neater solution of the
above question, and has extended the problem to the case of n people,
P0, P1, P2, . . . , Pn−1, each of whom selects one object, out of a collection
of n objects, such as dominoes or cards. It is required to know which
domino or card was selected by each person.

Let us suppose the dominoes to be denoted or marked by the num-
bers 0, 1, . . . , n − 1, instead of by vowels. Give one counter to P1, two
counters to P2, and generally k counters to Pk. Note the number of
counters left on the table. Next ask the person who had chosen the

* Bachet, problem xxv, p. 187.
† Mathematicall Recreations, London, 1653, p. 20.
‡ Bulletin des sciences mathématiques, Paris, 1893, vol. xvii, pp. 105–107.
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domino 0 to take as many counters as he had already, and generally
whoever had chosen the domino h to take nh times as many dominoes
as he had already: thus if Pk had chosen the domino numbered h, he
would take nhk counters. Note the total number of counters taken,
i.e.

∑
nhk. Divide it by n, then the remainder will be the number on

the domino selected by P0; divide the quotient by n, and the remainder
will be the number on the domino selected by P1; divide this quotient
by n, and the remainder will be the number on the domino selected
by P2; and so on. In other words, if the number of counters taken is
expressed in the scale of notation whose radix is n, then the (h+ 1)th
digit from the right will give the number on the domino selected by Ph.

Thus in Bachet’s problem with 3 people and 3 dominoes, we should
first give one counter to Q, and two counters to R, while P would have
no counters; then we should ask the person who selected the domino
marked 0 or a to take as many counters as he had already, whoever
selected the domino marked 1 or e to take three times as many counters
as he had already, and whoever selected the domino marked 2 or i to
take nine times as many counters as he had already. By noticing the
original number of counters, and observing that 3 of these had been
given to Q and R, we should know the total number taken by P , Q,
and R. If this number were divided by 3, the remainder would be the
number of the domino chosen by P ; if the quotient were divided by 3
the remainder would be the number of the domino chosen by Q; and
the final quotient would be the number of the domino chosen by R.

I may add that Bachet also discussed the case when n = 4, which
had been previously considered by Diego Palomino in 1599, but as
M. Bourlet’s method is general, it is unnecessary to discuss further
particular cases.

Decimation. The last of these antique problems to which I referred
consists in placing men round a circle so that if every nth man is killed
the remainder shall be certain specified individuals. When decimation
was a not uncommon punishment a knowledge of this kind may have
had practical interest.

Hegesippus* says that Josephus saved his life by such a device. Ac-
cording to his account, after the Romans had captured Jotopat, Jose-
phus and forty other Jews took refuge in a cave. Josephus, much to his
disgust, found that all except himself and one other man were resolved

* De Bello Judaico, bk. iii, chaps. 16–18.
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to kill themselves, so as not to fall into the hands of their conquerors.
Fearing to show his opposition too openly he consented, but declared
that the operation must be carried out in an orderly way, and sug-
gested that they should arrange themselves round a circle and that
every third person should be killed until but one man was left, who
must then commit suicide. It is alleged that he placed himself and the
other man in the 31st and 16th place respectively, with a result which
will be easily foreseen.

The question is usually presented in the following form. A ship,
carrying as passengers fifteen Turks and fifteen Christians, encountered
a storm, and the pilot declared that, in order to save the ship and crew,
one-half of the passengers must be thrown into the sea. To choose the
victims the passengers were placed round a circle, and it was agreed
that every ninth man should be cast overboard, reckoning from a certain
point. It is desired to find an arrangement by which all the Christians
should be saved.*

Problems like this can be easily solved by counting, but it is im-
possible to give a general rule. In this case, the Christians, reckoning
from the man first counted, must occupy the places 1, 2, 3, 4, 10, 11,
13, 14, 15, 17, 20, 21, 25, 28, 29. This arrangement can be recollected
by the positions of the vowels in the following doggerel rhyme,

From numbers’ aid and art, never will fame depart,

where a stands for 1, e for 2, i for 3, o for 4, and u for 5. Hence
(looking only at the vowels in the verse) the order is 4 Christians, 5
Turks, 2 Christians, 1 Turk, 3 Christians, 1 Turk, 1 Christian, 2 Turks,
2 Christians, 3 Turks, 1 Christian, 2 Turks, 2 Christians, 1 Turk. Other
similar mnemonic lines in French and in Latin were given by Bachet
and by Ozanam respectively.

Arithmetical Fallacies. I insert next some instances of
demonstrations† leading to arithmetical results which are obviously

* Bachet, problem xxiii, p. 174. The same problem had been previously enunci-
ated by Tartaglia.

† Of the fallacies given in the text, the first, second, and third, are well known;
the fourth is not new, but the earliest work in which I recollect seeing it is my
Algebra, Cambridge, 1890, p. 430; the fifth is given in G.C. Chrystal’s Algebra,
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impossible. I include algebraical proofs as well as arithmetical ones.
The fallacies are so patent that in preparing the first and second
editions I did not think such questions worth printing, but, as some
correspondents have expressed a contrary opinion, I give them for
what they are worth.

First fallacy. One of the oldest of these—and not a very interest-
ing specimen—is as follows. Suppose that a = b, then

ab = a2 .

∴ ab− b2 = a2 − b2 .

∴ b(a− b) = (a+ b)(a− b) .

∴ b = a+ b .

∴ b = 2b .

∴ 1 = 2 .

Second Fallacy. Another instance, almost as puerile, is as follows.
Let a and b be two unequal numbers, and let c be their arithmetic
mean, hence

a+ b = 2c .

∴ (a+ b)(a− b) = 2c(a− b) .

∴ a2 − 2ac = b2 − 2bc .

∴ a2 − 2ac+ c2 = b2 − 2bc+ c2 .

∴ (a− c)2 = (b− c)2 .

∴ a = b .

Edinburgh, 1889, vol. ii, p. 159; the eighth is due to G.T. Walker, and, as far
as I know, has not appeared in any other book; the ninth is due to D’Alembert;
and the tenth to F. Galton. A mechanical demonstration that 1 = 2 was given
by R. Chartres in Knowledge, July, 1891. J.L.F. Bertrand pointed out that a
demonstration that 1 = −1 can be also obtained from the proposition in the
Integral Calculus that, if the limits are constant, the order of integration is
indifferent; hence the integral to x (from x = 0 to x = 1) of the integral to
y (from y = 0 to y = 1) of a function φ should be equal to the integral to y
(from y = 0 to y = 1) of the integral to x (from x = 0 to x = 1) of φ, but if
φ = (x2 − y2)/(x2 + y2)2, this gives 1

4π = − 1
4π.
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Third Fallacy. Another example, the idea of which is due to John
Bernoulli, may be stated as follows.

We have (−1)2 = 1 .

Take logarithms, ∴ 2 log(−1) = log 1 = 0 .

∴ log(−1) = 0 .

∴ −1 = e0 .

∴ −1 = 1 .

The same argument may be expressed thus. Let x be a quantity
which satisfies the equation

ex = −1 .

Square both sides, ∴ e2x = 1 .

∴ 2x = 0 .

∴ x = 0 .

∴ ex = e0 .

But ex = −1 and e0 = 1, ∴ −1 = 1 .

Fourth Fallacy. As yet another instance, we know that

log(1 + x) = x− 1
2
x2 + 1

3
x3 − · · · .

If x = 1, the resulting series is convergent; hence we have

log 2 = 1− 1
2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− 1

8
+ 1

9
− · · · .

∴ 2 log 2 = 2− 1 + 2
3
− 1

2
+ 2

5
− 1

3
+ 2

7
− 1

4
+ 2

9
− · · · .

Taking those terms together which have a common denominator, we
obtain

2 log 2 = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
− · · ·

= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

= log 2 .

Hence 2 = 1 .
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Fifth Fallacy. This fallacy is very similar to that last given. We
have

log 2 = 1− 1
2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · ·

=
(
1 + 1

3
+ 1

5
+ · · ·

)
−

(
1
2
+ 1

4
+ 1

6
+ · · ·

)
=

{(
1 + 1

3
+ 1

5
+ · · ·

)
+
(
1
2
+ 1

4
+ 1

6
+ · · ·

)}
− 2

(
1
2
+ 1

4
+ 1

6
+ · · ·

)
=

{
1 + 1

2
+ 1

3
+ · · ·

}
−

(
1 + 1

2
+ 1

3
+ · · ·

)
= 0 .

The error in each of the foregoing examples is obvious, but the
fallacies in the next examples are concealed somewhat better.

Sixth Fallacy. We can write the identity
√
−1 =

√
−1 in the form√

−1

1
=

√
1

−1
,

hence
√
−1√
1

=

√
1√
−1

,

therefore (
√
−1)2 = (

√
1)2 ,

that is, −1 = 1 .

Seventh Fallacy. Again, we have
√
a×

√
b =

√
ab .

Hence
√
−1×

√
−1 =

√
(−1)(−1) ,

therefore (
√
−1)2 =

√
1 ,

that is, −1 = 1 .

Eighth Fallacy. The following demonstration depends on the fact
that an algebraical identity is true whatever be the symbols used in it,
and it will appeal only to those who are familiar with this fact.

We have, as an identity,
√
x− y = i

√
y − x . . . . . . . (i),

where i stands either for +
√
−1 or for −

√
−1. Now an identity in x

and y is necessarily true whatever numbers x and y may represent.
First put x = a and y = b,

∴
√
a− b = i

√
b− a . . . . . . . (ii).
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Next put x = b and y = a,

∴
√
b− a = i

√
a− b . . . . . . (iii).

Also since (i) is an identity, it follows that in (ii) and (iii) the symbol i
must be the same, that is, it represents +

√
−1 or −

√
−1 in both cases.

Hence, from (ii) and (iii), we have
√
a− b

√
b− a = i2

√
b− a

√
a− b ,

∴ 1 = i2 ,

that is 1 = −1 .

Ninth Fallacy. The following fallacy is due to D’Alembert*. We
know that if the product of two numbers is equal to the product of
two other numbers, the numbers will be in proportion, and from the
definition of a proportion it follows that if the first term is greater than
the second, then the third term will be greater than the fourth: thus,
if ad = bc, then a : b = c : d, and if in this proportion a > b, then
c > d. Now if we put a = d = 1 and b = c = −1 we have four numbers
which satisfy the relation ad = bc and such that a > b; hence, by the
proposition, c > d, that is, −1 > 1, which is absurd.

Tenth Fallacy. The mathematical theory of probability leads to
various paradoxes: of these one specimen† will suffice. Suppose three
coins to be thrown up and the fact whether each comes down head or
tail to be noticed. The probability that all three coins come down head
is clearly (1

2
)3, that is, is 1

8
; similarly the probability that all three come

down tail is 1
8
: hence the probability that all the coins come down alike

(i.e. either all of them heads or all of them tails) is 1
4
. But, of three coins

thus thrown up, at least two must come down alike; now the probability
that the third coin comes down head is 1

2
and the probability that it

comes down tail is 1
2
, thus the probability that it comes down the same

as the other two coins is 1
2
: hence the probability that all the coins

come down alike is 1
2
. I leave to my readers to say whether either of

these conflicting conclusions is right and if so, which.
Arithmetical Problems. To the above examples I may add the fol-

lowing questions, which I have often propounded in past years: though
not fallacies, they may serve to illustrate the fact that the answer to

* Opuscules mathématiques, Paris, 1761, vol. i, p. 201.
† See Nature, Feb. 15, March 1, 1894, vol. xlix, pp. 365–366, 413.
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an arithmetical question is frequently different to what a hasty reader
might suppose.

The first of these questions is as follows. Two clerks are engaged,
one at a salary commencing at the rate of (say) £100 a year with a rise
of £20 every year, the other at a salary commencing at the same rate
(£100 a year) with a rise of £5 every half-year, in each case payments
being made half-yearly: which has the larger income? The answer is
the latter; for in the first year the first clerk receives £100, but the
second clerk receives £50 and £55 as his two half-yearly payments and
thus receives in all £105. In the second year the first clerk receives
£120, but the second clerk receives £60 and £65 as his two half-yearly
payments and thus receives in all £125. In fact the second clerk will
always receive £5 a year more than the first clerk.

As another question take the following. A man bets 1/nth of his
money on an even chance (say tossing heads or tails with a penny): he
repeats this again and again, each time betting 1/nth of all the money
then in his possession. If, finally, the number of times he has won is
equal to the number of times he has lost, has he gained or lost by the
transaction? He has, in fact, lost.

Here is another simple question to which not unfrequently I have
received incorrect answers. One tumbler is half-full of wine, another is
half-full of water: from the first tumbler a teaspoonful of wine is taken
out and poured into the tumbler containing the water: a teaspoonful
of the mixture in the second tumbler is then transferred to the first
tumbler. As the result of this double transaction, is the quantity of
wine removed from the first tumbler greater or less than the quantity
of water removed from the second tumbler? Nineteen people out of
twenty will say it is greater, but this is not the case.

Routes on a Chess-Board. A not uncommon problem can be gen-
eralised as follows*. Construct a rectangular board of mn cells (or small
squares) by ruling m+ 1 vertical lines and n+ 1 horizontal lines. It is
required to know how many routes can be taken from the top left-hand
corner to the bottom right-hand corner, the motion being along the
ruled lines and its direction being always either vertically downwards
or horizontally from left to right. The answer is (m+n)!/m!n!: thus on
a square board containing 16 cells (i.e. one-quarter of a chess-board),

* The substance of the problem was given in a scholarship paper set at Cambridge
about 30 years ago, and possibly was not new then.
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where m = n = 4, there are 70 such routes; while on a common chess-
board, where m = n = 8, there are no less than 12870 such routes. A
similar theorem can be enunciated for a parallelopiped.

Another problem of a somewhat similar type is the determination
of the number of closed routes through mn points arranged in m rows
and n columns, following the lines of the quadrilateral net-work, and
passing once and only once through each point*.

Permutation Problems. As other simple illustrations of the very
large number of ways in which combinations of even a few things can
be arranged, I may note that as many as 19, 958400 distinct skele-
ton cubes can be formed with twelve differently coloured rods of equal
length†; again there are 3, 979614, 965760 ways of arranging a set of
twenty-eight dominoes (i.e. a set from double zero to double six) in
a line, with like numbers in contact‡; while there are no less than
53644, 737765, 488792, 839237, 440000 possible different distributions of
hands at whist with a pack of fifty-two cards§.

Voting Problems. Here is a simple example on combinations deal-
ing with the cumulative vote as affecting the representation of a mi-
nority. If there are p electors each having r votes of which not more
than s may be given to one candidate, and n men are to be elected,
then the least number of supporters who can secure the election of a
candidate must exceed pr/(ns + r).

Exploration Problems. Another common question is concerned
with the maximum distance into a desert which could be reached from
a frontier settlement by the aid of a party of n explorers, each capa-
ble of carrying provisions that would last one man for a days. The
answer is that the man who reaches the greatest distance will occupy
na/(n+1) days before he returns to his starting point. If in the course
of their journey they may make depôts, the longest possible journey
will occupy 1

2
a(1 + 1

2
+ 1

3
+ · · ·+ 1/n) days. Further extensions by the

use of horses and cycles will suggest themselves.

Here I conclude my account of such of these easy problems on

* See C.F. Sainte-Marie in L’Intermédiaire des mathématiciens, Paris, vol. xi,
March, 1904, pp. 86–88.

† Mathematical Tripos, Cambridge, Part I, 1894.
‡ Reiss in Annali di matematica, Milan, November, 1871, vol. v, pp. 63–120.
§ That is (52!)/(13!)4.
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numbers or elementary algebra as seemed worth reproducing. It will
be noticed that the majority of them either are due to Bachet or were
collected by him in his classical Problèmes ; but it should be added
that besides the questions I have mentioned he enunciated, even if he
did not always solve, some other problems of greater interest. One
instance will suffice.

Bachet’s Weights Problem*. Among the more difficult
problems proposed by Bachet was the determination of the least num-
ber of weights which would serve to weigh any integral number of
pounds from 1 lb. to 40 lbs. inclusive. Bachet gave two solutions:
namely, (i) the series of weights of 1, 2, 4, 8, 16, and 32 lbs.; (ii) the
series of weights of 1, 3, 9, and 27 lbs.

If the weights may be placed in only one of the scale-pans, the first
series gives a solution, as had been pointed out in 1556 by Tartaglia†.

Bachet, however, assumed that any weight might be placed in either
of the scale-pans. In this case the second series gives the least possible
number of weights required. His reasoning is as follows. To weigh 1 lb.
we must have a 1 lb. weight. To weigh 2 lbs. we must have in addition
either a 2 lb. weight or a 3 lb. weight; but, if we are confined to only one
new weight (in addition to the 1 lb. we have got already), then with no
weight greater than 3 lbs. could we weigh 2 lbs.: if we use a 2 lb. weight
we then can weigh 1 lb., 2 lbs., and 3 lbs., but if we use a 3 lb. weight
we then can weigh 1 lb., (3 − 1) lbs., 3 lbs., and (3 + 1) lbs.; hence
a 3 lb. weight is preferable. Similarly, to enable us to weigh 5 lbs. we
must have another weight not greater than 9 lbs., and a weight of 9 lbs.
enables us to weigh every weight from 1 lb. to 13 lbs.; hence it is the
best to choose. The next weight required will be 2(1+3+9)+1 lb., that
is, will be 27 lbs.; and this enables us to weigh from 1 lb. to 40 lbs. Thus
only four weights are required, namely, 1 lb., 3 lbs., 32 lbs., and 33 lbs.

We can show similarly that the series of weights of 1, 3, 32, . . . ,
3n−1 lbs. will enable us to weigh any integral number of pounds from
1 lb. to (1 + 3+ 32 + · · · 3n−1) lbs., that is, to 1

2
(3n − 1) lbs. This is the

least number with which the problem can be effected.
To determine the arrangement of the weights to weigh any given

mass we have only to express the number of pounds in it as a number
in the ternary scale of notation, except that in finding the successive

* Bachet, Appendix, problem v, p. 215.
† Trattato de’ numeri e misure, Venice, 1556, vol. ii, bk. i, chap. xvi, art. 32.
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digits we must make every remainder either 0, 1, or −1: to effect this
a remainder 2 must be written as 3 − 1, that is, the quotient must
be increased by unity, in which case the remainder is −1. This is
explained in most text-books on algebra.

Bachet’s argument does not prove that his result is unique or that
it gives the least possible number of weights required. These omissions
have been supplied by Major MacMahon, who has discussed the far
more difficult problem (of which Bachet’s is a particular case) of the
determination of all possible sets of weights, not necessarily unequal,
which enable us to weigh any integral number of pounds from 1 to n
inclusive, (i) when the weights may be placed in only one scale-pan,
and (ii) when any weight may be placed in either scale-pan. He has
investigated also the modifications of the results which are necessary
when we impose either or both of the further conditions (a) that no
other weighings are to be possible, and (b) that each weighing is to be
possible in only one way, that is, is to be unique*.

The method for case (i) consists in resolving 1 + x+ x2 + · · ·+ xn

into factors, each factor being of the form 1+ xa + x2a + · · ·+ xma; the
number of solutions depends on the composite character of n+ 1. The
method for case (ii) consists in resolving the expression x−n+x−n+1+· · ·
+ x−1 + 1 + x + · · · + xn−1 + xn into factors, each factor being of the
form x−ma + · · · + x−a + 1 + xa + · · · + xma; the number of solutions
depends on the composite character of 2n + 1.

Bachet’s problem falls under case (ii), n = 40. MacMahon’s anal-
ysis shows that there are eight such ways of factorizing x−40 + x−39 +
· · ·+ 1 + x39 + x40. First, there is the expression itself in which a = 1,
m = 40. Second, the expression is equal to (1 − x81)/x40(1 − x),
which can be resolved into the product of (1 − x3)/x(1 − x) and
(1 − x81)/x39(1 − x3); hence it can be resolved into two factors of the
form given above, in one of which a = 1, m = 1, and in the other,
a = 3, m = 13. Third, similarly, it can be resolved into two such
factors, in one of which a = 1, m = 4, and in the other a = 9, m = 4.
Fourth, it can be resolved into three such factors, in one of which a = 1,
m = 1, in another a = 3, m = 1, and in the other, a = 9, m = 4. Fifth,
it can be resolved into two such factors, in one of which a = 1, m = 13,

* See his article in the Quarterly Journal of Mathematics, 1886, vol. xxi, pp. 367–
373. An account of the method is given in Nature, Dec. 4, 1890, vol. xlii,
pp. 113–114.
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and in the other a = 27, m = 1. Sixth, it can be resolved into three
such factors, in one of which a = 1, m = 1, in another a = 3, m = 4,
and in the other a = 27, m = 1. Seventh, it can be resolved into three
such factors, in one of which a = 1, m = 4, in another a = 9, m = 1,
and in the other a = 27, m = 1. Eighth, it can be resolved into four
such factors, in one of which a = 1, m = 1, in another a = 3, m = 1,
in another a = 9, m = 1, and in the other a = 27, m = 1.

These results show that there are eight possible sets of weights
with which any integral number of pounds from 1 to 40 can be weighed
subject to the conditions (ii), (a), and (b). If we denote p weights each
equal to w by wp, these eight solutions are 140; 1, 313; 14, 94; 1, 3, 94; 113,
27; 1, 34, 27; 14, 9, 27; 1, 3, 9, 27. The last of these is Bachet’s solution:
not only is it that in which the least number of weights are employed,
but it is also the only unique one in which all the weights are unequal.

Problems in Higher Arithmetic. At the commencement of
this chapter I alluded to the special interest which many mathemati-
cians find in the theorems of higher arithmetic: such, for example,
as that every prime of the form 4n + 1 and every power of it is ex-
pressible as the sum of two squares*, and the first and second powers
can be expressed thus in only one way. For instance, 13 = 32 + 22,
132 = 122 + 52, 133 = 462 + 92, and so on. Similarly 41 = 52 + 42,
412 = 402 + 92, 413 = 2362 + 1152, and so on.

Propositions such as the one just quoted may be found in text-
books on the theory of numbers and therefore lie outside the limits
of this work, but there are one or two questions in higher arithmetic
involving points not yet quite cleared up which may find a place here.

Primes. The first of these is concerned with the possibility of
determining readily whether a given number is prime or not. Euler and
Gauss attached great importance to this problem, but failed to establish
any conclusive test. It would seem, however, that Fermat possessed
some means of finding from its form whether a given number (at any
rate if one of certain known forms) was prime or not. Thus, in answer to
Mersenne who asked if he could tell without much trouble whether the
number 100895, 598169 was a prime, Fermat wrote on April 7, 1643,
that it was the product of 898423 and 112303, both of which were

* Fermat’s Diophantus, Toulouse, 1670, bk. iii, prop. 22, p. 127; or Brassinne’s
Précis, Paris, 1853, p. 65.
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primes. I have indicated elsewhere one way by which this result can be
found, and Mr F.W. Laurence has indicated another which may have
been that used by Fermat in this particular case.

Mersenne’s Numbers*. Another illustration, confirmatory of
the opinion that Fermat or some of his contemporaries had a test by
which it was possible to find out whether certain numbers were prime,
may be drawn from Mersenne’s Cogitata Physico-Mathematica which
was published in 1644. In the preface to that work it is asserted that in
order that 2p − 1 may be prime, the only values of p, not greater than
257, which are possible are 1, 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and
257: I conjecture that the number 67 is a misprint for 61. With this
correction the statement appears to be true, and it has been verified
for all except nineteen values of p: namely, 71, 101, 103, 107, 109,
137, 139, 149, 157, 163, 167, 173, 181, 193, 199, 227, 229, 241, and
257. Of these values, Mersenne asserted that p = 257 makes 2p − 1
a prime, and that the other values make 2p − 1 a composite number.
The demonstrations for the cases when p = 89, 127 have not been
published; nor have the actual factors of 2p − 1 when p = 89 been as
yet determined: the discovery of these factors may be commended to
those interested in the theory of numbers.

Mersenne’s result could not be obtained empirically, and it is im-
possible to suppose that it was worked out for every case; hence it
would seem that whoever first enunciated it was acquainted with cer-
tain theorems in higher arithmetic which have not been re-discovered.

Perfect Numbers†. The theory of perfect numbers depends
directly on that of Mersenne’s Numbers. A number is said to be per-
fect if it is equal to the sum of all its integral subdivisors. Thus the
subdivisors of 6 are 1, 2, and 3; the sum of these is equal to 6; hence
6 is a perfect number.

It is probable that all perfect numbers are included in the formula
2p−1(2p − 1), where 2p − 1 is a prime. Euclid proved that any num-
ber of this form is perfect; Euler showed that the formula includes all
even perfect numbers; and there is reason to believe—though a rigid
demonstration is wanting—that an odd number cannot be perfect. If

* For references, see chapter ix below.
† On the theory of perfect numbers, see bibliographical references by H. Brocard,

L’Intermédiaire des mathématiciens, Paris, 1895, vol. ii, pp. 52–54; and 1905,
vol. xii, p. 19.
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we assume that the last of these statements is true, then every perfect
number is of the above form. It is easy to establish that every number
included in this formula (except when p = 2) is congruent to unity to
the modulus 9, that is, when divided by 9 leaves a remainder 1; also
that either the last digit is a 6 or the last two digits are 28.

Thus, if p = 2, 3, 5, 7, 13, 17, 19, 31, 61, then by Mersenne’s rule
the corresponding values of 2p − 1 are prime; they are 3, 7, 31, 127,
8191, 131071, 524287, 2147483647, 2305843009213693951; and the cor-
responding perfect numbers are 6, 28, 496, 8128, 33550336, 8589869056,
137438691328, 2305843008139952128, and
2658455991569831744654692615953842176.

Goldbach’s Theorem. Another interesting problem in higher
arithmetic is the question whether there are any even integers which
cannot be expressed as a sum of two primes. Probably there are none.
The expression of all even1 integers not greater than 5000 in the form
of a sum of two primes has been effected*, but a general demonstration
that all even integers can be so expressed is wanting.

Lagrange’s Theorem†. Another theorem in higher arith-
metic which, as far as I know, is still unsolved, is to the effect that
every prime of the form 4n− 1 is the sum of a prime of the form 4n+1
and of double a prime of the form 4n+1; for example, 23 = 13+2× 5.
Lagrange, however, added that it was only by induction that he ar-
rived at the result.

Fermat’s Theorem on Binary Powers. Fermat enriched
mathematics with a multitude of new propositions. With two excep-
tions all these have been proved subsequently to be true. The first of
these exceptions is his theorem on binary powers, in which he asserted
that all numbers of the form 2m+1, where m = 2n, are primes‡, but he
added that, though he was convinced of the truth of this proposition,
he could not obtain a valid demonstration.

* Transactions of the Halle Academy (Naturforschung), vol. lxxii, Halle, 1897,
pp. 5–214: see also L’Intermédiaire des mathématiciens, 1903, vol. x, and 1904,
vol. xi.

† Nouveaux Mémoires de l’Académie Royale des Sciences, Berlin, 1775, p. 356.
‡ Letter of Oct. 18, 1640, Opera, Toulouse, 1679, p. 162: or Brassinne’s Précis,

p. 143.

1. ‘even’ inserted as per errata sheet
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It may be shown that 2m + 1 is composite if m is not a power of
2, but of course it does not follow that 2m + 1 is a prime if m is a
power of 2. As a matter of fact the theorem is not true. In 1732 Euler*

showed that if n = 5 the formula gives 4294, 967297, which is equal to
641×6, 700417: curiously enough, these factors can be deduced at once
from Fermat’s remark on the possible factors of numbers of the form
2m ± 1, from which it may be shown that the prime factors (if any) of
232 + 1 must be primes of the form 64n + 1.

During the last thirty years it has been shown† that the resulting
numbers are composite when n = 6, 9, 11, 12, 18, 23, 36, and 38:
the two last numbers contain many thousands of millions of digits. I
believe that Eisenstein asserted that the number of primes of the form
2m + 1, where m = 2n, is infinite: the proof has not been published,
but perhaps it might throw some light on the general theory.

Fermat’s Last Theorem. I pass now to the only other asser-
tion made by Fermat which has not been proved hitherto. This, which is
sometimes known as Fermat’s Last Theorem, is to the effect‡ that no in-
tegral values of x, y, z can be found to satisfy the equation xn+yn = zn,
if n is an integer greater than 2. This proposition has acquired extraor-
dinary celebrity from the fact that no general demonstration of it has
been given, but there is no reason to doubt that it is true.

Fermat seems to have discovered its truth first§ for the case n = 3,
and then for the case n = 4. His proof for the former of these cases is
lost, but that for the latter is extant∥, and a similar proof for the case of
n = 3 was given by Euler¶. These proofs depend upon showing that, if
three integral values of x, y, z can be found which satisfy the equation,

* Commentarii Academiae Scientiarum Petropolitanae, St Petersburg, 1738,
vol. vi, p. 104; see also Novi Comm. Acad. Sci. Petrop., St Petersburg, 1764,
vol. ix, p. 101: or Commentationes Arithmeticae Collectae, St Petersburg, 1849,
vol. i, pp. 2, 357.

† For the factors and bibliographical references, see the memoir by A.J.C. Cun-
ningham and A.E. Western, Transactions of the London Mathematical Society,
May 14, 1903, series 2, vol. i, p. 175.

‡ Fermat’s enunciation will be found in his edition of Diophantus, Toulouse, 1670,
bk. ii, qu. 8, p. 61; or Brassinne’s Précis, Paris, 1853, p. 53. For bibliographical
references, see L’Intermédiaire des mathématiciens, 1905, vol. xii, pp. 11, 12.

§ See a letter from Fermat quoted in my History of Mathematics, London, chap-
ter xv.

∥ Fermat’s Diophantus, note on p. 339; or Brassinne’s Précis, p. 127.
¶ Euler’s Algebra (English trans. 1797), vol. ii, chap. xv, p. 247.
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then it will be possible to find three other and smaller integers which
also satisfy it: in this way finally we show that the equation must
be satisfied by three values which obviously do not satisfy it. Thus
no integral solution is possible. It would seem that this method is
inapplicable except when n = 3 and n = 4.

Fermat’s discovery of the general theorem was made later. An easy
demonstration can be given on the assumption that every number can
be resolved into prime (complex) factors in one and only one way. That
assumption has been made by some writers, but it is not universally
true. It is possible that Fermat made some such supposition, though
it is perhaps more probable that he discovered a rigorous demonstra-
tion. At any rate he asserts definitely that he had a valid proof—
demonstratio mirabilis sane—and the fact that every other theorem on
the subject which he stated he had proved has been subsequently veri-
fied must weigh strongly in his favour; especially as in making the one
statement in his writings which is not correct he was scrupulously care-
ful to add that he could not obtain a satisfactory demonstration of it.

It must be remembered that Fermat was a mathematician of quite
the first rank who had made a special study of the theory of numbers.
That subject is in itself one of peculiar interest and elegance, but its
conclusions have little practical importance, and since his time it has
been discussed by only a few mathematicians, while even of them not
many have made it their chief study. This is the explanation of the
fact that it took more than a century before some of the simpler results
which Fermat had enunciated were proved, and thus it is not surprising
that a proof of the theorem which he succeeded in establishing only
towards the close of his life should involve great difficulties.

In 1823 Legendre* obtained a proof for the case of n = 5; in 1832
Lejeune Dirichlet† gave one for n = 14, and in 1840 Lamé and Lebesgue‡

gave proofs for n = 7.
The proposition appears to be true universally, and in 1849 Kum-

mer§, by means of ideal primes, proved it to be so for all numbers
except those (if any) which satisfy three conditions. It is not known

* Reprinted in his Théorie des Nombres, Paris, 1830, vol. ii, pp. 361–368: see also
pp. 5, 6.

† Crelle’s Journal, 1832, vol. ix, pp. 390–393.
‡ Liouville’s Journal, 1841, vol. v, pp. 195–215, 276–9, 348–9.
§ References to Kummer’s Memoirs are given in Smith’s Report to the British

Association on the Theory of Numbers, London, 1860.
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whether any number can be found to satisfy these conditions, but it
seems unlikely, and it has been shown that there is no number less than
100 which does so. The proof is complicated and difficult, and there
can be little doubt is based on considerations unknown to Fermat. I
may add that to prove the truth of the proposition when n is greater
than 4, it obviously is sufficient to confine ourselves to cases where n is
a prime, and the first step in Kummer’s demonstration is to show that
in such cases one of the numbers x, y, z must be divisible by n.

Naturally there has been much speculation as to how Fermat ar-
rived at the result. The modern treatment of higher arithmetic is
founded on the special notation and processes introduced by Gauss,
who pointed out that the theory of discrete magnitude is essentially
different from that of continuous magnitude, but until the end of the
last century the theory of numbers was treated as a branch of algebra,
and such proofs by Fermat as are extant involve nothing more than el-
ementary geometry and algebra, and indeed some of his arguments do
not involve any symbols. This has led some writers to think that Fermat
used none but elementary algebraic methods. This may be so, but the
following remark, which I believe is not generally known, rather points
to the opposite conclusion. He had proposed, as a problem to the En-
glish mathematicians, to show that there was only one integral solution
of the equation x2 + 2 = y3: the solution evidently being x = 5, y = 3.
On this he has a note* to the effect that there was no difficulty in finding
a solution in rational fractions, but that he had discovered an entirely
new method—sane pulcherrima et subtilissima—which enabled him to
solve such questions in integers. It was his intention to write a work† on
his researches in the theory of numbers, but it was never completed, and
we know but little of his methods of analysis. I venture however to add
my private suspicion that continued fractions played a not unimportant
part in his researches, and as strengthening this conjecture I may note
that some of his more recondite results—such as the theorem that a
prime of the form 4n+1 is expressible as the sum of two squares—may
be established with comparative ease by properties of such fractions.

* Fermat’s Diophantus, bk. vi, prop. 19, p. 320; or Brassinne’s Précis, p. 122.
† Fermat’s Diophantus, bk. iv, prop. 31, p. 181; or Brassinne’s Précis, p. 82.
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CHAPTER II.

SOME GEOMETRICAL QUESTIONS.

In this chapter I propose to enumerate certain geometrical ques-
tions the discussion of which will not involve necessarily any consider-
able use of algebra or arithmetic. Unluckily no writer like Bachet has
collected and classified problems of this kind, and I take the following
instances from my note-books with the feeling that they represent the
subject but imperfectly.

The first part of the chapter is devoted to questions which are of
the nature of formal propositions: the last part contains a description
of various trivial puzzles and games, which the older writers would
have termed geometrical, but which the reader of to-day may omit
without loss.

In accordance with the rule I laid down for myself in the preface,
I exclude the detailed discussion of theorems which involve advanced
mathematics. Moreover (with one possible exception) I exclude also any
mention of the numerous geometrical paradoxes which depend merely
on the inability of the eye to compare correctly the dimensions of figures
when their relative position is changed. This apparent deception does
not involve the conscious reasoning powers, but rests on the inaccurate
interpretation by the mind of the sensations derived through the eyes,
and I do not consider such paradoxes as coming within the domain of
mathematics.

Geometrical Fallacies. Most educated Englishmen are ac-
quainted with the series of logical propositions in geometry associated

35
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with the name of Euclid, but it is not known so generally that these
propositions were supplemented originally by certain exercises. Of such
exercises Euclid issued three series: two containing easy theorems or
problems, and the third consisting of geometrical fallacies, the errors
in which the student was required to find.

The collection of fallacies prepared by Euclid is lost, and tradition
has not preserved any record as to the nature of the erroneous reasoning
or conclusions; but, as an illustration of such questions, I append two
or three demonstrations, leading to obviously impossible results, which
perhaps may amuse any one to whom they are new. I leave the discovery
of the errors to the ingenuity of my readers.

First Fallacy. To prove that a right angle is equal to an angle
which is greater than a right angle. Let ABCD be a rectangle. From A
draw a line AE outside the rectangle, equal to AB or DC and making
an acute angle with AB, as indicated in the diagram. Bisect CB in

A

BC

D

E

O

H

K

H, and through H draw HO at right angles to CB. Bisect CE in K,
and through K draw KO at right angles to CE. Since CB and CE
are not parallel the lines HO and KO will meet (say) at O. Join OA,
OE, OC, and OD.

The triangles ODC and OAE are equal in all respects. For, since
KO bisects CE and is perpendicular to it, we have OC = OE. Simi-
larly, since HO bisects CB and DA and is perpendicular to them, we
have OD = OA. Also, by construction, DC = AE. Therefore the three
sides of the triangle ODC are equal respectively to the three sides of
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the triangle OAE. Hence, by Euc. i. 8, the triangles are equal; and
therefore the angle ODC is equal to the angle OAE.

Again, since HO bisects DA and is perpendicular to it, we have
the angle ODA equal to the angle OAD.

Hence the angle ADC (which is the difference of ODC and ODA)
is equal to the angle DAE (which is the difference of OAE and OAD).
But ADC is a right angle, and DAE is necessarily greater than a right
angle. Thus the result is impossible.

Second Fallacy*. To prove that a part of a line is equal to the
whole line. Let ABC be a triangle; and, to fix our ideas, let us suppose
that the triangle is scalene, that the angle B is acute, and that the

B C

A

ED

angle A is greater than the angle C. From A draw AD making the
angle BAD equal to the angle C, and cutting BC in D. From A draw
AE perpendicular to BC.

The triangles ABC, ABD are equiangular; hence, by Euc. vi. 19,

△ABC : △ABD = AC2 : AD2 .

Also the triangles ABC, ABD are of equal altitude: hence, by
Euc. vi. 1,

△ABC : △ABD = BC : BD ,

∴ AC2 : AD2 = BC : BD .

∴
AC2

BC
=

AD2

BD
.

* See a note by M. Coccoz in L’Illustration, Paris, Jan. 12, 1895.
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Hence, by Euc. ii. 13,

AB2 +BC2 − 2BC ·BE

BC
=

AB2 +BD2 − 2BD ·BE

BD
.

∴
AB2

BC
+BC − 2BE =

AB2

BD
+BD − 2BE .

∴
AB2

BC
−BD =

AB2

BD
−BC .

∴
AB2 −BC ·BD

BC
=

AB2 −BC ·BD

BD
.

∴ BC = BD ,

a result which is impossible.
Third Fallacy. To prove that every triangle is isosceles. Let ABC

be any triangle. Bisect BC in D, and through D draw DO perpendic-
ular to BC. Bisect the angle BAC by AO.

First. If DO and AO do not meet, then they are parallel. Therefore
AO is at right angles to BC. Therefore AB = AC.

Second. If DO and AO meet, let them meet in O. Draw OE
perpendicular to AC. Draw OF perpendicular to AB. Join OB, OC.

A

B CD

O

E
F

Let us begin by taking the case
where O is inside the triangle, in
which case E falls on AC and F
on1 AB.

The triangles AOF and AOE
are equal, since the side AO is com-
mon, angle OAF = angle OAE,
and angle OFA = angle OEA.
Hence AF = AE. Also, the trian-
gles BOF and COE are equal. For

since OD bisects BC at right angles, we have OB = OC; also, since
the triangles AOF and AOE are equal, we have OF = OE; lastly, the
angles at F and E are right angles. Therefore, by Euc. i. 47 and i. 8,
the triangles BOF and COE are equal. Hence FB = EC.

Therefore AF + FB = AE + EC, that is, AB = AC.
The same demonstration will cover the case where DO and AO

meet at D, as also the case where they meet outside BC but so near it
that E and F fall on AC and AB and not on AC and AB produced.

1. corrected BC to AB
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Next take the case where DO and AO meet outside the triangle,
and E and F fall on AC and AB produced. Draw OE perpendicular to
AC produced. Draw OF perpendicular to AB produced. Join OB, OC.

A

B CD

O

E
F

Following the same argument as before, from the equality of the
triangles AOF and AOE, we obtain AF = AE; and, from the equality
of the triangles BOF and COE, we obtain FB = EC. Therefore
AF − FB = AE − EC, that is, AB = AC.

Thus in all cases, whether or not DO and AO meet, and whether
they meet inside or outside the triangle, we have AB = AC: and
therefore every triangle is isosceles, a result which is impossible.

Fourth Fallacy. I am indebted to Captain Turton for the following
ingenious fallacy; it appeared for the first time in the third edition
of this work.

On the hypothenuse, BC, of an isosceles right-angled triangle,
DBC, describe an equilateral triangle ABC, the vertex A being on
the same side of the base as D is. On CA take a point H so that
CH = CD. Bisect BD in K. Join HK and let it cut CB (produced)
in L. Join DL. Bisect DL at M , and through M draw MO perpendic-
ular to DL. Bisect HL at N , and through N draw NO perpendicular
to HL. Since DL and HL intersect, therefore MO and NO will also
intersect; moreover, since BDC is a right angle, MO and NO both
slope away from DC and therefore they will meet on the side of DL
remote from A. Join OC, OD, OH, OL.
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The triangles OMD and OML are equal, hence OD = OL. Simi-
larly the triangles ONL and ONH are equal, hence OL = OH. There-
fore OD = OH. Now in the triangles OCD and OCH, we have
OD = OH, CD = CH (by construction), and OC common, hence (by
Euc. i. 8) the angle OCD is equal to the angle OCH, which is absurd.

Fifth Fallacy*. To prove that, if two opposite sides of a quadri-
lateral are equal, the other two sides must be parallel. Let ABCD be
a quadrilateral such that AB is equal to DC. Bisect AD in M , and
through M draw MO at right angles to AD. Bisect BC in N , and
draw NO at right angles to BC.

If MO and NO are parallel, then AD and BC (which are at right
angles to them) are also parallel.

If MO and NO are not parallel, let them meet in O; then O must
be either inside the quadrilateral as in the left-hand diagram or outside

A

B C

D

N

M

O

A

B C

D

N

M

O

the quadrilateral as in the right-hand diagram. Join OA, OB, OC, OD.
Since OM bisects AD and is perpendicular to it, we have OA =

OD, and the angle OAM equal to the angle ODM . Similarly
OB = OC, and the angle OBN equal to the angle OCN . Also
by hypothesis AB = DC, hence, by Euc. i. 8, the triangles OAB and
ODC are equal in all respects, and therefore the angle AOB is equal
to the angle DOC.

Hence in the left-hand diagram the sum of the angles AOM , AOB
is equal to the sum of the angles DOM , DOC; and in the right-hand

* Mathesis, October, 1893, series 2, vol. iii, p. 224.
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diagram the difference of the angles AOM , AOB is equal to the dif-
ference of the angles DOM , DOC; and therefore in both cases the
angle MOB is equal to the angle MOC, i.e. OM (or OM produced)
bisects the angle BOC. But the angle NOB is equal to the angle
NOC, i.e. ON bisects the angle BOC; hence OM and ON coincide
in direction. Therefore AD and BC, which are perpendicular to this
direction, must be parallel. This result is not universally true, and the
above demonstration contains a flaw.

Sixth Fallacy. The following argument is taken from a text-book
on electricity, published in 1889 by two distinguished mathematicians,
in which it was presented as valid. A given vector OP of length l can
be resolved in an infinite number of ways into two vectors OM , MP ,
of lengths l′, l′′, and we can make l′/l′′ have any value we please from
nothing to infinity. Suppose that the system is referred to rectangular
axes Ox, Oy; and that OP , OM , MP make respectively angles θ, θ′,
θ′′ with Ox. Hence, by projection on Oy and on Ox, we have

l sin θ = l′ sin θ′ + l′′ sin θ′′ ,

l cos θ = l′ cos θ′ + l′′ cos θ′′ .

Therefore tan θ =
n sin θ′ + sin θ′′

n cos θ′ + cos θ′′
,

where n = l′/l′′. This result is true whatever be the value of n.
But n may have any value (ex. gr. n = ∞, or n = 0), hence
tan θ = tan θ′ = tan θ′′, which obviously is impossible.

Seventh Fallacy. Here is a fallacious investigation, to which
Mr Chartres first called my attention, of the value of π: it is founded
on well-known quadratures. The area of the semi-ellipse bounded by
the minor axis is (in the usual notation) equal to 1

2
πab. If the centre

is moved off to an indefinitely great distance along the major axis,
the ellipse degenerates into a parabola, and therefore in this particular
limiting position the area is equal to two-thirds of the circumscribing
rectangle. But the first result is true whatever be the dimensions of
the curve.

∴ 1
2
πab = 2

3
a× 2b,

∴ π = 8/3,

a result which is obviously untrue.
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Geometrical Paradoxes. To the above examples I may add
the following questions, which, though not exactly fallacious, lead to
results which at a hasty glance appear impossible.

First Paradox. The first is a problem, sent to me by Mr Renton,
to rotate a plane lamina (say, for instance, a sheet of paper) through
four right angles so that the effect is equivalent to turning it through
only one right angle.

If it is desired that the effect shall be equivalent to turning it
through a right angle about a point O, the solution is as follows. De-
scribe on the lamina a square OABC. Rotate the lamina successively
through two right angles about the diagonal OB as axis and through
two right angles about the side OA as axis, and the required result
will be attained.

Second Paradox. As in arithmetic, so in geometry, the theory of
probability lends itself to numerous paradoxes. Here is a very simple
illustration. A stick is broken at random into three pieces. It is possible
to put them together into the shape of a triangle provided the length
of the longest piece is less than the sum of the other two pieces (cf.
Euc. i. 20), that is, provided the length of the longest piece is less than
half the length of the stick. But the probability that a fragment of
a stick shall be half the original length of the stick is 1

2
. Hence the

probability that a triangle can be constructed out of the three pieces
into which the stick is broken would appear to be 1

2
. This is not true,

for actually the probability is 1
4
.

Third Paradox. The following example illustrates how easily the
eye may be deceived in demonstrations obtained by actually dissecting
the figures and re-arranging the parts. In fact proofs by superposi-
tion should be regarded with considerable distrust unless they are sup-
plemented by mathematical reasoning. The well-known proofs of the
propositions Euclid i. 32 and Euclid i. 47 can be so supplemented and
are valid. On the other hand, as an illustration of how deceptive a non-
mathematical proof may be, I here mention the familiar paradox that
a square of paper, subdivided like a chessboard into 64 small squares,
can be cut into four pieces which being put together form a figure con-
taining 65 such small squares*. This is effected by cutting the original

* I do not know who discovered this paradox. It is given in various modern books,
but I cannot find an earlier reference to it than one by Prof. G.H. Darwin,
Messenger of Mathematics, 1877, vol. vi, p. 87.
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A

B

square into four pieces in the manner indicated by the thick lines in
the first figure. If these four pieces are put together in the shape of a
rectangle in the way shown in the second figure it will appear as if this
rectangle contains 65 of the small squares.

This phenomenon, which in my experience non-mathematicians
find perplexing, is due to the fact that the edges of the four pieces
of paper, which in the second figure lie along the diagonal AB, do not
coincide exactly in direction. In reality they include a small lozenge
or diamond-shaped figure, whose area is equal to that of one of the
64 small squares in the original square, but whose length AB is much
greater than its breadth. The diagrams show that the angle between
the two sides of this lozenge which meet at A is tan−1 2

5
− tan−1 3

8
, that

is, is tan−1 1
46

, which is less than 11
4
◦. To enable the eye to distinguish

so small an angle as this the dividing lines in the first figure would
have to be cut with extreme accuracy and the pieces placed together
with great care.

The paradox depends upon the relation 5 × 13 − 82 = 1. Sim-
ilar results can be obtained from the formulae 13 × 34 − 212 = 1,
34×89−552 = 1,. . . ; or from the formulae 52−3×8 = 1, 132−8×21 = 1,
342 − 21× 55 = 1,. . . . These numbers are obtained by finding conver-
gents to the continued fraction

1 +
1

1 +

1

1 +

1

1 +
· · · .

A similar paradox for a square of 17 cells, by which it was shown
that 289 was equal to 288, was alluded to by Ozanam* who gave also
the diagram for dividing a rectangle of 11 by 3 into two rectangles
whose dimensions appear to be 5 by 4 and 7 by 2.
* Ozanam, 1803 edition, vol. i, p. 299.
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Turton’s Seventy-Seven Puzzle. A far better dissection puzzle was
invented by Captain Turton. In this a piece of cardboard, 11 inches by
7 inches, subdivided into 77 small equal squares, each 1 inch by 1 inch,
can be cut up and re-arranged so as to give 78 such equal squares, each
1 inch by 1 inch, of which 77 are arranged in a rectangle of the same
dimensions as the original rectangle from one side of which projects a
small additional square. The construction is ingenious, but cannot be
described without the use of a model. The trick consists in utilizing
the fact that cardboard has a sensible thickness. Hence the edges of
the cuts can be bevelled, but in the model the bevelling is so slight
as to be imperceptible save on a very close scrutiny. The play thus
given in fitting the pieces together permits the apparent production of
an additional square.

Colouring Maps. I proceed next to mention the geometrical
proposition that not more than four colours are necessary in order to
colour a map of a country (divided into districts) in such a way that
no two contiguous districts shall be of the same colour. By contiguous
districts are meant districts having a common line as part of their
boundaries: districts which touch only at points are not contiguous in
this sense.

The problem was mentioned by A.F. Möbius* in his Lectures in
1840, but it was not until Francis Guthrie† communicated it to De Mor-
gan about 1850 that attention was generally called to it: it is said that
the fact had been familiar to practical map-makers for a long time pre-
viously. Through De Morgan the proposition became generally known;
and in 1878 Cayley‡ recalled attention to it by stating that he did not
know of any rigorous proof of it.

Probably the following argument, though not a formal demonstra-
tion, will satisfy the reader that the result is true.

Let A, B, C be three contiguous districts, and let X be any other
district contiguous with all of them. Then X must lie either wholly
outside the external boundary of the area ABC or wholly inside the
internal boundary, that is, it must occupy a position either like X or

* Leipzig Transactions (Math.-phys. Classe), 1885, vol. xxxvii, pp. 1–6.
† Proceedings of the Royal Society of Edinburgh, July 19, 1880, vol. x, p. 728.
‡ Proceedings of the London Mathematical Society, 1878, vol. ix, p. 148, and Pro-

ceedings of the Royal Geographical Society, 1879, N.S., vol. i, p. 259.
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like X ′. In either case every remaining occupied area in the figure is
enclosed by the boundaries of not more than three districts: hence there
is no possible way of drawing another area Y which shall be contiguous
with A, B, C, and X. In other words, it is possible to draw on a
plane four areas which are contiguous, but it is not possible to draw
five such areas.

If A, B, C are not contiguous, each with the other, or if X is
not contiguous with A, B, and C, it is not necessary to colour them all
differently, and thus the most unfavourable case is that already treated.
Moreover any of the above areas may diminish to a point and finally
disappear without affecting the argument.

That we may require at least four colours is obvious from the dia-
gram on this page, since in that case the areas A, B, C, and X would
have to be coloured differently.

A proof of the proposition involves difficulties of a high order, which
as yet have baffled all attempts to surmount them.

The argument by which the truth of the proposition was formerly
supposed to be demonstrated was given by A.B. Kempe* in 1879, but

* He sent his first demonstration across the Atlantic to the American Journal of
Mathematics, 1879, vol. ii, pp. 193–200; but subsequently he communicated it
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there is a flaw* in it.
In 1880, Tait published a solution† depending on the theorem that

if a closed network of lines joining an even number of points is such
that three and only three lines meet at each point then three colours
are sufficient to colour the lines in such a way that no two lines meeting
at a point are of the same colour; a closed network being supposed to
exclude the case where the lines can be divided into two groups between
which there is but one connecting line. His deduction therefrom that
four colours will suffice for a map was given in the last edition of this
work. The demonstration appeared so straightforward that at first it
was generally accepted, but it would seem that it too involves a fallacy‡.
The proof however leads to the interesting corollary that four colours
may not suffice for a map drawn on a multiply-connected surface such
as an anchor ring.

Although a proof of the theorem is still wanting, no one has suc-
ceeded in constructing a plane map which requires more than four tints
to colour it, and there is no reason to doubt the correctness of the state-
ment that it is not necessary to have more than four colours for any
plane map. The number of ways which such a map can be coloured with
four tints has been also considered§, but the results are not sufficiently
interesting to require mention here.

Physical Configuration of a Country. As I have been
alluding to maps, I may here mention that the theory of the repre-
sentation of the physical configuration of a country by means of lines
drawn on a map was discussed, by Cayley and Clerk Maxwell∥. They

in simplified forms to the London Mathematical Society, Transactions, 1879,
vol. x, pp. 229–231, and to Nature, Feb. 26, 1880, vol. xxi, pp. 399–400.

* See articles by P.J. Heawood in the Quarterly Journal of Mathematics, London,
1890, vol. xxiv, pp. 332–338; and 1897, vol. xxxi, pp. 270–285.

† Proceedings of the Royal Society of Edinburgh, July 19, 1880, vol. x, p. 729; and
Philosophical Magazine, January, 1884, series 5, vol. xvii, p. 41.

‡ See J. Peterson of Copenhagen, L’Intermédiaire des mathématiciens, vol. v,
1898, pp. 225–227; and vol. vi, 1899, pp. 36–38.

§ See A.C. Dixon, Messenger of Mathematics, Cambridge, 1902–3, vol. xxxii,
pp. 81–83.

∥ Cayley on ‘Contour and Slope Lines,’ Philosophical Magazine, London, October,
1859, series 4, vol. xviii, pp. 264–268; Collected Works, vol. iv, pp. 108–111.
J. Clerk Maxwell on ‘Hills and Dales,’ Philosophical Magazine, December, 1870,
series 4, vol. xl, pp. 421–427; Collected Works, vol. ii, pp. 233–240.

• Project • Gutenberg • #26839 •



CH. II] HILLS AND DALES.. 47

showed that a certain relation exists between the number of hills, dales,
passes, &c. which can co-exist on the earth or on an island. I proceed
to give a summary of their nomenclature and conclusions.

All places whose heights above the mean sea level are equal are on
the same level. The locus of such points on a map is indicated by a
contour-line. Roughly speaking, an island is bounded by a contour-line.
It is usual to draw the successive contour-lines on a map so that the
difference between the heights of any two successive lines is the same,
and thus the closer the contour-lines the steeper is the slope, but the
heights are measured dynamically by the amount of work to be done
to go from one level to the other and not by linear distances.

A contour-line in general will be a closed curve. This curve may
enclose a region of elevation: if two such regions meet at a point, that
point will be a crunode (i.e. a real double point) on the contour-line
through it, and such a point is called a pass. The contour-line may
enclose a region of depression: if two such regions meet at a point, that
point will be a crunode on the contour-line through it, and such a point
is called a fork or bar. As the heights of the corresponding level surfaces
become greater, the areas of the regions of elevation become smaller,
and at last become reduced to points: these points are the summits of
the corresponding mountains. Similarly as the level surface sinks the
regions of depression contract, and at last are reduced to points: these
points are the bottoms (or immits) of the corresponding valleys.

Lines drawn so as to be everywhere at right angles to the contour-
lines are called lines of slope. If we go up a line of slope generally we
shall reach a summit, and if we go down such a line generally we shall
reach a bottom: we may come however in particular cases either to a
pass or to a fork. Districts whose lines of slope run to the same summit
are hills. Those whose lines of slope run to the same bottom are dales.
A watershed is the line of slope from a summit to a pass or a fork, and
it separates two dales. A watercourse is the line of slope from a pass
or a fork to a bottom, and it separates two hills.

If n + 1 regions of elevation or of depression meet at a point, the
point is a multiple point on the contour-line drawn through it; such a
point is called a pass or a fork of the nth order, and must be counted as
n separate passes (or forks). If one region of depression meets another
in several places at once, one of these must be taken as a fork and
the rest as passes.
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Having now a definite geographical terminology we can apply geo-
metrical propositions to the subject. Let h be the number of hills on
the earth (or an island), then there will be also h summits; let d be the
number of dales, then there will be also d bottoms; let p be the whole
number of passes, p1 that of single passes, p2 of double passes, and so on;
let f be the whole number of forks, f1 that of single forks, f2 of double
forks, and so on; let w be the number of watercourses, then there will
be also w watersheds. Hence, by the theorems of Cauchy and Euler,

h = 1 + p1 + 2p2 + · · · ,
d = 1 + f1 + 2f2 + · · · ,

and w = 2(p1 + f1) + 3(p2 + f2)) + · · · .

The above results can be extended to the case of a multiply-
connected closed surface.

Games. Leaving now the question of formal geometrical propo-
sitions, I proceed to enumerate a few games or puzzles which depend
mainly on the relative position of things, but I postpone to chapter iv
the discussion of such amusements of this kind as necessitate any con-
siderable use of arithmetic or algebra. Some writers regard draughts,
solitaire, chess and such like games as subjects for geometrical treat-
ment in the same way as they treat dominoes, backgammon, and games
with dice in connection with arithmetic: but these discussions require
too many artificial assumptions to correspond with the games as actu-
ally played or to be interesting.

The amusements to which I refer are of a more trivial description,
and it is possible that a mathematician may like to omit the remainder
of the chapter. In some cases it is difficult to say whether they should
be classified as mainly arithmetical or geometrical, but the point is of
no importance.

Statical Games of Position. Of the innumerable statical
games involving geometry of position I shall mention only three or four.

Three-in-a-row. First, I may mention the game of three-in-a-row,
of which noughts and crosses, one form of merrilees, and go-bang are
well-known examples. These games are played on a board—generally in
the form of a square containing n2 small squares or cells. The common
practice is for one player to place a white counter or piece or to make
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a cross on each small square or cell which he occupies: his opponent
similarly uses black counters or pieces or makes a nought on each square
which he occupies. Whoever first gets three (or any other assigned
number) of his pieces in three adjacent cells and in a straight line wins.
The mathematical theory for a board of 9 cells has been worked out
completely, and there is no difficulty in extending it to one of 16 cells:
but the analysis is lengthy and not particularly interesting. Most of
these games were known to the ancients*, and it is for that reason I
mention them here.

Three-in-a-row. Extension. I may, however, add an elegant but
difficult extension which has not previously found its way, so far as I
am aware, into any book of mathematical recreations. The problem is
to place n counters on a plane so as to form as many rows as possible,
each of which shall contain three and only three counters†.

It is easy to arrange the counters in a number of rows equal to
the integral part of 1

8
(n − 1)2. This can be effected by the following

construction. Let P be any point on a cubic. Let the tangent at P cut
the curve again in Q. Let the tangent at Q cut the curve in A. Let PA
cut the curve in B, QB cut it in C, PC cut it in D, QD cut it in E, and
so on. Then the counters must be placed at the points P,Q,A,B, . . . .
Thus 9 counters can be placed in 8 such rows; 10 counters in 10 rows;
15 counters in 24 rows; 81 counters in 800 rows; and so on.

If however the point P is a pluperfect point of the nth order on
the cubic, then Sylvester proved that the above construction gives a
number of rows equal to the integral part of 1

6
(n − 1)(n − 2). Thus 9

counters can be arranged in 9 rows, which is a well-known and easy
puzzle; 10 counters in 12 rows; 15 counters in 30 rows; and so on.

Even this however is an inferior limit and may be exceeded—for
instance, Sylvester stated that 9 counters can be placed in 10 rows,
each containing three counters; I do not know how he placed them, but
one way of so arranging them is by putting them at points whose coor-
dinates are (2, 0), (2, 2), (2, 4), (4, 0), (4, 2), (4, 4), (0, 0), (3, 2), (6, 4);
another way is by putting them at the points (0, 0), (0, 2), (0, 4), (2, 1),
(2, 2), (2, 3), (4, 0), (4, 2), (4, 4); more generally, the angular points of

* Becq de Fouquières, Les jeux des anciens, second edition, Paris, 1873,
chap. xviii.

† Educational Times Reprints, 1868, vol. viii, p. 106; Ibid. 1886, vol. xlv, pp. 127–
128.
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a regular hexagon and the three points of intersection of opposite sides
form such a group, and therefore any projection of that figure will give
a solution.

Thus at present it is not possible to say what is the maximum
number of rows of three which can be formed from n counters placed
on a plane.

Extension to p-in-a-row. The problem mentioned above at once
suggests the extension of placing n counters so as to form as many rows
as possible, each of which shall contain p and only p counters. Such
problems can be often solved immediately by placing at infinity the
points of intersection of some of the lines, and (if it is so desired) sub-
sequently projecting the diagram thus formed so as to bring these points
to a finite distance. One instance of such a solution is given above.

As easy examples I may give the arrangement of 16 counters in 15
rows1, each containing 4 counters; and the arrangement of 19 counters
in 10 rows, each containing 5 counters. A solution of the second of
these problems can be obtained by placing counters at the 19 points of
intersection of the 10 lines x = ±a, x = ±b, y = ±a, y = ±b, y = ±x:
of these points two are at infinity. The first problem I leave to the
ingenuity of my readers.

Tesselation. Another of these statical recreations is known as tes-
selation and consists in the formation of geometrical designs or mosaics
by means of tesselated tiles.

To those who have never looked into the matter it may be surpris-
ing that patterns formed by the use of square tiles (of which one-half
bounded by a diagonal is white and the other half black) should be
subject to mathematical analysis. In view of the discussion of this
subject by Montucla*, Lucas†, and other writers it would be hard to
refuse to call the formation of such patterns a mathematical amuse-
ment, but the treatment is (perhaps necessarily) somewhat empirical,
and though there are some interesting puzzles of this kind, I do not
propose to describe them here.

* See Ozanam, 1803 edition, vol. i, p. 100; 1840 edition, p. 46.
† Lucas, Récréations Mathématiques, Paris, 1882–3, vol. ii, part 4: hereafter I

shall refer to this work by the name of the author.

1. ‘13’ corrected to ’15’ as per errata sheet
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Sylvester* proposed a modified tesselation problem which consists
in forming anallagmatic squares, that is, squares such that in every row
and every column the number of changes of colour or the number of
permanences is constant, the tiles used being square white tiles and
square black tiles.

If more than two colours are used, the problems become increas-
ingly difficult. As a simple instance of this class of problems I may
mention one, sent to me by a correspondent who termed it Cross-Fours ,
wherein sixteen square counters are used, the upper half of each being
yellow, red, pink, or blue, and the lower half being gold, green, black,
or white, no two counters being coloured alike. Such counters can be
arranged in the form of a square so that in each vertical, horizontal,
and diagonal line there shall be 8 colours and no more: they can be also
arranged so that in each of these ten lines there shall be 6 colours and
no more, or 5 colours and no more, or 4 colours and no more. Puzzles
of this kind are but little known; they are however not uninstructive.

Colour-Cube Problem. As an example of a recreation analogous to
tesselation I will mention the colour-cube problem; I select this partly
because it is one of the most difficult of such puzzles, but chiefly because
it has been subjected† to mathematical analysis.

Stripped of mathematical technicalities the problem may be enun-
ciated as follows. A cube has six faces, and if six colours are chosen
we can paint each face with a different colour. By permuting the or-
der of the colours we can obtain thirty such cubes, no two of which
are coloured alike. Take any one of these cubes, K, then it is desired
to select eight out of the remaining twenty-nine cubes, such that they
can be arranged in the form of a cube (whose linear dimensions are
double those of any of the separate cubes) coloured like the cube K,
and placed so that where any two cubes touch each other the faces in
contact are coloured alike.

Only one collection of eight cubes can be found to satisfy these
conditions. To pick out these eight cubes empirically would be out
of the question, but the mathematical analysis enables us to select
them by the following rule. Take any face of the cube K: it has four

* Ex. gr. see the Educational Times Reprints, London, 1868, vol. x, pp. 74–76,
112: see also vol. xlv, p. 127; vol. lvi, pp. 97–99.

† By Major MacMahon; an abstract of his paper, read before the London Mathe-
matical Society on Feb. 9, 1893, was given in Nature, Feb. 23, 1893, vol. xlvii,
p. 406.
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angles, and at each angle three colours meet. By permuting the colours
cyclically we can obtain from each angle two other cubes, and the eight
cubes so obtained are those required.

For instance suppose that the six colours are indicated by the letters
a, b, c, d, e, f . Let the cube K be put on a table, and to fix our ideas
suppose that the face coloured f is at the bottom, the face coloured a
is at the top, and the faces coloured b, c, d, and e front respectively
the east, north, west, and south points of the compass. I may denote
such an arrangement by (f ; a; b, c, d, e). One cyclical permutation of
the colours which meet at the north-east corner of the top face gives
the cube (f ; c; a, b, d, e), and a second cyclical permutation gives the
cube (f ; b; c, a, d, e). Similarly cyclical permutations of the colours
which meet at the north-west corner of the top face of K give the cubes
(f ; d; b, a, c, e) and (f ; c; b, d, a, e). Similarly from the top south-west
corner of K we get the cubes (f ; e; b, c, a, d) and (f ; d; b, c, e, a):
and from the top south-east corner we get the cubes (f ; e; a, c, d, b)
and (f ; b; e, c, d, a).

The eight cubes being thus determined it is not difficult to arrange
them in the form of a cube coloured similarly to K, and subject to the
condition that faces in contact are coloured alike; in fact they can be
arranged in two ways to satisfy these conditions. One such way, taking
the cubes in the numerical order given above, is to put the cubes 3, 6,
8, and 2 at the SE, NE, NW, and SW corners of the bottom face; of
course each placed with the colour f at the bottom, while 3 and 6 have
the colour b to the east, and 2 and 8 have the colour d to the west: the
cubes 7, 1, 4, and 5 will then form the SE, NE, NW, and SW corners of
the top face; of course each placed with the colour a at the top, while 7
and 1 have the colour b to the east, and 5 and 4 have the colour d to the
west. If however K is not given, then, without the aid of mathematical
analysis, it is a difficult puzzle to arrange the eight cubes in the form
of a cube coloured similarly to one of the other twenty-two cubes and
subject to the condition that faces in contact are coloured alike.

It is easy to make similar puzzles in two dimensions which are fairly
difficult; it is somewhat surprising that none are to be bought, but I
have never seen any except those that I have made myself.

Dynamical Games of Position. Games which are played
by moving pieces on boards of various shapes—such as merrilees, fox
and geese, solitaire, backgammon, draughts, and chess—present more
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interest. In general, however, they permit of so many movements of the
pieces that any mathematical analysis of them becomes too intricate to
follow out completely. Probably this is obvious, but it may emphasize
the impossibility of discussing such games effectively if I add that it has
been shown that in a game of chess there may be as many as 197299
ways of playing the first four moves, and nearly 72000 different positions
at the end of the first four moves (two on each side), of which 16556
arise when the players move pawns only*.

Games in which the possible movements are very limited may be
susceptible of mathematical treatment. One or two of these are given
in the next chapter: here I shall confine myself mainly to puzzles and
simple amusements.

Shunting Problems. The first I will mention is a little puzzle which
I bought some years ago and which was described as the “Great North-
ern puzzle.” It is typical of a good many problems connected with the
shunting of trains, and though it rests on a most improbable hypoth-
esis, I give it as a specimen of its kind.

A

B C

D E F

P Q

R

The puzzle shows a railway, DEF , with two sidings, DBA and
FCA, connected at A. The portion of the rails at A which is common
to the two sidings is long enough to permit of a single wagon, like P or
Q, running in or out of it; but is too short to contain the whole of an
engine, like R. Hence, if an engine runs up one siding, such as DBA,
it must come back the same way.

* L’Intermédiaire des mathématiciens, Paris, December, 1903, vol. x, pp. 305–
308: also Royal Engineers Journal, London, August–November, 1889; or British
Association Transactions, 1890, p. 745.
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Initially a small block of wood, P , coloured to represent a wagon,
is placed at B; a similar block, Q, is placed at C; and a longer block
of wood, R, representing an engine, is placed at E. The problem is to
use the engine R to interchange the wagons P and Q, without allowing
any flying shunts.

This is effected thus. (i) R pushes P into A. (ii) R returns, pushes
Q up to P in A, couples Q to P , draws them both out to F , and then
pushes them to E. (iii) P is now uncoupled, R takes Q back to A, and
leaves it there. (iv) R returns to P , pulls P back to C, and leaves it
there. (v) R running successively through F , D, B comes to A, draws
Q out, and leaves it at B.

A somewhat similar puzzle, on sale in the streets in 1905, is made
as follows. A loop-line BGE connects two points B and E on a railway
track AF , which is supposed blocked at both ends, as shown in the
diagram. In the model, the track AF is 9 inches long, AB = EF = 15

6

inches, and AH = FK = BC = DE = 1
4

inch. On the track and loop
are eight wagons, numbered successively 1 to 8, each one inch long and

A B
C D

E F

G

H K

one-quarter of an inch broad, and an engine of the same dimensions.
Originally the wagons are on the track from A to F and in the order
1, 2, 3, 4, 5, 6, 7, 8, and the engine is on the loop. The construction
and the initial arrangement ensure that at any one time there cannot
be more than eight vehicles on the track. Also if eight vehicles are on
it only the penultimate vehicle at either end can be moved on to the
loop, but if less than eight are on the track then the last two vehicles
at either end can be moved on to the loop. If the points at each end
of the loop-line are clear, it will hold four, but not more than four,
vehicles. The object is to reverse the order of the wagons on the track,
so that from A to F they will be numbered successively 8 to 1; and to
do this by means which will involve as few transferences of the engine
or a wagon to or from the loop as is possible.

Other shunting problems are not uncommon, but these two exam-
ples will suffice.
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Ferry-Boat Problems. Everybody is familiar with the story of the
showman who was travelling with a wolf, a goat, and a basket of cab-
bages; and for obvious reasons was unable to leave the wolf alone with
the goat, or the goat alone with the cabbages. The only means of
transporting them across a river was a boat so small that he could take
in it only one of them at a time. The problem is to show how the
passage could be effected*.

A similar problem, given by Alcuin, Tartaglia, and others, is as
follows†. Three beautiful ladies have for husbands three men, who are
as jealous as they are young, handsome, and gallant. The party are
travelling, and find on the bank of a river, over which they have to
pass, a small boat which can hold no more than two persons. How can
they pass, it being agreed that, in order to avoid scandal, no woman
shall be left in the society of a man unless her husband is present?

The method of transportation to be used in the above cases is
obvious, and can be illustrated practically by using six court cards out
of a pack. Another problem similar to the one last mentioned is the case
of n married couples who have to cross a river by means of a boat which
can be rowed by one person and will carry n− 1 people, but not more,
with the condition that no woman is to be in the society of a man unless
her husband is present. Alcuin’s problem is the case of n = 3. Let y
denote the number of passages from one bank to the other which will
be necessary. Then it has been shown that if n = 3, y = 11; if n = 4,
y = 9; and if n > 4, y = 7; the demonstration presents no difficulty.

The following analogous problem is due to the late Prof. Lucas‡.
To find the smallest number x of persons that a boat must be able to
carry in order that n married couples may by its aid cross a river in
such a manner that no woman shall remain in the company of any man
unless her husband is present; it being assumed that the boat can be
rowed by one person only. Also to find the least number of passages,
say y, from one bank to the other which will be required. M. Delannoy
has shown that if n = 2, then x = 2, and y = 5. If n = 3, then x = 2,
and y = 11. If n = 4, then x = 3, and y = 9. If n = 5, then x = 3, and
y = 11. And finally if n > 5, then x = 4, and y = 2n − 1.

M. De Fonteney has remarked that, if there was an island in the

* Ozanam, 1803 edition, vol. i, p. 171; 1840 edition, p. 77.
† Bachet, Appendix, problem iv, p. 212.
‡ Lucas, vol. i, pp. 15–18, 237–238.
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middle of the river, the passage might be always effected by the aid of
a boat which could carry only two persons. If there are only two or
only three couples the island is unnecessary, and the case is covered by
the preceding method. If n > 3 then the least number of passages from
land to land which will be required is 8(n − 1).

His solution is as follows. The first nine passages will be the same,
no matter how many couples there may be: the result is to transfer one
couple to the island and one couple to the second bank. The result of
the next eight passages is to transfer one couple from the first bank to
the second bank: this series of eight operations must be repeated as
often as necessary until there is left only one couple on the first bank,
only one couple on the island, and all the rest on the second bank.
The result of the last seven passages is to transfer all the couples to
the second bank.

The solution for the case when there are four couples may be rep-
resented as follows. Let A and a, B and b, C and c, D and d, be the
four couples. The letters in the successive lines indicate the positions of
the men and their respective wives after different passages of the boat.

First Bank Island Second Bank
Initially ABCD abcd . . . . . . . . . . . . . . . .
After 1st passage ABCD . .cd . . . . ab. . . . . . . . . .
" 2nd " ABCD .bcd . . . . a. . . . . . . . . . .
" 3rd " ABCD . . .d . . . . abc . . . . . . . . .
" 4th " ABCD . .cd . . . . ab. . . . . . . . . .
" 5th " . . CD . .cd AB . . ab. . . . . . . . . .
" 6th " . . CD . .cd AB . . . . . . . . . . ab. .
" 7th " . . CD . .cd AB . . .b. . . . . . a. . .
" 8th " . . CD . .cd . . . . .b. . AB . . a. . .
" 9th " . . CD . .cd . B . . .b. . A . . . a. . .
" 10th " . BCD . .cd . . . . .b. . A . . . a. . .
" 11th " . BCD . . . . . . . . .bcd A . . . a. . .
" 12th " . BCD . . .d . . . . .bc . A . . . a. . .
" 13th " . . . D . . .d . BC . .bc . A . . . a. . .
" 14th " . . . D . . .d . . . . .bc . ABC . a. . .
" 15th " . . . D . . .d . . . . abc . ABC . . . . .
" 16th " . . . D . . .d . . . . .b. . ABC . a.c .
" 17th " . . . D . . .d . B . . .b. . A . C . a.c .
" 18th " . B . D . . .d . . . . .b. . A . C . a.c .

• Project • Gutenberg • #26839 •



CH. II] GEODESICS.. 57

First Bank Island Second Bank
After 19th passage . . . . . . .d . B . D .b. . A . C . a.c .

" 20th " . . . . . . .d . . . . .b. . ABCD a.c .
" 21st " . . . . . . .d . . . . .bc . ABCD a. . .
" 22nd " . . . . . . .d . . . . . . . . ABCD abc .
" 23rd " . . . . . .cd . . . . . . . . ABCD ab. .
" 24th " . . . . . . . . . . . . . . . . ABCD abcd

Prof. G. Tarry has suggested an extension of the problem, which
still further complicates its solution. He supposes that each husband
travels with a harem of m wives or concubines; moreover, as Mo-
hammedan women are brought up in seclusion, it is reasonable to sup-
pose that they would be unable to row a boat by themselves without
the aid of a man. But perhaps the difficulties attendant on the trav-
els of one wife may be deemed sufficient for Christians, and I content
myself with merely mentioning the increased anxieties experienced by
Mohammedans in similar circumstances.

Geodesics. Geometrical problems connected with finding the
shortest routes from one point to another on a curved surface
are often difficult, but geodesics on a flat surface or flat surfaces
are in general readily determinable.

I append an instance*, but I should have hesitated to do so had not
experience shown that some readers do not readily see the solution. It
is as follows: A room is 30 feet long, 12 feet wide, and 12 feet high. On
the middle line of one of the smaller side walls and one foot from the
ceiling is a wasp. On the middle line of the opposite wall and 11 feet
from the ceiling is a fly. The wasp catches the fly by crawling all the
way to it: the fly, paralysed by fear, remaining still. The problem is to
find the shortest route that the wasp can follow.

To obtain a solution we observe that we can cut a sheet of paper so
that, when folded properly, it will make a model to scale of the room.
This can be done in several ways. If, when the paper is again spread
out flat, we can join the points representing the wasp and the fly by
a straight line lying wholly on the paper we shall obtain a geodesic
route between them. Thus the problem is reduced to finding the way
of cutting out the paper which gives the shortest route of the kind.

* I heard a similar question propounded at Cambridge in 1903, but the only place
where I have seen it in print is the Daily Mail, London, February 1, 1905.
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A

B

C

D

W

F

Here is the diagram corresponding to a solution of the above ques-
tion, where A represents the floor, B and D the longer side-walls, C
the ceiling, and W and F the positions on the two smaller side-walls
occupied initially by the wasp and fly. In the diagram the square of the
distance between W and F is (32)2+(24)2; hence the distance is 40 feet.

Problems with Counters placed in a row. Numerous dynamical
problems and puzzles may be illustrated with a box of counters, espe-
cially if there are counters of two colours. Of course coins or pawns
or cards will serve equally well. I proceed to enumerate a few of these
played with counters placed in a row.

First Problem with Counters. The following problem must be fa-
miliar to many of my readers. Ten counters (or coins) are placed in
a row. Any counter may be moved over two of those adjacent to it
on the counter next beyond them. It is required to move the coun-
ters according to the above rule so that they shall be arranged in five
equidistant couples.

If we denote the counters in their initial positions by the numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, we proceed as follows. Put 7 on 10, then 5 on
2, then 3 on 8, then 1 on 4, and lastly 9 on 6. Thus they are arranged
in pairs on the places originally occupied by the counters 2, 4, 6, 8, 10.

Similarly by putting 4 on 1, then 6 on 9, then 8 on 3, then 10 on
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7, and lastly 2 on 5, they are arranged in pairs on the places originally
occupied by the counters 1, 3, 5, 7, 9.

If two superposed counters are reckoned as only one, solutions anal-
ogous to those given above will be obtained by putting 7 on 10, then 5
on 2, then 3 on 8, then 1 on 6, and lastly 9 on 4; or by putting 4 on 1,
then 6 on 9, then 8 on 3, then 10 on 5, and lastly 2 on 7*.

There is a somewhat similar game played with eight counters, but
in this case the four couples finally formed are not equidistant. Here
the transformation will be effected if we move 5 on 2, then 3 on 7, then
4 on 1, and lastly 6 on 8. This form of the game is applicable equally
to (8 + 2n) counters, for if we move 4 on 1 we have left on one side of
this couple a row of (8 + 2n− 2) counters. This again can be reduced
to one of (8 + 2n − 4) counters, and in this way finally we have left 8
counters which can be moved in the way explained above.

A more complete generalization would be the case of n counters,
where each counter might be moved over the m counters adjacent to
it on to the one beyond them.

Second Problem with Counters. Another problem of a somewhat
similar kind is due to Tait†. Place four florins (or white counters)
and four halfpence (or black counters) alternately in a line in contact
with one another. It is required in four moves, each of a pair of two
contiguous pieces, without altering the relative position of the pair, to
form a continuous line of four halfpence followed by four florins.

His solution is as follows. Let a florin be denoted by a and a
halfpenny by b, and let ×× denote two contiguous blank spaces. Then
the successive positions of the pieces may be represented thus:

Initially . . . . . . . . . . . . . . . . . × × a b a b a b a b .
After the first move . . . . . b a a b a b a × × b .
After the second move . . b a a b × × a a b b .
After the third move . . . . b × × b a a a a b b .
After the fourth move . . . b b b b a a a a × ×.

The operation is conducted according to the following rule. Sup-
pose the pieces to be arranged originally in circular order, with two
contiguous blank spaces, then we always move to the blank space for

* Note by J. Fitzpatrick to a French translation of the third edition of this work,
Paris, 1898.

† Philosophical Magazine, London, January, 1884, series 5, vol. xvii, p. 39.

• Project • Gutenberg • #26839 •



60 SOME GEOMETRICAL QUESTIONS. [CH. II

the time being that pair of coins which occupies the places next but
one and next but two to the blank space on one assigned side of it.

A similar problem with 2n counters—n of them being white and
n black—will at once suggest itself, and, if n is greater than 4, it can
be solved in n moves. I have however failed to find a simple rule which
covers all cases alike, but solutions, due to M. Delannoy, have been
given* for the four cases where n is of the form 4m, 4m+2, 4m+1, or
4m+3; in the first two cases the first 1

2
n moves are of pairs of dissimilar

counters and the last 1
2
n moves are of pairs of similar counters; in the

last two cases, the first move is similar to that given above, namely, of
the penultimate and antepenultimate counters to the beginning of the
row, the next 1

2
(n − 1) moves are of pairs of dissimilar counters, and

the final 1
2
(n − 1) moves are of similar counters.

The problem is also capable of solution if we substitute the restric-
tion that at each move the pair of counters taken up must be moved to
one of the two ends of the row instead of the condition that the final
arrangement is to be continuous.

Tait suggested a variation of the problem by making it a condition
that the two coins to be moved shall also be made to interchange places;
in this form it would seem that 5 moves are required; or, in the general
case, n + 1 moves are required.

Problems on a Chess-board with Counters or Pawns. The follow-
ing three problems require the use of a chess-board as well as of counters
or pieces of two colours. It is more convenient to move a pawn than a
counter, and if therefore I describe them as played with pawns it is only
as a matter of convenience and not that they have any connection with
chess. The first is characterized by the fact that in every position not
more than two moves are possible; in the second and third problems
not more than four moves are possible in any position. With these lim-
itations, analysis is possible. I shall not discuss the similar problems
in which more moves are possible.

First Problem with Pawns†. On a row of seven squares on a chess-
board 3 white pawns (or counters), denoted in the diagram by “a”s, are
placed on the 3 squares at one end, and 3 black pawns (or counters),
denoted by “b”s, are placed on the 3 squares at the other end—the
middle square being left vacant. Each piece can move only in one

* La Nature, June, 1887, p. 10.
† Lucas, vol. ii, part 5, pp. 141-143.
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direction; the “a” pieces can move from left to right, and the “b” pieces
from right to left. If the square next to a piece is unoccupied, it can

a a a b b b

move on to that; or if the square next to it is occupied by a piece of
the opposite colour and the square beyond that is unoccupied, then it
can, like a queen in draughts, leap over that piece on to the unoccupied
square beyond it. The object is to get all the white pawns in the places
occupied initially by the black pawns and vice versa.

The solution requires 15 moves. It may be effected by moving first a
white pawn, then successively two black pawns then three white pawns,
then three black pawns, then three white pawns, then two black pawns,
and then one white pawn. We can express this solution by saying that
if we number the cells (a term used to describe each of the small squares
on a chess-board) consecutively, then initially the vacant space occupies
the cell 4 and in the successive moves it will occupy the cells 3, 5, 6,
4, 2, 1, 3, 5, 7, 6, 4, 2, 3, 5, 4. Of these moves, six are simple and
nine are leaps.

Similarly if we have n white pawns at one end of a row of 2n + 1
cells, and n black pawns at the other end, they can be interchanged in
n(n+2) moves, by moving in succession 1 pawn, 2 pawns, 3 pawns, . . . ,
n − 1 pawns, n pawns, n pawns, n pawns, n − 1 pawns, . . . , 2 pawns,
and 1 pawn—all the pawns in each group being of the same colour and
different from that of the pawns in the group preceding it. Of these
moves 2n are simple and n2 are leaps.

Second Problem with Pawns*. A similar game may be played on
a rectangular or square board. The case of a square board containing
49 cells, or small squares, will illustrate this sufficiently: in this case
the initial position is shown in the annexed diagram where the “a”s
denote the pawns or pieces of one colour, and the “b”s those of the
other colour. The “a” pieces can move horizontally from left to right
or vertically down, and the “b” pieces can move horizontally from right
to left or vertically up, according to the same rules as before.

The solution reduces to the preceding case. The pieces in the mid-
dle column can be interchanged in 15 moves. In the course of these
moves every one of the seven cells in that column is at some time or

* Lucas, vol. ii, part 5, p. 144.
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a a a a b b b

a a a a b b b

a a a a b b b

a a a b b b

a a a b b b b

a a a b b b b

a a a b b b b

other vacant, and whenever that is the case the pieces in the row con-
taining the vacant cell can be interchanged. To interchange the pieces
in each of the seven rows will require 15 moves. Hence to interchange
all the pieces will require 15 + (7× 15) moves, that is, 120 moves.

If we place 2n(n + 1) white pawns and 2n(n + 1) black pawns in
a similar way on a square board of (2n + 1)2 cells, we can transpose
them in 2n(n + 1)(n + 2) moves: of these 4n(n + 1) are simple and
2n2(n + 1) are leaps.

Third Problem with Pawns. The following analogous, though
somewhat more complicated, game was I believe originally published
in the first edition of this work: but I find that it has been since widely

a b c

d e f

g h ∗ H G

F E D

C B A

distributed in connexion with an advertisement and probably now is
well-known. On a square board of 25 cells, place eight white pawns or
counters on the cells denoted by small letters in the annexed diagram,
and eight black pawns or counters on the cells denoted by capital let-
ters: the cell marked with an asterisk (∗) being left blank. Each pawn
can move according to the laws already explained—the white pawns
being able to move only horizontally from left to right or vertically
downwards, and the black pawns being able to move only horizontally
from right to left or vertically upwards. The object is to get all the
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white pawns in the places initially occupied by the black pawns and
vice versa. No moves outside the dark line are permitted.

Since there is only one cell on the board which is unoccupied, and
since no diagonal moves and no backward moves are permitted, it fol-
lows that at each move not more than two pieces of either colour are
capable of moving. There are however a very large number of solu-
tions. The following empirical solution in forty-eight moves is one way
of effecting the transfer—the letters indicating the cells from which the
pieces are successively moved:

h H ∗ f F E H G ∗ c b h g d f F C ∗ h H B A C ∗
c a b h H ∗ c f F D G H B C ∗ g h e f F ∗ h H ∗ .

It will be noticed that the first twenty-four moves lead to a symmet-
rical position, and that the next twenty-three moves can be at once
obtained by writing the first twenty-three moves in reverse order and
interchanging small and capital letters.

Probably, were it worth the trouble, the mathematical theory of
games such as that just described might be worked out by the use
of Vandermonde’s notation, described later in chapter vi, or by the
analogous method employed in the theory of the game of solitaire*. I
believe that this has not been done, and I do not think it would repay
the labour involved.

Problems on a Chess-board with Chess-pieces. There are several
mathematical recreations with chess-pieces, other than pawns, some-
what similar to those given above. One of these, on the determination
of the ways in which eight queens can be placed on a board so that no
queen can take any other, is given later in chapter iv. Another, on the
path to be followed by a knight which is moved on a chess-board so that
it shall occupy every cell once and only once, is given in chapter vi.
Here I will mention one of the simplest of such problems, which is in-
teresting from the fact that it is given in Guarini’s manuscript written
in 1512; it was quoted by Lucas, but so far as I know has not been
otherwise published.

Guarini’s Problem. On a board of nine cells, such as that drawn
below, the two white knights are placed on the two top corner cells

* On the theory of the solitaire, see Reiss, ‘Beiträge zur Theorie des Solitär-Spiels,’
Crelle’s Journal, Berlin, 1858, vol. liv, pp. 344–379; and Lucas, vol. i, part v,
pp. 89–141.
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a C d

D B

b A c

(a, d), and the two black knights on the two bottom corner cells (b, c):
the other cells are left vacant. It is required to move the knights so
that the white knights shall occupy the cells b and c, while the black
shall occupy the cells a and d.

The solution is tolerably obvious. First, move the pieces from a to
A, from b to B, from c to C, and from d to D. Next, move the pieces
from A to d, from B to a, from C to b, and from D to c. The effect of
these eight moves is the same as if the original square had been rotated
through one right angle. Repeat the above process, that is, move the
pieces successively from a to A, from b to B, from c to C, from d to
D; from A to d, from B to a, from C to b, and from D to c. The
required result is then attained.

Geometrical Puzzles with Rods, etc. Another species of
geometrical puzzles, to which here I will do no more than allude, are
made of steel rods, or of wire, or of wire and string. Numbers of these
are often sold in the streets of London for a penny each, and some
of them afford ingenious problems in the geometry of position. Most
of them could hardly be discussed without the aid of diagrams, but
they are inexpensive to construct, and in fact innumerable puzzles on
geometry of position can be made with a couple of stout sticks and a
ball of string, or even with only a box of matches: several examples
are given in the appendix to the fourth volume of the 1723 edition of
Ozanam’s work. I will mention, as an easy example, analogous to one
group of the string puzzles, that any one can take off his waistcoat
(which may be unbuttoned) without taking off his coat, and without
pulling the waistcoat over the head like a jersey.

This last feat may serve to show the difficulty of mentally realizing
the effect of geometrical alterations in a figure unless they are of the
simplest character.

Paradromic Rings. The fact just stated is illustrated by the
familiar experiment of making paradromic rings by cutting a paper
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ring prepared in the following manner.
Take a strip of paper or piece of tape, say, for convenience, an inch

or two wide and at least nine or ten inches long, rule a line in the
middle down the length AB of the strip, gum one end over the other
end B, and we get a ring like a section of a cylinder. If this ring is cut
by a pair of scissors along the ruled line we obtain two rings exactly
like the first, except that they are only half the width. Next suppose
that the end A is twisted through two right angles before it is gummed
to B (the result of which is that the back of the strip at A is gummed
over the front of the strip at B), then a cut along the line will produce
only one ring. Next suppose that the end A is twisted once completely
round (i.e. through four right angles) before it is gummed to B, then
a similar cut produces two interlaced rings. If any of my readers think
that these results could be predicted off-hand, it may be interesting to
them to see if they can predict correctly the effect of again cutting the
rings formed in the second and third experiments down their middle
lines in a manner similar to that above described.

The theory is due to J.B. Listing* who discussed the case when
the end A receives m half-twists, that is, is twisted through mπ, before
it is gummed to B.

If m is even we obtain a surface which has two sides and two edges,
which are termed paradromic. If the ring is cut along a line midway
between the edges, we obtain two rings, each of which has m half-twists,
and which are linked together 1

2
m times.

If m is odd we obtain a surface having only one side and one edge.
If this ring is cut along its mid-line, we obtain only one ring, but it has
2m half-twists, and if m is greater than unity it is knotted.

* Vorstudien zur Topologie, Die Studien, Göttingen, 1847, part x.
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CHAPTER III.

SOME MECHANICAL QUESTIONS.

I proceed now to enumerate a few questions connected with me-
chanics which lead to results that seem to me interesting from a his-
torical point of view or paradoxical. Problems in mechanics generally
involve more difficulties than problems in arithmetic, algebra, or geome-
try, and the explanations of some phenomena—such as those connected
with the flight of birds—are still incomplete, while the explanations of
many others of an interesting character are too difficult to find a place
in a non-technical work. Here, however, I shall confine myself to ques-
tions which, like those treated in the two preceding chapters, are of
an elementary, not to say trivial, character; and the conclusions are
well-known to mathematicians.

I assume that the reader is acquainted with the fundamental ideas
of kinematics and dynamics, and is familiar with the three Newtonian
laws; namely, first that a body will continue in its state of rest or of
uniform motion in a straight line unless compelled to change that state
by some external force: second, that the change of momentum per
unit of time is proportional to the external force and takes place in
the direction of it: and third, that the action of one body on another
is equal in magnitude but opposite in direction to the reaction of the
second body on the first. The first and second laws state the principles
required for solving any question on the motion of a particle under the
action of given forces. The third law supplies the additional principle
required for the solution of problems in which two or more particles
influence one another.

66
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Motion. The difficulties connected with the idea of motion
have been for a long time a favourite subject for paradoxes, some of
which bring us into the realm of the philosophy of mathematics.

Zeno’s Paradoxes on Motion. One of the earliest of these is the
remark of Zeno to the effect that since an arrow cannot move where it
is not, and since also it cannot move where it is (i.e. in the space it
exactly fills), it follows that it cannot move at all. The answer that the
very idea of the motion of the arrow implies the passage from where it
is to where it is not was rejected by Zeno, who seems to have thought
that the appearance of motion of a body was a phenomenon caused by
the successive appearances of the body at rest but in different positions.

Zeno also asserted that the idea of motion was itself inconceivable,
for what moves must reach the middle of its course before it reaches
the end. Hence the assumption of motion presupposes another motion,
and that in turn another, and so ad infinitum. His objection was in
fact analogous to the biological difficulty expressed by Swift:—

“So naturalists observe, a flea hath smaller fleas that on him prey.
And these have smaller fleas to bite ’em. And so proceed ad

infinitum.”

Or as De Morgan preferred to put it

“Great fleas have little fleas upon their backs to bite ’em,
And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go

on;
While these have greater still, and greater still, and so on.”

Achilles and the Tortoise. Zeno’s paradox about Achilles and the
tortoise is known even more widely. The assertion was that if Achilles
ran ten times as fast as a tortoise, yet if the tortoise had (say) 1000
yards start it could never be overtaken. To establish this, Zeno argued
that when Achilles had gone the 1000 yards, the tortoise would still be
100 yards in front of him; by the time he had covered these 100 yards,
it would still be 10 yards in front of him; and so on for ever. Thus
Achilles would get nearer and nearer to the tortoise but would never
overtake it. Zeno regarded this as confirming his view that the popular
idea of motion is self-contradictory.
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Zeno’s Paradox on Time. The fallacy of Achilles and the Tortoise
is usually explained by saying that though the time required to over-
take the tortoise can be divided into an infinite number of intervals,
as stated in the argument, yet these intervals get smaller and smaller
in geometrical progression, and the sum of them all is a finite time:
after the lapse of that time Achilles would be in front of the tortoise.
Probably Zeno would have replied that this explanation rests on the
assumption that space and time are infinitely divisible, propositions
which he would not admit. He seems further to have contended that
while, to an accurate thinker, the notion of the infinite divisibility of
time was impossible, it was equally impossible to think of a minimum
measure of time. For suppose, he argued, that τ is the smallest con-
ceivable interval, and suppose that three horizontal lines composed of
three consecutive spans abc, a′b′c′, a′′b′′c′′ are placed so that aa′a′′, bb′b′′,
cc′c′′ are vertically over one another. Imagine the second line moved
as a whole one span to the right in the time τ , and simultaneously
the third line moved as a whole one span to the left. Then b, a′, c′′
will be vertically over one another. And in this duration τ (which by
hypothesis is indivisible) c′ must have passed vertically over a′′. Hence
the duration is divisible, contrary to the hypothesis.

The Paradox of Tristram Shandy. Mr Russell has enunciated* a
paradox somewhat similar to that of Achilles and the Tortoise, save
that the intervals of time considered get longer and longer during the
course of events. Tristram Shandy, as we know, took two years writing
the history of the first two days of his life, and lamented that, at this
rate, material would accumulate faster than he could deal with it, so
that he could never come to an end, however long he lived. But had
he lived long enough, and not wearied of his task, then, even if his life
had continued as eventfully as it began, no part of his biography would
have remained unwritten. For if he wrote the events of the first day
in the first year, he would write the events of the nth day in the nth
year, hence in time the events of any assigned day would be written,
and therefore no part of his biography would remain unwritten. This
argument might be put in the form of a demonstration that the part
of a magnitude may be equal to the whole of it.

Questions, such as those given above, which are concerned with
the continuity and extent of space and time involve difficulties of a

* B.A.W. Russell, Principles of Mathematics, Cambridge, 1903, vol. i, p. 358.
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high order.
Angular Motion. A non-mathematician finds additional difficul-

ties in the idea of angular motion. For instance, here is a well-known
proposition on motion in an equiangular spiral (of which the result is
true on the ordinary conventions of mathematics) which shows that a
body, moving with uniform velocity and as slowly as we please, may in
a finite time whirl round a fixed point an infinite number of times.

The equiangular spiral is the trace of a point P , which moves along
a line OP , the line OP turning round a fixed point O with uniform
angular velocity while the distance of P from O decreases with the
time in geometrical progression. If the radius vector rotates through
four right angles we have one convolution of the curve. All convolutions
are similar, and the length of each convolution is a constant fraction,
say 1/nth, that of the convolution immediately outside it. Inside any
given convolution, there are an infinite number of convolutions which
get smaller and smaller as we get nearer the pole. Now suppose a point
Q to move uniformly along the spiral from any point towards the pole.
If it covers the first convolution in a seconds, it will cover the next in
a/n seconds, the next in a/n2 seconds, and so on, and will finally reach
the pole in (a+a/n+a/n2+a/n3+ · · · ) seconds, that is, in an/(n−1)
seconds. The velocity is uniform, and yet in a finite time, Q will have
traversed an infinite number of convolutions and therefore have circled
round the pole an infinite number of times*.

Simple Relative Motion. Even if the philosophical difficulties sug-
gested by Zeno are settled or evaded, the mere idea of relative motion
has been often found to present difficulties, and Zeno himself failed to
explain a simple phenomenon involving the principle. As one of the
easiest examples of this kind, I may quote the common question of how
many trains going from B to A a passenger from A to B would meet
and pass on his way, assuming that the journey either way takes 41

2

hours and that the trains start from each end every hour. The answer
is 9. Or again this: Take two pennies, face upwards on a table and
edges in contact. Suppose that one is fixed and that the other rolls
on it without slipping, making one complete revolution round it and
returning to its initial position. How many revolutions round its own
centre has the rolling coin made? The answer is 2.

* The proposition is put in this form in J. Richard’s Philosophie des mathémat-
iques, Paris, 1903, pp. 119–120.

• Project • Gutenberg • #26839 •



70 MECHANICAL RECREATIONS. [CH. III

Laws of Motion. I proceed next to make a few remarks on points
connected with the laws of motion.

The first law of motion is often said to define force, but it is in only
a qualified sense that this is true. Probably the meaning of the law is
best expressed in Clifford’s phrase, that force is “the description of a
certain kind of motion”—in other words it is not an entity but merely a
convenient way of stating, without circumlocution, that a certain kind
of motion is observed.

It is not difficult to show that any other interpretation lands us in
difficulties. Thus some authors use the law to justify a definition that
force is that which moves a body or changes its motion; yet the same
writers speak of a steam-engine moving a train. It would seem then
that, according to them, a steam-engine is a force. That such state-
ments are current may be fairly reckoned among mechanical paradoxes.

The idea of force is difficult to grasp. How many people, for in-
stance, could predict correctly what would happen in a question as sim-
ple as the following? A rope (whose weight may be neglected) hangs
over a smooth pulley; it has one end fastened to a weight of 10 stone,
and the other end to a sailor of weight 10 stone, the sailor and the
weight hanging in the air. The sailor begins to climb up the rope; will
the weight move at all; and, if so, will it rise or fall?

It will be noted that in the first law of motion it is asserted that,
unless acted on by an external force, a body in motion continues to
move (i) with uniform velocity, and (ii) in a straight line.

The tendency of a body to continue in its state of rest or of uniform
motion is called its inertia. This tendency may be used to explain
various common phenomena and experiments. Thus, if a number of
dominoes or draughts are arranged in a vertical pile, a sharp horizontal
blow on one of those near the bottom will send it out of the pile, and
those above will merely drop down to take its place—in fact they have
not time to change their relative positions before there is sufficient space
for them to drop vertically as if they were a solid body.

This also is the principle on which depends the successful playing
of “Aunt Sally,” and the performance of numerous tricks, described in
collections of mathematical puzzles*.

* See Les récréations scientifiques by G. Tissandier, where several ingenious illus-
trations of inertia are given.
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The statement about inertia in the first law may be taken to imply
that a body set in rotation about a principal axis passing through its
centre of mass will continue to move with a uniform angular velocity
and to keep its axis of rotation fixed in direction. The former of these
statements is the assumption on which our measurement of time is
based as mentioned below in chapter xiii. The latter assists us to
explain the motion of a projectile in a resisting fluid. It affords the
explanation of why the barrel of a rifle is grooved; and why, similarly,
anyone who has to throw a flat body of irregular shape (such as a card)
in a given direction usually gives it a rapid rotatory motion about
a principal axis. Elegant illustrations of the fact just mentioned are
afforded by a good many of the tricks of acrobats, though the full
explanation of most of them also introduces other considerations. Thus
when some few years ago the Japanese village at Knightsbridge was one
of the shows of London, there were some acrobats there who tossed on
to the top surface of an umbrella a penny so that it alighted on its
edge, and then, by turning round the stick of the umbrella rapidly, the
coin was caused to rotate, but as the umbrella moved away underneath
it the coin remained apparently stationary and standing upright, while
by diminishing or increasing the angular velocity of the umbrella the
penny was caused to run forwards or backwards. This is not a difficult
trick to execute.

The tendency of a body in motion to continue to move in a straight
line is sometimes called its centrifugal force. Thus, if a train is running
round a curve, it tends to move in a straight line, and is constrained only
by the pressure of the rails to move in the required direction. Hence it
presses on the outer rail of the curve. This pressure can be diminished
to some extent both by raising the outer rail, and by putting a guard
rail, parallel and close to the inner rail, against which the wheels on
that side also will press.

An illustration of this fact occurred in a little known incident of
the American civil war*. In the spring of 1862 a party of volunteers
from the North made their way to the rear of the Southern armies and
seized a train, intending to destroy, as they passed along it, the railway
which was the main line of communication between various confederate
corps and their base of operations. They were however detected and
pursued. To save themselves, they stopped on a sharp curve and tore

* Capturing a Locomotive by W. Pittenger, London, 1882, p. 104.
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up some rails so as to throw the engine which was following them off the
line. Unluckily for themselves they were ignorant of dynamics and tore
up the inner rails of the curve, an operation which did not incommode
their pursuers.

The second law gives us the means of measuring mass, force, and
therefore work . A given agent in a given time can do only a definite
amount of work. This is illustrated by the fact that although, by means
of a rigid lever and a fixed fulcrum, any force however small may be
caused to move any mass however large, yet what is gained in power is
lost in speed—as the popular phrase runs.

Montucla* inserted a striking illustration of this principle founded
on the well-known story of Archimedes who is said to have declared
to Hiero that, were he but given a fixed fulcrum, he could move the
world. Montucla calculated the mass of the earth and, assuming that
a man could work incessantly at the rate of 116 foot-lbs. per second,
which is a very high estimate, he found that it would take over three
billion centuries, i.e. 3× 1014 years, before a mass equal to that of the
earth was moved as much as one inch against gravity at the surface
of the earth: to move it one inch along a horizonal plane would take
about 74000 centuries.

Stability of Equilibrium. It is known to all those who have read
the elements of mechanics that the centre of gravity of a body, which is
resting in equilibrium under its own weight, must be vertically above its
base: also, speaking generally, we may say that, if every small displace-
ment has the effect of raising the centre of gravity, then the equilibrium
is stable, that is, the body when left to itself will return to its original
position; but, if a displacement has the effect of lowering the centre of
gravity, then for that displacement the equilibrium is unstable; while, if
every displacement does not alter the height above some fixed plane of
the centre of gravity, then the equilibrium is neutral. In other words,
if in order to cause a displacement work has to be done against the
forces acting on the body, then for that displacement the equilibrium
is stable, while if the forces do work the equilibrium is unstable.

A good many of the simpler mechanical toys and tricks afford il-
lustrations of this principle.

* Ozanam, 1803 edition, vol. ii, p. 18; 1840 edition, p. 202.
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Magic Bottles*. Among the most common of such toys are the
small bottles—trays of which may be seen any day in the streets of
London—which keep always upright, and cannot be upset until their
owner orders them to lie down. Such a bottle is made of thin glass
or varnished paper fixed to the plane surface of a solid hemisphere or
smaller segment of a sphere. Now the distance of the centre of gravity
of a homogeneous hemisphere from the centre of the sphere is three-
eighths of the radius, and the mass of the glass or varnished paper
is so small compared with the mass of the lead base that the centre
of gravity of the whole bottle is still within the hemisphere. Let us
denote the centre of the hemisphere by C, and the centre of gravity
of the bottle by G.

If such a bottle is placed with the hemisphere resting on a horizontal
plane and GC vertical, any small displacement on the plane will tend
to raise G, and thus the equilibrium is stable. This may be seen also
from the fact that when slightly displaced there is brought into play a
couple, of which one force is the reaction of the table passing through
C and acting vertically upward, and the other the weight of the bottle
acting vertically downward at G. If G is below C, this couple tends to
restore the bottle to its original position.

If there is dropped into the bottle a shot or nail so heavy as to
raise the centre of gravity of the whole above C, then the equilibrium
is unstable, and, if any small displacement is given, the bottle falls
over on to its side.

Montucla says that in his time it was not uncommon to see boxes
of tin soldiers mounted on lead hemispheres, and when the lid of the
box was taken off the whole regiment sprang to attention.

In a similar way we may explain how to balance a pencil in a vertical
position, with its point resting on the top of one’s finger, an experiment
which is described in nearly every book of puzzles†. This is effected by
taking a penknife, of which one blade is opened through an angle of
(say) 120◦, and sticking the blade in the pencil so that the handle of the
penknife is below the finger. The centre of gravity is thus brought below
the point of support, and a small displacement given to the pencil will
raise the centre of gravity of the whole: thus the equilibrium is stable.

* Ozanam, 1803 edition, vol. ii, p. 15; 1840 edition, p. 201.
† Ex. gr. Oughtred, Mathematical Recreations, p. 24; Ozanam, 1803 edition, vol. ii,

p. 14; 1840 edition, p. 200.
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Other similar tricks are the suspension of a bucket over the edge of
a table by a couple of sticks, and the balancing of a coin on the edge of
a wine-glass by the aid of a couple of forks*—the sticks or forks being
so placed that the centre of gravity of the whole is vertically below the
point of support and its depth below it a maximum.

The toy representing a horseman, whose motion continually brings
him over the edge of a table into a position which seems to ensure
immediate destruction, is constructed in somewhat the same way. A
wire has one end fixed to the feet of the rider; the wire is curved down-
wards and backwards, and at the other end is fixed a weight. When
the horse is placed so that his hind legs are near the edge of the table
and his forefeet over the edge, the weight is under his hind feet. Thus
the whole toy forms a pendulum with a curved instead of a straight
rod. Hence the farther it swings over the table, the higher is the cen-
tre of gravity raised, and thus the toy tends to return to its original
position of equilibrium.

An elegant modification of the prancing horse was brought out at
Paris in 1890 in the shape of a toy made of tin and in the figure of a
man†. The legs are pivoted so as to be movable about the thighs, but
with a wire check to prevent too long a step, and the hands are fastened
to the top of a

⋂
-shaped wire weighted at its ends. If the figure is placed

on a narrow sloping plank or strip of wood passing between the legs of
the

⋂
, then owing to the

⋂
-shaped wire any lateral displacement of the

figure will raise its centre of gravity, and thus for any such displacement
the equilibrium is stable. Hence, if a slight lateral disturbance is given,
the figure will oscillate and will rest alternately on each foot: when it
is supported by one foot the other foot under its own weight moves
forwards, and thus the figure will walk down the plank though with a
slight reeling motion. Shortly after the publication of the third edition
of this book an improved form of this toy, in the shape of a walking
elephant made in heavy metal, was issued in England, and probably
in that form it is now familiar to all who are interested in noticing
street toys.

Columbus’s Egg. The toy known as Columbus’s egg depends on
the same principle as the magic bottle, though it leads to the converse
result. The shell of the egg is made of tin and cannot be opened. Inside

* Oughtred, p. 30; Ozanam, 1803 edition, vol. ii, p. 12; 1840 edition, p. 199.
† La Nature, Paris, March, 1891.
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it and fastened to its base is a hollow truncated tin cone, and there is
also a loose marble inside the shell. If the egg is held properly, the
marble runs inside the cone and the egg will stand on its base, but
so long as the marble is outside the cone, the egg cannot be made to
stand on its base.

Cones running up hill*. The experiment to make a double cone
run up hill depends on the same principle as the toys above described;
namely, on the tendency of a body to take a position so that its centre
of gravity is as low as possible. In this case it produces the optical
effect of a body moving by itself up a hill.

Usually the experiment is performed as follows. Arrange two sticks
in the shape of a

∨
, with the apex on a table and the two upper

ends resting on the top edge of a book placed on the table. Take two
equal cones fixed base to base, and place them with the curved surfaces
resting on the sticks near the apex of the

∨
, the common axis of the

cones being horizontal and parallel to the edge of the book. Then, if
properly arranged, the cones will run up the plane formed by the sticks.

The explanation is obvious. The centre of gravity of the cones
moves in the vertical plane midway between the two sticks and it occu-
pies a lower position as the points of contact on the sticks get farther
apart. Hence as the cone rolls up the sticks its centre of gravity de-
scends.

Perpetual Motion. The idea of making a machine which
once set going would continue to go for ever by itself has been the
ignis fatuus of self-taught mechanicians in much the same way as the
quadrature of the circle has been of self-taught geometricians.

Now the obvious meaning of the third law of motion is that a force is
only one aspect of a stress, and that whenever a force is caused another
equal and opposite one is brought also into existence—though it may
act upon a different body, and thus be immaterial for the particular
problem considered. The law however is capable of another interpreta-
tion†, namely, that the rate at which an agent does work (that is, its
action) is equal to the rate at which work is done against it (that is,
its reaction). If it is allowable to include in the reaction the rate at
which kinetic energy is being produced, and if work is taken to include

* Ozanam, 1803 edition, vol. ii, p. 49; 1840 edition, p. 216.
† Newton’s Principia, last paragraph of the Scholium to the Laws of Motion.
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that done against molecular forces, then it follows from this interpre-
tation that the work done by an agent on a system is equivalent to the
total increase of energy, that is, the power of doing work. Hence in
an isolated system the total amount of energy is constant. If this is
granted, then since friction and some molecular dissipation of energy
cannot be wholly prevented, it must be impossible to construct in an
isolated system a machine capable of perpetual motion.

I do not propose to describe in detail the various machines for
producing perpetual motion which have been suggested, but I may add
that a number of them are equivalent essentially to the one of which a
section is represented in the accompanying figure.

C

It consists of two concentric vertical wheels in the same plane,
and mounted on a horizontal axle through their centre, C. The space
between the wheels is divided into compartments by spokes inclined at
a constant angle to the radii to the points whence they are drawn, and
each compartment contains a heavy bullet. Apart from these bullets,
the wheels would be in equilibrium. Each bullet tends to turn the
wheels round their axle, and the moment which measures this tendency
is the product of the weight of the bullet and its distance from the
vertical through C.

The idea of the constructors of such machines was that, as the
bullet in any compartment would roll under gravity to the lowest point
of the compartment, the bullets on the right-hand side of the diagram
would be farther from the vertical through C than those on the left.
Hence the sum of the moments of the weights of the bullets on the
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right would be greater than the sum of the moments of those on the
left. Thus the wheels would turn continually in the same direction as
the hands of a watch. The fallacy in the argument is obvious.

Another large group of machines for producing perpetual motion
depended on the use of a magnet to raise a mass which was then allowed
to fall under gravity. Thus, if the bob of a simple pendulum was made
of iron, it was thought that magnets fixed near the highest points which
were reached by the bob in the swing of the pendulum would draw the
bob up to the same height in each swing and thus give perpetual motion.

Of course it is only in isolated systems that the total amount of
energy is constant, and, if a source of external energy can be obtained
from which energy is continually introduced into the system, perpet-
ual motion is, in a sense, possible; though even here materials would
ultimately wear out. The solar heat and the tides are among the most
obvious of such sources.

There was at Paris in the latter half of the eighteenth century a
clock which was an ingenious illustration of such perpetual motion*.
The energy which was stored up in it to maintain the motion of the
pendulum was provided by the expansion of a silver rod. This expansion
was caused by the daily rise of temperature, and by means of a train
of levers it wound up the clock. There was a disconnecting apparatus,
so that the contraction due to a fall of temperature produced no effect,
and there was a similar arrangement to prevent overwinding. I believe
that a rise of eight or nine degrees Fahrenheit was sufficient to wind
up the clock for twenty-four hours.

I have in my possession a watch, which produces the same effect
by somewhat different means. Inside the case is a steel weight, and if
the watch is carried in a pocket this weight rises and falls at every step
one takes, somewhat after the manner of a pedometer. The weight is
raised by the action of the person who has it in his pocket in taking a
step, and in falling it winds up the spring of the watch. On the face is
a small dial showing the number of hours for which the watch is wound
up. As soon as the hand of this dial points to fifty-six hours, the train
of levers which winds up the watch disconnects automatically, so as
to prevent overwinding the spring, and it reconnects again as soon as
the watch has run down eight hours. The watch is an excellent time-
keeper, and a walk of about a couple of miles is sufficient to wind it

* Ozanam, 1803 edition, vol. ii, p. 105; 1840 edition, p. 238.
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up for twenty-four hours.

Models. I may add here the observation, which is well known
to mathematicians, but is a perpetual source of disappointment to igno-
rant inventors, that it frequently happens that an accurate model of a
machine will work satisfactorily while the machine itself will not do so.

One reason for this is as follows. If all the parts of a model are
magnified in the same proportion, say m, and if thereby a line in it is
increased in the ratio m : 1, then the areas and volumes in it will be
increased respectively in the ratios m2 : 1 and m3 : 1. For example, if
the side of a cube is doubled then a face of it will be increased in the
ratio 4 : 1 and its volume will be increased in the ratio 8 : 1.

Now if all the linear dimensions are increased m times, then some
of the forces that act on a machine (such, for example, as the weight
of part of it) will be increased m3 times, while others which depend on
area (such as the sustaining power of a beam) will be increased only
m2 times. Hence the forces that act on the machine and are brought
into play by the various parts may be altered in different proportions,
and thus the machine may be incapable of producing results similar to
those which can be produced by the model.

The same argument has been adduced in the case of animal life
to explain why very large specimens of any particular breed or species
are usually weak. For example, if the linear dimensions of a bird were
increased n times, the work necessary to give the power of flight would
have to be increased no less than n7 times*. Again, if the linear di-
mensions of a man of height 5 ft. 10 in. were increased by one-seventh
his height would become 6 ft. 8 in., but his weight would be increased
in the ratio 512 : 343 (i.e. about half as much again), while the cross
sections of his legs, which would have to bear this weight, would be
increased only in the ratio 64 : 49; thus in some respects he would be
less efficient than before. Of course the increased dimensions, length of
limb, or size of muscle might be of greater advantage than the relative
loss of strength; hence the problem of what are the most efficient pro-
portions is not simple, but the above argument will serve to illustrate
the fact that the working of a machine may not be similar to that of
a model of it.

* Helmholtz, Gesammelte Abhandlungen, Leipzig, 1881, vol. i, p. 165.
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Leaving now these elementary considerations I pass on to some
other mechanical questions.

Sailing quicker than the Wind. As a kinematical paradox
I may allude to the possibility of sailing quicker than the wind blows ,
a fact which strikes many people as curious.

The explanation* depends on the consideration of the velocity of
the wind relative to the boat. Perhaps, however, a non-mathematician
will find the solution simplified if I consider first the effect of the wind-
pressure on the back of the sail which drives the boat forward, and
second the resistance to motion caused by the sail being forced through
the air.

When the wind is blowing against a plane sail the resultant pres-
sure of the wind on the sail may be resolved into two components, one
perpendicular to the sail (but which in general is not a function only
of the component velocity in that direction, though it vanishes when
that component vanishes) and the other parallel to its plane. The lat-
ter of these has no effect on the motion of the ship. The component
perpendicular to the sail tends to move the ship in that direction. This
pressure, normal to the sail, may be resolved again into two compo-
nents, one in the direction of the keel of the boat, the other in the
direction of the beam of the boat. The former component drives the
boat forward, the latter to leeward. It is the object of a boat-builder to
construct the boat on lines so that the resistance of the water to motion
forward shall be as small as possible, and the resistance to motion in
a perpendicular direction (i.e. to leeward) shall be as large as possible;
and I will assume for the moment that the former of these resistances
may be neglected, and that the latter is so large as to render motion
in that direction impossible.

Now, as the boat moves forward, the pressure of the air on the
front of the sail will tend to stop the motion. As long as its component
normal to the sail is less than the pressure of the wind behind the sail
and normal to it, the resultant of the two will be a force behind the sail
and normal to it which tends to drive the boat forwards. But as the
velocity of the boat increases, a time will arrive when the pressure of
the wind is only just able to balance the resisting force which is caused
by the sail moving through the air. The velocity of the boat will not

* Ozanam, 1803 edition, vol. iii, pp. 359, 367; 1840 edition, pp. 540, 543.
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increase beyond this, and the motion will be then what mathematicians
describe as “steady.”

In the accompanying figure, let BAR represent the keel of a boat,
B being the bow, and let SAL represent the sail. Suppose that the
wind is blowing in the direction WA with a velocity u; and that this
direction makes an angle θ with the keel, i.e. angle WAR = θ. Suppose
that the sail is set so as to make an angle α with the keel, i.e. angle
BAS = α, and therefore angle WAL = θ + α. Suppose finally that v
is the velocity of the boat in the direction AB.

I have already shown that the solution of the problem depends on
the relative directions and velocities of the wind and the boat; hence
to find the result reduce the boat to rest by impressing on it a velocity
v in the direction BA. The resultant velocity of v parallel to BA and
of u parallel to WA will be parallel to SL, if v sinα = u sin(θ+α); and
in this case the resultant pressure perpendicular to the sail vanishes.

Thus, for steady motion we have v sinα = u sin(θ + α). Hence,
whenever sin(θ + α) > sinα, we have v > u. Suppose, to take one
instance, the sail to be fixed, that is, suppose α to be a constant. Then
v is a maximum if θ + α = 1

2
π, that is, if θ is equal to the complement

of α. In this case we have v = u cosecα, and therefore v is greater than
u. Hence, if the wind makes the same angle α abaft the beam that
the sail makes with the keel, the velocity of the boat will be greater
than the velocity of the wind.

Next, suppose that the boat is running close to the wind, so that
the wind is before the beam (see figure below), then in the same way
as before we have v sinα = u sin(θ + α), or v sinα = u sinφ, where
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φ = angle WAS = π − θ − α. Hence v = u sinφ cosecα.
Let w be the component velocity of the boat in the teeth of the

wind, that is, in the direction AW . Then we have w = v cosBAW =
v cos(α + φ) = u sinφ cosecα cos(α + φ). If α is constant, this is
a maximum when φ = 1

4
π − 1

2
α; and, if φ has this value, then

w = 1
2
u(cosecα − 1). This formula shows that w is greater than

u, if sinα < 1
3
. Thus, if the sails can be set so that α is less than

sin−1 1
3
, that is, rather less than 19◦29′, and if the wind has the direc-

tion above assigned, then the component velocity of the boat in the
face of the wind is greater than the velocity of the wind.

The above theory is curious, but it must be remembered that in
practice considerable allowance has to be made for the fact that no
boat for use on water can be constructed in which the resistance to

B R

S
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A

W

motion in the direction of the keel can be wholly neglected, or which
would not drift slightly to leeward if the wind was not dead astern.
Still this makes less difference than might be thought by a landsman.
In the case of boats sailing on smooth ice the assumptions made are
substantially correct, and the practical results are said to agree closely
with the theory.

Boat moved by a Rope. There is a form of boat-racing, occa-
sionally used at regattas, which affords a somewhat curious illustration
of certain mechanical principles. The only thing supplied to the crew
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is a coil of rope, and they have, without leaving the boat, to propel it
from one point to another as rapidly as possible. The motion is given by
tying one end of the rope to the after thwart, and giving the other end
a series of violent jerks in a direction parallel to the keel. I am told that
in still water a pace of two or three miles an hour can be thus attained.

The chief cause for this result seems to be that the friction between
the boat and the water retards all relative motion, but is not great
enough to materially affect motion caused by a sufficiently big impulse.
Hence the usual movements of the crew in the boat do not sensibly
move the centre of gravity of themselves and the boat, but this does
not apply to an impulsive movement, and if the crew in making a jerk
move their centre of gravity towards the bow n times more rapidly than
it returns after the jerk, then the boat is impelled forwards at least n
times more than backwards: hence on the whole the motion is forwards.

Motion of Fluids and Motion in Fluids. The theories of
motion of fluids and motion in fluids involve considerable difficulties.
Here I will mention only one or two instances—mainly illustrations of
Hauksbee’s Law.

Hauksbee’s Law. When a fluid is in rapid motion the pressure is
less than when it is at rest*. Thus, if a current of air is moving in a tube,
the pressure on the sides of the tube is less than when the air is at rest—
and the quicker the air moves the smaller is the pressure. This fact was
noticed by Hauksbee nearly two centuries ago. In an elastic perfect fluid
in which the pressure is proportional to the density, the law connecting
the pressure, p, and the steady velocity, v, is p = Πα−v2 where Π and
α are constants: the establishment of corresponding formula for gases
where the pressure is proportional to a power of the density presents
no difficulty.

This principle is illustrated by a twopenny toy, on sale in most
toy-shops, called the pneumatic mystery. It consists of a tube, with a
cup-shaped end in which rests a wooden ball. If the tube is held in a
vertical position, with the mouthpiece at the upper end and the cup at

* See Besant, Hydromechanics, Cambridge, 1867, art. 149, where however it is
assumed that the pressure is proportional to the density. Hauksbee was the
earliest writer who called attention to the problem, but I do not know who first
explained the phenomenon; some references to it are given by Willis, Cambridge
Philosophical Transactions, 1830, vol. iii, pp. 129–140.
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the lower end, then, if anyone blows hard through the tube and places
the ball against the cup, the ball will remain suspended there. The
explanation is that the pressure of the air below the ball is so much
greater than the pressure of the air in the cup that the ball is held up.

The same effect may be produced by fastening to one end of a tube
a piece of cardboard having a small hole in it. If a piece of paper is
placed over the hole and the experimenter blows through the tube, the
paper will not be detached from the card but will bend so as to allow
the egress of the air.

An exactly similar experiment, described in many text-books on
hydromechanics, is made as follows. To one end of a straight tube a
plane disc is fitted which is capable of sliding on wires projecting from
the end of the tube. If the disc is placed at a small distance from the
end, and anyone blows steadily into the tube, the disc will be drawn
towards the tube instead of being blown off the wires, and will oscillate
about a position near the end of the tube.

In the same way we may make a tube by placing two books on a
table with their backs parallel and an inch or so apart and laying a
sheet of newspaper over them. If anyone blows steadily through the
tube so formed, the paper will be sucked in instead of being blown out.

The following experiment is explicable by the same argument. On
the top of a vertical axis balance a thin horizontal rod. At each end
of this rod fasten a small vertical square or sail of thin cardboard—the
two sails being in the same plane. If anyone blows close to one of these
squares and in a direction parallel to its plane, the square will move
towards the side on which one is blowing, and the rod with the two
sails will rotate about the axis.

The experiments above described can be performed so as to illus-
trate Hauksbee’s Law; but unless care is taken other causes will be also
introduced which affect the phenomena: it is however unnecessary for
my purpose to go into these details.

Cut on a Tennis-Ball. Racquet and tennis players know that if a
strong cut is given to a ball it can be made to rebound off a vertical
wall and then (without striking the floor or any other wall) return and
hit the wall again.

This affords another illustration of Hauksbee’s Law. The expla-
nation* is that the cut causes the ball to rotate rapidly about an axis

* See Magnus on ‘Die Abweichung der Geschosse’ in the Abhandlungen der
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through its centre of figure, and the friction of the surface of the ball
on the air produces a sort of whirlpool. This rotation is in addition to
its motion of translation. Suppose the ball to be spherical and rotat-
ing about an axis through its centre perpendicular to the plane of the
paper in the direction of the arrow-head, and at the same time moving
through still air from left to right parallel to PQ. Any motion of the
ball perpendicular to PQ will be produced by the pressure of the air
on the surface of the ball, and this pressure will, by Hauksbee’s Law,
be greatest where the velocity of the air relative to the ball is least,
and vice versa. To find the velocity of the air relative to the ball we
may reduce the centre of the ball to rest, and suppose a stream of air
to impinge on the surface of the ball moving with a velocity equal and
opposite to that of the centre of the ball. The air is not frictionless,
and therefore the air in contact with the surface of the ball will be set
in motion, by the rotation of the ball and will form a sort of whirlpool
rotating in the direction of the arrow-head in the figure. To find the
actual velocity of this air relative to the ball we must consider how the
motion due to the whirlpool is affected by the motion of the stream
of air parallel to QP . The air at A in the whirlpool is moving against
the stream of air there, and therefore its velocity is retarded: the air
at B in the whirlpool is moving in the same direction as the stream
of air there, and therefore its velocity is increased. Hence the relative
velocity of the air at A is less than that at B, and since the pressure
of the air is greatest where the velocity is least, the pressure of the air
on the surface of the ball at A is greater than on that at B, Hence
the ball is forced by this pressure in the direction from the line PQ,

P Q

A

B

which we may suppose to represent the section of the vertical wall in

Akademie der Wissenschaften, Berlin, 1852, pp. 1–23; Lord Rayleigh, ‘On the
irregular flight of a tennis ball,’ Messenger of Mathematics, Cambridge, 1878,
vol. vii, pp. 14–16.
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a racquet-court. In other words, the ball tends to move at right angles
to the line in which its centre is moving and in the direction in which
the surface of the front of the ball is being carried by the rotation.

In the case of a lawn tennis-ball, the shape of the ball is altered by
a strong cut, and this introduces additional complications.

Spin on a Cricket-Ball. The curl of a cricket-ball in its flight
through the air, caused by a spin given by the bowler in delivering
the ball, is explained by the same reasoning.

Thus suppose the ball is delivered in a direction lying in a vertical
plane containing the two middle stumps of the wickets. A spin round a
horizontal axis parallel to the crease in a direction which the bowler’s
umpire would describe as positive, namely, counter clock-wise, will, in
consequence of the friction of the air, cause it to drop, and therefore
decrease the length of the pitch. A spin in the opposite direction will
cause it to rise, and therefore lengthen the pitch. A spin round a
vertical axis in the positive direction, as viewed from above, will make
it curl sideways in the air to the left, that is, from leg to off. A spin
in the opposite direction will make it curl to the right. A spin given
to the ball round the direction of motion of the centre of the ball will
not sensibly affect the motion through the air, though it would cause
the ball, on hitting the ground, to break. Of course these various kinds
of spin can be combined.

The questions involving the application of Hauksbee’s Law are easy
as compared with many of the problems in fluid motion. The analy-
sis required to attack most of these problems is beyond the scope of
this book, but one of them may be worth mentioning even though no
explanation is given.

The Theory of the Flight of Birds. A mechanical problem of great
interest is the explanation of the means by which birds are enabled to
fly for considerable distances with no (perceptible) motion of the wings.
Albatrosses, to take an instance of special difficulty, have been known
to follow for some days ships running at the rate of nine or ten knots,
and sometimes for considerable periods there is no motion of the wings
or body which can be detected, while even if the bird moved its wings
it is not easy to understand how it has the muscular energy to propel
itself so rapidly and for such a length of time. Of this phenomenon
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various explanations* have been suggested. Notable among these are
Mr Maxim’s of upward air-currents, Lord Rayleigh’s of variations of the
wind velocity at different heights above the ground, Dr S.P. Langley’s
of the incessant occurrence of gusts of wind separated by lulls, and
Dr Bryan’s of vortices in the atmosphere.

It now seems reasonably certain that the second and third of these
sources of energy account for at least a portion of the observed phenom-
ena. The effect of the third cause may be partially explained by noting
that the centre of gravity of the bird with extended wings is slightly
below the aeroplane or wing surface, so that the animal forms a sort
of parachute. The effect of a sudden gust of wind upon such a body
is that the aeroplane is set in motion more rapidly than the suspended
mass, causing the structure to heel over so as to receive the wind on
the under surface of the aeroplane, and this lifts the suspended mass
giving it an upward velocity. When the wind falls the greater inertia of
the mass carries it on upwards causing the aeroplane to again present
its under side to the air; and if while the parachute is in this position
the wind is still blowing from the side, the suspended mass is again
lifted. Thus the more the bird is blown about, the more it rises in the
air; actually birds in flight are carried up by a sudden side gust of wind
as we should expect from this theory.

The fact that the bird is in motion tends also to keep it up, for
it has been recently shown that a horizontal plane under the action of
gravity falls to the ground more slowly if it is travelling through the air
with horizontal velocity than it would do if allowed to fall vertically,
hence the bird’s forward motion causes it to fall through a smaller
height between successive gusts of wind than it would do if it were at
rest, Moreover it has been proved experimentally that the horsepower
required to support a body in horizontal flight by means of an aeroplane
is less for high than for low speeds: hence when a side-wind (that is,
a wind at right angles to the bird’s course) strikes the bird, the lift is
increased in consequence of the bird’s forward velocity.

Curiosa Physica. When I was writing the first edition of these
“Recreations,” I put together a chapter, following this one, on “Some
Physical Questions,” dealing with problems such as, in the Theory of

* See G.H. Bryan in the Transactions of the British Association for 1896,
vol. lxvi, pp. 726-728.

• Project • Gutenberg • #26839 •



CH. III] CURIOSA PHYSICA. 87

Sound, the explanation of the fact that in some of Captain Parry’s ex-
periments the report of a cannon, when fired, travelled so much more
rapidly than the sound of the human voice that observers heard the
report of the cannon when fired before that of the order to fire it*: in
the Kinetic Theory of Gases, the complications in our universe that
might be produced by “Maxwell’s demon”†: in the Theory of Optics,
the explanation of the Japanese “magic mirrors,”‡ which reflect the pat-
tern on the back of the mirror (on which the light does not fall): to
which I might add the theory of the “spectrum top,” by means of which
a white surface, on which some black lines are drawn, can be moved so
as to give the impression§ that the lines are coloured (red, green, blue,
slate, or drab), and the curious fact that the colours change with the
direction of rotation: it has also been recently shown that if two trains
of waves, whose lengths are in the ratio m− 1 : m+ 1, be superposed,
then every mth wave in the system will be big—thus the current opin-
ion that every ninth wave in the open sea is bigger than the other waves
may receive scientific confirmation. There is no lack of interesting and
curious phenomena in physics, and in some branches, notably in elec-
tricity and magnetism, the difficulty is rather one of selection, but I felt
that the connection with mathematics was in general either too remote
or too technical to justify the insertion of such a collection in a work
on elementary mathematical recreations, and therefore I struck out the
chapter. I mention the fact now partly to express the hope that some
physicist will one day give us a collection of the kind, partly to suggest
these questions to those who are interested in such matters.

* The fact is well authenticated. Mr Earnshaw (Philosophical Transactions, Lon-
don, 1860, pp. 133–148) explained it by the acceleration of a wave caused by
the formation of a kind of bore, a view accepted by Clerk Maxwell and most
physicists, but Sir George Airy thought that the explanation was to be found in
physiology; see Airy’s Sound, second edition, London, 1871, pp. 141, 142.

† See Theory of Heat, by J. Clerk Maxwell, second edition, London, 1872, p. 308.
‡ See a memoir by W.E. Ayrton and J. Perry, Proceedings of the Royal Society of

London, part i, 1879, vol. xxviii, pp. 127–148.
§ See letters from Mr C.E. Benham and others in Nature, 1894–5; and a memoir

by Prof. Liveing, Cambridge Philosophical Society, November 26, 1894.
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CHAPTER IV.

SOME MISCELLANEOUS QUESTIONS.

I propose to discuss in this chapter the mathematical theory of
certain of the more common mathematical amusements and games.
Some of these might have been treated in the first two chapters, but,
since most of them involve mixed geometry and algebra, it is rather
more convenient to deal with them apart from the problems and puzzles
which have been described already. This division, however, is by no
means well defined, and the arrangement is based on convenience rather
than on any logical distinction.

The majority of the questions here enumerated have no connection
one with another, and I jot them down almost at random.

I shall discuss in succession the Fifteen Puzzle, the Tower of Hanoï,
Chinese Rings, the Eight Queens Problem, the Fifteen School-Girls
Problem, and some miscellaneous Problems connected with a pack of
cards.

The Fifteen Puzzle†. Some years ago the so-called fifteen
puzzle was on sale in all toy-shops. It consists of a shallow wooden
box—one side being marked as the top—in the form of a square, and
contains fifteen square blocks or counters numbered 1, 2, 3 . . . up to 15.
The box will hold just sixteen such counters, and, as it contains only
fifteen, they can be moved about in the box relatively to one another.
Initially they are put in the box in any order, but leaving the sixteenth

† There are two articles on the subject in the American Journal of Mathematics
1879, vol. ii, by Professors Woolsey Johnson and Story; but the whole theory is
deducible immediately from the proposition I give above in the text.
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cell or small square empty; the puzzle is to move them so that finally
they occupy the position shown in the first of the annexed figures.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
A B

C D

Bottom of Box

Top of Box

2 1 4 3

6 5 8 7

10 9 12 11

13 14 15

We may represent the various stages in the game by supposing that
the blank space, occupying the sixteenth cell, is moved over the board,
ending finally where it started.

The route pursued by the blank space may consist partly of tracks
followed and again retraced, which have no effect on the arrangement,
and partly of closed paths travelled round, which necessarily are cycli-
cal permutations of an odd number of counters. No other motion is
possible.

Now a cyclical permutation of n letters is equivalent to n−1 simple
interchanges; accordingly an odd cyclical permutation is equivalent to
an even number of simple interchanges. Hence, if we move the counters
so as to bring the blank space back into the sixteenth cell, the new
order must differ from the initial order by an even number of simple
interchanges. If therefore the order we want to get can be obtained from
this initial order only by an odd number of interchanges, the problem
is incapable of solution; if it can be obtained by an even number, the
problem is possible.

Thus the order in the second of the diagrams given on the current
page is deducible from that in the first diagram by six interchanges;
namely, by interchanging the counters 1 and 2, 3 and 4, 5 and 6, 7 and
8, 9 and 10, 11 and 12. Hence the one can be deduced from the other
by moving the counters about in the box.

If however in the second diagram the order of the last three counters
had been 13, 15, 14, then it would have required seven interchanges of
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counters to bring them into the order given in the first diagram. Hence
in this case the problem would be insoluble.

The easiest way of finding the number of simple interchanges neces-
sary in order to obtain one given arrangement from another is to make
the transformation by a series of cycles. For example, suppose that we
take the counters in the box in any definite order, such as taking the
successive rows from left to right, and suppose the original order and
the final order to be respectively

1, 13, 2, 3, 5, 7, 12, 8, 15, 6, 9, 4, 11, 10, 14,
and 11, 2, 3, 4, 5, 6, 7, 1, 9, 10, 13, 12, 8, 14, 15.

We can deduce the second order from the first by 12 simple inter-
changes. The simplest way of seeing this is to arrange the process in
three separate cycles as follows:—

1, 11, 8 ; 13, 2, 3, 4, 12, 7, 6, 10, 14, 15, 9 ; 5.
11, 8, 1 ; 2, 3, 4, 12, 7, 6, 10, 14, 15, 9, 13 ; 5.

Thus, if in the first row of figures 11 is substituted for 1, then 8 for
11, then 1 for 8, we have made a cyclical interchange of 3 numbers,
which is equivalent to 2 simple interchanges (namely, interchanging 1
and 11, and then 1 and 8). Thus the whole process is equivalent to one
cyclical interchange of 3 numbers, another of 11 numbers, and another
of 1 number. Hence it is equivalent to (2+10+0) simple interchanges.
This is an even number, and thus one of these orders can be deduced
from the other by moving the counters about in the box.

It is obvious that, if the initial order is the same as the required
order except that the last three counters are in the order 15, 14, 13,
it would require one interchange to put them in the order 13, 14, 15;
hence the problem is insoluble.

If however the box is turned through a right angle, so as to make
AD the top, this rotation will be equivalent to 13 simple interchanges.
For, if we keep the sixteenth square always blank, then such a rotation
would change any order such as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
to 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3, 12, 8, 4,

which is equivalent to 13 simple interchanges. Hence it will change the
arrangement from one in which a solution is impossible to one where
it is possible, and vice versa.
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Again, even if the initial order is one which makes a solution impos-
sible, yet if the first cell and not the last is left blank it will be possible
to arrange the fifteen counters in their natural order. For, if we repre-
sent the blank cell by b, this will be equivalent to changing the order

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, b,
b, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 :

this is a cyclical interchange of 16 things and therefore is equivalent
to 15 simple interchanges. Hence it will change the arrangement from
one in which a solution is impossible to one where it is possible, and
vice versa.

It is evident that the above principles are applicable equally to a
rectangular box containing mn cells or spaces and mn − 1 counters
which are numbered. Of course m may be equal to n. If such a box
is turned through a right angle, and m and n are both even, it will
be equivalent to mn− 3 simple interchanges—and thus will change an
impossible position to a possible one, and vice versa—but unless both
m and n are even the rotation is equivalent to only an even number of
interchanges. Similarly, if either m or n is even, and it is impossible
to solve the problem when the last cell is left blank, then it will be
possible to solve it by leaving the first cell blank.

The problem may be made more difficult by limiting the possible
movements by fixing bars inside the box which will prevent the move-
ment of a counter transverse to their directions. We can conceive also
of a similar cubical puzzle, but we could not work it practically except
by sections.

The Tower of Hanoï. I may mention next the ingenious puz-
zle known as the Tower of Hanoï. It was brought out in 1883 by
M. Claus (Lucas).

It consists of three pegs fastened to a stand, and of eight circular
discs of wood or cardboard each of which has a hole in the middle so
that a peg can be put through it. These discs are of different radii,
and initially they are placed all on one peg, so that the biggest is at
the bottom, and the radii of the successive discs decrease as we ascend:
thus the smallest disc is at the top. This arrangement is called the
Tower. The problem is to shift the discs from one peg to another in
such a way that a disc shall never rest on one smaller than itself, and
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finally to transfer the tower (i.e. all the discs in their proper order)
from the peg on which they initially rested to one of the other pegs.

The method of effecting this is as follows. (i) If initially there
are n discs on the peg A, the first operation is to transfer gradually
the top n − 1 discs from the peg A to the peg B, leaving the peg C
vacant: suppose that this requires x separate transfers. (ii) Next, move
the bottom disc to the peg C. (iii) Then, reversing the first process,
transfer gradually the n − 1 discs from B to C, which will necessitate
x transfers. Hence, if it requires x transfers of simple discs to move a
tower of n − 1 discs, then it will require 2x + 1 separate transfers of
single discs to move a tower of n discs. Now with 2 discs it requires 3
transfers, i.e. 22−1 transfers; hence with 3 discs the number of transfers
required will be 2(22−1)+1, that is, 23−1. Proceeding in this way we
see that with a tower of n discs it will require 2n − 1 transfers of single
discs to effect the complete transfer. Thus the eight discs of the puzzle
will require 255 single transfers. The result can be also obtained by the
theory of finite differences. It will be noticed that every alternate move
consists of a transfer of the smallest disc from one peg to another, the
pegs being taken in cyclical order.

M. De Parville gives an account of the origin of the toy which is
a sufficiently pretty conceit to deserve repetition*. In the great temple
at Benares, says he, beneath the dome which marks the centre of the
world, rests a brass-plate in which are fixed three diamond needles,
each a cubit high and as thick as the body of a bee. On one of these
needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller
and smaller up to the top one. This is the Tower of Bramah. Day and
night unceasingly the priests transfer the discs from one diamond needle
to another according to the fixed and immutable laws of Bramah, which
require that the priest must not move more than one disc at a time and
that he must place this disc on a needle so that there is no smaller disc
below it. When the sixty-four discs shall have been thus transferred
from the needle on which at the creation God placed them to one of
the other needles, tower, temple, and Brahmins alike will crumble into
dust, and with a thunder-clap the world will vanish. Would that English
writers were in the habit of inventing equally interesting origins for the
puzzles they produce!

* La Nature, Paris, 1884, part i, pp. 285–286.
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The number of separate transfers of single discs which the Brahmins
must make to effect the transfer of the tower is 264 − 1, that is, is
18, 446744, 073709, 551615: a number which, even if the priests never
made a mistake, would require many thousands of millions of years
to carry out.

Chinese Rings*. A somewhat more elaborate toy, known as
Chinese Rings, which is on sale in most English toy-shops, is repre-
sented in the accompanying figure. It consists of a number of rings

hung upon a bar in such a manner that the ring at one end (say A)
can be taken off or put on the bar at pleasure; but any other ring
can be taken off or put on only when the one next to it towards A is
on, and all the rest towards A are off the bar. The order of the rings
cannot be changed.

Only one ring can be taken off or put on at a time. [In the toy,
as usually sold, the first two rings form an exception to the rule. Both
these can be taken off or put on together. To simplify the discussion
I shall assume at first that only one ring is taken off or put on at a
time.] I proceed to show that, if there are n rings, then in order to

* It was described by Cardan in 1550 in his De Subtilitate, bk. xv, paragr. 2, ed.
Sponius, vol. iii, p. 587; by Wallis in his Algebra, second edition, 1693, Opera,
vol. ii, chap. 111, pp. 472–478; and allusion is made to it also in Ozanam’s
Récréations, 1723 edition, vol. iv, p. 439.
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disconnect them from the bar, it will be necessary to take a ring off or
to put a ring on either 1

3
(2n+1−1) times or 1

3
(2n+1−2) times according

as n is odd or even.
Let the taking a ring off the bar or putting a ring on the bar be

called a step. It is usual to number the rings from the free end A. Let
us suppose that we commence with the first m rings off the bar and
all the rest on the bar; and suppose that then it requires x − 1 steps
to take off the next ring, that is, it requires x − 1 additional steps to
arrange the rings so that the first m + 1 of them are off the bar and
all the rest are on it. Before taking these steps we can take off the
(m+2)th ring and thus it will require x steps from our initial position
to remove the (m + 1)th and (m + 2)th rings.

Suppose that these x steps have been made and that thus the first
m + 2 rings are off the bar and the rest on it, and let us find how
many additional steps are now necessary to take off the (m+ 3)th and
(m+4)th rings. To take these off we begin by taking off the (m+4)th
ring: this requires 1 step. Before we can take off the (m+3)th we must
arrange the rings so that the (m+ 2)th is on and the first m+ 1 rings
are off: to effect this, (i) we must get the (m + 1)th ring on and the
first m rings off, which requires x − 1 steps, (ii) then we must put on
the (m+ 2)th ring, which requires 1 step, (iii) and lastly we must take
the (m + 1)th ring off, which requires x − 1 steps: thus this series of
movements requires in all {2(x − 1) + 1} steps. Next we can take the
(m + 3)th ring off, which requires 1 step; this leaves us with the first
m + 1 rings off, the (m + 2)th on, the (m + 3)th off and all the rest
on. Finally to take off the (m+2)th ring, (i) we get the (m+1)th ring
on and the first m rings off, which requires x− 1 steps, (ii) we take off
the (m + 2)th ring, which requires 1 step, (iii) we take (m + 1)th ring
off, which requires x − 1 steps: thus this series of movements requires
{2(x − 1) + 1} steps.

Therefore, if when the first m rings are off it requires x steps to
take off the (m + 1)th and (m + 2)th rings, then the number of addi-
tional steps required to take off the (m + 3)th and (m + 4)th rings is
1 + {2(x − 1) + 1} + 1 + {2(x − 1) + 1}, that is, is 4x.

To find the whole number of steps necessary to take off an odd
number of rings we proceed as follows.

To take off the first ring requires 1 step;
∴ to take off the first 3 rings requires 4 additional steps;
∴ " " 5 " " 42 " " .
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In this way we see that the number of steps required to take off the
first 2n+1 rings is 1+4+42+ · · ·+4n, which is equal to 1

3
(22n+2− 1).

To find the number of steps necessary to take off an even number
of rings we proceed in a similar manner.

To take off the first 2 rings requires 2 steps;
∴ to take off the first 4 rings requires 2× 4 additional steps;
∴ " " 6 " " 2× 42 " " .
In this way we see that the number of steps required to take off the
first 2n rings is 2 + (2× 4) + (2× 42) + · · ·+ (2× 4n−1), which is equal
to 1

3
(22n+1 − 2).
If we take off or put on the first two rings in one step instead of

two separate steps, these results become respectively 22n and 22n−1−1.
I give the above analysis because it is the direct solution of a prob-

lem attacked by Cardan in 1550 and by Wallis in 1693—in both cases
unsuccessfully—and which at one time attracted some attention. I pro-
ceed next to give another solution, more elegant though rather artificial.

This solution, which is due to M. Gros*, depends on a convention
by which any position of the rings is denoted by a certain number
expressed in the binary scale of notation in such a way that a step is
indicated by the addition or subtraction of unity.

Let the rings be indicated by circles: if a ring is on the bar, it is
represented by a circle drawn above the bar; if the ring is off the bar, it
is represented by a circle below the bar. Thus figure i below represents
a set of seven rings of which the first two are off the bar, the next three
are on it, the sixth is off it, and the seventh is on it.

Denote the rings which are on the bar by the digits 1 or 0 alter-
nately, reckoning from left to right, and denote a ring which is off the
bar by the digit assigned to that ring on the bar which is nearest to it
on the left of it, or by a 0 if there is no ring to the left of it.

Thus the three positions indicated below are denoted respectively
by the numbers written below them. The position represented in fig-
ure ii is obtained from that in figure i by putting the first ring on to the
bar, while the position represented in figure iii is obtained from that in
figure i by taking the fourth ring off the bar.

It follows that every position of the rings is denoted by a number
expressed in the binary scale: moreover, since in going from left to right

* Théorie du Baguenodier, by L. Gros, Lyons, 1872. I take the account of this
from Lucas, vol. i, part 7.

• Project • Gutenberg • #26839 •



96 MISCELLANEOUS MATHEMATICAL RECREATIONS. [CH. IV

e e e e e e e
1101000

Figure i.

e e e e e e e
1101001

Figure ii.

e e e e e e e
1100111

Figure iii.

every ring on the bar gives a variation (that is, 1 to 0 or 0 to 1) and
every ring off the bar gives a continuation, the effect of a step by which
a ring is taken off or put on the bar is either to subtract unity from this
number or to add unity to it. For example, the number denoting the
position of the rings in figure ii is obtained from the number denoting
that in figure i by adding unity to it. Similarly the number denoting the
position of the rings in figure iii is obtained from the number denoting
that in figure i by subtracting unity from it.

The position when all the seven rings are off the bar is denoted by
the number 0000000: when all of them are on the bar by the number
1010101. Hence to change from one position to the other requires a
number of steps equal to the difference between these two numbers in
the binary scale. The first of these numbers is 0: the second is equal
to 26 + 24 + 22 + 1, that is, to 85. Therefore 85 steps are required.
In a similar way we may show that to put on a set of 2n + 1 rings
requires (1 + 21 + 22 + . . .+ 22n) steps, that is, 1

3
(22n+2 − 1) steps; and

to put on a set of 2n rings requires (2 + 23 + . . . + 22n−1) steps, that
is, 1

3
(2n+1 − 2) steps.
I append a table indicating the steps necessary to take off the first

four rings from a set of five rings. The diagrams in the middle column
show the successive position of the rings after each step. The number
following each diagram indicates that position, each number being ob-
tained from the one above it by the addition of unity. The steps which
are bracketed together can be made in one movement, and, if thus ef-
fected, the whole process is completed in 7 movements instead of 10
steps: this is in accordance with the formula given above.

M. Gros asserted that it is possible to take from 64 to 80 steps
a minute, which in my experience is a rather high estimate. If we
accept the lower of these numbers, it would be possible to take off 10
rings in less than 8 minutes; to take off 25 rings would require more
than 582 days, each of ten hours work; and to take off 60 rings would
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Initial position
d d d d d

10101

After 1st step
d d d d d

10110}
" 2nd "

d d d d d 10111
" 3rd "

d d d d d 11000
" 4th "

d d d d d
11001}

" 5th "
d d d d d

11010

" 6th "
d d d d d 11011

" 7th "
d d d d d 11100

" 8th "
d d d d d

11101

" 9th "
d d d d d

11110}
" 10th "

d d d d d 11111

necessitate no less than 768614, 336404, 564650 steps, and would require
nearly 55000, 000000 years work—assuming of course that no mistakes
were made.

The Eight Queens Problem*. The determination of the
number of ways in which eight queens can be placed on a chess-
board—or more generally, in which n queens can be placed on a
board of n2 cells—so that no queen can take any other was proposed
originally by Nauck in 1850.

In 1874 Dr S. Günther† suggested a method of solution by means
of determinants. For, if each symbol represents the corresponding cell
of the board, the possible solutions for a board of n2 cells are given by

* On the history of this problem see W. Ahrens, Mathematische Unterhaltun-
gen und Spiele, Leipzig, 1901, chap. ix—a work issued subsequent to the third
edition of this book.

† Grunert’s Archiv der Mathematik und Physik, 1874, vol. lvi pp. 281–292.
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those terms, if any, of the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b2 c3 d4 . . . . . . . . . . . .
β2 a3 b4 c5 . . . . . . . . . . . .
γ3 β4 a5 b6 . . . . . . . . . . . .
δ4 γ5 β6 a7 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . a2n−3 b2n−2

. . . . . . . . . . . . . . β2n−2 a2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
in which no letter and no suffix appears more than once.

The reason is obvious. Every term in a determinant contains one
and only one element out of every row and out of every column: hence
any term will indicate a position on the board in which the queens
cannot take one another by moves rook-wise. Again in the above de-
terminant the letters and suffixes are so arranged that all the same
letters and all the same suffixes lie along bishop’s paths: hence, if we
retain only those terms in each of which all the letters and all the suf-
fixes are different, they will denote positions in which the queens cannot
take one another by moves bishop-wise. It is clear that the signs of the
terms are immaterial.

In the case of an ordinary chess-board the determinant is of the 8th
order, and therefore contains 8!, that is, 40320 terms, so that it would
be out of the question to use this method for the usual chess-board of
64 cells or for a board of larger size unless some way of picking out the
required terms could be discovered.

A way of effecting this was suggested by Dr J.W.L. Glaisher* in
1874, and as far as I am aware the theory remains as he left it. He
showed that if all the solutions of n queens on a board of n2 cells were
known, then all the solutions of a certain type for n + 1 queens on a
board of (n+1)2 cells could be deduced, and that all the other solutions
of n+ 1 queens on a board of (n+ 1)2 cells could be obtained without
difficulty. The method will be sufficiently illustrated by one instance
of its application.

It is easily seen that there are no solutions when n = 2 and n = 3.
If n = 4 there are two terms in the determinant which give solutions,
namely, b2c5γ3β6 and c3β2b6γ5. To find the solutions when n = 5,

* Philosophical Magazine, London, December, 1874, series 4, vol. xlviii, pp. 457–
467.
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Glaisher proceeded thus. In this case Günther’s determinant is∣∣∣∣∣∣∣∣∣∣
a1 b2 c3 d4 e5
β2 a3 b4 c5 d6
γ3 β4 a5 b6 c7
δ4 γ5 β6 a7 b8
ε5 δ6 γ7 β8 a9

∣∣∣∣∣∣∣∣∣∣
To obtain those solutions (if any) which involve a9 it is sufficient to ap-
pend a9 to such of the solutions for a board of 16 cells as do not involve
a. As neither of those given above involves an a we thus get two solu-
tions, namely, b2c5γ3β6a9 and c3β2b6γ5a9. The solutions which involve
a1, e5 and ε5 can be written down by symmetry. The eight solutions
thus obtained are all distinct; we may call them of the first type.

The above are the only solutions which can involve elements in the
corner squares of the determinant. Hence the remaining solutions are
obtainable from the determinant∣∣∣∣∣∣∣∣∣∣

0 b2 c3 d4 0
β2 a3 b4 c5 d6
γ3 β4 a5 b6 c7
δ4 γ5 β6 a7 b8
0 δ6 γ7 β8 0

∣∣∣∣∣∣∣∣∣∣
If, in this, we take the minor of b2 and in it replace by zero every term
involving the letter b or the suffix 2 we shall get all solutions involving
b2. But in this case the minor at once reduces to d6a5δ4β8. We thus
get one solution, namely, b2d6a5δ4β8. The solutions which involve β2,
δ4, δ6, β8, b8, d6, and d4 can be obtained by symmetry. Of these eight
solutions it is easily seen that only two are distinct: these may be
called solutions of the second type.

Similarly the remaining solutions must be obtained from the de-
terminant ∣∣∣∣∣∣∣∣∣∣

0 0 c3 0 0
0 a3 b4 c5 0
γ3 β4 a5 b6 c7
0 γ5 β6 a7 0
0 0 γ7 0 0

∣∣∣∣∣∣∣∣∣∣
If, in this, we take the minor of c3, and in it replace by zero every

term involving the letter c or the suffix 3, we shall get all the solutions
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which involve c3. But in this case the minor vanishes. Hence there is
no solution involving c3, and therefore by symmetry no solutions which
involve γ3, γ7, or c3. Had there been any solutions involving the third
element in the first or last row or column of the determinant we should
have described them as of the third type.

Thus in all there are ten and only ten solutions, namely, eight of
the first type, two of the second type, and none of the third type.

Similarly, if n = 6, we obtain no solutions of the first type, four
solutions of the second type, and no solutions of the third type; that
is, four solutions in all. If n = 7, we obtain sixteen solutions of the
first type, twenty-four solutions of the second type, no solutions of the
third type, and no solutions of the fourth type; that is, forty solutions
in all. If n = 8, we obtain sixteen solutions of the first type, fifty-six
solutions of the second type, and twenty solutions of the third type,
that is, ninety-two solutions in all.

It will be noticed that all the solutions of one type are not always
distinct. In general, from any solution seven others can be obtained at
once. Of these eight solutions, four consist of the initial or fundamen-
tal solution and the three similar ones obtained by turning the board
through one, two, or three right angles; the other four are the reflex-
ions of these in a mirror: but in any particular case it may happen
that the reflexions reproduce the originals, or that a rotation through
one or two right angles makes no difference. Thus on boards of 42,
52, 62, 72, 82, 92, 102 cells there are respectively 1, 2, 1, 6, 12, 46, 92
fundamental solutions; while altogether there are respectively 2, 10, 4,
40, 92, 352, 724 solutions.

The following collection of fundamental solutions may interest the
reader. The positions on the board of the queens are indicated by
digits: the first digit represents the number of the cell occupied by the
queen in the first column reckoned from one end of the column, the
second digit the number in the second column, and so on. Thus on a
board of 42 cells the solution 3142 means that one queen is on the 3rd
square of the first column, one on the 1st square of the second column,
one on the 4th square of the third column, and one on the 2nd square
of the fourth column. If a fundamental solution gives rise to only four
solutions the number which indicates it is placed in curved brackets, ( );
if it gives rise to only two solutions the number which indicates it is
placed in square brackets, [ ]; the other fundamental solutions give rise
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to eight solutions each.
On a board of 42 cells there is 1 fundamental solution: namely,

[3142].
On a board of 52 cells there are 2 fundamental solutions: namely,

14253, [25314].
On a board of 62 cells there is 1 fundamental solution: namely,

(246135).
On a board of 72 cells there are 6 fundamental solutions: namely,

1357246, 3572461, (5724613), 4613572, 3162574, (2574136).
On a board of 82 cells there are 12 fundamental solutions: namely,

25713864, 57138642, 71386425, 82417536, 68241753, 36824175,
64713528, 36814752, 36815724, 72418536, 26831475, (64718253).
The arrangement in this order is due to Mr Oram. It will be noticed
that the 10th, 11th, and 12th solutions somewhat resemble the 4th,
6th, and 7th respectively. The 6th solution is the only one in which no
three queens are in a straight line.

On a board of 92 cells there are 46 fundamental solutions; one of
them is 248396157. On a board of 102 cells there are 92 fundamental
solutions; these were given by Dr A. Pein*; one of them is 2468t13579,
where t stands for ten. On a board of 112 cells there are 341 funda-
mental solutions; these have been given by Dr T.B. Sprague†: one of
them is 15926t37e48. I may add that for a board of n2 cells there is
always a symmetrical solution of the form 246 . . . n135 . . . (n−1), when
n = 6m or n = 6m + 4, Also Mr Oram has shown that for a board
of n2 cells, when n is a prime, cyclical arrangements of the n natural
numbers, other than in their natural order, will give solutions; see, for
instance, the solution quoted above.

The puzzle in the form of a board of 36 squares is sold in the
streets of London for a penny, a small wooden board being ruled in
the manner shown in the diagram and having holes drilled in it at the
points marked by dots. The object is to put six pins into the holes so
that no two are connected by a straight line.

* Aufstellung von n Königinnen auf einem Schachbrett von n2 Feldern, Leipzig,
1889.

† Proceedings of the Edinburgh Mathematical Society, vol. xvii, 1898–9, pp. 43–68.
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Other Problems with Queens. Captain Turton called my atten-
tion to two other problems of a somewhat analogous character, neither
of which, as far as I know, has been published elsewhere, or solved
otherwise than empirically.

The first of these is to place eight queens on a chess-board so as
to command the fewest possible squares. Thus, if queens are placed on
cells 1 and 2 of the second column, on cell 2 of the sixth column, on cells
1, 3, and 7 of the seventh column, and on cells 2 and 7 of the eighth
column, eleven cells on the board will not be in check; the same number
can be obtained by other arrangements. Is it possible to place the eight
queens so as to leave more than eleven cells out of check? I have never
succeeded in doing so, nor in showing that it is impossible to do it.

The other problem is to place m queens (m being less than 5)
on a chess-board so as to command as many cells as possible. For
instance, four queens can be placed in several ways on the board so
as to command 58 cells besides those on which the queens stand, thus
leaving only 2 cells which are not commanded: ex. gr. this is effected if
the queens are placed on cell 5 of the third column, cell 1 of the fourth
column, cell 6 of the seventh column, and cell 2 of the eighth column;
or on cell 1 of the first column, cell 7 of the third column, cell 3 of the
fifth column, and cell 5 of the seventh column. A similar problem is to
determine the minimum number and the position of queens which can
be placed on a board of n2 cells so as to occupy or command every cell.
It would seem that, even with the additional restriction that no queen
shall be able to take any other queen, there are no less than ninety-one
typical solutions in which five queens can be placed on a chess-board

• Project • Gutenberg • #26839 •



CH. IV] THE FIFTEEN SCHOOL-GIRLS PROBLEM. 103

so as to command every cell*.
Extension to other Chess Pieces. Analogous problems may be pro-

posed with other chess-pieces. For instance, questions as to the max-
imum number of knights which can be placed on a board of n2 cells
so that no knight can take any other, and the minimum number of
knights which can be placed on it so as to occupy or command every
cell have been propounded†.

Similar problems have also been proposed for k kings placed on a
chess-board of n2 cells‡. It has been asserted that, if k = 2, the number
of ways in which two kings can be placed on a board so that they may
not occupy adjacent squares is 1

2
(n− 1)(n− 2)(n2 +3n− 2). Similarly,

if k = 3, the number of ways in which three kings can be placed on
a board so that no two of them occupy adjacent squares is said to be
1
6
(n − 1)(n − 2)(n4 + 3n3 − 20n2 − 30n + 132).

The Fifteen School-Girls Problem. This problem—
which was first enunciated by Mr T.P. Kirkman, and is sometimes
known as Kirkman’s problem§—consists in arranging fifteen things in
different sets of triplets. It is usually presented in the form that a
school-mistress was in the habit of taking her girls for a daily walk.

* L’Intermédiaire des mathématiciens, Paris, 1901, vol. viii, p. 88.
† Ibid., March, 1896, vol. iii, p. 58; 1897, vol. iv, p. 15, 254; and 1898, vol. v,

p. 87.
‡ Ibid., June, 1901, p. 140.
§ It was published first in the Lady’s and Gentleman’s Diary for 1850, p. 48,

and has been the subject of numerous memoirs. Among these I may single out
the papers by A. Cayley in the Philosophical Magazine, July, 1850, series 3,
vol. xxxvii, pp. 50–53; by T.P. Kirkman in the Cambridge and Dublin Math-
ematical Journal, 1850, vol. v, p. 260; by R.R. Anstice, Ibid., 1852, vol. vii,
pp. 279–292; by B. Pierce, Gould’s Journal, Cambridge, U.S., 1860, vol. vi,
pp. 169–174; by T.P. Kirkman, Philosophical Magazine, March, 1862, series 4,
vol. xxiii, pp. 198–204; by W.S.B. Woolhouse in the Lady’s Diary for 1862,
pp. 84–88, and for 1863, pp. 79–90, and in the Educational Times Reprints,
1867, vol. viii, pp. 76–83; by J. Power in the Quarterly Journal of Mathemat-
ics, 1867, vol. viii, pp. 236–251; by A.H. Frost, Ibid., 1871, vol. xi, pp. 26–37;
by E. Carpmael in the Proceedings of the London Mathematical Society, 1881,
vol. xii, pp. 148–156; by Lucas in his Récréations, vol. ii, part vi; by A.C. Dixon
in the Messenger of Mathematics, Cambridge, October, 1893, vol. xxiii, pp. 88–
89; and by W. Burnside, Ibid., 1894, vol. xxiii, pp. 137–143. It has also, since
the issue of my third edition, been discussed by W. Ahrens in his Mathematische
Unterhaltungen und Spiele, Leipzig, 1901, chapter xiv.
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The girls were fifteen in number, and were arranged in five rows of
three each so that each girl might have two companions. The problem
is to dispose them so that for seven consecutive days no girl will walk
with any of her school-fellows more than once. More generally we may
require to arrange 3m girls in triplets to walk out for 1

2
(3m− 1) days,

so that no girl will walk with any of her school-fellows more than once.
The theory of the formation of all such possible triplets in the

case of fifteen girls is not difficult, but the extension to 3m girls is, as
yet, unsolved. I proceed to describe three methods of solution: these
methods are analytical, but I may add that the problem can be also
attacked by geometrical methods.

Frost’s Method. The first of these solutions is due to Mr Frost. A
full exposition of it would occupy a good deal of space, but I hope that
the following sketch will make the process intelligible.

Denote one of the girls by k. Her companions on each day are
different: suppose that on Sunday they are a1 and a2, on Monday b1
and b2, and so on, and finally on Saturday g1 and g2. Hence for each
day we have one triplet, and we have to find four others, but in each
of the latter no two like letters can occur together, that is, the three
letters in any of them must be all different.

Let a stand for a1, or a2, b for b1 or b2, and so on. The suffixes 1
and 2 are called complementary. Then, since the three letters in each of
the triplets we are trying to find must be different, we must make some
arrangement such as putting a with bc, de, and fg; and, if so, b may be
associated with df and eg; and c with dg and ef . Thus there are seven
possible triads, such as abc, ade, afg, bdf , beg, cdg, and cef . Moreover
each of these may stand for any one of four triplets: for instance, the
triad bdf may stand for any of the triplets b1d1f1, b1d2f2, b2d1f2, b2d2f1.

The four triads which do not involve a must be placed in the Sunday
column, the four which do not involve b in the Monday column, and so
on. Thus each triad will occur four times.

It only remains to insert the proper suffixes. This is done as follows.
Take one triad, such as bdf , and insert a different set of suffixes each
time that it occurs; for instance, the four sets given above. Next, the
other like letters (b, d, or f as the case may be) in these four columns
must have the complementary suffixes attached.

After this is done, the next triplet in the Sunday column will be
b2eg. The triad beg occurs in four columns and includes four possi-
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ble triplets, such as b2e1g1, b2e2g2, b1e1g2, b1e2g1. Insert these, and
then give the complementary suffixes to the other like letters in these
four columns.

In this way the arrangement is constructed gradually, by taking
one triad at a time, inserting the proper suffixes to the four triplets
included in it, and then the complementary suffixes in the other like
letter in the same columns.

One final arrangement, thus obtained, is as follows:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

ka1a2 kb1b2 kc1c2 kd1d2 ke1e2 kf1f2 kg1g2
b1d1f1 a1d2e2 a1d1e1 a2b2c2 a2b1c1 a1b2c1 a1b1c2
b2e1g1 a2f2g2 a2f1g1 a1f2g1 a1f1g2 a2d2e1 a2d1e2
c1d2g2 c1d1g1 b1d2f2 b1e1g2 b2d1f2 b1e2g1 b2d2f1
c2e2f2 c2e1f1 b2e2g2 c1e2f1 c2d2g1 c2d1g2 c1e1f2

We might obtain other solutions by selecting other seven triads or by
choosing other arrangements of the suffixes in each triad (or by merely
interchanging letters and suffixes in the above order). By these means
Mr Power showed that there are no less than 15567, 552000 different
solutions; but, since the total number of ways in which the school can
walk out for a week in triplets is (455)7, the probability that any chance
way satisfies Kirkman’s condition is very small.

Frost’s method is applicable to the case of 22n−1 girls walking out
for 22n−1− 1 days in triplets. The detailed solution for 63 girls walking
out for 31 days, which corresponds to n = 3, have been given.

Anstice’s Method. Another method of attacking the problem is
due to Mr Anstice; it is illustrated by the following elegant solution,
by which from the order on Sunday we can obtain the order on the
following six days by a cyclical permutation. Let the girls be denoted
respectively by the letters k, a1, a2, a3, a4, a5, a6, a7, b1, b2, b3, b4, b5,
b6, b7; and suppose the order on Sunday to be

ka1b1, a2a3a5, a4b3b6, a6b2b7, a7b4b5 .

Then, if the suffixes are permuted cyclically, we obtain six other ar-
rangements which satisfy the conditions of the problem: the reason
being that in the above arrangement the difference of the suffixes of ev-
ery pair of like letters—such as either the “a”s or the “b”s—in a triplet
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is different for each triplet, as also is the difference of the suffixes of
every pair of unlike letters which are in a triplet.

Two other arrangements for Sunday, from which those for the re-
maining days are obtainable by cyclical permutations can be formed.
These are ka1b1, a2a3a5, a4b5b7, a6b3b4, a7b2b6; and ka1b1, a2a3a5, a4b2b6,
a6b5b7, a7b3b4.

Anstice’s method is applicable to the case of 2p + 1 girls walking
out for p days in triplets so that no pair may walk together more than
once, provided p is a prime of the form 12m + 7. In such a case he
showed how to construct a fundamental arrangement for one day from
which the arrangements for the remaining p − 1 days can be obtained
by cyclical permutations of suffixes. The number of such fundamental
arrangements is 3(2m + 1)(3m + 1).

The problem of 15 girls corresponds to m = 0, and the three fun-
damental Anstician arrangements are given above. If m = 1 we have
the problem of 39 girls. One Anstician arrangement in this case is
as follows: ka1b1, a2a8a12, a5a7a10, a6a17a18, a3b10b15, a4b3b5, a9b18b19,
a11b8b14, a13b9b17, a14b12b16, a15b4b7, a16b2b11, a19b6b13. If m = 2 we have
the problem of 63 girls, of which Frost has given one solution; and so on.

Gill’s Method. Another method of attacking the problem has been
suggested to me by Mr T.H. Gill. Representing the girls by a1, a2, a3,
. . . , a3m he (i) forms one triplet of the type a1am+1a2m+1, from which,
by cyclical permutation of the suffixes 1, 2, . . . , 3m he obtains m triplets
which constitute an arrangement for one day, and (ii) forms 1

2
(m − 1)

other triplets such that the three differences of the suffixes are different,
from which, by cyclical permutations of the suffixes, the arrangements
for the remaining 3

2
(m − 1) other days can be obtained. Thus in the

case of 15 girls, the triplet a1a6a11 gives, by cyclical permutations of
the suffixes, an arrangement for the first day and two triplets such as
a1a2a5, a1a3a9 enable us to form 30 triplets from which an arrangement
for the other six days can be found. Here is a solution thus determined.

First Day: 1. 6.11; 2. 7.12; 3. 8.13; 4. 9.14; 5.10.15 .
Second Day: 1. 2. 5; 3. 4. 7; 8. 9.12; 10.11.14; 13.15. 6 .
Third Day: 2. 3. 6; 4. 5. 8; 9.10.13; 11.12.15; 14. 1. 7 .
Fourth Day: 5. 6. 9; 7. 8.11; 12.13. 1; 14.15. 3; 2. 4.10 .
Fifth Day: 7. 9.15; 8.10. 1; 3. 5.11; 4. 6.12; 13.14. 2 .
Sixth Day: 9.11. 2; 10.12. 3; 5. 7.13; 6. 8.14; 15. 1. 4 .
Seventh Day: 11.13. 4; 12.14. 5; 15. 2. 8; 1. 3. 9; 6. 7.10 .
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But, although this method gives triplets with which the problem can
be solved, the final arrangement is empirical.

A solution of the problem of 21 girls for 10 days can be got by the
same method: a1a8a15 giving 7 triplets which constitute an arrangement
for one day; and a1a2a6, a1a3a11, a1a4a10 giving 63 triplets from which
an arrangement for the other nine days can be formed. Here is the
solution thus determined.

First Day: 1. 8.15; 2. 9.16; 3.10.17; 4.11.18; 5.12.19; 6.13.20; 7.14.21 .
Second Day: 1. 2. 6; 4. 5. 9; 7. 8.12; 10.11.15; 13.14.18; 16.17.21; 19.20. 3 .
Third Day: 7.10.16; 8.11.17; 12.15.21; 18.19. 2; 20. 1. 9; 3. 5.13; 4. 6.14 .
Fourth Day: 13.16. 1; 14.17. 2; 18.21. 6; 3. 4. 8; 5. 7.15; 9.11.19; 10.12.20 .
Fifth Day: 4. 7.13; 5. 8.14; 9.12.18; 15.16.20; 17.19. 6; 21. 2.10; 1. 3.11 .
Sixth Day; 1. 4.10; 2. 5.11; 6. 9.15; 12.13.17; 14.16. 3; 18.20. 7; 19.21. 8 .
Seventh Day: 2. 3. 7; 5. 6.10; 8. 9.13; 11.12.16; 14.15.19; 17.18. 1; 20.21. 4 .
Eighth Day: 10.13.19; 11.14.20; 15.18. 3; 21. 1. 5; 2. 4.12; 6. 8.16; 7. 9.17 .
Ninth Day: 16.19. 4; 17.20. 5; 21. 3. 9; 6. 7.11; 8.10.18; 12.14. 1; 13.15. 2 .
Tenth Day: 19. 1. 7; 20. 2. 8; 3. 6.12; 9.10.14; 11.13.21; 15.17. 4; 16.18. 5 .

I should be interested if any of my readers could give me a similar
solution of the analogous arrangement of 33 girls for 16 days formed
from typical triplet suffixes like 1, 12, 23; 1, 2, 10; 1, 3, 16; 1, 4, 18; 1, 5,
11; 1, 6, 13; or from other sets of triplets formed in a similar way so that
(except in the first triplet) the differences of the suffixes are all different.

Walecki’s Theorem. Lastly, Walecki—quoted by Lucas—has
shown that, if a solution for the case of n girls walking out in triplets
for 1

2
(n− 1) days is known, then a solution for 3n girls walking out for

1
2
(3n − 1) days can be deduced.

For if an arrangement of the n girls, a1, a2, . . . , an for 1
2
(n−1) days

is known; and also one of the n girls, b1, b2, . . . , bn; and also one of the
n girls c1, c2, . . . , cn; then an arrangement of these 3n girls for 1

2
(n− 1)

days is known. A set of n triplets for another day will be given by
ambm+kcm+2k where m is put equal to 1, 2, . . . , n successively. Here
k may have any of the n values, 0, 1, 2, . . . , (n − 1); but, wherever a
suffix is greater than n, it is to be divided by n and only the remainder
retained. Hence altogether we have an arrangement for n+ 1

2
(n− 1)

days, i.e. for 1
2
(3n − 1) days.

The arrangement of 3 girls for one day is obvious. Hence, by
Walecki’s theorem, we can deduce at once an arrangement of 3m girls
for 1

2
(3m − 1) days. And, generally, as I have given solutions of the

problem in the case of 3n girls when n = 1, 3, 5, 7, 9, 13, 15, it follows
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that for the same values of n, we can solve the analogous arrangements
of 3m × n girls.

To the original theorem J.J. Sylvester* added the corollary that the
school of 15 girls could walk out in triplets on 13 × 7 days until every
possible triplet had walked abreast once.

The generalized problem of finding the greatest number of ways in
which x girls walking in rows of a abreast can be arranged so that every
possible combination of b of them may walk abreast once and only once
has been solved for various cases. Suppose that this greatest number
of ways is y. It is obvious that, if all the x girls are to walk out each
day in rows of a abreast, then x must be an exact multiple of a and the
number of rows formed each day is x/a. If such an arrangement can be
made for z days, then we have a solution of the problem to arrange x
girls to walk out in rows of a abreast for z days so that they all go out
each day and so that every possible combination of b girls may walk
together once, and only once. In the corresponding generalization of
Kirkman’s problem no companionship of girls which has occurred once
may occur again, but it does not follow necessarily that every possible
companionship must occur once.

An example where the solution is obvious is if x = 2n, a = 2, b = 2,
in which case y = n(2n − 1), z = 2n − 1.

If we take the case x = 15, a = 3, b = 2, we find y = 35; and it
happens that these 35 rows can be divided into 7 sets, each of which
contains all the symbols; hence z = 7. More generally, if x = 5 × 3m,
a = 3, b = 2, we find y = 3

2
(x − 1)/x, z = 1

2
(x − 1). It will be

noticed that in the solutions of the original fifteen school-girls problem
and of Walecki’s extension of it given above every possible pair of girls
walk together once; hence we might infer that in these cases we could
determine z as well as y.

The results of the last paragraph were given by Kirkman† in 1850.
In the same memoir he also proved that, if p is a prime, and if x = pm,
a = p, b = 2, then y = (pm − 1)/(p − 1); if x = (p2 + p + 1)(p + 1)
where p2 + p+ 1 has no divisor less than p+ 1, a = p+ 1, b = 2, then
y = x(x− 1)/p(p+ 1); if x = p3 + p+ 1, a = p+ 1, b = 2, then y = x;

* Philosophical Magazine, July, 1850, series 3, vol. xxxvii, p. 52; a solution by
Sylvester is given in the Philosophical Magazine, May, 1861, series 4, vol. xxi,
p. 371.

† Cambridge and Dublin Mathematical Journal, 1850, vol. v, pp. 255–262.
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and Sylvester’s result that if x = 15, a = 3, b = 3, y = 455, z = 91.
Three years later Kirkman* solved the problem when x = 2n, a = 4,
b = 3. Lastly, in 1893, Sylvester† published the solution when x = 9,
a = 3, b = 3, in which case y = 84, z = 28; and stated that a similar
method was applicable when x = 3m, a = 3, b = 3: thus 9 girls can
be arranged to walk out 28 times (say 4 times a day for a week) so
that in any day the same pair never are together more than once and
so that at the end of the week each girl has been associated with every
possible pair of her schoolfellows.

In 1867 Mr S. Bills‡ showed that if x = 7, a = 3, b = 2, then
y = 7: if x = 15, a = 3, b = 2, then y = 35: if x = 31, a = 3, b = 2,
then y = 155: and the method by which these results are proved will
give the value of y, if x = 2n − 1, a = 3, b = 2. Shortly afterwards
Mr W. Lea§ showed that if x = 11, a = 5, b = 4, then y = 66; also that
if x = 16, a = 4, b = 3, then y = 140; the latter result is a particular
case of Kirkman’s theorems. It will be noticed that these writers did
not confine their discussion to cases where x is an exact multiple of a.

Problems connected with a Pack of Cards. I mentioned
in chapter i that an ordinary pack of playing cards could be used to il-
lustrate many tricks depending on simple properties of numbers. Most
of these involve the relative position of the cards. The principle of solu-
tion generally consists in re-arranging the pack in a particular manner
so as to bring the card into some definite position. Any such rearrange-
ment is a species of shuffling.

I shall treat in succession of problems connected with shuffling a
pack, arrangements by rows and columns, the determination of a pair
out of 1

2
n(n + 1) pairs, Gergonne’s pile problem, and the game known

as the mouse trap.

Shuffling a Pack. Any system of shuffling a pack of cards,
if carried out consistently, leads to an arrangement which can be cal-
culated; but tricks that depend on it generally require considerable

* Ibid., 1853, vol. viii, pp. 38–42.
† Messenger of Mathematics, February, 1893, vol. xxii, pp. 159–160.
‡ Educational Times Reprints, London, 1867, vol. viii, pp. 32–33.
§ Ibid., 1868, vol. ix, pp. 35–36; and 1874, vol. xxii, pp. 74–76; see also the volume

for 1869, vol. xi, p. 97.
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technical skill.
Suppose for instance that a pack of n cards is shuffled, as is not

unusual, by placing the second card on the first, the third below these,
the fourth above them, and so on. The theory of this system of shuffling
is due to Monge*. The following are some of the results and are not
difficult to prove directly.

If the pack contains 6p + 4 cards, the (2p + 2)th card will occupy
the same position in the shuffled pack. For instance, if a complete pack
of 52 cards is shuffled as described above, the 18th card will remain
the 18th card.

Again, if a pack of 10p+2 cards is shuffled in this way, the (2p+1)th
and the (6p × 2)th cards will interchange places. For instance, if an
écarté pack of 32 cards is shuffled as described above, the 7th and the
20th cards will change places.

More generally, one shuffle of a pack of 2p cards will move the card
which was in the x0th place to the x1th place, where x1 =

1
2
(2p+x0+1)

if x0 is odd, and x1 = 1
2
(2p − x0 + 2) if x0 is even, from which the

above results can be deduced. By repeated applications of the above
formulae we can show that the effect of m such shuffles is to move
the card which was initially in the x0th place to the xmth place where
2m+1xm = (4p+1)(2m−1 ± 2m−2 ± · · · ± 2± 1)± 2x0 +2m ± 1, the sign
± representing an ambiguity of sign.

Again, in any pack of n cards after a certain number of shufflings,
not greater than n, the cards will return to their primitive order. This
will always be the case as soon as the original top card occupies that
position again. To determine the number of shuffles required for a pack
of 2p cards, it is sufficient to put xm = x0 and find the smallest value of
m which satisfies the resulting equation for all values of x0 from 1 to 2p.
It follows that, if m is the least number which makes 4m − 1 divisible
by 4p+ 1, then m shuffles will be required if either 2m + 1 or 2m − 1 is
divisible by 4p+1, otherwise 2m shuffles will be required. The number

* Monge’s investigations are printed in the Mémoires de l’Académie des Sciences,
Paris, 1773, pp. 390–412. Among those who have studied the subject afresh I
may in particular mention V. Bouniakowski, Bulletin physico-mathématique de
St Pétersbourg, 1857, vol. xv, pp. 202–205, summarised in the Nouvelles annales
de mathématiques, 1858, pp. 66–67; T. de St Laurent, Mémoires de l’Académie
de Gard, 1865; L. Tanner, Educational Times Reprints, 1880, vol. xxxiii, pp. 73–
75; and M.J. Bourget, Liouville’s Journal, 1882, pp. 413–434. The solutions
given by Prof. Tanner are simple and concise.
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for a pack of 2p+1 cards is the same as that for a pack of 2p cards. With
an écarté pack of 32 cards, six shuffles are sufficient; with a pack of 2n
cards, n + 1 shuffles are sufficient; with a full pack of 52 cards, twelve
shuffles are sufficient; with a pack of 13 cards ten shuffles are sufficient;
while with a pack of 50 cards fifty shuffles are required; and so on.

Mr W.H.H. Hudson* has also shown that, whatever is the law of
shuffling, yet if it is repeated again and again on a pack of n cards, the
cards will ultimately fall into their initial positions after a number of
shufflings not greater than the greatest possible l.c.m. of all numbers
whose sum is n.

For suppose that any particular position is occupied after the 1st,
2nd, . . . , pth shuffles by the cards A1, A2, . . . , Ap respectively, and that
initially the position is occupied by the card A0. Suppose further that
after the pth shuffle A0 returns to its initial position, therefore A0 = Ap.
Then at the second shuffling A2 succeeds A1 by the same law by which
A1 succeeded A0 at the first; hence it follows that previous to the second
shuffling A2 must have been in the place occupied by A1 previous to
the first. Thus the cards which after the successive shuffles take the
place initially occupied by A1 are A2, A3, . . . , Ap, A1; that is, after the
pth shuffle A1 has returned to the place initially occupied by it: and
so for all the other cards A2, A3, . . . , Ap−1.

Hence the cards A1, A2, . . . , Ap form a cycle of p cards, one or other
of which is always in one or other of p positions in the pack, and which
go through all their changes in p shufflings. Let the number n of the
pack be divided into p, q, r, . . . such cycles, whose sum is n; then the
l.c.m. of p, q, r, . . . is the utmost number of shufflings necessary before
all the cards will be brought back to their original places.

In the case of a pack of 52 cards, the greatest l.c.m. of numbers
whose sum is 52 will be found by trial to be 180180.

Arrangements by Rows and Columns. A not uncommon
trick, which rests on a species of shuffling, depends on the obvious fact
that if n2 cards are arranged in the form of a square of n rows, each
containing n cards, then any card will be defined if the row and the
column in which it lies are mentioned.

This information is generally elicited by first asking in which row
the selected card lies, and noting the extreme left-hand card of that

* Educational Times Reprints, London, 1865, vol. ii, p. 105.
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row. The cards in each column are then taken up, face upwards, one
at a time beginning with the lowest card of each column and taking
the columns in their order from right to left–each card taken up being
placed on the top of those previously taken up. The cards are then
dealt out again in rows, from left to right, beginning with the top left-
hand corner, and a question is put as to which row contains the card.
The selected card will be that card in the row mentioned which is in
the same vertical column as the card which was originally noted.

The above is the form in which the trick is usually presented, but
it is greatly improved by allowing the pack to be cut as often as is liked
before the cards are re-dealt, and then giving one cut at the end so as
to make the top card in the pack one of those originally in the top row.

The explanation is obvious. For, if 16 cards are taken, the first

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure i.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Figure ii.

and second arrangements may be represented by figures i and ii. For
example, if we are told that in figure i the card is in the third row,
it must be either 9, 10, 11, or 12: hence, if we know in which row of
figure ii it lies, it is determined. If we allow the pack to be cut between
the deals, we must secure somehow that the top card is either 1, 2, 3,
or 4, since that will leave the cards in each row of figure ii unaltered
though the positions of the rows will be changed.
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Determination of a selected pair of cards out of
1
2
n(n+ 1) given pairs*. Another common trick is to throw twenty

cards on to a table in ten couples, and ask someone to select one couple.
The cards are then taken up, and dealt out in a certain manner into
four rows each containing five cards. If the rows which contain the
given cards are indicated, the cards selected are known at once.

This depends on the fact that the number of homogeneous products
of two dimensions which can be formed out of four things is 10. Hence
the homogeneous products of two dimensions formed out of four things
can be used to define ten things.

Suppose that ten pairs of cards are placed on a table and someone
selects one couple. Take up the cards in their couples. Then the first

1 2 3 5 7

4 9 10 11 13

6 12 15 16 17

8 14 18 19 20

two cards form the first couple, the next two the second couple, and
so on. Deal them out in four rows each containing five cards according
to the scheme shown in the diagram.

The first couple (1 and 2) are in the first row. Of the next couple
(3 and 4), put one in the first row and one in the second. Of the next
couple (5 and 6), put one in the first row and one in the third, and so
on, as indicated in the diagram. After filling up the first row proceed
similarly with the second row, and so on.

Enquire in which rows the two selected cards appear. If only one
line, the mth, is mentioned as containing the cards then the required
pair of cards are the mth and (m + 1)th cards in that line. These

* Bachet, problem xvii, avertissement, p. 146 et seq.
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occupy the clue squares of that line. Next, if two lines are mentioned,
then proceed as follows. Let the two lines be the pth and the qth and
suppose q > p. Then that one of the required cards which is in the qth
line will be the (q−p)th card which is below the first of the clue squares
in the pth line. The other of the required cards is in the pth line and
is the (q − p)th card to the right of the second of the clue squares.

Bachet’s rule, in the form in which I have given it, is applicable to
a pack of n(n+1) cards divided into couples, and dealt in n rows each
containing n+1 cards; for there are 1

2
n(n+1) such couples, also there

are 1
2
n(n + 1) homogeneous products of two dimensions which can be

formed out of n things. Bachet gave the diagrams for the cases of 20,
30, and 42 cards: these the reader will have no difficulty in constructing
for himself, and I have enunciated the rule for 20 cards in a form which
covers all the cases.

I have seen the same trick performed by means of a sentence and
not by numbers. If we take the case of ten couples, then after collecting
the pairs the cards must be dealt in four rows each containing five cards,
in the order indicated by the sentence Matas dedit nomen Cocis. This
sentence must be imagined as written on the table, each word forming
one line, The first card is dealt on the M . The next card (which is
the pair of the first) is placed on the second m in the sentence, that is,
third in the third row. The third card is placed on the a. The fourth
card (which is the pair of the third) is placed on the second a, that is,
fourth in the first row. Each of the next two cards is placed on a t,
and so on. Enquire in which rows the two selected cards appear. If two
rows are mentioned, the two cards are on the letters common to the
words that make these rows. If only one row is mentioned, the cards
are on the two letters common to that row.

The reason is obvious: let us denote each of the first pair by an a,
and similarly each of any of the other pairs by an e, i, o, c, d, m, n, s,
or t respectively. Now the sentence Matas dedit nomen Cocis contains
four words each of five letters; ten letters are used, and each letter is
repeated only twice. Hence, if two of the words are mentioned, they
will have one letter in common, or, if one word is mentioned, it will
have two like letters.

To perform the same trick with any other number of cards we
should require a different sentence.

The number of homogeneous products of three dimensions which
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can be formed out of four things is 20, and of these the number consist-
ing of products in which three things are alike and those in which three
things are different is 8. This leads to a trick with 8 trios of things,
which is similar to that last given–the cards being arranged in the order
indicated by the sentence Lanata levete livini novoto.

I believe that these arrangements by sentences are known, but I
am not aware who invented them.

Gergonne’s Pile Problem. Before discussing Gergonne’s
theorem I will describe the familiar three pile problem, the theory of
which is included in his results.

The Three Pile Problem*. This trick is usually performed as fol-
lows. Take 27 cards and deal them into three piles, face upwards. By
“dealing” is to be understood that the top card is placed as the bottom
card of the first pile, the second card in the pack as the bottom card
of the second pile, the third card as the bottom card of the third pile,
the fourth card on the top of the first one, and so on: moreover I as-
sume that throughout the problem the cards are held in the hand face
upwards. The result can be modified to cover any other way of dealing.

Request a spectator to note a card, and remember in which pile
it is. After finishing the deal, ask in which pile the card is. Take up
the three piles, placing that pile between the other two. Deal again as
before, and repeat the question as to which pile contains the given card.
Take up the three packs again, placing the pile which now contains the
selected card between the other two. Deal again as before, but in
dealing note the middle card of each pile. Ask again for the third time
in which pile the card lies, and you will know that the card was the one
which you noted as being the middle card of that pile. The trick can
be finished then in any way that you like. The usual method—but a
very clumsy one—is to take up the three piles once more, placing the
named pile between the other two as before, when the selected card
will be the middle one in the pack, that is, if 27 cards are used it will
be the fourteenth.

The trick is often performed with 15 cards or with 21 cards, in
either of which cases the same rule holds.

* The trick is mentioned by Bachet, problem xviii, p. 143, but his analysis of it
is insufficient.
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Gergonne’s Generalization. The general theory for a pack of mm

cards was given by M. Gergonne*. Suppose the pack is arranged in m
piles, each containing mm−1 cards, and that, after the first deal, the
pile indicated as containing the selected card is taken up ath; after
the second deal, is taken up bth; and so on, and finally after the mth
deal, the pile containing the card is taken up kth. Then when the
cards are collected after the mth deal the selected card will be nth
from the top where

if m is even, n = kmm−1 − jmm−2 + · · ·+ bm− a+ 1 ,
if m is odd, n = kmm−1 − jmm−2 + · · · − bm+ a .

For example, if a pack of 256 cards (i.e. m = 4) was given, and
anyone selected a card out of it, the card could be determined by making
four successive deals into four piles of 64 cards each, and after each
deal asking in which pile the selected card lay. The reason is that after
the first deal you know it is one of sixty-four cards. In the next deal
these sixty-four cards are distributed equally over the four piles, and
therefore, if you know in which pile it is, you will know that it is one
of sixteen cards. After the third deal you know it is one of four cards.
After the fourth deal you know which card it is.

Moreover, if the pack of 256 cards is used, it is immaterial in
what order the pile containing the selected card is taken up after a
deal. For, if after the first deal it is taken up ath, after the second
bth, after the third cth, and after the fourth dth, the card will be the
(64d − 16c + 4b − a + 1)th from the top of the pack, and thus will be
known. We need not take up the cards after the fourth deal, for the
same argument will show that it is the (64− 16c+4b− a+1)th in the
pile then indicated as containing it. Thus if a = 3, b = 4, c = 1, d = 2,
it will be the 62nd card in the pile indicated after the fourth deal as
containing it and will be the 126th card in the pack as then collected.

In exactly the same way a pack of twenty-seven cards may be used,
and three successive deals, each into three piles of nine cards, will suffice
to determine the card. If after the deals the pile indicated as containing
the given card is taken up ath, bth, and cth respectively, then the card
will be the (9c− 3b+ a)th in the pack or will be the (9− 3b+ a)th card
in the pile indicated after the third deal as containing it.

* Gergonne’s Annales de Mathématiques, Nismes, 1813–4, vol. iv, pp. 276–283.
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The method of proof will be illustrated sufficiently by considering
the usual case of a pack of twenty-seven cards, for which m = 3, which
are dealt into three piles each of nine cards.

Suppose that, after the first deal, the pile containing the selected
card is taken up ath: then (i) at the top of the pack there are a − 1
piles each containing nine cards; (ii) next there are 9 cards, of which
one is the selected card; and (iii) lastly there are the remaining cards
of the pack. The cards are dealt out now for the second time: in each
pile the bottom 3(a− 1) cards will be taken from (i), the next 3 cards
from (ii), and the remaining 9 − 3a cards from (iii).

Suppose that the pile now indicated as containing the selected card
is taken up bth: then (i) at the top of the pack are 9(b − 1) cards;
(ii) next are 9 − 3a cards; (iii) next are 3 cards, of which one is the
selected card; and (iv) lastly are the remaining cards of the pack. The
cards are dealt out now for the third time: in each pile the bottom
3(b− 1) cards will be taken from (i), the next 3− a cards will be taken
from (ii), the next card will be one of the three cards in (iii), and the
remaining 8 − 3b + a cards are from (iv).

Hence, after this deal, as soon as the pile is indicated, it is known
that the card is the (9 − 3b + a)th from the top of that pile. If the
process is continued by taking up this pile as cth, then the selected
card will come out in the place 9(c− 1)+ (8− 3b+ a)+ 1 from the top,
that is, will come out as the (9c − 3b + a)th card.

Since, after the third deal, the position of the card in the pile then
indicated is known, it is easy to notice the card, in which case the trick
can be finished in some way more effective than dealing again.

If we put the pile indicated always in the middle of the pack we
have a = 2, b = 2, c = 2, hence n = 9c − 3b + a = 14, which is the
form in which the trick is usually presented, as was explained above
on page 115.

I have shown that if a, b, c are known, then n is determined. We
may modify the rule so as to make the selected card come out in any
assigned position, say the nth. In this case we have to find values of
a, b, c which will satisfy the equation n = 9c − 3b + a, where a, b, c
can have only the values 1, 2, or 3.

Hence, if we divide n by 3 and the remainder is 1 or 2, this remain-
der will be a; but, if the remainder is 0, we must decrease the quotient
by unity so that the remainder is 3, and this remainder will be a. In
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other words a is the smallest positive number (exclusive of zero) which
must be subtracted from n to make the difference a multiple of 3.

Next let p be this multiple, i.e. p is the next lowest integer to n/3:
then 3p = 9c−3b, therefore p = 3c− b. Hence b is the smallest positive
number (exclusive of zero) which must be added to p to make the sum
a multiple of 3, and c is that multiple.

A couple of illustrations will make this clear. Suppose we wish the
card to come out 22nd from the top, therefore 22 = 9c − 3b + a. The
smallest number which must be subtracted from 22 to leave a multiple
of 3 is 1, therefore a = 1. Hence 22 = 9c− 3b+ 1, therefore 7 = 3c− b.
The smallest number which must be added to 7 to make a multiple
of 3 is 2, therefore b = 2. Hence 7 = 3c − 2, therefore c = 3. Thus
a = 1, b = 2, c = 3.

Again, suppose the card is to come out 21st. Hence 21 = 9c−3b+a.
Therefore a is the smallest number which subtracted from 21 makes a
multiple of 3, therefore a = 3. Hence 6 = 3c − b. Therefore b is the
smallest number which added to 6 makes a multiple of 3, therefore
b = 3. Hence 9 = 3c, therefore c = 3. Thus a = 3, b = 3, c = 3.

If any difficulty is experienced in this work, we can proceed thus.
Let a = x + 1, b = 3 − y, c = z + 1; then x, y, z may have only
the values 0, 1, or 2. In this case Gergonne’s equation takes the form
9z+3y+ x = n− 1. Hence, if n− 1 is expressed in the ternary scale of
notation, x, y, z will be determined, and therefore a, b, c will be known.

The rule in the case of a pack of mm cards is exactly similar. We
want to make the card come out in a given place. Hence, in Gergonne’s
formula, we are given n and we have to find a, b, . . . , k. We can ef-
fect this by dividing n continually by m, with the convention that the
remainder are to be alternately positive and negative and that their
numerical values are to be not greater than m or less than unity.

An analogous theorem with a pack of lm cards can be constructed.
C.T. Hudson and L.E. Dickson* have discussed the general case where
such a pack is dealt n times, each time into l piles of m cards; and they
have shown how the piles must be taken up in order that after the nth
deal the selected card may be rth from the top.

The principle will be sufficiently illustrated by one example treated
in a manner analogous to the cases already discussed. For instance,

* Educational Times Reprints, 1868, vol. ix, pp. 89–91; and Bulletin of the Amer-
ican Mathematical Society, New York, April, 1895, vol. i, pp. 184–186.
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suppose that an écarté pack of 32 cards is dealt into 4 piles each of 8
cards, and that the pile which contains some selected card is picked up
ath. Suppose that on dealing again into four piles, one pile is indicated
as containing the selected card, the selected card cannot be one of the
bottom 2(a − 1) cards, or of the top 8 − 2a cards, but must be one
of the intermediate 2 cards, and the trick can be finished in any way,
as for instance by the common conjuring ambiguity of asking someone
to choose one of them, leaving it doubtful whether the one he takes is
to be rejected or retained.

The Mouse Trap. I will conclude this chapter with the bare
mention of another game of cards, known as the mouse trap, the dis-
cussion of which involves some rather difficult algebraic analysis.

It is played as follows. A set of cards, marked with the numbers
1, 2, 3, . . . , n, is dealt in any order, face upwards, in the form of a circle.
The player begins at any card and counts round the circle always in the
same direction. If the kth card has the number k on it—which event is
called a hit—the player takes up the card and begins counting afresh.
According to Cayley, the player wins if he thus takes up all the cards,
and the cards win if at any time the player counts up to n without
being able to take up a card.

For example, if a pack of only four cards is used and these cards
come in the order, 3214, then the player would obtain the second card
2 as a hit, next he would obtain 1 as a hit, but if he went on for
ever he would not obtain another hit. On the other hand, if the cards
in the pack were initially in the order 1423, the player would obtain
successively all four cards in the order 1, 2, 3, 4.

The problem may be stated as the determination of what hits and
how many hits can be made with a given number of cards; and what
permutations will give a certain number of hits in a certain order.

Cayley* showed that there are 9 arrangements of a pack of four
cards in which no hit will be made, 7 arrangements in which only one
hit will be made, 3 arrangements in which only two hits will be made,
and 5 arrangements in which four hits will be made.

Prof. Steen† has investigated the general theory for a pack of n
cards. He has shown how to determine the number of arrangements in

* Quarterly Journal of Mathematics, 1878, vol. xv, pp. 8–10.
† Ibid., vol. xv, pp. 230–241.
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which x is the first hit [Arts. 3–5]; the number of arrangements in which
1 is the first hit and x is the second hit [Art. 6]; and the number of
arrangements in which 2 is the first hit and x the second hit [Arts. 7–8];
but beyond this point the theory has not been carried. It is obvious
that, if there are n − 1 hits, the nth hit will necessarily follow.

Treize. The French game of treize is very similar. It is played
with a full pack of fifty-two cards (knave, queen, and king counting as
11, 12, and 13 respectively). The dealer calls out 1, 2, 3, . . . , 13, as he
deals the 1st, 2nd, 3rd, . . . , 13th cards respectively. At the beginning
of a deal the dealer offers to lay or take certain odds that he will make
a hit in the thirteen cards next dealt.

One of the innumerable forms of patience is played in a similar way.
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CHAPTER V.

MAGIC SQUARES.

A magic square consists of a number of integers arranged in the
form of a square, so that the sum of the numbers in every row, in
every column, and in each diagonal is the same. If the integers are the
consecutive numbers from 1 to n2 the square is said to be of the nth
order, and it is easily seen that in this case the sum of the numbers in
any row, column, or diagonal is equal to 1

2
n(n2 + 1): this number may

be denoted by N . I confine my account to such magic squares, that is,
to squares formed with consecutive integers, from 1 upwards.

Thus the first 16 integers, arranged in either of the forms given in
figures i and ii below, form a magic square of the fourth order, the sum

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

Figure i.

15 10 3 6

4 5 16 9

14 11 2 7

1 8 13 12

Figure ii.

of the numbers in any row, column, or diagonal being 34. Similarly
figures iii and v on page 124, figure viii on page 126, and figures xii and
xiii on page 136, show magic squares of the fifth order; and figure xi on
page 133 shows a magic square of the sixth order; and figures xiv and
xv on pages 137, 138, show magic squares of the eighth order.

121
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The formation of these squares is an old amusement, and in times
when mystical philosophical ideas were associated with particular num-
bers it was natural that such arrangements should be deemed to possess
magical properties. Magic squares of an odd order were constructed in
India before the Christian era according to a law of formation which
is explained hereafter. Their introduction into Europe appears to have
been due to Moschopulus, who lived at Constantinople in the early part
of the fifteenth century, and enunciated two methods for making such
squares. The majority of the medieval astrologers and physicians were
much impressed by such arrangements. In particular the famous Cor-
nelius Agrippa (1486–1535) constructed magic squares of the orders 3,
4, 5, 6, 7, 8, 9, which were associated respectively with the seven as-
trological “planets”: namely, Saturn, Jupiter, Mars, the Sun, Venus,
Mercury, and the Moon. He taught that a square of one cell, in which
unity was inserted, represented the unity and eternity of God; while
the fact that a square of the second order could not be constructed
illustrated the imperfection of the four elements, air, earth, fire, and
water; and later writers added that it was symbolic of original sin. A
magic square engraved on a silver plate was sometimes prescribed as a
charm against the plague, and one, namely, that represented in figure i
on page 121, is drawn in the picture of Melancholy, painted about the
year 1500 by Albert Dürer. Such charms are still worn in the East.

The development of the theory has been due mainly to French
mathematicians. Bachet gave a rule for the construction of any square
of an odd order in a form substantially equivalent to one of the rules
given by Moschopulus. The formation of magic squares, especially
of even squares, was considered by Frénicle and Fermat. The theory
was continued by Poignard, De la Hire, Sauveur, D’Ons-en-bray, and
Des Ourmes. Ozanam included in his work an essay on magic squares
which was amplified by Montucla. From this and from De la Hire’s
memoirs the larger part of the materials for this chapter are derived.
Like most algebraical problems, the construction of magic squares at-
tracted the attention of Euler, but he did not advance the general
theory. In 1837 an elaborate work on the subject was compiled by
B. Violle, which is useful as containing numerous illustrations. I give
the references in a footnote*.

* Bachet, Problèmes plaisans, Lyons, 1624, problem xxi, p. 161; Frénicle, Divers
Ouvrages de Mathématique par Messieurs de l’Académie des Sciences, Paris,
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I shall confine myself to establishing rules for the construction of
squares subject to no conditions beyond those given in the definition.
Rules sufficient for this purpose are contained in the works to which
I have just referred and on which I have based this sketch; some ex-
tensions and developments will be found in the memoirs mentioned
below*. I shall commence by giving rules for the construction of a
square of an odd order, and then shall proceed to similar rules for one
of an even order.

It will be convenient to use the following terms. The spaces or
small squares occupied by the numbers are called cells. The diagonal
from the top left-hand cell to the bottom right-hand cell is called the
leading diagonal or left diagonal. The diagonal from the top right-hand
cell to the bottom left-hand cell is called the right diagonal.

Magic Squares of an odd order. I proceed to give methods
for constructing odd magic squares, but for simplicity I shall apply them
to the formation of squares of the fifth order, though exactly similar

1693, pp. 423–483; with an appendix (pp. 484–507), containing diagrams of
all the possible magic squares of the fourth order, 880 in number: Fermat,
Opera Mathematica, Toulouse, 1679, pp. 173–178; or Brassinne’s Précis, Paris,
1853, pp. 146–149: Poignard, Traité des Quarrés Sublimes, Brussels, 1704: De
la Hire, Mémoires de l’Académie des Sciences for 1705, Paris, 1706, part i,
pp. 127–171; part ii, pp. 364–382: Sauveur, Construction des Quarrés Mag-
iques, Paris, 1710: D’Ons-en-bray, Mémoires de l’Académie des Sciences for
1750, Paris, 1754, pp. 241–271: Des Ourmes, Mémoires de Mathématique et de
Physique (French Academy), Paris, 1763, vol. iv, pp. 196–241: Ozanam and
Montucla, Récréations, part i, chapter xii: Euler, Commentationes Arithmeti-
cae Collectae, St Petersburg, 1849, vol. ii, pp. 593–602: Violle, Traité Complet
des Carrés Magiques, 3 vols, Paris, 1837–8. A sketch of the history of the
subject is given in chap. iv of S. Günther’s Geschichte der mathematischen Wis-
senschaften, Leipzig, 1876. See also W. Ahrens, Mathematische Unterhaltungen
und Spiele, Leipzig, 1901, chapter xii.

* In England the subject has been studied by R. Moon, Cambridge Mathematical
Journal, 1845, vol. iv, pp. 209–214; H. Holditch, Quarterly Journal of Math-
ematics, London, 1864, vol. vi, pp. 181–189; W.H. Thompson, Ibid., 1870,
vol. x, pp. 186–202; J. Horner, Ibid., 1871, vol. xi, pp. 57–65, 123–132, 213–
224; S.M. Drach, Messenger of Mathematics, Cambridge, 1873, vol. ii, pp. 169–
174, 187; A.H. Frost, Quarterly Journal of Mathematics, London, 1878, vol. xv,
pp. 34–49, 93–123, 366–368, in which the results of previous memoirs are in-
cluded: there are also some pamphlets and articles on it of a more popular
character. Of recent Continental works on the subject I have no complete bib-
liography, and probably it is better to omit all rather than give an imperfect
list.

• Project • Gutenberg • #26839 •



124 MAGIC SQUARES. [CH. V

proofs will apply equally to any odd square.
De la Loubère’s Method*. If the reader will look at figure iii he

will see one way in which such a square containing 25 cells can be
constructed. The middle cell in the top row is occupied by 1. The
successive numbers are placed in their natural order in a diagonal line

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

De la Loubère’s Method.
Figure iii.

15 + 2 20 + 4 0 + 1 5 + 3 10 + 5

20 + 3 0 + 5 5 + 2 10 + 4 15 + 1

0 + 4 5 + 1 10 + 3 15 + 5 20 + 2

5 + 5 10 + 2 15 + 4 20 + 1 0 + 3

10 + 1 15 + 3 20 + 5 0 + 2 5 + 4

De la Loubère’s Method.
Figure iv.

23 6 19 2 15

10 18 1 14 22

17 5 13 21 9

4 12 25 8 16

11 24 7 20 3

Bachet’s Method.
Figure v.

which slopes upwards to the right, except that (i) when the top row
is reached the next number is written in the bottom row as if it came
immediately above the top row; (ii) when the right-hand column is
reached, the next number is written in the left-hand column, as if it
immediately succeeded the right-hand column; and (iii) when a cell
which has been filled up already, or when the top right-hand square is
reached, the path of the series drops to the row vertically below it and
then continues to mount again. Probably a glance at the diagram in
figure iii will make this clear.

The reason why such a square is magic can be explained best by
expressing the numbers in the scale of notation whose radix is 5 (or n,
if the magic square is of the order n), except that 5 is allowed to appear
as a unit-digit and 0 is not allowed to appear as a unit-digit. The result
is shown in figure iv. From that figure it will be seen that the method
of construction ensures that every row and every column shall contain
one and only one of each of the unit-digits 1, 2, 3, 4, 5, the sum of
which is 15; and also one and only one of each of the radix-digits 0, 5,
10, 15, 20, the sum of which is 50. Hence, as far as rows and columns
are concerned, the square is magic. Moreover if the square is odd, each
of the diagonals will contain one and only one of each of the unit-digits
1, 2, 3, 4, 5. Also the leading diagonal will contain one and only one

* De la Loubère, Du Royaume de Siam (Eng. Trans.), London, 1693, vol. ii,
pp. 227–247. De la Loubère was the envoy of Louis XIV to Siam in 1687–8, and
there learnt this method.
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of the radix-digits 0, 5, 10, 15, 20, the sum of which is 50; and if, as is
the case in the square drawn above, the number 10 is the radix-digit
to be added to the unit-digits in the right diagonal, then the sum of
the radix-digits in that diagonal is also 50. Hence the two diagonals
also possess the magical property.

And generally if a magic square of an odd order n is constructed by
De la Loubère’s method, every row and every column must contain one
and only one of each of the unit-digits 1, 2, 3 . . . , n; and also one and
only one of each of the radix-digits 0, n, 2n, . . . , n(n− 1). Hence, as far
as rows and columns are concerned, the square is magic. Moreover each
diagonal will either contain one and only one of the unit-digits or will
contain n unit-digits each equal to 1

2
(n+ 1). It will also either contain

one and only one of the radix-digits or will contain n radix-digits each
equal to 1

2
n(n−1). Hence the two diagonals will also possess the magical

property. Thus the square will be magic.
I may notice here that, if we place 1 in any cell and fill up the square

by De la Loubère’s rule, we shall obtain a square that is magic in rows
and in columns, but it will not in general be magic in its diagonals.

It is evident that other squares can be derived from De la Loubère’s
square by permuting the symbols properly. For instance, in figure iv,
we may permute the symbols 1, 2, 3, 4, 5 in 5! ways, and we may
permute the symbols 0, 5, 15, 20 in 4! ways. Any one of these 5!
arrangements combined with any one of these 4! arrangements will give
a magic square. Hence we can obtain 2880 magic squares of the fifth
order of this kind, though only 720 of them are really distinct. Other
squares can however be deduced, for it may be noted that from any
magic square, whether even or odd, other magic squares of the same
order can be formed by the mere interchange of the row and the column
which intersect in a cell on a diagonal with the row and the column
which intersect in the complementary cell of the same diagonal.

Bachet’s Method*. Another method, very similar to that of De
la Loubère, for constructing an odd magic square is as follows. We
begin by placing 1 in the cell above the middle one (that is, in a square
of the fifth order in the cell occupied by the number 7 in figure iii),
and then we write the successive numbers in a diagonal line sloping
upwards to the right, subject to the condition that when the cases (i)
and (ii) mentioned under De la Loubère’s method occur the rules there

* Bachet, Problem xxi, p. 161.
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given are followed, but when the case (iii) occurs the path of the series
rises two rows, i.e. it is continued from one cell to the cell next but one
vertically above it, if this cell is above the top row the path continues
from the corresponding cell in one of the bottom two rows following
the analogy of rule (i) in De la Loubère’s method. Such a square is
delineated in figure v on page 124. Bachet’s method leads ultimately
to this arrangement; except that the rules are altered so as to make
the line slope downwards. This method also gives 720 magic squares
of the fifth order.

De la Hire’s Method*. I shall now give another rule for the forma-
tion of odd magic squares. To form an odd magic square of the order
n by this method, we begin by constructing two subsidiary squares,
one of the unit-digits, 1, 2, . . . , n, and the other of multiples of the
radix, namely, 0, n, 2n, . . . , (n − 1)n. We then form the magic square
by adding together the numbers in the corresponding cells in the two
subsidiary squares.

De la Hire gave several ways of constructing such subsidiary
squares. I select the following method (props. x and xiv of his memoir)
as being the simplest, but I shall apply it to form a square of only
the fifth order. It leads to the same results as the second of the two
rules given by Moschopulus.

The first of the subsidiary squares (figure vi, below), is constructed
thus. First, 3 is put in the top left-hand corner, and then the numbers
1, 2, 4, 5 are written in the other cells of the top line (in any order).
Next, the number in each cell of the top line is repeated in all the cells

3 4 1 5 2

2 3 4 1 5

5 2 3 4 1

1 5 2 3 4

4 1 5 2 3

First Subsidiary Square
Figure vi.

15 0 20 5 10

0 20 5 10 15

20 5 10 15 0

5 10 15 0 20

10 15 0 20 5

Second Subsidiary Square
Figure vii.

18 4 21 10 12

2 23 9 11 20

25 7 13 19 1

6 15 17 3 24

14 16 5 22 8

Resulting Magic Square
Figure viii.

which lie in a diagonal line sloping downwards to the right (see figure vi)
according to the rule (ii) in De la Loubère’s method. The cells filled by

* Mémoires de l’Académie des Sciences for 1705, part i, pp. 127–171.
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the same number form a broken diagonal. It follows that every row and
every column contains one and only one 1, one and only one 2, and so
on. Hence the sum of the numbers in every row and in every column
is equal to 15; also, since we placed 3, which is the average of these
numbers, in the top left-hand corner, the sum of the numbers in the
left diagonal is 15; and, since the right diagonal contains one and only
one of each of the numbers 1, 2, 3, 4, and 5, the sum of the numbers
in that diagonal also is 15.

The second of the subsidiary squares (figure vii) is constructed in
a similar way with the numbers 0, 5, 10, 15, and 20, except that the
mean number 10 is placed in the top right-hand corner; and the broken
diagonals formed of the same numbers all slope downwards to the left.
It follows that every row and every column in figure vii contains one
and only one 0, one and only one 5, and so on; hence the sum of the
numbers in every row and every column is equal to 50. Also the sum
of the numbers in each diagonal is equal to 50.

If now we add together the numbers in the corresponding cells of
these two squares, we shall obtain 25 numbers such that the sum of
the numbers in every row, every column, and each diagonal is equal to
15 + 50, that is, to 65. This is represented in figure viii. Moreover,
no two cells in that figure contain the same number. For instance, the
numbers 21 to 25 can occur only in those five cells which in figure vii
are occupied by the number 20, but the corresponding cells in figure vi
contain respectively the numbers 1, 2, 3, 4, and 5; and thus in figure viii
each of the numbers from 21 to 25 occurs once and only once. De la Hire
preferred to have the cells in the subsidiary squares which are filled by
the same number connected by a knight’s move and not by a bishop’s
move; and usually his rule is enunciated in that form.

By permuting the numbers 1, 2, 4, 5 in figure vi we get 4! other ar-
rangements, each of which combined with that in figure vii would give
a magic square. Similarly by permuting the numbers 0, 5, 15, 20 in
figure vii we obtain 4! other squares, each of which might be combined
with any of the 4! arrangements deduced from figure vi. Hence alto-
gether we can obtain in this way 576 magic squares of the fifth order.

There is yet another method of constructing odd squares which is
due to Poignard, and was improved by De la Hire in the memoir already
cited. I shall not discuss it, because, though for certain assigned values
of n it is simpler than the methods which I have given, it depends on
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the form of n, and particularly on the number of prime factors of n. In
the case of a square of the fifth order, this gives an even larger number
of magic squares than the methods of De la Loubère, Bachet, and De
la Hire. I may also add that it has been shown that magic squares
whose order is a prime number can be constructed by a rule similar
to De la Loubère’s, except that we begin by placing 1 in the bottom
left-hand cell, and the subsequent consecutive numbers fill cells forming
a knight’s path on the square and not a bishop’s path. A square of the
fifth order of this kind is given in figure xiii on page 136. There are
2880 magic squares of the fifth order of this kind.

De la Hire showed that, apart from mere inversions, there were
57600 magic squares of the fifth order which could be formed by the
methods he enumerated. Taking account of other methods, it would
seem that the total number of magic squares of the fifth order is very
large, perhaps exceeding 500000.

Magic squares of an even order. The above methods are
inapplicable to squares of an even order. I proceed to give two methods
for constructing any even magic square of an order higher than two.

It will be convenient to use the following terms. Two rows which
are equidistant, the one from the top, the other from the bottom, are
said to be complementary. Two columns which are equidistant, the one
from the left-hand side, the other from the right-hand side, are said to
be complementary. Two cells in the same row, but in complementary
columns, are said to be horizontally related. Two cells in the same
column, but in complementary rows, are said to be vertically related.
Two cells in complementary rows and columns are said to be skewly
related ; thus, if the cell b is horizontally related to the cell a, and the
cell d is vertically related to the cell a, then the cells b and d are skewly
related; in such a case if the cell c is vertically related to the cell b,
it will be horizontally related to the cell d, and the cells a and c are
skewly related: the cells a, b, c, d constitute an associated group, and if
the square is divided into four equal quarters, one cell of an associated
group is in each quarter.

A horizontal interchange consists in the interchange of the numbers
in two horizontally related cells. A vertical interchange consists in
the interchange of the numbers in two vertically related cells. A skew
interchange consists in the interchange of the numbers in two skewly
related cells. A cross interchange consists in the change of the numbers
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in any cell and in its horizontally related cell with the numbers in the
cells skewly related to them; hence, it is equivalent to two vertical
interchanges and two horizontal interchanges.

First Method*. This method is the simplest with which I am ac-
quainted, and I believe, at any rate as far as concerns singly-even
squares, was published for the first time in 1893.

Begin by filling the cells of the square with the numbers 1, 2, . . . , n2

in their natural order commencing (say) with the top left-hand corner,
writing the numbers in each row from left to right, and taking the
rows in succession from the top. I will commence by proving that a
certain number of horizontal and vertical interchanges in such a square
must make it magic, and will then give a rule by which the cells whose
numbers are to be interchanged can be at once picked out.

First, we may notice that the sum of the numbers in each diagonal
is equal to N , where N = 1

2
n(n2 + 1); hence the diagonals are already

magic, and will remain so if the numbers therein are not altered.
Next, consider the rows. The sum of the numbers in the xth

row from the top is N − 1
2
n2(n − 2x + 1). The sum of the numbers

in the complementary row, that is, the xth row from the bottom, is
N + 1

2
n2(n− 2x+1). Also the number in any cell in the xth row is less

than the number in the cell vertically related to it by n(n − 2x + 1).
Hence, if in these two rows we make 1

2
n interchanges of the numbers

which are situated in vertically related cells, then we increase the sum
of the numbers in the xth row by 1

2
n × n(n − 2x + 1), and therefore

make that row magic; while we decrease the sum of the numbers in
the complementary row by the same number, and therefore make that
row magic. Hence, if in every pair of complementary rows we make
1
2
n interchanges of the numbers situated in vertically related cells, the

square will be made magic in rows. But, in order that the diagonals
may remain magic, either we must leave both the diagonal numbers in
any row unaltered, or we must change both of them with those in the
cells vertically related to them.

The square is now magic in diagonals and in rows, and it remains
to make it magic in columns. Taking the original arrangement of the
numbers (in their natural order) we might have made the square magic
in columns in a similar way to that in which we made it magic in rows.

* See an article in the Messenger of Mathematics, Cambridge, September, 1893,
vol. xxiii, pp. 65–69.
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The sum of the numbers originally in the yth column from the left-hand
side is N − 1

2
n(n− 2y + 1). The sum of the numbers originally in the

complementary column, that is, the yth column from the right-hand
side, is N + 1

2
n(n − 2y + 1). Also the number originally in any cell

in the yth column was less than the number in the cell horizontally
related to it by n−2y+1. Hence, if in these two columns we had made
1
2
n interchanges of the numbers situated in horizontally related cells,

we should have made the sum of the numbers in each column equal to
N . If we had done this in succession for every pair of complementary
columns, we should have made the square magic in columns. But, as
before, in order that the diagonals might remain magic, either we must
have left both the diagonal numbers in any column unaltered, or we
must have changed both of them with those in the cells horizontally
related to them.

It remains to show that the vertical and horizontal interchanges,
which have been considered in the last two paragraphs, can be made
independently, that is, that we can make these interchanges of the
numbers in complementary columns in such a manner as will not affect
the numbers already interchanged in complementary rows. This will
require that in every column there shall be exactly 1

2
n interchanges

of the numbers in vertically related cells, and that in every row there
shall be exactly 1

2
n interchanges of the numbers in horizontally related

cells. I proceed to show how we can always ensure this, if n is greater
than 2. I continue to suppose that the cells are initially filled with
the numbers 1, 2, . . . , n2 in their natural order, and that we work from
that arrangement.

A doubly-even square is one where n is of the form 4m. If the square
is divided into four equal quarters, the first quarter will contain 2m
columns and 2m rows. In each of these columns take m cells so arranged
that there are also m cells in each row, and change the numbers in these
2m2 cells and the 6m2 cells associated with them by a cross interchange.
The result is equivalent to 2m interchanges in every row and in every
column, and therefore renders the square magic.

One way of selecting the 2m2 cells in the first quarter is to divide
the whole square into sixteen subsidiary squares each containing m2

cells, which we may represent by the diagram below, and then we may
take either the cells in the a squares or those in the b squares; thus, if
every number in the eight a squares is interchanged with the number
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a b b a

b a a b

b a a b

a b b a

skewly related to it the resulting square is magic. A magic square of the
eighth order, constructed in this way, is shown in figure xv on page 138.

Another way of selecting the 2m2 cells in the first quarter would
be to take the first m cells in the first column, the cells 2 to m + 1 in
the second column, and so on, the cells m + 1 to 2m in the (m + 1)th
column, the cells m+2 to 2m and the first cell in the (m+2)th column,
and so on, and finally the 2mth cell and the cells 1 to m − 1 in the
2mth column.

A singly-even square is one where n is of the form 2(2m+1). If the
square is divided into four equal quarters, the first quarter will contain
2m+1 columns and 2m+1 rows. In each of these columns take m cells
so arranged that there are also m cells in each row: as, for instance, by
taking the first m cells in the first column, the cells 2 to m + 1 in the
second column, and so on, the cells m + 2 to 2m + 1 in the (m + 2)th
column, the cells m + 3 to 2m + 1 and the first cell in the (m + 3)th
column, and so on, and finally the (2m + 1)th cell and the cells 1 to
m − 1 in the (2m + 1)th column. Next change the numbers in these
m(2m+1) cells and the 3m(2m+1) cells associated with them by cross
interchanges. The result is equivalent to 2m interchanges in every row
and in every column. In order to make the square magic we must have
1
2
n, that is, 2m+1 such interchanges in every row and in every column,

that is, we must have one more interchange in every row and in every
column. This presents no difficulty, for instance, in the arrangement
indicated above the numbers in the (2m+1)th cell of the first column,
in the first cell of the second column, in the second cell of the third
column, and so on, to the 2mth cell in the (2m+ 1)th column may be
interchanged with the numbers in their vertically related cells; this will
make all the rows magic. Next, the numbers in the 2mth cell of the first
column, in the (2m+ 1)th cell of the second column, in the first cell of
the third column, in the second cell of the fourth column, and so on, to
the (2m−1)th cell of the (2m+1)th column may be interchanged with
those in the cells horizontally related to them; and this will make the
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columns magic without affecting the magical properties of the rows.
It will be observed that we have implicitly assumed that m is not

zero, that is, that n is greater than 2; also it would seem that, if m = 1
and therefore n = 6, then the numbers in the diagonal cells must be
included in those to which the cross interchange is applied, but, if n > 6,
this is not necessary, though it may be convenient.

The construction of odd magic squares and of doubly-even magic
squares is very easy. But though the rule given above for singly-even
squares is not difficult, it is tedious of application. It is unfortunate
that no more obvious rule—such, for instance, as one for bordering a
doubly-even square—can be suggested for writing down instantly and
without thought singly-even magic squares.

De la Hire’s Method*. I now proceed to give another way due to
De la Hire, of constructing any even magic square of an order higher
than two.

In the same manner as in his rule for making odd magic squares,
we begin by constructing two subsidiary squares, one of the unit-digits,
1, 2, 3, . . . , n, and the other of the radix-digits 0, n, 2n, . . . , (n − 1)n.
We then form the magic square by adding together the numbers in
the corresponding cells in the two subsidiary squares. Following the
analogy of the notation used above, two numbers which are equidistant
from the ends of the series 1, 2, 3, . . . , n are said to be complementary.
Similarly numbers which are equidistant from the ends of the series
0, n, 2n, . . . , (n − 1)n are said to be complementary.

For simplicity I shall apply this method to construct a magic square
of only the sixth order, though an exactly similar method will apply to
any even square of an order higher than the second.

The first of the subsidiary squares (figure ix) is constructed as fol-
lows. First, the cells in the leading diagonal are filled with the numbers
1, 2, 3, 4, 5, 6 placed in any order whatever that puts complementary
numbers in complementary positions (ex. gr. in the order 2, 6, 3, 4,
1, 5, or in their natural order 1, 2, 3, 4, 5, 6). Second, the cells ver-
tically related to these are filled respectively with the same numbers.
Third, each of the remaining cells in the first vertical column is filled

* The rule is due to De la Hire (part 2 of his memoir) and is given by Montucla
in his edition of Ozanam’s work: I have used the modified enunciation of it
inserted in Labosne’s edition of Bachet’s Problèmes, as it saves the introduction
of a third subsidiary square. I do not know to whom the modification is due.
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1 5 4 3 2 6

6 2 4 3 5 1

6 5 3 4 2 1

1 5 3 4 2 6

6 2 3 4 5 1

1 2 4 3 5 6

First Subsidiary Square
Figure ix.

0 30 30 0 30 0

24 6 24 24 6 6

18 18 12 12 12 18

12 12 18 18 18 12

6 24 6 6 24 24

30 0 0 30 0 30

Second Subsidiary Square
Figure x.

1 35 34 3 32 6

30 8 28 27 11 7

24 23 15 16 14 19

13 17 21 22 20 18

12 26 9 10 29 25

31 2 4 33 5 36

Resulting Magic Square
Figure xi.

either with the same number as that already in two of them or with
the complementary number (ex. gr. in figure ix with a “1” or a “6”)
in any way, provided that there are an equal number of each of these
numbers in the column, and subject also to the provisoes mentioned in
the next paragraph but one. Fourth, the cells horizontally related to
those in the first column are filled with the complementary numbers.
Fifth, the remaining cells in the second and third columns are filled
in an analogous way to that in which those in the first column were
filled: and then the cells horizontally related to them are filled with the
complementary numbers. The square so formed is necessarily magic in
rows, columns, and diagonals.

The second of the subsidiary squares (figure x) is constructed as fol-
lows. First, the cells in the leading diagonal are filled with the numbers
0, 6, 12, 18, 24, 30 placed in any order whatever that puts comple-
mentary numbers in complementary positions. Second, the cells hori-
zontally related to them are filled respectively with the same numbers.
Third, each of the remaining cells in the first horizontal row is filled
either with the same number as that already in two of them or with
the complementary number (ex. gr. in figure x with a “0” or a “30”) in
any way, provided (i) that there are an equal number of each of these
numbers in the row, and (ii) that if any cell in the first row of figure ix
and its vertically related cell are filled with complementary numbers,
then the corresponding cell in the first row of figure x and its hori-
zontally related cell must be occupied by the same number*. Fourth,
the cells vertically related to those in the first row are filled with the
complementary numbers. Fifth, the remaining cells in the second and

* The insertion of this step evades the necessity of constructing (as Montucla did)
a third subsidiary square.
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the third rows are filled in an analogous way to that in which those in
the first row were filled: and then the cells vertically related to them
are filled with the complementary numbers. The square so formed is
necessarily magic in rows, columns, and diagonals.

It remains to show that proviso (ii) in the third step described in the
last paragraph can be satisfied always. In a doubly even square, that is,
one in which n is divisible by 4, we need not have any complementary
numbers in vertically related cells in the first subsidiary square unless
we please, but even if we like to insert them they will not interfere with
the satisfaction of this proviso. In the case of a singly even square, that
is, one in which n is divisible by 2, but not by 4, we cannot satisfy the
proviso if any horizontal row in the first square has all its vertically
related squares, other than the two squares in the diagonals, filled with
complementary numbers. Thus in the case of a singly even square it
will be necessary in constructing the first square to take care in the
third step that in every row at least one cell which is not in a diagonal
shall have its vertically related cell filled with the same number as itself:
this is always possible if n is greater than 2.

The required magic square will be constructed if in each cell we
place the sum of the numbers in the corresponding cells of the sub-
sidiary squares, figures ix and x. The result of this is given in figure xi.
The square is evidently magic. Also every number from 1 to 36 occurs
once and only once, for the numbers from 1 to 6 and from 31 to 36 can
occur only in the top or the bottom rows, and the method of construc-
tion ensures that the same number cannot occur twice. Similarly the
numbers from 7 to 12 and from 25 to 30 occupy two other rows, and
no number can occur twice; and so on. The square in figure i on page
121 may be constructed by the above rules; and the reader will have
no difficulty in applying them to any other even square.

Other Methods for Constructing any Magic Square.
The above methods appear to me to be the simplest which have been
proposed. There are however two other methods , of less generality, to
which I will allude briefly in passing. Both depend on the principle
that, if every number in a magic square is multiplied by some constant,
and a constant is added to the product, the square will remain magic.

The first method applies only to such squares as can be divided into
smaller magic squares of some order higher than two. It depends on the
fact that, if we know how to construct magic squares of the mth and nth

• Project • Gutenberg • #26839 •



CH. V] COMPOSITE AND BORDERED SQUARES.. 135

orders, we can construct one of the mnth order. For example, a square
of 81 cells may be considered as composed of 9 smaller squares each
containing 9 cells, and by filling the cells in each of these small squares
in the same relative order and taking the small squares themselves in
the same order, the square can be constructed easily. Such squares are
called composite magic squares.

The second method, which was introduced by Frénicle, consists in
surrounding a magic square with a border . Thus in figure xii on the
following page the inner square is magic, and it is surrounded with
a border in such a way that the whole square is also magic. In this
manner from the magic square of the 3rd order we can build up suc-
cessively squares of the orders 5, 7, 9, &c., that is, any odd magic
square. Similarly from the magic square of the 4th order we can build
up successively any higher even magic square.

If we construct a magic square of the first n2 numbers by bordering
a magic square of (n− 2)2 numbers, the usual process is to reserve for
the 4(n− 1) numbers in the border the first 2(n− 1) natural numbers
and the last 2(n − 1) numbers. Now the sum of the numbers in each
line of a square of the order (n− 2) is 1

2
(n− 2){(n− 2)2 + 1}, and the

average is 1
2
{(n− 2)2+1}. Similarly the average number in a square of

the nth order is 1
2
(n2+1). The difference of these is 2(n−1). We begin

then by taking any magic square of the order (n − 2), and we add to
every number in it 2(n− 1); this makes the average number 1

2
(n2 + 1).

The numbers reserved for the border occur in pairs, n2 and 1, n2−1
and 2, n2−2 and 3, &c., such that the average of each pair is 1

2
(n2+1),

and they must be bordered on the square so that these numbers are
opposite to one another. Thus the bordered square will be necessarily
magic, provided that the sum of the numbers in two adjacent sides of
the external border is correct. The arrangement of the numbers in the
borders will be somewhat facilitated if the number n2 + 1 − p (which
has to be placed opposite to the number p) is denoted by p, but it is
not worth while going into further details here.

It will illustrate sufficiently the general method if I explain how the
square in figure xii is constructed. A magic square of the third order is
formed by De la Loubère’s rule, and to every number in it 8 is added:
the result is the inner square in figure xii. The numbers not used are
25 and 1, 24 and 2, 23 and 3, 22 and 4, 21 and 5, 20 and 6, 19 and
7, 18 and 8. The sum of each pair is 26, and obviously they must be
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placed at opposite ends of any line.
I believe that with a little patience a magic square of any order

can be thus built up, and of course it will have the property that,
if each border is successively stripped off, the square will still remain
magic. Some examples are given by Violle. This is the method of
construction commonly adopted by self-taught mathematicians, many

1 2 19 20 23

18 16 9 14 8

21 11 13 15 5

22 12 17 10 4

3 24 7 6 25

Bordered Magic Square.
Figure xii.

7 20 3 11 24

13 21 9 17 5

19 2 15 23 6

25 8 16 4 12

1 14 22 10 18

Nasik Magic Square.
Figure xiii.

of whom seem to think that the empirical formation of such squares
is a valuable discovery.

There are magic circles, rectangles, crosses, diamonds, stars, and
other figures: also magic cubes, cylinders, and spheres. The theory of
the construction of such figures is of no value, and I cannot spare the
space to describe rules for forming them.

Hyper-Magic Squares. In recent times attention has been
mainly concentrated on the formation of magic squares with the impo-
sition of additional conditions; some of the resulting problems involve
mathematical difficulties of a high order.

Nasik Squares. In one species of hyper-magic squares the squares
are formed so that the sums of the numbers along all the rows and
columns, both diagonals, and all the broken diagonals are the same. In
England these are called nasik squares or pan-diagonal magic squares :
in France carrés diaboliques or carrés magiquement magiques. These
squares were mentioned by De la Hire, Sauveur, and Euler; but the
theory is mainly due to Mr A.H. Frost, who has expounded it in the
memoirs mentioned in the footnote on page 123, and to M. Frolow,
who treated it in two memoirs, St Petersburg, 1884, and Paris, 1886.
Of course a nasik square can be divided by a vertical or horizontal cut
and the pieces interchanged without affecting the magical property. By
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one vertical and one horizontal transposition of this kind any number
can be moved to any specified cell.

A nasik square of the fourth order is represented in figure ii on
page 121, and one of the fifth order is represented in figure xiii on the
preceding page. Nasik squares of the order 6n±1 can be constructed by
rules analogous to those given by De la Loubère, except that a knight’s
and not a bishop’s move must be used in connecting cells filled by
consecutive numbers and that for orders higher than five special rules
for going from the cell occupied by the number kn to that occupied by
the number kn + 1 have to be laid down.

Doubly-Magic Squares. In another species of hyper-magic squares
the problem is to construct a magic square of the nth order in such a
way that if the number in each cell is replaced by its mth power the

5 31 35 60 57 34 8 30

19 9 53 46 47 56 18 12

16 22 42 39 52 61 27 1

63 37 25 24 3 14 44 50

26 4 64 49 38 43 13 23

41 51 15 2 21 28 62 40

54 48 20 11 10 17 55 45

36 58 6 29 32 7 33 59

A Doubly-Magic Square.
Figure xiv.

resulting square shall also be magic. Here for example (see figure xiv)
is a magic square* of the eighth order, the sum of the numbers in each
line being equal to 260, so constructed that if the number in each cell
is replaced by its square the resulting square is also magic (the sum of
the numbers in each line being equal to 11180).

Magic Pencils. Hitherto I have concerned myself with num-
bers arranged in lines. By reciprocating the figures composed of the

* See M. Coccoz in L’Illustration, May 29, 1897.
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points on which the numbers are placed we obtain a collection of lines
forming pencils, and, if these lines be numbered to correspond with the
points, the pencils will be magic*. Thus, in a magic square of the nth
order, we arrange n2 consecutive numbers to form 2n + 2 lines, each
containing n numbers so that the sum of the numbers in each line is the
same. Reciprocally we can arrange n2 lines, numbered consecutively to
form 2n+ 2 pencils, each containing n lines, so that in each pencil the
sum of the numbers designating the lines is the same.

For instance, figure xv represents a magic square of 64 consecutive

1 2 62 61 60 59 7 8

9 10 54 53 52 51 15 16

48 47 19 20 21 22 42 41

40 39 27 28 29 30 34 33

32 31 35 36 37 38 26 25

24 23 43 44 45 46 18 17

49 50 14 13 12 11 55 56

57 58 6 5 4 3 63 64

Figure xv.

numbers arranged to form 18 lines, each of 8 numbers. Reciprocally,
figure xvi represents 64 lines arranged to form 18 pencils, each of 8 lines.
The method of construction is fairly obvious. The eight-rayed pencil,
vertex O, is cut by two parallels perpendicular to the axis of the pencil,
and all the points of intersection are joined cross-wise. This gives 8
pencils, with vertices A,B, . . . , H; 8 pencils, with vertices A′, . . . H ′;
one pencil with its vertex at O; and one pencil with its vertex on the
axis of the last-named pencil.

The sum of the numbers in each of the 18 lines in figure xv is
the same. To make figure xvi correspond to this we must number the
lines in the pencil A from left to right, 1, 9, . . . , 57, following the order
of the numbers in the first column of the square: the lines in pencil B
must be numbered similarly to correspond to the numbers in the second
column of the square, and so on. To prevent confusion in the figure I

* See Magic-Reciprocals by G. Frankenstein, Cincinnati, 1875.
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O

A B C D E F G H

A' H'

Figure xvi.

have not inserted the numbers, but it will be seen that the method of
construction ensures that the sum of the 8 numbers which designate
the lines in each of these 18 pencils is the same.

We can proceed a step further, if the resulting figure is cut by
two other parallel lines perpendicular to the axis, and if the points of
their intersection with the cross-joins be joined cross-wise, these new
cross-joins will intersect on the axis of the original pencil or on lines
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perpendicular to it. The whole figure will now give 83 lines, arranged in
244 pencils each of 8 rays, and will be the reciprocal of a magic cube of
the 8th order. If we reciprocate back again we obtain a representation
in a plane of a magic cube.

Magic Square Puzzles. Many empirical problems, closely re-
lated to magic squares, will suggest themselves; but most of them are
more correctly described as ingenious puzzles than as mathematical
recreations. The following will serve as specimens.

Magic Card Square*. The first of these is the familiar problem of
placing the sixteen court cards (taken out of a pack) in the form of a
square so that no row, no column, and neither of the diagonals shall
contain more than one card of each suit and one card of each rank.
The solution presents no difficulty, and is indicated in figure xviii on
the next page.

Euler’s Officers Problem†. A similar problem, proposed by Euler
in 1779, consists in arranging, if it be possible, thirty-six officers taken
from six regiments—the officers being in six groups, each consisting of
six officers of equal rank, one drawn from each regiment; say officers of
rank a, b, c, d, e, f , drawn from the 1st, 2nd, 3rd, 4th, 5th, and 6th
regiments—in a solid square formation of six by six, so that each row
and each file shall contain one and only one officer of each rank and
one and only one officer from each regiment. The problem is insoluble.

Extension of Euler’s Problem. More generally we may investigate
the arrangement on a chess-board, containing n2 cells, of n2 counters
(the counters being divided into n groups, each group consisting of n
counters of the same colour numbered consecutively 1, 2, . . . , n) so that
each row and each column shall contain no two counters of the same
colour or marked with the same number.

For instance, if n = 3, with three red counters a1, a2, a3, three
white counters b1, b2, b3, and three black counters c1, c2, c3, we can
satisfy the conditions by arranging them as in figure xvii on the facing
page. If n = 4, then with counters a1, a2, a3, a4; b1, b2, b3, b4; c1, c2,

* Ozanam, 1723 edition, vol. iv, p. 434.
† Euler’s Commentationes Arithmeticae, St Petersburg, 1849, vol ii, pp. 302–361.

See also a paper by G. Tarry in the Comptes rendus of the French Association
for the Advancement of Science, Paris, 1900, vol. ii, pp. 170–203; and various
notes in L’Intermédiaire des mathématiciens, Paris, vol. iii, 1896, pp. 17, 90;
vol. v, 1898, pp. 83, 176, 252, vol. vi, 1899, p. 251; vol. vii, 1900, pp. 14, 311.
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c3, c4; d1, d2, d3, d4, we can arrange them as in figure xviii below. A
solution when n = 5 is indicated in figure xix.

a1 b2 c3

b2 c1 a2

c3 a3 b1

Figure xvii.

a1 b2 c3 d4

c4 d3 a2 b1

d2 c1 b4 a3

b3 a4 d1 c2

Figure xviii.

a1 b2 c3 d4 e5

b5 c1 d2 e3 a4

c4 d5 e1 a2 b3

d3 e4 a5 b1 c2

e2 a3 b4 c5 d1

Figure xix.

The problem is soluble if n is odd or if n is of the form 4m. If
solutions when n = a and when n = b are known, a solution when
n = ab can be written down at once. The theory is closely connected
with that of magic squares and need not be here discussed further.

Magic Domino Squares. Analogous problems can be made with
dominoes. An ordinary set of dominoes, ranging from double zero to
double six, contains 28 dominoes. Each domino is a rectangle formed
by fixing two small square blocks together side by side: of these 56
blocks, eight are blank, on each of eight of them is one pip, on each of
another eight of them are two pips, and so on. It is required to arrange
the dominoes so that the 56 blocks form a square of 7 by 7 bordered
by one line of 7 blank squares and so that the sum of the pips in each
row, each column, and in the two diagonals of the square is equal to
24. A solution* is given on the following page.

Similarly, a set of dominoes, ranging from double zero to double n,
contains 1

2
(n+1)(n+2) dominoes and therefore (n+1)(n+2) blocks.

Can these dominoes be arranged in the form of a square of (n + 1)2

cells, bordered by a row of blanks, so that the sum of the pips in each
row, each column, and in the two diagonals of the square is equal to
1
2
n(n + 2)?

Magic Coin Squares†. There are somewhat similar questions con-
cerned with coins. Here is one applicable to a square of the third order
divided into nine cells, as in figure xvii above. If a five-shilling piece
is placed in the middle cell c1 and a florin in the cell below it, namely,
in a3 it is required to place the fewest possible current English coins in

* See L’Illustration, July 10, 1897.
† See The Strand Magazine, London, December, 1896, pp. 720, 721.
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Magic Domino Square.

the remaining seven cells so that in each cell there is at least one coin,
so that the total value of the coins in every cell is different, and so that
the sum of the values of the coins in each row, column, and diagonal is
fifteen shillings: it will be found that thirteen additional coins will suf-
fice. A similar problem is to place ten current English postage stamps,
all but two being different, in the nine cells so that the sum of the
values of the stamps in each row, column, and diagonal is ninepence.
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CHAPTER VI.

UNICURSAL PROBLEMS.

I propose to consider in this chapter some problems which arise
out of the theory of unicursal curves. I shall commence with Euler’s
Problem and Theorems, and shall apply the results briefly to the theo-
ries of Mazes and Geometrical Trees. The reciprocal unicursal problems
of the Hamilton Game and the Knight’s Path on a Chess-board will be
discussed in the latter half of the chapter.

Euler’s Problem. Euler’s problem has its origin in a memoir†

presented by him in 1736 to the St Petersburg Academy, in which he
solved a question then under discussion as to whether it was possible to
take a walk in the town of Königsberg in such a way as to cross every
bridge in it once and only once.

The town is built near the mouth of the river Pregel, which there
takes the form indicated on the following page and includes the island
of Kneiphof. In 1759 there were (and according to Baedeker there are
still) seven bridges in the positions shown in the diagram, and it is
easily seen that with such an arrangement the problem is insoluble.
Euler however did not confine himself to the case of Königsberg, but
discussed the general problem of any number of islands connected in
any way by bridges. It is evident that the question will not be affected if

† Solutio problematis ad Geometriam situs pertinentis, Commentarii Academiae
Scientiarum Petropolitanae for 1736, St Petersburg, 1741, vol. viii, pp. 128–140.
This has been translated into French by M. Ch. Henry; see Lucas, vol. i, part 2,
pp. 21–33.
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we suppose the islands to diminish to points and the bridges to lengthen
out. In this way we ultimately obtain a geometrical figure or network.
In the Königsberg problem this figure is of the shape indicated below,
the areas being represented by the points A, B, C, D, and the bridges
being represented by the lines l, m, n, p, q, r, s.

A

B

C

D

s

r

l

q p

m n

Euler’s problem consists therefore in finding whether a given ge-
ometrical figure can be described by a point moving so as to traverse
every line in it once and only once. A more general question is to deter-
mine how many strokes are necessary to describe such a figure so that
no line is traversed twice: this is covered by the rules hereafter given.
The figure may be either in three or in two dimensions, and it may be
represented by lines, straight, curved, or tortuous, joining a number of
given points, or a model may be constructed by taking a number of
rods or pieces of string furnished at each end with a hook so as to allow
of any number of them being connected together at one point.

The theory of such figures is included as a particular case in the
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propositions proved by Listing in his Topologie*. I shall, however, adopt
here the methods of Euler, and I shall begin by giving some definitions,
as it will enable me to put the argument in a more concise form.

A node (or isle) is a point to or from which lines are drawn. A
branch (or bridge or path) is a line connecting two consecutive nodes.
An end (or hook) is the point at each termination of a branch. The
order of a node is the number of branches which meet at it. A node to
which only one branch is drawn is a free node or a free end. A node at
which an even number of branches meet is an even node: evidently the
presence of a node of the second order is immaterial. A node at which
an odd number of branches meet is an odd node. A figure is closed if
it has no free end: such a figure is often called a closed network.

A route consists of a number of branches taken in consecutive order
and so that no branch is traversed twice. A closed route terminates at
the point from which it started. A figure is described unicursally when
the whole of it is traversed in one route.

The following are Euler’s results. (i) In a closed network the num-
ber of odd nodes is even. (ii) A figure which has no odd node can be
described unicursally, in a re-entrant route, by a moving point which
starts from any point on it. (iii) A figure which has two and only two
odd notes can be described unicursally by a moving point which starts
from one of the odd nodes and finishes at the other. (iv) A figure which
has more than two odd nodes cannot be described completely in one
route; to which Listing added the corollary that a figure which has 2n
odd nodes, and no more, can be described completely in n separate
routes. I now proceed to prove these theorems.

First. The number of odd nodes in a closed network is even.
Suppose the number of branches to be b. Therefore the number of

hooks is 2b. Let kn be the number of nodes of the nth order. Since
a node of the nth order is one at which n branches meet, there are n
hooks there. Also since the figure is closed, n cannot be less than 2.

∴ 2k2 + 3k3 + 4k4 + · · · + nkn + · · · = 2b .
Hence 3k3 + 5k5 + · · · is even.

∴ k3 + k5 + · · · is even.

Second. A figure which has no odd node can be described unicur-
sally in a re-entrant route.
* Die Studien, Göttingen, 1847, part x. See also Tait on Listing’s Topologie,

Philosophical Magazine, London, January, 1884, series 5, vol. xvii, pp. 30–46.
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Since the route is to be re-entrant it will make no difference where
it commences. Suppose that we start from a node A. Every time our
route takes us through a node we use up one hook in entering it and one
in leaving it. There are no odd nodes, therefore the number of hooks
at every node is even: hence, if we reach any node except A, we shall
always find a hook which will take us into a branch previously untra-
versed. Hence the route will take us finally to the node A from which
we started. If there are more than two hooks at A, we can continue the
route over one of the branches from A previously untraversed, but in
the same way as before we shall finally come back to A.

It remains to show that we can arrange our route so as to make
it cover all the branches. Suppose each branch of the network to be
represented by a string with a hook at each end, and that at each node
all the hooks there are fastened together. The number of hooks at
each node is even, and if they are unfastened they can be re-coupled
together in pairs, the arrangement of the pairs being immaterial. The
whole network will then form one or more closed curves, since now each
node consists merely of two ends hooked together.

If this random coupling gives us one single curve then the proposi-
tion is proved; for starting at any point we shall go along every branch
and come back to the initial point. But if this random coupling pro-
duces anywhere an isolated loop, L, then where it touches some other
loop, M , say at the node P , unfasten the four hooks there (viz. two of
the loop L and two of the loop M) and re-couple them in any other
order: then the loop L will become a part of the loop M . In this way,
by altering the couplings, we can transform gradually all the separate
loops into parts of only one loop.

For example, take the case of three isles, A, B, C, each connected
with both the others by two bridges. The most unfavourable way of re-
coupling the ends at A, B, C would be to make ABA, ACA, and BCB
separate loops. The loops ABA and ACA are separate and touch at A;
hence we should re-couple the hooks at A so as to combine ABA and
ACA into one loop ABACA. Similarly, by re-arranging the couplings
of the four hooks at B, we can combine the loop BCB with ABACA
and thus make only one loop.

I infer from Euler’s language that he had attempted to solve the
problem of giving a practical rule which would enable one to describe
such a figure unicursally without knowledge of its form, but that in this
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B C

A

he was unsuccessful. He however added that any geometrical figure can
be described completely in a single route provided each part of it is
described twice and only twice, for, if we suppose that every branch is
duplicated, there will be no odd nodes and the figure is unicursal. In
this case any figure can be described completely without knowing its
form: rules to effect this are given below.

Third. A figure which has two and only two odd nodes can be
described unicursally by a point which starts from one of the odd nodes
and finishes at the other odd node.

This at once reduces to the second theorem. Let A and Z be the
two odd nodes. First, suppose that Z is not a free end. We can, of
course, take a route from A to Z; if we imagine the branches in this
route to be eliminated, it will remove one hook from A and make it
even, will remove two hooks from every node intermediate between A
and Z and therefore leave each of them even, and will remove one hook
from Z and therefore will make it even. All the remaining network is
now even: hence, by Euler’s second proposition, it can be described
unicursally, and, if the route begins at Z, it will end at Z. Hence,
if these two routes are taken in succession, the whole figure will be
described unicursally, beginning at A and ending at Z. Second, if Z
is a free end, then we must travel from Z to some node, Y , at which
more than two branches meet. Then a route from A to Y which covers
the whole figure exclusive of the path from Y to Z can be determined
as before and must be finished by travelling from Y to Z.

Fourth. A figure having 2n odd nodes, and no more, can be de-
scribed completely in n separate routes.

If any route starts at an odd node, and if it is continued until it
reaches a node where no fresh path is open to it, this latter node must
be an odd one. For every time we enter an even node there is necessarily
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a way out of it; and similarly every time we go through an odd node
we use up one hook in entering and one hook in leaving, but whenever
we reach it as the end of our route we use only one hook. If this route
is suppressed there will remain a figure with 2n− 2 odd nodes. Hence
n such routes will leave one or more networks with only even nodes.
But each of these must have some node common to one of the routes
already taken and therefore can be described as a part of that route.
Hence the complete passage will require n and not more than n routes.
It follows, as stated by Euler, that, if there are more than two odd
nodes, the figure cannot be traversed completely in one route.

The Königsberg bridges lead to a network with four odd nodes;
hence, by Euler’s fourth proposition, it cannot be described unicur-
sally in a single journey, though it can be traversed completely in two
separate routes.

The first and second diagrams figured below contain only even
nodes, and therefore each of them can be described unicursally. The

first of these—a re-entrant pentagon—was one of the Pythagorean sym-
bols. The other is the so-called sign-manual of Mohammed, said to have
been originally traced in the sand by the point of his scimetar with-
out taking the scimetar off the ground or retracing any part of the
figure—which, as it contains only even nodes, is possible. The third
diagram is taken from Tait’s article: it contains only two odd nodes,
and therefore can be described unicursally if we start from one of them
and finish at the other.

As other examples I may note that the geometrical figure formed
by taking a (2n + 1)gon and joining every angular point with every
other angular point is unicursal. On the other hand a chess-board,
divided as usual by straight lines into 64 cells, has 28 odd nodes and
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53 even nodes: hence it would require 14 separate pen-strokes to trace
out all the boundaries without going over any more than once. Again,
the diagram on page 102 has 20 odd nodes and therefore would require
10 separate pen-strokes to trace it out.

It is well known that a curve which has as many nodes as is con-
sistent with its degree is unicursal.

Mazes. Everyone has read of the labyrinth of Minos in Crete
and of Rosamund’s Bower. A few modern mazes exist here and there—
notably one, which is a very poor specimen of its kind, at Hampton
Court—and in one of these, or at any rate on a drawing of one, most of
us have threaded our way to the interior. I proceed now to consider the
manner in which any such construction may be completely traversed
even by one who is ignorant of its plan.

The theory of the description of mazes is included in Euler’s theo-
rems given above. The paths in the maze are what previously we have
termed branches, and the places where two or more paths meet are
nodes. The entrance to the maze, the end of a blind alley, and the
centre of the maze are free ends and therefore odd nodes.

If the only odd nodes are the entrance to the maze and the centre
of it–which will necessitate the absence of all blind alleys–the maze can
be described unicursally. This follows from Euler’s third proposition.
Again, no matter how many odd nodes there may be in a maze, we can
always find a route which will take us from the entrance to the centre
without retracing our steps, though such a route will take us through
only a part of the maze. But in neither of the cases mentioned in this
paragraph can the route be determined without a plan of the maze.

A plan is not necessary, however, if we make use of Euler’s sugges-
tion, and suppose that every path in the maze is duplicated. In this
case we can give definite rules for the complete description of the whole
of any maze, even if we are entirely ignorant of its plan. Of course to
walk twice over every path in a labyrinth is not the shortest way of
arriving at the centre, but, if it is performed correctly, the whole maze
is traversed, the arrival at the centre at some point in the course of the
route is certain, and it is impossible to lose one’s way.

I need hardly explain why the complete description of such a du-
plicated maze is possible, for now every node is even, and hence, by
Euler’s second proposition, if we begin at the entrance we can traverse
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the whole maze; in so doing we shall at some point arrive at the cen-
tre, and finally shall emerge at the point from which we started. This
description will require us to go over every path in the maze twice,
and as a matter of fact the two passages along any path will be always
made in opposite directions.

If a maze is traced on paper, the way to the centre is generally
obvious, but in an actual labyrinth it is not so easy to find the correct
route unless the plan is known. In order to make sure of describing
a maze without knowing its plan it is necessary to have some means
of marking the paths which we traverse and the direction in which we
have traversed them—for example, by drawing an arrow at the entrance
and end of every path traversed, or better perhaps by marking the wall
on the right-hand side, in which case a path may not be entered when
there is a mark on each side of it. If we can do this, and if when a node
is reached, we take, if it be possible, some path not previously used,
or, if no other path is available, we enter on a path already traversed
once only, we shall completely traverse any maze in two dimensions*.
Of course a path must not be traversed twice in the same direction, a
path already traversed twice (namely, once in each direction) must not
be entered, and at the end of a blind alley it is necessary to turn back
along the path by which it was reached.

I think most people would understand by a maze a series of inter-
lacing paths through which some route can be obtained leading to a
space or building at the centre of the maze. I believe that few, if any,
mazes of this type existed in classical or medieval times.

One class of what the ancients called mazes or labyrinths seems
to have comprised any complicated building with numerous vaults and
passages†. Such a building might be termed a labyrinth, but it is not
what is usually understood by the word. The above rules would enable
anyone to traverse the whole of any structure of this kind. I do not
know if there are any accounts or descriptions of Rosamund’s Bower

* See Le problème des labyrinthes by G. Tarry, Nouvelles Annales de mathémat-
iques, May, 1895, series 3, vol. xiv.

† For instance, see the descriptions of the labyrinth at Lake Moeris given by
Herodotus, bk. ii, c. 148; Strabo, bk. xvii, c. 1, art. 37; Diodorus, bk. i, cc. 61,
66; and Pliny, Hist. Nat., bk. xxxvi, c. 13, arts. 84–89. On these and other
references see A. Wiedemann, Herodots zweites Buch, Leipzig, 1890, p. 522 et
seq. See also Virgil, Aeneid, bk. v, c. v, 588; Ovid, Met., bk. viii, c. 5, 159;
Strabo, bk. viii, c. 6.
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other than those by Drayton, Bromton, and Knyghton: in the opinion
of some, these imply that the bower was merely a house, the passages
in which were confusing and ill-arranged.

Another class of ancient mazes consisted of a tortuous path confined
to a small area of ground and leading to a place or shrine in the centre*.
This is a maze in which there is no chance of taking a wrong turning;
but, as the whole area can be occupied by the windings of one path,
the distance to be traversed from the entrance to the centre may be
considerable, even though the piece of ground covered by the maze
is but small.

The traditional form of the labyrinth constructed for the Minotaur
is a specimen of this class. It was delineated on the reverses of the coins
of Cnossus, specimens of which are not uncommon; one form of it is
indicated in the accompanying diagram (figure i). The design really is
the same as that drawn in figure ii, as can be easily seen by bending
round a circle the rectangular figure there given.

Mr Inwards has suggested† that this design on the coins of Cnossus
may be a survival from that on a token given by the priests as a clue to

Figure i. Figure ii.

the right path in the labyrinth there. Taking the circular form of the
design shown above he supposed each circular wall to be replaced by
two equidistant walls separated by a path, and thus obtained a maze
to which the original design would serve as the key. The route thus
indicated may be at once obtained by noticing that when a node is
reached (i.e. a point where there is a choice of paths) the path to be

* On ancient and medieval labyrinths—particularly of this kind—see an article by
Mr E. Trollope in The Archaeological Journal, 1858, vol. xv, pp. 216–235, from
which much of the historical information given above is derived

† Knowledge, London, October, 1892.
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taken is that which is next but one to that by which the node was
approached. This maze may be also threaded by the simple rule of
always following the wall on the right-hand side or always that on the
left-hand side. The labyrinth may be somewhat improved by erecting a
few additional barriers, without affecting the applicability of the above
rules, but it cannot be made really difficult. This makes a pretty toy,
but though the conjecture on which it is founded is ingenious it must
be regarded as exceedingly improbable. Another suggestion is that the
curved line on the reverse of the coins indicated the form of the rope
held by those taking part in some rhythmic dance; while others consider
that the form was gradually evolved from the widely prevalent svastika.

Copies of the maze of Cnossus were frequently engraved on Greek
and Roman gems; similar but more elaborate designs are found in nu-
merous Roman mosaic pavements*. A copy of the Cretan labyrinth
was embroidered on many of the state robes of the later Emperors,
and, apparently thence, was copied on to the walls and floors of vari-
ous churches†. At a later time in Italy and in France these mural and
pavement decorations were developed into scrolls of great complexity,
but consisting, as far as I know, always of a single line. Some of the
best specimens now extant are on the walls of the cathedrals at Lucca,
Aix in Provence, and Poitiers; and on the floors of the churches of Santa
Maria in Trastevere at Rome, San Vitale at Ravenna, Notre Dame at
St Omer, and the cathedral at Chartres. It is possible that they were
used to represent the journey through life as a kind of pilgrim’s progress.

In England these mazes were usually, perhaps always, cut in the
turf adjacent to some religious house or hermitage: and there are some
slight reasons for thinking that, when traversed as a religious exercise, a
pater or ave had to be repeated at every turning. After the Renaissance,
such labyrinths were frequently termed Troy-towns or Julian’s bowers.
Some of the best specimens, which are still extant, are those at Rockliff
Marshes, Cumberland; Asenby, Yorkshire; Alkborough, Lincolnshire;
Wing, Rutlandshire; Boughton-Green, Northamptonshire; Comberton,
Cambridgeshire; Saffron Walden, Essex; and Chilcombe, near Win-
chester.

The modern maze seems to have been introduced—probably from
Italy—during the Renaissance, and many of the palaces and large

* See ex. gr. Breton’s Pompeia, p. 303.
† Ozanam, Graphia aureae urbis Romae, pp. 92, 178.
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houses built in England during the Tudor and the Stuart periods
had labyrinths attached to them. Those adjoining the royal palaces
at Southwark, Greenwich, and Hampton Court were particularly well
known from their vicinity to the capital. The last of these was designed
by London and Wise in 1690, for William III, who had a fancy for such
conceits: a plan of it is given in various guide-books. For the majority

Maze at Hampton Court.

of the sight-seers who enter, it is sufficiently elaborate; but it is an
indifferent construction, for it can be described completely by always
following the hedge on one side (either the right hand or the left hand),
and no node is of an order higher than three.

Unless at some point the route to the centre forks and subsequently
the two forks reunite, forming a loop in which the centre of the maze
is situated, the centre can be reached by the rule just given, namely,
by following the wall on one side—either on the right hand or on the
left hand. No labyrinth is worthy of the name of a puzzle which can
be threaded in this way. Assuming that the path forks as described
above, the more numerous the nodes and the higher their order the
more difficult will be the maze, and the difficulty might be increased
considerably by using bridges and tunnels so as to construct a labyrinth
in three dimensions. In an ordinary garden and on a small piece of
ground, often of an inconvenient shape, it is not easy to make a maze
which fulfils these conditions. Here on the following page is a plan of
one which I put up in my own garden on a plot of ground which would
not allow of more than 36 by 23 paths, but it will be noticed that none
of the nodes are of a high order.
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Geometrical Trees. Euler’s original investigations were con-
fined to a closed network. In the problem of the maze it was assumed
that there might be any number of blind alleys in it, the ends of which
formed free nodes. We may now progress one step farther, and sup-
pose that the network or closed part of the figure diminishes to a point.
This last arrangement is known as a tree. The number of unicursal
descriptions necessary to completely describe a tree is called the base
of the ramification.

We can illustrate the possible form of these trees by rods, having a
hook at each end. Starting with one such rod, we can attach at either
end one or more similar rods. Again, on any free hook we can attach
one or more similar rods, and so on. Every free hook, and also every
point where two or more rods meet, are what hitherto we have called
nodes. The rods are what hitherto we have termed branches or paths.

The theory of trees—which already plays a somewhat important
part in certain branches of modern analysis, and possibly may contain
the key to certain chemical and biological theories—originated in a
memoir by Cayley*, written in 1856. The discussion of the theory has

* Philosophical Magazine, March, 1857, series 4, vol. xiii, pp. 172–176; or Collected
Works, Cambridge, 1890, vol. iii, no. 203, pp. 242–346: see also the paper on
double partitions, Philosophical Magazine, November, 1860, series 4, vol. xx,
pp. 337–341. On the number of trees with a given number of nodes, see the
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been analytical rather than geometrical. I content myself with noting
the following results.

The number of trees with n given nodes is nn−2. If An is the
number of trees with n branches, and Bn the number of trees with n
free branches which are bifurcations at least, then

(1− x)−1(1− x2)−A1(1− x3)−A2 · · · = 1 + A1x+ A2x
2 + A3x

3 + · · · ,
(1− x)−1(1− x2)−B2(1− x3)−B3 · · · = 1 + x+ 2B2x

2 + 2B3x
3 + · · · .

Using these formulae we can find successively the values of A1, A2, . . . ,
and B1, B2, . . . . The values of An when n = 2, 3, 4, 5, 6, 7, are 2, 4,
9, 20, 48, 115; and of Bn are 1, 2, 5, 12, 33, 90.

I turn next to consider some problems where it is desired to find a
route which will pass once and only once through each node of a given
geometrical figure. This is the reciprocal of the problem treated in the
first part of this chapter, and is a far more difficult question. I am not
aware that the general theory has been considered by mathematicians,
though two special cases—namely, the Hamiltonian (or Icosian) Game
and the Knight’s Path on a Chess-Board—have been treated in some
detail; and I confine myself to a discussion of these.

The Hamiltonian Game. The Hamiltonian Game consists in
the determination of a route along the edges of a regular dodecahedron
which will pass once and only once through every angular point. Sir
William Hamilton*, who invented this game—if game is the right term
for it—denoted the twenty angular points on the solid by letters which
stand for various towns. The thirty edges constitute the only possible
paths. The inconvenience of using a solid is considerable, and the
dodecahedron may be represented conveniently in perspective by a flat
board marked as shown in the first of the annexed diagrams. The

Quarterly Journal of Mathematics, London, 1889, vol. xxiii, pp. 376–378. The
connection with chemistry was first pointed out in Cayley’s paper on isomers,
Philosophical Magazine, June, 1874, series 4, vol. xlvii, pp. 444–447, and was
treated more fully in his report on trees to the British Association in 1875,
Reports, pp. 257–305.

* See Quarterly Journal of Mathematics, London, 1862, vol. v, p. 305; or Philo-
sophical Magazine, January, 1884, series 5, vol. xvii, p. 42; also Lucas, vol. ii,
part vii.
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second and third diagrams will answer our purpose equally well and
are easier to draw.
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The first problem is go “all round the world,” that is, starting from
any town, to go to every other town once and only once and to return
to the initial town; the order of the n towns to be first visited being
assigned, where n is not greater than five.

Hamilton’s rule for effecting this was given at the meeting in 1857
of the British Association at Dublin. At each angular point there are
three and only three edges. Hence, if we approach a point by one edge,
the only routes open to us are one to the right, denoted by r, and one
to the left, denoted by l. It will be found that the operations indicated
on opposite sides of the following equalities are equivalent,

lr2l = rlr, rl2r = lrl, lr3l = r2, rl3r = l2 .

Also the operation l5 or r5 brings us back to the initial point: we may
represent this by the equations

l5 = 1, r5 = 1 .

To solve the problem for a figure having twenty angular points
we must deduce a relation involving twenty successive operations, the
total effect of which is equal to unity. By repeated use of the relation
l2 = rl3r we see that

1 = l5 = l2l3 = (rl3r)l3 = {rl3}2 = {r(rl3r)l}2

= {r2l3rl}2 = {r2(rl3r)lrl}2 = {r3l3rlrl}2 .
Therefore {r3l3(rl)2}2 = 1 . . . . . . . (i),
and similarly {l3r3(lr)2}2 = 1 . . . . . . . (ii).
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Hence on a dodecahedron either of the operations

r r r l l l r l r l r r r l l l r l r l . . . . . . . (i),
l l l r r r l r l r l l l r r r l r l r . . . . . . . (ii),

indicates a route which takes the traveller through every town, The
arrangement is cyclical, and the route can be commenced at any point
in the series of operations by transferring the proper number of letters
from one end to the other. The point at which we begin is determined
by the order of certain towns which is given initially.

Thus, suppose that we are told that we start from F and then
successively go to B, A, U , and T , and we want to find a route from
T through all the remaining towns which will end at F . If we think of
ourselves as coming into F from G, the path FB would be indicated
by l, but if we think of ourselves as coming into F from E, the path
FB would be indicated by r. The path from B to A is indicated by l,
and so on. Hence our first paths are indicated either by l l l r or by
r l l r. The latter operation does not occur either in (i) or in (ii), and
therefore does not fall within our solutions. The former operation may
be regarded either as the 1st, 2nd, 3rd, and 4th steps of (ii), or as the
4th, 5th, 6th, and 7th steps of (i). Each of these leads to a route which
satisfies the problem. These routes are

F B A U T P O N C D E J K L M Q R S H G F ,

and F B A U T S R K L M Q P O N C D E J H G F .

It is convenient to make a mark or to put down a counter at each
corner as soon as it is reached, and this will prevent our passing through
the same town twice.

A similar game may be played with other solids provided that at
each angular point three and only three edges meet. Of such solids
a tetrahedron and a cube are the simplest instances, but the reader
can make for himself any number of plane figures representing such
solids similar to those drawn on the preceding page. Some of these
were indicated by Hamilton. In all such cases we must obtain from the
formulae analogous to those given above cyclical relations like (i) or
(ii) there given. The solution will then follow the lines indicated above.
This method may be used to form a rule for describing any maze in
which no node is of an order higher than three.
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For solids having angular points where more than three edges
meet—such as the octahedron where at each angular point four edges
meet, or the icosahedron where at each angular point five edges meet—
we should at each point have more than two routes open to us; hence
(unless we suppress some of the edges) the symbolical notation would
have to be extended before it could be applied to these solids. I offer
the suggestion to anyone who is desirous of inventing a new game.

Another and a very elegant solution of the Hamiltonian dodecahe-
dron problem has been given by M. Hermary. It consists in unfolding
the dodecahedron into its twelve pentagons, each of which is attached
to the preceding one by only one of its sides; but the solution is geo-
metrical, and not directly applicable to more complicated solids.

Hamilton suggested as another problem to start from any town,
to go to certain specified towns in an assigned order, then to go to
every other town once and only once, and to end the journey at some
given town. He also suggested the consideration of the way in which a
certain number of towns should be blocked so that there was no passage
through them, in order to produce certain effects. These problems have
not, so far as I know, been subjected to mathematical analysis.

Knight’s Path on a Chess-Board. Another geometrical
problem on which a great deal of ingenuity has been expended, and of
a kind somewhat similar to the Hamiltonian game, consists in moving
a knight on a chess-board in such a manner that it shall move suc-
cessively on to every cell* once and only once. The literature on this
subject is so extensive† that I make no pretence to give a full account of
the various methods for solving the problem, and I shall content myself
by putting together a few notes on some of the solutions I have come
across, particularly on those due to De Moivre, Euler, Vandermonde,
Warnsdorff, and Roget.

On a board containing an even number of cells the path may or
may not be re-entrant, but on a board containing an odd number of

* The 64 small squares into which a chess-board is divided are termed cells.
† For a bibliography see A. van der Linde, Geschichte und Literatur des

Schachspiels, Berlin, 1874, vol. ii, pp. 101–111. On the problem see a memoir
by P. Volpicelli in Atti della Reale Accademia dei Lincei, Rome, 1872, vol. xxv,
pp. 87–162: also Applications de l’Analyse Mathématique au Jeu des échecs,
by C.F. de Jaenisch, 3 vols., St Petersburg, 1862–3; and General Parmentier,
Association Française pour l’avancement des Sciences, 1891, 1892, 1894.
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cells it cannot be re-entrant. For, if a knight begins on a white cell, its
first move must take it to a black cell, the next to a white cell, and so
on. Hence, if its path passes through all the cells, then on a board of
an odd number of cells the last move must leave it on a cell of the same
colour as that on which it started, and therefore these cells cannot be
connected by one move.

The earliest solutions of which I have any knowledge are those
given about the end of the seventeenth century by De Montmort and
De Moivre*. They apply to the ordinary chess-board of 64 cells, and
depend on dividing (mentally) the board into an inner square containing
sixteen cells surrounded by an outer ring of cells two deep. If initially
the knight is placed on a cell in the outer ring, it moves round that
ring always in the same direction so as to fill it up completely—only
going into the inner square when absolutely necessary. When the outer
ring is filled up the order of the moves required for filling the remaining
cells presents but little difficulty. If initially the knight is placed on
the inner square the process must be reversed. The method can be
applied to square and rectangular boards of all sizes. It is illustrated
sufficiently by De Moivre’s solution which is given below, where the

34 49 22 11 36 39 24 1

21 10 35 50 23 12 37 40

48 33 62 57 38 25 2 13

9 20 51 54 63 60 41 26

32 47 58 61 56 53 14 3

19 8 55 52 59 64 27 42

46 31 6 17 44 29 4 15

7 18 45 30 5 16 43 28

De Moivre’s Solution.

30 21 6 15 28 19

7 16 29 20 5 14

22 31 8 35 18 27

9 36 17 26 13 4

32 23 2 11 34 25

1 10 33 24 3 12

Euler’s Thirty-six Cell Solution.

numbers indicate the order in which the cells are occupied successively.
I place by its side a somewhat similar re-entrant solution, due to Euler,
for a board of 36 cells. If a chess-board is used it is convenient to place
a counter on each cell as the knight leaves it.
* I do not know where they were published originally; they were quoted by

Ozanam and Montucla, see Ozanam, 1803 edition, vol. i, p. 178; 1840 edition,
p. 80.
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The next serious attempt to deal with the subject was made by Eu-
ler* in 1759: it was due to a suggestion made by L. Bertrand of Geneva,
who subsequently (in 1778) issued an account of it. This method is ap-
plicable to boards of any shape and size, but in general the solutions
to which it leads are not symmetrical and their mutual connexion is
not apparent.

Euler commenced by moving the knight at random over the board
until it has no move open to it. With care this will leave only a few
cells not traversed: denote them by a, b, . . . . His method consists in
establishing certain rules by which these vacant cells can be interpolated
into various parts of the circuit, and also by which the circuit can be
made re-entrant.

The following example, mentioned by Legendre as one of excep-
tional difficulty, illustrates the method. Suppose that we have formed

55 58 29 40 27 44 19 22

60 39 56 43 30 21 26 45

57 54 59 28 41 18 23 20

38 51 42 31 8 25 46 17

53 32 37 a 47 16 9 24

50 3 52 33 36 7 12 15

1 34 5 48 b 14 c 10

4 49 2 35 6 11 d 13

Figure i.

22 25 50 39 52 35 60 57

27 40 23 36 49 58 53 34

24 21 26 51 38 61 56 59

41 28 37 48 3 54 33 62

20 47 42 13 32 63 4 55

29 16 19 46 43 2 7 10

18 45 14 31 12 9 64 5

15 30 17 44 1 6 11 8

Figure ii.

Example of Euler’s Method.

the route given in figure i; namely, 1, 2, 3, . . . , 59, 60; and that there
are four cells left untraversed, namely, a, b, c, d.

We begin by making the path 1 to 60 re-entrant. The cell 1 com-
mands a cell p, where p is 32, 52, or 2. The cell 60 commands a cell
q, where q is 29, 59, or 51. Then, if any of these values of p and q
differ by unity, we can make the route re-entrant. This is the case here
if p = 52, q = 51. Thus the cells 1, 2, 3, . . . , 51; 60, 59, . . . , 52 form a

* Mémoires de Berlin for 1759, Berlin, 1766, pp. 310–337; or Commentationes
Arithmeticae Collectae, St Petersburg, 1849, vol. i, pp. 337–355.
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re-entrant route of 60 moves. Hence, if we replace the numbers 60, 59,
. . . , 52 by 52, 53, . . . , 60, the steps will be numbered consecutively. I
recommend the reader who wishes to follow the subsequent details of
Euler’s argument to construct this square on a piece of paper before
proceeding further.

Next, we add the cells a, b, d to this route. In the new diagram of
60 cells formed as above the cell a commands the cells there numbered
51, 53, 41, 25, 7, 5, and 3. It is indifferent which of these we select:
suppose we take 51. Then we must make 51 the last cell of the route of
60 cells, so that we can continue with a, b, d. Hence, if the reader will
add 9 to every number on the diagram he has constructed, and then
replace 61, 62, . . . , 69 by 1, 2, . . . , 9, he will have a route which starts
from the cell occupied originally by 60, the 60th move is on to the cell
occupied originally by 51, and the 61st, 62nd, 63rd moves will be on
the cells a, b, d respectively.

It remains to introduce the cell c. Since c commands the cell now
numbered 25, and 63 commands the cell now numbered 24, this can be
effected in the same way as the first route was made re-entrant. In fact
the cells numbered 1, 2, . . . , 24; 63, 62, . . . , 25, c form a knight’s path.
Hence we must replace 63, 62, . . . , 25 by the numbers 25, 26, . . . , 63,
and then we can fill up c with 64. We have now a route which covers
the whole board.

Lastly, it remains to make this route re-entrant. First, we must
get the cells 1 and 64 near one another. This can be effected thus.
Take one of the cells commanded by 1, such as 28, then 28 commands
1 and 27. Hence the cells 64, 63, . . . , 28; 1, 2, . . . , 27 form a route; and
this will be represented in the diagram if we replace the cells numbered
1, 2, . . . , 27 by 27, 26, . . . , 1.

The cell now occupied by 1 commands the cells 26, 38, 54, 12, 14,
16, 28; and the cell occupied by 64 commands the cells 13, 43, 63,
55. The cells 13 and 14 are consecutive, and therefore the cells 64, 63,
. . . , 14; 1, 2, . . . , 13 form a route. Hence we must replace the numbers
1, 2, . . . , 13 by 13, 12, . . . , 1, and we obtain a re-entrant route covering
the whole board, which is represented in the second of the diagrams
given on the facing page. Euler showed how seven other re-entrant
routes can be deduced from any given re-entrant route.

It is not difficult to apply the method so as to form a route which
begins on one given cell and ends on any other given cell.
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Euler next investigated how his method could be modified so as to
allow of the imposition of additional restrictions.

An interesting example of this kind is where the first 32 moves are
confined to one half of the board. One solution of this is delineated
below. The order of the first 32 moves can be determined by Euler’s

58 43 60 37 52 41 62 35

49 46 57 42 61 36 53 40

44 59 48 51 38 55 34 63

47 50 45 56 33 64 39 54

22 7 32 1 24 13 18 15

31 2 23 6 19 16 27 12

8 21 4 29 10 25 14 17

3 30 9 20 5 28 11 26

Euler’s Half-board Solution.

50 45 62 41 60 39 54 35

63 42 51 48 53 36 57 38

46 49 44 61 40 59 34 55

43 64 47 52 33 56 37 58

26 5 24 1 20 15 32 11

23 2 27 8 29 12 17 14

6 25 4 21 16 19 10 31

3 22 7 28 9 30 13 18

Roget’s Half-board Solution.

method. It is obvious that, if to the number of each such move we
add 32, we shall have a corresponding set of moves from 33 to 64 which
would cover the other half of the board; but in general the cell numbered
33 will not be a knight’s move from that numbered 32, nor will 64 be
a knight’s move from 1.

Euler however proceeded to show how the first 32 moves might be
determined so that, if the half of the board containing the correspond-
ing moves from 33 to 64 was twisted through two right angles, the two
routes would become united and re-entrant. If x and y are the num-
bers of a cell reckoned from two consecutive sides of the board, we may
call the cell whose distances are respectively x and y from the opposite
sides a complementary cell. Thus the cells (x, y) and (9− x, 9− y) are
complementary, where x and y denote respectively the column and row
occupied by the cell. Then in Euler’s solution the numbers in comple-
mentary cells differ by 32: for instance, the cell (3, 7) is complementary
to the cell (6, 2), the one is occupied by 57, the other by 25.

Roget’s method, which is described later, can be also applied to give
half-board solutions. The result is indicated on this page. The close of
Euler’s memoir is devoted to showing how the method could be applied
to crosses and other rectangular figures. I may note in particular his
elegant re-entrant symmetrical solution for a square of 100 cells.
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The next attempt of any special interest is due to Vandermonde*,
who reduced the problem to arithmetic. His idea was to cover the
board by two or more independent routes taken at random, and then
to connect the routes. He defined the position of a cell by a fraction
x/y, whose numerator x is the number of the cell from one side of the
board, and whose denominator y is its number from the adjacent side of
the board; this is equivalent to saying that x and y are the co-ordinates
of a cell. In a series of fractions denoting a knight’s path, the differences
between the numerators of two consecutive fractions can be only one
or two, while the corresponding difference between their denominators
must be two or one respectively. Also x and y cannot be less than 1 or
greater than 8. The notation is convenient, but Vandermonde applied
it merely to obtain a particular solution of the problem for a board
of 64 cells: the method by which he effected this is analogous to that
established by Euler, but it is applicable only to squares of an even
order. The route that he arrives at is defined in his notation by the
following fractions.
5
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The path is re-entrant but unsymmetrical. Had he transferred the
first three fractions to the end of this series he would have obtained
two symmetrical circuits of thirty-two moves joined unsymmetrically,
and might have been enabled to advance further in the problem. Van-
dermonde also considered the case of a route in a cube.

In 1773 Collini† proposed the exclusive use of symmetrical routes
arranged without reference to the initial cell, but connected in such a
manner as to permit of our starting from it. This is the foundation
of the modern manner of attacking the problem. The method was re-
invented in 1825 by Pratt‡, and in 1840 by Roget, and has been subse-
quently employed by various writers. Neither Collini nor Pratt showed
skill in using this method. The rule given by Roget is described later.

One of the most ingenious of the solutions of the knight’s path is

* L’Histoire de l’Académie des Sciences for 1771, Paris, 1774, pp. 566-574.
† Solution du Problème du Cavalier au Jeu des échecs, Mannheim, 1773.
‡ Studies of Chess, sixth edition, London, 1825.
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that given in 1823 by Warnsdorff*. His rule is that the knight must be
moved always to one of the cells from which it will command the fewest
squares not already traversed. The solution is not symmetrical and not
re-entrant; moreover it is difficult to trace practically. The rule has not
been proved to be true, but no exception to it is known: apparently it
applies also to all rectangular boards which can be covered completely
by a knight. It is somewhat curious that in most cases a single false
step, except in the last three or four moves, will not affect the result.

Warnsdorff added that when, by the rule, two or more cells are open
to the knight, it may be moved to either or any of them indifferently.
This is not so, and with great ingenuity two or three cases of failure
have been constructed, but it would require exceptionally bad luck to
happen accidentally on such a route.

The above methods have been applied to boards of various shapes,
especially to boards in the form of rectangles, crosses, and circles†.

All the more recent investigations impose additional restrictions:
such as to require that the route shall be re-entrant, or more generally
that it shall begin and terminate on given cells.

The best complete solution with which I am acquainted—and one
which I believe is not generally known—is due to Roget‡. It divides
the whole route into four circuits, which can be combined so as to
enable us to begin on any cell and terminate on any other cell of a
different colour. Hence, if we like to select this last cell at a knight’s
move from the initial cell, we obtain a re-entrant route. On the other
hand, the rule is applicable only to square boards containing (4n)2 cells:
for example, it could not be used on the board of the French jeu des
dames, which contains 100 cells.

Roget began by dividing the board of 64 cells into four quarters.
Each quarter contains 16 cells, and these 16 cells can be arranged in
4 groups, each group consisting of 4 cells which form a closed knight’s
path. All the cells in each such path are denoted by the same letter
l, e, a, or p, as the case nay be. The path of 4 cells indicated by the

* Des Rösselsprunges einfachste und allgemeinste Lösung, Schmalkalden, 1823:
see Jaenisch, vol. ii, pp. 56–61, 273–289.

† See ex. gr. T. Ciccolini’s work Del Cavallo degli Scacchi, Paris, 1836.
‡ Philosophical Magazine, April, 1840, series 3, vol. xvi, pp. 305–309; see also

the Quarterly Journal of Mathematics for 1877, vol. xiv, pp. 354–359. Some
solutions, founded on Roget’s method, are given in the Leisure Hour, Sept. 13,
1873, pp. 587–590; see also Ibid., Dec. 20, 1873, pp. 813–815.
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consonants l and the path indicated by the consonants p are diamond-
shaped: the paths indicated respectively by the vowels e and a are
square-shaped, as may be seen by looking at one of the four quarters
in figure i below.

l e a p l e a p

a p l e a p l e

e l p a e l p a

p a e l p a e l

l e a p l e a p

a p l e a p l e

e l p a e l p a

p a e l p a e l

Roget’s Solution (i).

34 51 32 15 38 53 18 3

31 14 35 52 17 2 39 54

50 33 16 29 56 37 4 19

13 30 49 36 1 20 55 40

48 63 28 9 44 57 22 5

27 12 45 64 21 8 41 58

62 47 10 25 60 43 6 23

11 26 61 46 7 24 59 42

Roget’s Solution (ii).

Now all the 16 cells on a complete chess-board which are marked
with the same letter can be combined into one circuit, and wherever
the circuit begins we can make it end on any other cell in the circuit,
provided it is of a different colour to the initial cell. If it is indifferent on
what cell the circuit terminates we may make the circuit re-entrant, and
in this case we can make the direction of motion round each group (of
4 cells) the same. For example, all the cells marked p can be arranged
in the circuit indicated by the successive numbers 1 to 16 in figure ii
above. Similarly all the cells marked a can be combined into the circuit
indicated by the numbers 17 to 23; all the l cells into the circuit 33 to
48; and all the e cells into the circuit 49 to 64. Each of the circuits
indicated above is symmetrical and re-entrant. The consonant and the
vowel circuits are said to be of opposite kinds.

The general problem will be solved if we can combine the four
circuits into a route which will start from any given cell, and terminate
on the 64th move on any other given cell of a different colour. To effect
this Roget gave the two following rules.

First. If the initial cell and the final cell are denoted the one by a
consonant and the other by a vowel, take alternately circuits indicated
by consonants and vowels, beginning with the circuit of 16 cells indi-
cated by the letter of the initial cell and concluding with the circuit
indicated by the letter of the final cell.
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Second. If the initial cell and the final cell are denoted both by
consonants or both by vowels, first select a cell, Y , in the same circuit as
the final cell, Z, and one move from it, next select a cell, X, belonging
to one of the opposite circuits and one move from Y . This is always
possible. Then, leaving out the cells Z and Y , it always will be possible,
by the rule already given, to travel from the initial cell to the cell X in
62 moves, and thence to move to the final cell on the 64th move.

In both cases however it must be noticed that the cells in each
of the first three circuits will have to be taken in such an order that
the circuit does not terminate on a corner, and it may be desirable
also that it should not terminate on any of the border cells. This will
necessitate some caution. As far as is consistent with these restrictions
it is convenient to make these circuits re-entrant, and to take them and
every group in them in the same direction of rotation.

As an example, suppose that we are to begin on the cell numbered
1 in figure ii on the previous page, which is one of those in a p circuit,
and to terminate on the cell numbered 64, which is one of those in an
e circuit. This falls under the first rule: hence first we take the 16
cells marked p, next the 16 cells marked a, then the 16 cells marked l,
and lastly the 16 cells marked e. One way of effecting this is shown in
the diagram. Since the cell 64 is a knight’s move from the initial cell
the route is re-entrant. Also each of the four circuits in the diagram
is symmetrical, re-entrant, and taken in the same direction, and the
only point where there is any apparent breach in the uniformity of
the movement is in the passage from the cell numbered 32 to that
numbered 33.

A rule for re-entrant routes, similar to that of Roget, has been
given by various subsequent writers, especially by De Polignac* and by
Laquière†, who have stated it at much greater length. Neither of these
authors seems to have been aware of Roget’s theorems. De Polignac,
like Roget, illustrates the rule by assigning letters to the various squares
in the way explained above, and asserts that a similar rule is applicable
to all even squares.

Roget’s method can be also applied to two half-boards, as indicated

* Comptes Rendus, April, 1861; and Bulletin de la Société Mathématique de
France, 1881, vol. ix, pp. 17–24.

† Bulletin de la Société Mathématique de France, 1880, vol. viii, pp. 82–102, 132–
158.
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in the figure given above on page 162.
Another way of dividing the board into closed circuits which can

be connected was given in 1843 by Moon*. He divided the board into a

a b c d a b c d

c d a b c d a b

b a A B C D d c

d c C D A B b a

a b B A D C c d

c d D C B A a b

b a d c b a d c

d c b a d c b a

Moon’s Solution.

63 22 15 40 1 42 59 18

14 39 64 21 60 17 2 43

37 62 23 16 41 4 19 58

24 13 38 61 20 57 44 3

11 36 25 52 29 46 5 56

26 51 12 33 8 55 30 45

35 10 49 28 53 32 47 6

50 27 34 9 48 7 54 31

Jaenisch’s Solution.

central square containing 42 cells and a surrounding annulus (see figure
on this page). The annulus may be divided into four closed circuits,
each containing 12 cells: these are marked respectively with the letters
a, b, c, d. The central square may be divided similarly into four closed
circuits, each containing 4 cells, denoted by the letters A, B, C, D.
We can connect these routes as follows. If we are moving outwards
from the central square to the annulus we can go from a cell A either
to b or to c or to d (but not to a) and similarly for the other letters.
If we are moving inwards from the annulus to the central square we
must go from a to D, or d to A, or b to C, or c to B, as the case may
be. Thus if the initial cell is on a, we might take either of the cycles
a D b C d A c B, or a D c B d A b C. By following these rules we
always can connect the routes into one path, but in general it will not
be re-entrant. It is convenient to take the cells in each circuit in one
and the same direction, but a circuit in the outer annulus must not end
in a corner cell, and to avoid this we may have to alter the direction
in which a circuit is taken.

Moon’s rule can be modified to cover the case of any doubly even
square board, and the path can be made to begin and end on any two
given squares, but I do not propose to go further into details.

* Cambridge Mathematical Journal, 1843, vol. iii, pp. 233–236.
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The method which Jaenisch gives as the most fundamental is not
very different from that of Roget. It leads to eight forms, similar to that
in the diagram printed on the previous page, in which the sum of the
numbers in every column and every row is 260; but although symmetri-
cal it is not in my opinion so easy to reproduce as that given by Roget.

It is as yet impossible to say how many solutions of the problem
exist. Legendre* mentioned the question, but Minding† was the earliest
writer to attempt to answer it. More recent investigations have shown
that on the one hand the number of possible routes is less‡ than the
number of combinations of 168 things taken 63 at a time, and on the
other hand is greater than 31, 054144—since this latter number is the
number of re-entrant paths of a particular type§.

There are many similar problems in which it is required to deter-
mine routes by which a piece moving according to certain laws (ex. gr. a
chess-piece such as a king, knight, &c.) can travel from a given cell over
a board so as to occupy successively all the cells, or certain specified
cells, once and only once, and terminate its route in a given cell.

Euler’s method can be applied to find routes of this kind: for in-
stance, he applied it to find a re-entrant route by which a piece that
moved two cells forward like a castle and then one cell like a bishop
would occupy in succession all the black cells on the board. As another
instance, a castle, placed on a chess-board of n2 cells, can always be
moved in such a manner that it shall move successively on to every
cell once and only once; moreover, starting on any cell, its path can be
made to terminate, if n be even, on any other cell of a different colour,
and, if n be odd, on any other cell of the same colour∥. But it will
suffice to have discussed the classical problem of the determination of
a knight’s path on an ordinary chess-board, and I need not enter on
the discussion of other similar problems.

* Théorie des Nombres, Paris, 2nd edition, 1830, vol. ii, p. 165.
† Cambridge and Dublin Mathematical Journal, 1852, vol. vii, pp. 147–156; and

Crelle’s Journal, 1853, vol. xliv, pp. 73–82.
‡ Jaenisch, vol. ii, p. 268.
§ Bulletin de la Société Mathématique de France, 1881, vol. ix, pp. 1–17.
∥ L’Intermédiaire des mathématiciens, Paris, July, 1901, p. 153.

• Project • Gutenberg • #26839 •



PART II.

Miscellaneous Essays and Problems.

“No man of science should think it a waste of
time to learn something of the history of his own
subject; nor is the investigation of laborious meth-
ods now fallen into disuse, or of errors once com-
monly accepted the least valuable of mental disci-
plines.”

“The most worthless book of a bygone day is
a record worthy of preservation. Like a telescopic
star, its obscurity may render it unavailable for
most purposes; but it serves, in hands which know
how to use it, to determine the places of more im-
portant bodies.”

(De Morgan.)
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CHAPTER VII.

THE MATHEMATICAL TRIPOS.

The Mathematical Tripos has played so prominent a part in the
history of education at Cambridge and of mathematics in England, that
a sketch of its development† may be interesting to general readers.

So far as mathematics is concerned the history of the University
before Newton may be summed up very briefly. The University was
founded towards the end of the twelfth century. Throughout the mid-
dle ages the studies were organised on lines similar to those at Paris
and Oxford. To qualify for a degree it was necessary to perform var-
ious exercises, and especially to keep a number of acts or to oppose
acts kept by other students. An act consisted in effect of a debate in
Latin, thrown, at any rate in later times, into syllogistic form. It was
commenced by one student, the respondent, stating some proposition,
often propounded in the form of a thesis, which was attacked by one
or more opponents, the discussion being controlled by a graduate. The
teaching was largely in the hands of young graduates—every master of
arts being compelled to reside and teach for at least one year—though
no doubt Colleges and private hostels supplemented this instruction in
the case of their own students.

† The following pages are mostly summarised from my History of the Study
of Mathematics at Cambridge, Cambridge 1889. The subject is also treated
in Whewell’s Liberal Education, Cambridge, three parts, 1845, 1850, 1853;
Wordsworth’s Scholae Academicae, Cambridge, 1877; my own Origin and His-
tory of the Mathematical Tripos, Cambridge, 1880; and Dr Glaisher’s Presiden-
tial Address to the London Mathematical Society, Transactions, vol xviii, 1886,
pp. 4–38.
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The Reformation in England was mainly the work of Cambridge
divines, and in the University the Renaissance was warmly welcomed.
In spite of the disorder and confusion of the Tudor period, new studies
and a system of professional instruction were introduced. Probably the
science (as distinct from the art) of mathematics, save so far as involved
in the quadrivium, was still an exotic study, but it was not wholly ne-
glected. Tonstall, subsequently the most eminent English arithmetician
of his time, migrated, perhaps about 1495, from Balliol College, Ox-
ford, to King’s Hall, Cambridge, and in 1530 the University appointed a
mathematical lecturer in the person of Paynell of Pembroke Hall. Most
of the subsequent English mathematicians of the Tudor period seem to
have been educated at Cambridge; of these I may mention Record, who
migrated, probably about 1535, from Oxford, Dee, Digges, Blundeville,
Buckley, Billingsley, Hill, Bedwell, Hood, Richard and John Harvey,
Edward Wright, Briggs, and Oughtred. The Elizabethan statutes re-
stricted liberty of thought and action in many ways, but, in spite of the
civil and religious disturbances of the early half of the 17th century the
mathematical school continued to grow. Horrox, Seth Ward, Foster,
Rooke, Gilbert Clerke, Pell, Wallis, Barrow, Dacres, and Morland may
be cited as prominent Cambridge mathematicians of the time.

Newton’s mathematical career dates from 1665; his reputation,
abilities, and influence attracted general attention to the subject. He
created a school of mathematics and mathematical physics, among
the earliest members of which I note the names of Laughton, Samuel
Clarke, Craig, Flamsteed, Whiston, Saunderson, Jurin, Taylor, Cotes,
and Robert Smith. Since then Cambridge has been regarded, as in
a special sense, the home of English mathematicians, and from 1706
onwards we have fairly complete accounts of the course of reading and
work of mathematical students there.

Until less than a century ago the form of the method of qualifying
for a degree remained substantially unaltered, but the subject-matter
of the discussions varied from time to time with the prevalent studies
of the place.

After the Renaissance some of the statutable exercises were “hud-
dled,” that is, were reduced to a mere form. To huddle an act, the proc-
tor generally asked some question such as Quid est nomen to which the
answer usually expected was Nescio. In these exercises considerable
license was allowed, particularly if there were any play on the words
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involved. For example, T. Brasse, of Trinity, was accosted with the
question, Quid est aes? to which he answered, Nescio nisi finis ex-
aminationis. It should be added that retorts such as these were only
allowed in the pretence exercises, and a candidate who in the actual
examination was asked to give a definition of happiness and replied
an exemption from Payne—that being the name of the moderator then
presiding—was plucked for want of discrimination in time and place. In
earlier years even the farce of huddling seems to have been unnecessary,
for it was said in 1675 that it was not uncommon for the proctors to
take “cautions for the performance of the statutable exercises, and ac-
cept the forfeit of the money so deposited in lieu of their performance.”

In medieval times acts had been usually kept on some scholastic
question or on a proposition taken from the Sentences. About the end
of the fifteenth century religious questions, such as the interpretation
of Biblical texts, began to be introduced, some fifty or sixty years later
the favourite subjects were drawn either from dogmatic theology or
from philosophy. In the seventeenth century the questions were usually
philosophical, but in the eighteenth century, under the influence of the
Newtonian school, a large proportion of them were mathematical.

Further details about these exercises and specimens of acts kept in
the 18th century are given in my History of Mathematics at Cambridge.
Here I will only say that they provided an admirable training in the
art of presenting an argument, and in dialectical skill in attack and
defence. The mental strain in a contested act was severe. De Morgan,
describing his act kept in 1826, wrote*,

I was badgered for two hours with arguments given and answered in
Latin,—or what we call Latin—against Newton’s first section, Lagrange’s
derived functions, and Locke on innate principles. And though I took
off everything, and was pronounced by the moderator to have disputed
magno honore, I never had such a strain of thought in my life. For the
inferior opponents were made as sharp as their betters by their tutors,
who kept lists of queer objections drawn from all quarters.

Had the language of the discussions been changed to English, as was
repeatedly urged from 1774 onwards, these exercises might have been
retained with advantage, but the barbarous Latin and the syllogistic
form in which they were carried on prejudiced their retention.

About 1830 a custom grew up for the respondent and opponents to
meet previously and arrange their arguments together. The discussions

* Budget of Paradoxes, by A. De Morgan, London, 1872, p. 305.
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then became an elaborate farce, and were a mere public performance
of what had been already rehearsed. Accordingly the moderators of
1839 took the responsibility of abandoning them. This action was
singularly high-handed, since a report of May 30, 1838, had recom-
mended that they should be continued, and there was no reason why
they should not have been reformed and retained as a useful feature
in the scheme of study.

On the result of the acts a list of those qualified to receive degrees
was drawn up. This list was not arranged strictly in order of merit,
because the proctors could insert names anywhere in it, but by the
beginning of the 18th century this power had become restricted to the
right reserved to the vice-chancellor, the senior regent, and each proctor
to place in the list one candidate anywhere he liked—a right which con-
tinued to exist till 1828, though it was not exercised after 1797. Subject
to the granting of these honorary degrees, this final list was arranged
in order of merit into wranglers and senior optimes, junior optimes,
and poll-men. The bachelors on receiving their degrees took seniority
according to their order on this list. The title wrangler is derived from
these contentious discussions; the title optime from the customary com-
pliment given by the moderator to a successful disputant, Domine. . . ,
optime disputasti, or even optime quidem disputasti , and the title of
poll-man from the description of this class as οÉ πολλοÐ.

The final exercises for the B.A. degree were never huddled, and
until 1839 were carried out strictly. University officials were responsi-
ble for approving the subject-matter of these acts. Stupid men offered
some irrefutable truism, but the ambitious student courted reputation
by affirming some paradox. Probably all honour men kept acts, but
poll-men were deemed to comply with the regulations by keeping op-
ponencies. The proctors were responsible for presiding at these acts, or
seeing that competent graduates did so. In and after 1649 two examin-
ers were specially appointed for this purpose. In 1680* these examiners
were appointed by the Senate with the title of moderator, and with the
joint stipend of four shillings for everyone graduating as B.A. during
their year of office. In 1688 the joint stipend of the moderators was
fixed at £40 a year. The moderators, like the proctors, were nominated
by the Colleges in rotation.

From the earliest times the proctors had the power of questioning

* See Grace of October 25, 1680.
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a candidate at the end of a disputation, and probably all candidates
for a degree attended the public schools on certain days to give an op-
portunity to the proctors, or any master that liked, to examine them*,
though the opportunity was not always used. Different candidates at-
tended on different days. Probably such examinations were conducted
in Latin. But soon after 1710† the moderators or proctors began the
custom of summoning on one day in January all candidates whom they
proposed to question. The examination was held in public, and from
it the Senate-House Examination arose. The examination at this time
did not last more than one day, and was, there can be no doubt, partly
on philosophy and partly on mathematics. It is believed that it was
always conducted in English, and it is likely that its rapid development
was largely due to this.

This introduction of a regular oral examination seems to have been
largely due to the fact that when, in 1710, George I gave the Ely library
to the University, it was decided to assign for its reception the old
Senate-House—now the Catalogue Room in the Library—and to build
a new room for the meetings of the Senate. Pending the building of the
new Senate-House the books were stored in the Schools. As the Schools
were thus rendered unavailable for keeping acts, considerable difficulty
was found in arranging for all the candidates to keep the full number
of statutable exercises, and thus obtaining opportunities to compare
them one with another: hence the introduction of a supplementary
oral examination. The advantages of this examination as providing a
ready means of testing the knowledge and abilities of the candidates
were so patent that it was retained when the necessity for some system
of the kind had passed away, and finally it became systematized into
an organized test to which all questionists were subjected.

In 1731 the University raised the joint stipend of the moderators
to £60 “in consideration of their additional trouble in the Lent Term.”
This would seem to indicate that the Senate-House Examination had
then taken formal shape, and perhaps that a definite scheme for its
conduct had become customary.

* Ex. gr. see De la Pryme’s account of his graduation in 1694, Surtees Society,
vol. liv, 1870, p. 32.

† W. Reneu, in his letters of 1708–1710 describing the course for the B.A. degree,
makes no mention of the Senate-House examination, and I think it is a reasonable
inference that it had not then been established.
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As long as the order of the list of those approved for degrees was
settled on the result of impressions derived from acts kept by the dif-
ferent candidates at different times and on different subjects, it was
impossible to arrange the men in strict order of merit, nor was much
importance attached to the order. But, with the introduction of an
examination of all the candidates on one day, much closer attention
was paid to securing a strict order of merit, and more confidence was
felt in the published order. It seems to have been consequent on this
that in and after 1747 the final lists were freely circulated, and it was
further arranged that the names of the honorary optimes should be
indicated. In the lists given in the Calendars issued subsequent to 1799
these names are struck out. It is only in exceptional cases that we are
acquainted with the true order for the earlier tripos lists, but in a few
cases the relative positions of the candidates are known; for example,
in 1680 Bentley came out as third though he was put down as sixth
in the list of wranglers.

Of the detailed history of the examination until the middle of the
eighteenth century we know nothing. From 1750 onwards, however, we
have more definite accounts of it. At this time, it would seem that all
the men from each College were taken together as a class, and questions
passed down by the proctors or moderators till they were answered: but
the examination remained entirely oral, and technically was regarded
as subsidiary to the discussions which had been previously held in the
schools. As each class contained men of very different abilities a custom
grew up by which every candidate was liable to be taken aside to be
questioned by any M.A. who wished to do so, and this was regarded as
an important part of the examination. The subjects were mathematics
and philosophy. The examination now continued for two days and a
half. At the conclusion of the second day the moderators received the
reports of those masters of arts who had voluntarily taken part in the
examination, and provisionally settled the final list; while the last half-
day was used in revising and re-arranging the order of merit.

Richard Cumberland has left an account of the tests to which he
was subjected when he took his B.A. degree in 1751. Clearly the dis-
putations still played an important part, and it is difficult to say what
weight was attached to the subsequent Senate-House examination; his
reference to it is only of a general character. After saying that he kept
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two acts and two opponencies he continues*:
The last time I was called upon to keep an act in the schools I sent

in three questions to the Moderator, which he withstood as being all
mathematical, and required me to conform to the usage of proposing one
metaphysical question in the place of that, which I should think fit to
withdraw. This was ground I never liked to take, and I appealed against
his requisition: the act was accordingly put by till the matter of right
should be ascertained by the statutes of the university, and in the result
of that enquiry it was given for me, and my question stood. . . . I yielded
now to advice, and paid attention to my health, till we were cited to the
senate house to be examined for our Bachelor’s degree. It was hardly ever
my lot during that examination to enjoy any respite. I seemed an object
singled out as every man’s mark, and was kept perpetually at the table
under the process of question and answer.

It was found possible by means of the new examination to differen-
tiate the better men more accurately than before; and accordingly, in
1753, the first class was subdivided into two, called respectively wran-
glers and senior optimes, a division which is still maintained.

The semi-official examination by M.A.s was regarded as the more
important part of the test, and the most eminent residents in the Uni-
versity took part in it. Thus John Fenn, of Caius, 5th wrangler in
1761, writes†:

On the following Monday, Tuesday, and Wednesday, we sat in the
Senate-house for public examination; during this time I was officially ex-
amined by the Proctors and Moderators, and had the honor of being taken
out for examination by Mr Abbot, the celebrated mathematical tutor of
St John’s College, by the eminent professor of mathematics Mr Waring,
of Magdalene, and by Mr Jebb of Peterhouse, a man thoroughly versed
in the academical studies.

This irregular examination by any master who chose to take part in it
constantly gave rise to accusations of partiality.

In 1763 the traditional rules for the conduct of the examination
took more definite shape. Henceforth the examiners used the disputa-
tions only as a means of classifying the men roughly. On the result of
their “acts,” and probably partly also of their general reputation, the
candidates were divided into eight classes, each arranged in alphabet-
ical order. The subsequent position of the men in the class was deter-
mined solely by the Senate-House examination. The first two classes

* Memoirs of Richard Cumberland, London, 1806, pp. 78, 79.
† Quoted by C. Wordsworth, Scholae Academicae, Cambridge, 1877, pp. 30–31.
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comprised all who were expected to be wranglers, the next four classes
included the other candidates for honours, and the last two classes con-
sisted of poll-men only. Practically anyone placed in either of the first
two classes was allowed, if he wished, to take an aegrotat senior optime,
and thus escape all further examination: this was called gulphing it.
All the men from one College were no longer taken together, but each
class was examined separately and vivâ voce; and hence, since all the
students comprised in each class were of about equal attainments, it
was possible to make the examination more effective. Richard Watson,
of Trinity, claimed that this change was made by him when acting as
moderator in 1763. He says*:

There was more room for partiality. . . then [i.e. in 1759] than there is
now; and I attribute the change, in a great degree, to an alteration which
I introduced the first year I was moderator [i.e. in 1763], and which has
been persevered in ever since. At the time of taking their Bachelor of
Arts’ degree, the young men are examined in classes, and the classes are
now formed according to the abilities shown by individuals in the schools.
By this arrangement, persons of nearly equal merits are examined in the
presence of each other, and flagrant acts of partiality cannot take place.
Before I made this alteration, they were examined in classes, but the
classes consisted of members of the same College, and the best and worst
were often examined together.

It is probable that before the examination in the Senate-House began
a candidate, if manifestly placed in too low a class, was allowed the
privilege of challenging the class to which he was assigned. Perhaps
this began as a matter of favour, and was only granted in exceptional
cases, but a few years later it became a right which every candidate
could exercise; and I think that it is partly to its development that
the ultimate predominance of the tripos over the other exercises for
the degree is due.

In the same year, 1763, it was decided that the relative position
of the senior and second wranglers, namely, Paley, of Christ’s, and
Frere, of Caius, was to be decided by the Senate-House examination
and not by the disputations. Henceforward distinction in the Senate-
House examination was regarded as the most important honour open
to undergraduates.

In 1768 Dr Smith, of Trinity College, founded prizes for mathe-
matics and natural philosophy open to two commencing bachelors. The

* Anecdotes of the Life of Richard Watson by Himself, London, 1817, pp. 18, 19.
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examination followed immediately after the Senate-House examination,
and the distinction, being much coveted, tended to emphasize the math-
ematical side of the normal University education of the best men. Since
1883 the prizes have been awarded on the result of dissertations*.

Until now the Senate-House examination had been oral, but about
this time, circ. 1770, it began to be the custom to dictate some or
all of the questions and to require answers to be written. Only one
question was dictated at a time, and a fresh one was not given out
until some student had solved that previously read: a custom which
by causing perpetual interruptions to take down new questions must
have proved very harassing. We are perhaps apt to think that an ex-
amination conducted by written papers is so natural that the custom
is of long continuance, but I know no record of any in Europe earlier
than the eighteenth century. Until 1830 the questions for the Smith’s
Prize were dictated.

The following description of the Senate-House examination as it
existed in 1772 is given by Jebb†.

The moderators, some days before the arrival of the time prescribed
by the vice-chancellor, meet for the purpose of forming the students into
divisions of six, eight, or ten, according to their performance in the schools,
with a view to the ensuing examination.

Upon the first of the appointed days, at eight o’clock in the morning,
the students enter the senate-house, preceded by a master of arts from
each college, who. . . is called the “father” of the college. . .

After the proctors have called over the names, each of the moderators
sends for a division of the students: they sit with him round a table, with
pens, ink, and paper, before them: he enters upon his task of examination,
and does not dismiss the set till the hour is expired. This examination
has now for some years been held in the english language.

The examination is varied according to the abilities of the students.
The moderator generally begins with proposing some questions from the
six books of Euclid, plain trigonometry, and the first rules of algebra.
If any person fails in an answer, the question goes to the next. From
the elements of mathematics, a transition is made to the four branches
of philosophy, viz. mechanics, hydrostatics, apparent astronomy, and op-
tics, as explained in the works of Maclaurin, Cotes, Helsham, Hamil-
ton, Rutherforth, Keill, Long, Ferguson, and Smith. If the moderator
finds the set of questionists, under examination, capable of answering

* See Grace of October 25, 1885; and the Cambridge University Reporter, October
23 and 30, 1883.

† The Works of J. Jebb, London, 1787, vol. ii, pp. 290–297.
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him, he proceeds to the eleventh and twelfth books of Euclid, conic sec-
tions, spherical trigonometry, the higher parts of algebra, and sir Isaac
Newton’s Principia; more particularly those sections, which treat of the
motion of bodies in eccentric and revolving orbits; the mutual action of
spheres, composed of particles attracting each other according to various
laws; the theory of pulses, propagated through elastic mediums; and the
stupendous fabric of the world. Having closed the philosophical examina-
tion, he sometimes asks a few questions in Locke’s Essay on the human
understanding, Butler’s Analogy, or Clarke’s Attributes. But as the high-
est academical distinctions are invariably given to the best proficients
in mathematics and natural philosophy, a very superficial knowledge in
morality and metaphysics will suffice.

When the division under examination is one of the highest classes,
problems are also proposed, with which the student retires to a distant
part of the senate-house; and returns, with his solution upon paper, to
the moderator, who, at his leisure, compares it with the solutions of other
students, to whom the same problems have been proposed.

The extraction of roots, the arithmetic of surds, the invention of divis-
ers, the resolution of quadratic, cubic, and biquadratic equations; together
with the doctrine of fluxions, and its application to the solution of ques-
tions “de maximis et minimis,” to the finding of areas, to the rectification
of curves, the investigation of the centers of gravity and oscillation, and to
the circumstances of bodies, agitated, according to various laws, by cen-
tripetal forces, as unfolded, and exemplified, in the fluxional treatises of
Lyons, Saunderson, Simpson, Emerson, Maclaurin, and Newton, generally
form the subject matter of these problems.

When the clock strikes nine, the questionists are dismissed to break-
fast: they return at half past nine, and stay till eleven; they go in again
at half past one, and stay till three; and, lastly, they return at half-past
three, and stay till five.

The hours of attendance are the same upon the subsequent day.
On the third day they are finally dismissed at eleven.
During the hours of attendance, every division is twice examined in

form, once by each of the moderators, who are engaged for the whole time
in this employment.

As the questionists are examined in divisions of only six or eight at a
time, but a small portion of the whole number is engaged, at any partic-
ular hour, with the moderators; and, therefore, if there were no further
examination, much time would remain unemployed.

But the moderator’s inquiry into the merits of the candidates forms
the least material part of the examination.

The “fathers” of the respective colleges, zealous for the credit of the
societies, of which they are the guardians, are incessantly employed in
examining those students, who appear most likely to contest the palm of
glory with their sons.

This part of the process is as follows:
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The father of a college takes a student of a different college aside, and,
sometimes for an hour and an half together, strictly examines him in every
part of mathematics and philosophy, which he professes to have read.

After he hath, from this examination, formed an accurate idea of the
student’s abilities and acquired knowledge, he makes a report of his ab-
solute or comparative merit to the moderators, and to every other father
who shall ask him the question.

Besides the fathers, all masters of arts, and doctors, of whatever faculty
they be, have the liberty of examining whom they please; and they also
report the event of each trial, to every person who shall make the inquiry.

The moderators and fathers meet at breakfast, and at dinner. From
the variety of reports, taken in connection with their own examination, the
former are enabled, about the close of the second day, so far to settle the
comparative merits of the candidates, as to agree upon the names of four-
and-twenty, who to them appear most deserving of being distinguished by
marks of academical approbation.

These four-and-twenty [wranglers and senior optimes] are recom-
mended to the proctors for their private examination; and, if approved
by them, and no reason appears against such placing of them from any
subsequent inquiry, their names are set down in two divisions, according
to that order, in which they deserve to stand; are afterwards printed; and
read over upon a solemn day, in the presence of the vice-chancellor, and
of the assembled university.

The names of the twelve [junior optimes], who, in the course of the
examination, appear next in desert, are also printed, and are read over, in
the presence of the vice-chancellor, and of the assembled university, upon
a day subsequent to the former. . .

The students, who appear to have merited neither praise nor censure,
[the poll-men], pass unnoticed: while those, who have taken no pains to
prepare themselves for the examination, and have appeared with discredit
in the schools, are distinguished by particular tokens of disgrace.

Jebb’s statement about the number of wranglers and senior optimes
is only approximate.

It may be added that it was now frankly recognized that the exam-
ination was competitive*. Also that though it was open to any member
of the Senate to take part in it, yet the determination of the relative
merit of the students was entirely in the hands of the moderators†. Al-
though the examination did not occupy more than three days it must
have been a severe physical trial to anyone who was delicate. It was
held in winter and in the Senate-House. That building was then noted

* “Emulation, which is the principle upon which the plan is constructed.” The
Works of J. Jebb, London, 1787, vol. iii, p. 261.

† The Works of J. Jebb, London, 1787, vol. iii, p. 272.
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for its draughts, and was not warmed in any way: and according to
tradition, on one occasion the candidates on entering in the morning
found the ink in the pots on their desks frozen.

The University was not altogether satisfied* with the scheme in
force, and in 1779† the scheme of examination was amended in various
respects. In particular the examination was extended to four days, a
third day being given up entirely to natural religion, moral philosophy,
and Locke. It was further announced‡ that a candidate would not re-
ceive credit for advanced subjects unless he had satisfied the examiners
in Euclid and elementary Natural Philosophy.

A system of brackets or “classes quam minimae” was now intro-
duced. Under this system the examiners issued on the morning of the
fourth day a provisional list of men who had obtained honours, with
the names of those of about equal merit bracketed, and that day was
devoted to arranging the names in each bracket in order of merit: the
examiners being given explicit authority to invite the assistance of oth-
ers in this work. Whether at this time a candidate could request to be
re-examined with the view of being moved from one bracket to another
is uncertain, but later this also was allowed.

Under the scheme of 1779 also the number of examiners was in-
creased to four, the moderators of one year becoming, as a matter
of course, the examiners of the next. Thus of the four examiners in
each year, two had taken part in the examination of the previous year,
and the continuity of the system of examination was maintained. The
names of the moderators appear on the tripos lists, but the names of
the examiners were not printed on the lists till some years later.

The right of any M.A. to take part in the examination was not
affected, though henceforth it was exercised more sparingly, and I be-
lieve was not insisted on after 1785. But it became a regular custom
for the moderators to invite particular M.A.s to examine and compare
specified candidates. Milner, of Queens’, was constantly asked to assist
in this way.

It was not long before it became an established custom that a
candidate, who was dissatisfied with the class in which he had been
placed as the result of his disputations, might challenge it before the

* See Graces of July 5, 1773, and of February 17, 1774.
† See Graces of March 19, 20, 1779.
‡ Notice issued by the Vice-Chancellor, dated May 19, 1779.
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examination began. This power seems to have been used but rarely; it
was, however, a recognition of the fact that a place in the tripos list
was to be determined by the Senate-House examination alone, and the
examiners soon acquired the habit of settling the preliminary classes
without exclusive reference to the previous disputations.

The earliest papers actually set in the Senate-House, and now ex-
tant, are two problem papers set in 1785 and 1786 by W. Hodson, of
Trinity, then a proctor. The autograph copies from which he gave out
the questions were luckily preserved, and are in the library* of Trinity
College. They must be almost the last problem papers which were dic-
tated, instead of being printed and given as a whole to the candidates.

The problem paper in 1786 was as follows:

1. To determine the velocity with which a Body must be thrown, in a direc-
tion parallel to the Horizon, so as to become a secondary planet to the Earth; as
also to describe a parabola, and never return.

2. To demonstrate, supposing the force to vary as
1

D2
, how far a body must

fall both within and without the Circle to acquire the Velocity with which a body
revolves in a Circle.

3. Suppose a body to be turned (sic) upwards with the Velocity with which
it revolves in an Ellipse, how high will it ascend? The same is asked supposing it
to move in a parabola.

4. Suppose a force varying first as
1

D3
, secondly in a greater ratio than

1

D2

but less than
1

D3
, and thirdly in a less ratio than

1

D2
, in each of these Cases to

determine whether at all, and where the body parting from the higher Apsid will
come to the lower.

5. To determine in what situation of the moon’s Apsid they go most forwards,
and in what situation of her Nodes the Nodes go most backwards, and why?

6. In the cubic equation x3 + qx + r = 0 which wants the second term;
supposing x = a + b and 3ab = −q, to determine the value of x.

7. To find the fluxion of xr × (yn + zm)1/q.

8. To find the fluent of
aẋ

a+ x
.

9. To find the fluxion of the mth power of the Logarithm of x.
10. Of right-angled Triangles containing a given Area to find that whereof

the sum of the two legs AB + BC shall be the least possible. [This and the two
following questions are illustrated by diagrams. The angle at B is the right angle.]

11. To find the Surface of the Cone ABC. [The cone is a right one on a
circular base.]

12. To rectify the arc DB of the semicircle DBV .

* The Challis Manuscripts, iii, 61.
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In cases of equality in the Senate-House examination the acts were
still taken into account in settling the tripos order: and in 1786 when
the second, third, and fourth wranglers came out equal in the exami-
nation a memorandum was published that the second place was given
to that candidate who dialectis magis est versatus, and the third place
to that one who in scholis sophistarum melius disputavit.

There seem to have been considerable intervals in the examination
by the moderators, and the examinations by the extraneous examin-
ers took place in these intervals. Those candidates who at any time
were not being examined occupied themselves with amusements, pro-
vided they were not too boisterous and obvious: probably dice and
cards played a large part in them. Gunning in an amusing account of
his examination in 1788 talks of games with a teetotum* in which he
took part on the Wednesday (when Locke and Paley formed the sub-
jects of examination), but “which was carried on with great spirit. . . by
considerable numbers during the whole of the examination.”

About this time, 1790, the custom of printing the problem papers
was introduced, but until 1828 the other papers continued to be dic-
tated. Since 1827 all the papers have been printed.

I insert here the following letter† from William Gooch, of Caius,
in which he describes his examination in the Senate-House in 1791. It
must be remembered that it is the letter of an undergraduate addressed
to his father and mother, and was not intended either for preservation
or publication: a fact which certainly does not detract from its value.

Monday 1
4 aft. 12.

We have been examin’d this Morning in pure Mathematics & I’ve
hitherto kept just about even with Peacock which is much more than I
expected. We are going at 1 o’clock to be examin’d till 3 in Philosophy.

From 1 till 7 I did more than Peacock; But who did most at Modera-
tor’s Rooms this Evening from 7 till 9, I don’t know yet;—but I did above
three times as much as the Senr Wrangler last year, yet I’m afraid not so
much as Peacock.

Between One & three o’Clock I wrote up 9 sheets of Scribbling Paper
so you may suppose I was pretty fully employ’d.

Tuesday Night.
I’ve been shamefully us’d by Lax to-day;—Tho’ his anxiety for Peacock

must (of course) be very great, I never suspected that his Partially (sic)
wd get the better of his Justice. I had entertain’d too high an opinion of

* H. Gunning, Reminiscences, second edition, London, 1855, vol. i, p. 82.
† C. Wordsworth, Scholae Academicae, Cambridge, 1877, pp. 322–23.
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him to suppose it.—he gave Peacock a long private Examination & then
came to me (I hop’d) on the same subject, but ’twas only to Bully me
as much as he could,—whatever I said (tho’ right) he tried to convert
into Nonsense by seeming to misunderstand me. However I don’t entirely
dispair of being first, tho’ you see Lax seems determin’d that I shall not.—I
had no Idea (before I went into the Senate-House) of being able to contend
at all with Peacock.

Wednesday evening.
Peacock & I are still in perfect Equilibrio & the Examiners themselves

can give no guess yet who is likely to be first;—a New Examiner (Wood of
St. John’s, who is reckon’d the first Mathematician in the University, for
Waring doesn’t reside) was call’d solely to examine Peacock & me only.—
but by this new Plan nothing is yet determin’d.—So Wood is to examine
us again to-morrow morning.

Thursday evening.
Peacock is declar’d first & I second,—Smith of this Coll. is either 8th

or 9th & Lucas is either 10th or 11th.—Poor Quiz Carver is one of the οÉ

πολλοÐ;—I’m perfectly satisfied that the Senior Wranglership is Peacock’s
due, but certainly not so very indisputably as Lax pleases to represent
it—I understand that he asserts ’twas 5 to 4 in Peacock’s favor. Now
Peacock & I have explain’d to each other how we went on, & can prove
indisputably that it wasn’t 20 to 19 in his favor;—I cannot therefore be
displeas’d for being plac’d second, tho’ I’m provov’d (sic) with Lax for
his false report (so much beneath the Character of a Gentleman.)—

N.B. it is my very particular Request that you don’t mention Lax’s
behaviour to me to any one.

Such was the form ultimately taken by the Senate-House exami-
nation, a form which it substantially retained without alteration for
nearly half-a-century. It soon became the sole test by which candidates
were judged. The University was not obliged to grant a degree to any-
one who performed the statutable exercises, and it was open to the
University to refuse to pass a supplicat for the B.A. degree unless the
candidate had presented himself for the Senate-House examination. In
1790 James Blackburn, of Trinity, a questionist of exceptional abilities,
was informed that in spite of his good disputations he would not be
allowed a degree unless he also satisfied the examiners in the tripos.
He accordingly solved one “very hard problem,” though in consequence
of a dispute with the authorities he refused to attempt any more.*

It will be recollected that the examination was now compulsory on
all candidates pursuing the normal course for the B.A. degree. In 1791

* Gunning, Reminiscences, second edition, London, 1855, vol. i, p. 182.
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the University laid down rules* for its conduct, so far as it concerned
poll-men, decreeing that those who passed were to be classified in four
divisions or classes, the names in each class to be arranged alphabet-
ically, but not to be printed on the official tripos lists. The classes in
the final lists must be distinguished from the eight preliminary classes
issued before the commencement of the examination. The men in the
first six preliminary classes were expected to take honours; those in the
seventh and eighth preliminary classes were primâ facie poll-men.

In 1799 the moderators announced† that for the future they would
require every candidate to show a competent knowledge of the first
book of Euclid, arithmetic, vulgar and decimal fractions, simple and
quadratic equations, and Locke and Paley. Paley’s works seem to be
held in esteem by modern divines, and his Evidences, though not his
Philosophy, still remains (1905) one of the subjects of the Previous Ex-
amination, but his contemporaries thought less highly of his writings,
or at any rate of his Philosophy. Thus Best is quoted by Wordsworth‡

as saying of Paley’s Philosophy, “The tutors of Cambridge no doubt
neutralize by their judicious remarks, when they read it to their pupils,
all that is pernicious in its principles”: so also Richard Watson, Bishop
of Llandaff, in his anecdotal autobiography§, says, in describing the
Senate-House examination in which Paley was senior wrangler, that
Paley was afterwards known to the world by many excellent produc-
tions, “though there are some. . . principles in his philosophy which I by
no means approve.”

In 1800 the moderators extended to all men in the first four pre-
liminary classes the privilege of being allowed to attempt the problem
papers: hitherto this privilege had been confined to candidates placed
in the first two classes. Until 1828 the problem papers were set in the
evenings, and in the rooms of the moderator.

The University Calendars date from 1796, and from 1802 to 1882
inclusive contain the printed tripos papers of the previous January. The
papers from 1801 to 1820 and from 1838 to 1849 inclusive were also
published in separate volumes, which are to be found in most public
libraries. No problems were ever set to the men in the seventh and

* See Grace of April 8, 1791.
† Communicated by the moderators to fathers of Colleges on January 18, 1799,

and agreed to by the latter.
‡ C. Wordsworth, Scholae Academicae, Cambridge, 1877, p. 123.
§ Anecdotes of the Life of R. Watson, London, 1817, p. 19.
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eighth preliminary classes, which contained the poll-men. None of the
bookwork papers of this time are now extant, but it is believed that they
contained but few riders. Many of the so-called problems were really
pieces of bookwork or easy riders: it must however be remembered
that the text-books then in circulation were inferior and incomplete as
compared with modern ones.

The Calendar of 1802 contains a diffuse account of the examination.
It commences as follows:

On the Monday morning, a little before eight o’clock, the students,
generally about a hundred, enter the Senate-House, preceded by a master
of arts, who on this occasion is styled the father of the College to which
he belongs. On two pillars at the entrance of the Senate-House are hung
the classes and a paper denoting the hours of examination of those who
are thought most competent to contend for honours. Immediately after
the University clock has struck eight, the names are called over, and the
absentees, being marked, are subject to certain fines. The classes to be
examined are called out, and proceed to their appointed tables, where they
find pens, ink, and paper provided in great abundance. In this manner,
with the utmost order and regularity, two-thirds of the young men are
set to work within less than five minutes after the clock has struck eight.
There are three chief tables, at which six examiners preside. At the first,
the senior moderator of the present year and the junior moderator of the
preceding year. At the second, the junior moderator of the present and
the senior moderator of the preceding year. At the third, two moderators
of the year previous to the two last, or two examiners appointed by the
Senate. The two first tables are chiefly allotted to the six first classes; the
third, or largest, to the οÉ πολλοÐ.

The young men hear the propositions or questions delivered by the
examiners; they instantly apply themselves; demonstrate, prove, work out
and write down, fairly and legibly (otherwise their labour is of little avail)
the answers required. All is silence; nothing heard save the voice of the
examiners; or the gentle request of some one, who may wish a repetition of
the enunciation. It requires every person to use the utmost dispatch; for
as soon as ever the examiners perceive anyone to have finished his paper
and subscribed his name to it another question is immediately given. . .

The examiners are not seated, but keep moving round the tables, both
to judge how matters proceed and to deliver their questions at proper
intervals. The examination, which embraces arithmetic, algebra, flux-
ions, the doctrine of infinitesimals and increments, geometry, trigonom-
etry, mechanics, hydrostatics, optics, and astronomy, in all their various
gradations, is varied according to circumstances: no one can anticipate a
question, for in the course of five minutes he may be dragged from Euclid
to Newton, from the humble arithmetic of Bonnycastle to the abstruse
analytics of Waring. While this examination is proceeding at the three
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tables between the hours of eight and nine, printed problems are delivered
to each person of the first and second classes; these he takes with him to
any window he pleases, where there are pens, ink, and paper prepared for
his operations.

The examination began at eight. At nine o’clock the papers had to
be given up, and half-an-hour was allowed for breakfast. At half-past
nine the candidates came back, and were examined in the way described
above till eleven, when the Senate-House was again cleared. An interval
of two hours then took place. At one o’clock all returned to be again
examined. At three the Senate-House was cleared for half-an-hour,
and, on the return of the candidates, the examination was continued
till five. At seven in the evening the first four classes went to the senior
moderator’s rooms to solve problems. They were finally dismissed for
the day at nine, after eight hours of examination. The work of Tuesday
was similar to that of Monday: Wednesday was partly devoted to logic
and moral philosophy. At eight o’clock on Thursday morning a first
list was published with all candidates of about equal merits bracketed.
Until nine o’clock a candidate had the right to challenge anyone above
him to an examination to see which was the better. At nine a second
list came out, and a candidate’s right of challenge was then confined to
the bracket immediately above his own. If he proved himself the equal
of the man so challenged his name was transferred to the upper bracket.
To challenge and then to fail to substantiate the claim to removal to
a higher bracket was considered rather ridiculous. Revised lists were
published at 11 a.m., 3 p.m., and 5 p.m., according to the results of
the examination during that day. At five the whole examination ended.
The proctors, moderators, and examiners then retired to a room under
the Public Library to prepare the list of honours, which was sometimes
settled without much difficulty in a few hours, but sometimes not before
2 a.m. or 3 a.m. the next morning. The name of the senior wrangler
was generally announced at midnight, and the rest of the list the next
morning. In 1802 there were eighty-six candidates for honours, and
they were divided into fifteen brackets, the first and second brackets
containing each one name only, and the third bracket four names.

It is clear from the above account that the competition fostered by
the examination had developed so much as to threaten to impair its
usefulness as guiding the studies of the men. On the other hand, there
can be no doubt that the carefully devised arrangements for obtaining
an accurate order of merit stimulated the best men to throw all their
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energies into the work for the examination. It is easy to point out the
usual double-edged result of a strict order of merit. The problem before
the University was to retain its advantages while checking any abuses
to which it might lead.

It was the privilege of the moderators to entertain the proctors
and some of the leading resident mathematicians the night before the
issue of the final list, and to communicate that list in confidence to
their guests. This pleasant custom survived till 1884. I revived the
practice in 1890 when acting as senior moderator, but it seems to have
now ceased.

In 1806 Sir Frederick Pollock was senior wrangler, and in 1869 in
answer to an appeal from De Morgan for an account of the mathemat-
ical study of men at the beginning of the century he wrote a letter*

which is sufficiently interesting to bear reproduction:

I shall write in answer to your inquiry, all about my books, my studies,
and my degree, and leave you to settle all about the proprieties which my
letter may give rise to, as to egotism, modesty, &c. The only books I read
the first year were Wood’s Algebra (as far as quadratic equations), Bon-
nycastle’s ditto, and Euclid (Simpson’s). In the second year I read Wood
(beyond quadratic equations), and Wood and Vince, for what they called
the branches. In the third year I read the Jesuit’s Newton and Vince’s
Fluxions; these were all the books, but there were certain mss. floating
about which I copied—which belonged to Dealtry, second wrangler in
Kempthorne’s year. I have no doubt that I had read less and seen fewer
books than any senior wrangler of about my time, or any period since;
but what I knew I knew thoroughly, and it was completely at my fingers’
ends. I consider that I was the last geometrical and fluxional senior wran-
gler; I was not up to the differential calculus, and never acquired it. I
went up to college with a knowledge of Euclid and algebra to quadratic
equations, nothing more; and I never read any second year’s lore during
my first year, nor any third year’s lore during my second; my forte was,
that what I did know I could produce at any moment with perfect ac-
curacy. I could repeat the first book of Euclid word by word and letter
by letter. During my first year I was not a ‘reading ’ man (so called); I
had no expectation of honours or a fellowship, and I attended all the lec-
tures on all subjects—Harwood’s anatomical, Woollaston’s chemical, and
Farish’s mechanical lectures—but the examination at the end of the first
year revealed to me my powers. I was not only in the first class, but it was
generally understood I was first in the first class; neither I nor any one for
me expected I should get in at all. Now, as I had taken no pains to pre-
pare (taking, however, marvellous pains while the examination was going

* Memoir of A. de Morgan, London, 1882, pp. 387–392.
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on), I knew better than any one else the value of my examination qualities
(great rapidity and perfect accuracy); and I said to myself, ‘If you’re not
an ass, you’ll be senior wrangler;’ and I took to ‘reading’ accordingly. A
curious circumstance occurred when the Brackets came out in the Senate-
house declaring the result of the examination: I saw at the top the name
of Walter bracketed alone (as he was); in the bracket below were Fiott,
Hustler , Jephson. I looked down and could not find my own name till I
got to Bolland, when my pride took fire, and I said, ‘I must have beaten
that man, so I will look up again;’ and on looking up carefully I found the
nail had been passed through my name, and I was at the top bracketed
alone, even above Walter. You may judge what my feelings were at this
discovery; it is the only instance of two such brackets, and it made my
fortune—that is, made me independent, and gave me an immense college
reputation. It was said I was more than half of the examination before any
one else. The two moderators were Hornbuckle, of St John’s, and Brown
(Saint Brown), of Trinity. The Johnian congratulated me. I said perhaps
I might be challenged; he said, ‘Well, if you are you’re quite safe—you
may sit down and do nothing, and no one would get up to you in a whole
day.’. . .

Latterly the Cambridge examinations seem to turn upon very different
matters from what prevailed in my time. I think a Cambridge education
has for its object to make good members of society—not to extend science
and make profound mathematicians. The tripos questions in the Senate-
house ought not to go beyond certain limits, and geometry ought to be
cultivated and encouraged much more than it is.

To this De Morgan replied:

Your letter suggests much, because it gives possibility of answer. The
branches of algebra of course mainly refer to the second part of Wood,
now called the theory of equations. Waring was his guide. Turner—
whom you must remember as head of Pembroke, senior wrangler of 1767—
told a young man in the hearing of my informant to be sure and attend
to quadratic equations. ‘It was a quadratic,’ said he, ‘made me senior
wrangler.’ It seems to me that the Cambridge revivers were Waring,
Paley, Vince, Milner.

You had Dealtry’s mss. He afterwards published a very good book
on fluxions. He merged his mathematical fame in that of a Claphamite
Christian. It is something to know that the tutor’s ms. was in vogue in
1800–1806.

Now—how did you get your conic sections? How much of Newton did
you read? From Newton direct, or from tutor’s manuscript?

Surely Fiott was our old friend Dr Lee. I missed being a pupil of
Hustler by a few weeks. He retired just before I went up in February
1823. The echo of Hornbuckle’s answer to you about the challenge has
lighted on Whewell, who, it is said, wanted to challenge Jacob, and was
answered that he could not beat [him] if he were to write the whole day
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and the other wrote nothing. I do not believe that Whewell would have
listened to any such dissuasion.

I doubt your being the last fluxional senior wrangler. So far as I know,
Gipps, Langdale, Alderson, Dicey, Neale, may contest this point with you.

The answer of Sir Frederick Pollock to these questions is dated
August 7, 1869, and is as follows.

You have put together as revivers five very different men. Woodhouse
was better than Waring, who could not prove Wilson’s (Judge of C.P.)
guess about the property of prime numbers; but Woodhouse (I think) did
prove it, and a beautiful proof it is. Vince was a bungler, and I think
utterly insensible of mathematical beauty.

Now for your questions. I did not get my conic sections from Vince.
I copied a ms. of Dealtry. I fell in love with the cone and its sections,
and everything about it. I have never forsaken my favourite pursuit; I
delighted in such problems as two spheres touching each other and also
the inside of a hollow cone, &c. As to Newton, I read a good deal (men
now read nothing), but I read much of the notes. I detected a blunder
which nobody seemed to be aware of. Tavel, tutor of Trinity, was not;
and he argued very favourably of me in consequence. The application
of the Principia I got from mss. The blunder was this: in calculating
the resistance of a globe at the end of a cylinder oscillating in a resisting
medium they had forgotten to notice that there is a difference between
the resistance to a globe and a circle of the same diameter.

The story of Whewell and Jacob cannot be true. Whewell was a very,
very considerable man, I think not a great man. I have no doubt Jacob
beat him in accuracy, but the supposed answer cannot be true; it is a mere
echo of what actually passed between me and Hornbuckle on the day the
Tripos came out—for the truth of which I vouch. I think the examiners
are taking too practical a turn; it is a waste of time to calculate actually
a longitude by the help of logarithmic tables and lunar observations. It
would be a fault not to know how, but a greater to be handy at it.

A few minor changes in the Senate-House examinations were made
in 1808*. A fifth day was added to the examination. Of the five days
thus given up to it three were devoted to mathematics, one to logic,
philosophy, and religion, and one to the arrangement of the brackets.
Apart from the evening paper the examination on each of the first three
days lasted six hours. Of these eighteen hours, eleven were assigned to
book-work and seven to problems. The problem papers were set from
6 to 10 in the evening.

* See Graces, December 15, 1808.
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A letter from Whewell dated January 19, 1816, describes his ex-
amination in the Senate-House*.

Jacob. Whewell. Such is the order in which we are fixed after a week’s
examination. . . I had before been given to understand that a great deal
depended upon being able to write the greatest possible quantity in the
smallest time, but of the rapidity which was actually necessary I had
formed the most distant idea. I am upon no occasion a quick writer, and
upon subjects where I could not go on without sometimes thinking a little
I soon found myself considerably behind. I was therefore surprised, and
even astonished, to find myself bracketed off, as it is called, in the second
place; that is, on the day when a new division of the classes is made for
the purpose of having a closer examination of the respective merits of men
who come pretty near to each other, I was not classed with anybody, but
placed alone in the second bracket. The man who is at the head of the
list is of Caius College, and was always expected to be very high, though
I do not know that anybody expected to see him so decidedly superior as
to be bracketed off by himself.

The tendency to cultivate mechanical rapidity was a grave evil, and
lasted long after Whewell’s time. According to rumour the highest
honours in 1845 were obtained, to the general regret of the University,
by assiduous practice in writing†.

The devotion of the Cambridge school to geometrical and fluxional
methods has led to its isolation from contemporary continental mathe-
maticians. Early in the nineteenth century the evil consequence of this
began to be recognized; and it was felt to be little less than a scandal
that the researches of Lagrange, Laplace, and Legendre were unknown
to many Cambridge mathematicians save by repute. An attempt to
explain the notation and methods of the calculus as used on the Conti-
nent was made by R. Woodhouse, who stands out as the apostle of the
new movement. It is doubtful if he could have brought analytical meth-
ods into vogue by himself; but his views were enthusiastically adopted
by three students, Peacock, Babbage, and Herschel, who succeeded in
carrying out the reforms he had suggested. They created an Analytical
Society which Babbage explained was formed to advocate “the princi-
ples of pure d-ism as opposed to the dot-age of the University.” The
character of the instruction in mathematics at the University has at all

* S. Douglas, Life of W. Whewell, London, 1881, p. 20.
† For a contemporary account of this see C.A. Bristed, Five Years in an English

University, New York, 1852, pp. 233–239.
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times largely depended on the text-books then in use, and the impor-
tance of good books of this class was emphasized by a traditional rule
that questions should not be set on a new subject in the tripos unless
it had been discussed in some treatise suitable and available for Cam-
bridge students*. Hence the importance attached to the publication of
the work on analytical trigonometry by Woodhouse in 1809, and of the
works on the differential calculus issued by members of the Analytical
Society in 1816 and 1820.

In 1817 Peacock, who was moderator, introduced the symbols for
differentiation into the papers set in the Senate-House examination.
But his colleague continued to use the fluxional notation. Peacock
himself wrote on March 17 of 1817 (i.e. shortly after the examination)
on the subject as follows†:

I assure you. . . that I shall never cease to exert myself to the utmost
in the cause of reform, and that I will never decline any office which may
increase my power to effect it. I am nearly certain of being nominated to
the office of Moderator in the year 1818–19, and as I am an examiner in
virtue of my office, for the next year I shall pursue a course even more
decided than hitherto, since I shall feel that men have been prepared for
the change, and will then be enabled to have acquired a better system
by the publication of improved elementary books. I have considerable
influence as a lecturer, and I will not neglect it. It is by silent perseverance
only that we can hope to reduce the many-headed monster of prejudice,
and make the University answer her character as the loving mother of
good learning and science.

In 1818 all candidates for honours, that is, all men in the first six
preliminary classes, were allowed to attempt the problems: this change
was made by the moderators.

In 1819 G. Peacock, who was again moderator, induced his col-
league to adopt the new notation. It was employed in the next year
by Whewell, and in the following year by Peacock again. Henceforth
the calculus in its modern language and analytical methods were freely
used, new subjects were introduced, and for many years the examina-
tion provided a mathematical training fairly abreast of the times.

By this time the disputations had ceased to have any immediate
effect on a man’s place in the tripos. Thus Whewell‡, writing about

* See ex. gr., the Grace of November 14, 1827, referred to below.
† Proceedings of the Royal Society, London, 1859, vol. ix, pp. 538–9.
‡ Whewell’s Writings and Correspondence, ed. Todhunter, London, 1876, vol. ii,

p. 36.
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his duties as moderator in 1820, said:
You would get very exaggerated ideas of the importance attached to

it [an Act] if you were to trust Cumberland; I believe it was formerly
more thought of than it is now. It does not, at least immediately, produce
any effect on a man’s place in the tripos, and is therefore considerably
less attended to than used to be the case, and in most years is not very
interesting after the five or six best men: so that I look for a considerable
exercise of, or rather demand for, patience on my part. The other part of
my duty in the Senate House consists in manufacturing wranglers, senior
optimes, etc. and is, while it lasts, very laborious.

Of the examination itself in this year he wrote as follows*:
The examination in the Senate House begins to-morrow, and is rather

close work while it lasts. We are employed from seven in the morning till
five in the evening in giving out questions and receiving written answers to
them; and when that is over, we have to read over all the papers which we
have received in the course of the day, to determine who have done best,
which is a business that in numerous years has often kept the examiners
up the half of every night; but this year is not particularly numerous.
In addition to all this, the examination is conducted in a building which
happens to be a very beautiful one, with a marble floor and a highly
ornamented ceiling; and as it is on the model of a Grecian temple, and
as temples had no chimneys, and as a stove or a fire of any kind might
disfigure the building, we are obliged to take the weather as it happens
to be, and when it is cold we have the full benefit of it—which is likely to
be the case this year. However, it is only a few days, and we have done
with it.

A sketch of the examination in the previous year from the point of view
of an examinee was given by J.M.F. Wright†, but there is nothing of
special interest in it.

Sir George Airy‡ gave the following sketch of his recollections of
the reading and studies of undergraduates of his time and of the tripos
of 1823, in which he had been senior wrangler:

At length arrived the Monday morning on which the examination for
the B.A. degree was to begin. . . . We were all marched in a body to
the Senate-House and placed in the hands of the Moderators. How the
“candidates for honours” were separated from the οÉ πολλοÐ I do not know,
I presume that the Acts and the Opponencies had something to do with
it. The honour candidates were divided into six groups: and of these
Nos. 1 and 2 (united), Nos. 3 and 4 (united), and Nos. 5 and 6 (united),

* S. Douglas, Life of Whewell, London, 1881, p. 56.
† Alma Mater, London, 1827, vol. ii, pp. 58–98.
‡ See Nature, vol. 35, Feb. 24, 1887, pp. 397–399.
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received the questions of one Moderator. No. 1, Nos. 2 and 3 (united),
Nos. 4 and 5 (united), and No. 6, received those of the other Moderator.
The Moderators were reversed on alternate days. There were no printed
question-papers: each examiner had his bound manuscript of questions,
and he read out his first question; each of the examinees who thought
himself able proceeded to write out his answer, and then orally called out
“Done.” The Moderator, as soon as he thought proper, proceeded with
another question. I think there was only one course of questions on each
day (terminating before 3 o’clock, for the Hall dinner). The examination
continued to Friday mid-day. On Saturday morning, about 8 o’clock, the
list of honours (manuscript) was nailed on the door of the Senate-House.

It must be remembered that for students pursuing the normal
course the Senate-House examination still provided the only avenue
to a degree. That examination involved a knowledge of the elements of
moral philosophy and theology, an acquaintance with the rules of for-
mal logic, and the power of reading and writing scholastic Latin, but
mathematics was the predominant subject, and this led to a certain
one-sidedness in education. The evil of this was generally recognized,
and in 1822 various reforms were introduced in the University cur-
riculum; in particular the Previous Examination was established for
students in their second year, the subjects being prescribed Greek and
Latin works, a Gospel, and Paley’s Evidences. Set classical books were
introduced in the final examination of poll-men; and another honour
or tripos examination was established for classical students. These al-
terations came into effect in 1824; and henceforth the Senate-House
examination, so far as it related to mathematical students, was known
as the Mathematical Tripos.

In 1827 the scheme of examination in the Mathematical Tripos was
revised. By regulations* which came into operation in January, 1828,
another day was added, so that the examination extended over four
days, exclusive of the day of arranging the brackets; the number of
hours of examination was twenty-three, of which seven were assigned
to problems. On the first two days all the candidates had the same
questions proposed to them, inclusive of the evening problems, and the
examination on those days excluded the higher and more difficult parts
of mathematics, in order, in the words of the report, “that the can-
didates for honours may not be induced to pursue the more abstruse
and profound mathematics, to the neglect of more elementary knowl-

* See the Grace, November 14, 1827.

• Project • Gutenberg • #26839 •



CH. VII] THE MATHEMATICAL TRIPOS. 195

edge.” Accordingly, only such questions as could be solved without
the aid of the differential calculus were set on the first day, and those
set on the second day involved only its elementary applications. The
classes were reduced to four, determined as before by the exercises in
the schools. The regulations of 1827 definitely prescribed that all the
papers should be printed. They are also noticeable as being the last
which gave the examiners power to ask vivâ voce questions, though
such questions were restricted to “propositions contained in the math-
ematical works commonly in use in the University, or examples and
explanations of such propositions.” It was further recommended that
no paper should contain more questions than well-prepared students
could be expected to answer within the time allowed for it, but that if
any candidate, before the end of the time, had answered all the ques-
tions in the paper, the examiners might propose additional questions
vivâ voce. The power of granting honorary optime degrees now ceased;
it had already fallen into abeyance. Henceforth the examination was
conducted under definite rules, and I no longer concern myself with the
traditions of the examination.

In the same year as these changes became effective the examina-
tion for the poll degree was separated from the tripos with different sets
of papers and a different schedule of subjects*. It was, however, still
nominally considered as forming part of the Senate-House examination,
and until 1858 those who obtained a poll degree were arranged in four
classes, described as fourth, fifth, sixth, and seventh, as if in continu-
ation of the junior optimes or third class of the tripos. The year 1828
therefore shews us the Senate-House examination dividing into two dis-
tinct parts; one known as the mathematical tripos, the other as the poll
examination. In 18511 the classical tripos was made independent of the
mathematical tripos, and thus provided a separate avenue to a degree.
Historically, the examination usually known as “the General” represents
the old Senate-House examination for the poll-men, but gradually it has
been moved to an earlier period in the normal course taken by the men.
In 1852 another set of examinations, at first called “the professor’s ex-
aminations,” and now somewhat modified and known as “the Specials,”
was instituted for all poll-men to take before they could qualify for

* See Grace, May 21, 1828, confirming a Report of March 27, 1828.

1. ‘1850’ corrected to ‘1851’ as per errata sheet
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a degree. In 1858 the fiction that the poll-examinations were part of
the Senate-House examination was abandoned, and subsequently they
have been treated as providing an independent method of obtaining the
degree: thus now the mathematical tripos is the sole representative of
the old Senate-House examination. Since 1858 numerous other ways of
obtaining the degree have been established, and it is now possible to
get it by shewing proficiency in very special, or even technical subjects.

Further changes in the mathematical tripos were introduced in
1833*. The duration of the examination, before the issue of the brack-
ets, was extended to five days, and the number of hours of examination
on each day was fixed at five and a-half. Seven and a-half hours were
assigned to problems. The examination on the first day was confined
to subjects that did not require the differential calculus, and only the
simplest applications of the calculus were permitted on the second and
third days. During the first four days of the examination the same
papers were set to all the candidates alike, but on the fifth day the ex-
amination was conducted according to classes. No reference was made
to vivâ voce questions, and the preliminary classification of the brackets
only survived in a permission to re-examine candidates if it were found
necessary. This permissive rule remained in force till 1848, but I believe
that in fact it was never used. In December, 1834, a few unimportant
details were amended.

Mr Earnshaw, the senior moderator in 1836, informed me that he
believed that the tripos of that year was the earliest one in which all
the papers were marked, and that in previous years the examiners had
partly relied on their impression of the answers given.

New regulations came into force† in 1839. The examination now
lasted for six days, and continued as before for five hours and a-half each
day. Eight and a-half hours were assigned to problems. Throughout
the whole examination the same papers were set to all candidates, and
no reference was made to any preliminary classes. It was no doubt in
accordance with the spirit of these changes that the acts in the schools
should be abolished, but they were discontinued by the moderators of
1839 without the authority of the Senate. The examination was for the
future confined‡ to mathematics.

* See the Grace of April 6, 1832.
† See Grace of May 30, 1838.
‡ Under a badly-worded grace passed on May 11, 1842, on the recommendation of
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In the same year in which the new scheme came into force a pro-
posal to again reopen the subject was rejected (March 6).

The difficulty of bringing professorial lectures into relation with
the needs of students has more than once been before the Univer-
sity. The desirability of it was emphasized by a Syndicate in February,
1843, which recommended conferences at stated intervals between the
mathematical professors and examiners. This report foreshadowed the
creation of a Mathematical Board, but it was rejected by the Senate
on March 31.

A few years later the scheme of the examination was again recon-
structed by regulations* which came into effect in 1848. The dura-
tion of the examination was extended to eight days. The examination
lasted in all forty-four and a-half hours, twelve of which were devoted
to problems. The first three days were assigned to specified elementary
subjects; in the papers set on these days riders were to be set as well
as bookwork, but the methods of analytical geometry and the calculus
were excluded. After the first three days there was a short interval, at
the end of which the examiners issued a list of those who had so acquit-
ted themselves as to deserve mathematical honours. Only those whose
names were contained in this list were admitted to the last five days
of the examination, which was devoted to the higher parts of mathe-
matics. After the conclusion of the examination the examiners, taking
into account the whole eight days, brought out the list arranged in or-
der of merit. No provision was made for any rearrangement of this list
corresponding to the examination of the brackets. The arrangements
of 1848 remained in force till 1873.

In the same year as these regulations came into force, a Board of
Mathematical Studies (consisting of the mathematical professors, and
the moderators and examiners for the current year and the two pre-
ceding years) was constituted† by the Senate. From that time forward
their minutes supply a permanent record of the changes gradually in-
troduced into the tripos. I do not allude to subsequent changes which
only concern unimportant details of the examination.

a syndicate on theological studies, candidates for mathematical honours were,
after 1846, required to attend the poll examination on Paley’s Moral Philosophy,
the New Testament and Ecclesiastical History. This had not been the intention
of the Senate, and on March 14, 1855, a grace was passed making this clear.

* See Grace of May 13, 1846, confirming a report of March 23, 1846.
† See Grace of October 31, 1848.
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In May, 1849, the Board issued a report in which, after giving a
review of the past and existing state of the mathematical studies in
the University, they recommended that the mathematical theories of
electricity, magnetism, and heat should not be admitted as subjects
of examination. In the following year they issued a second report, in
which they recommended the omission of elliptical integrals, Laplace’s
coefficients, capillary attraction, and the figure of the earth considered
as heterogeneous, as well as a definite limitation of the questions in
lunar and planetary theory. In making these recommendations the
Board were only giving expression to what had become the practice
in the examination.

I may, in passing, mention a curious attempt which was made in
1853 and1 1854 to assist candidates in judging of the relative difficulty
of the questions asked. This was effected by giving to the candidates,
at the same time as the examination paper, a slip of paper on which
the marks assigned for the bookwork and rider for each question were
printed. I mention the fact merely because these things are rapidly for-
gotten and not because it is of any intrinsic value. I possess a complete
set of slips which came to me from Dr Todhunter.

In 1856 there was an amusing difference of opinion between the
Vice-Chancellor and the moderators. The Vice-Chancellor issued a
notice to say that for the convenience of the University he had directed
the tripos lists to be published at 8.0 a.m. as well as at 9.0 a.m., but
when the University arrived at 8.0 the moderators said that they should
not read the list until 9.0.

Considerable changes in the scheme of examination were introduced
in 1873. On December 5, 1865, the Board had recommended the ad-
dition of Laplace’s coefficients and the figure of the earth considered
as heterogeneous as subjects of the examination; the report does not
seem to have been brought before the Senate, but attention was called
to the fact that certain departments of mathematics and mathematical
physics found no place in the tripos schedules, and were neglected by
most students. Accordingly a syndicate was appointed on June 6, 1867,
to consider the matter, and a scheme drawn up by them was approved
in 1868* and came into effect in 1873. The new scheme of examination

* See Grace of June 2, 1868. It was carried by a majority of only five in a house
of 75.

1. ‘1853 and’ inserted as per errata sheet
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was framed on the same lines as that of 1848. The subjects in the first
three days were left unchanged, but an extra day was added, devoted
to the elements of mathematical physics. The essence of the modifi-
cation was the greatly extended range of subjects introduced into the
schedule of subjects for the last five days, and their arrangement in
divisions, the marks awarded to the five divisions being approximately
those awarded to the three days in proportion to 2, 1, 1, 1, 2/3 to 1
respectively. Under the new regulations the number of examiners was
increased from four to five.

The assignment of marks to groups of subjects was made under the
impression that the best candidates would concentrate their abilities
on a selection of subjects from the various divisions. But it was found
that, unless the questions were made extremely difficult, more marks
could be obtained by reading superficially all the subjects in the five
divisions than by attaining real proficiency in a few of the higher ones:
while the wide range of subjects rendered it practically impossible to
thoroughly cover all the ground in the time allowed. The failure was so
pronounced that in 1877 another syndicate was appointed to consider
the mathematical studies and examinations of the University. They
presented an elaborate scheme, but on May 13, 1878, some of the most
important parts of it were rejected and their subsequent proposals,
accepted on November 21, 1878 (by 62 to 49), represented a compromise
which pleased few members of the Senate*.

Under the new scheme which came into force in 1882 the tripos
was divided into two portions: the first portion was taken at the end of
the third year of residence, the range of subjects being practically the
same as in the regulations of 1848, and the result brought out in the
customary order of merit. The second portion was held in the following
January, and was open only to those who had been wranglers in the
preceding June. This portion was confined to higher mathematics and
appealed chiefly to specialists. The result was brought out in three
classes, each arranged in alphabetical order. The moderators and ex-
aminers conducted the whole examination without any extraneous aid.

In the next year or two further amendments were made†, moving

* See Graces of May 17, 1877; May 29, 1878; and November 21, 1878: and the
Cambridge University Reporter, April 2, May 14, June 4, October 29, Novem-
ber 12, and November 26, 1878.

† See the Graces of December 13, 1883; June 12, 1884; February 10, 1885; Octo-
ber 29, 1885; and June 1, 1886.

• Project • Gutenberg • #26839 •



200 THE MATHEMATICAL TRIPOS. [CH. VII

the second part to the June of the fourth year, throwing it open to
all men who had graduated in the tripos of the previous June, and
transferring the conduct of the examination in Part 2 to four examiners
nominated by the Board: this put it largely under the control of the
professors. The range of subjects of Part 2 was also greatly extended,
and candidates were encouraged to select only a few of them. It was
further arranged that Part 1 might be taken at the end of a man’s
second year of residence, though in that case it would not qualify for a
degree. A student who availed himself of this leave could take Part 2
at the end either of his third or of his fourth year as he pleased. The
tripos is still (1905) carried on under the scheme of 1886.

The general effect of these changes was to destroy the homogeneity
of the tripos. Objections to the new scheme were soon raised. Espe-
cially, it was said—whether rightly or wrongly—that Part 1 contained
too many technical subjects to serve as a general educational training
for any save mathematicians; that the distinction of a high place in
the historic list produced on its results tended to prevent the best men
taking it in their second year, though by this time they had read suf-
ficiently to be able to do so; and that Part 2 was so constructed as to
appeal only to professional mathematicians, and that thus the higher
branches of mathematics were neglected by all save a few specialists.

Whatever value be attached to these opinions, the number of stu-
dents studying mathematics fell rapidly under the scheme of 1886. In
1899 the Board proposed* further changes. These seemed to some mem-
bers of the Senate to be likely to still further decrease the number of
men who took up the subject as one of general education. At any rate
the two main proposals were rejected (February 15, 1900) by votes of
151 to 130 and 161 to 129.

The curious origin of the term tripos has been repeatedly told, and
an account of it may fitly close this chapter. Formerly there were three
principal occasions on which questionists were admitted to the title
or degree of bachelor. The first of these was the comitia priora, held
on Ash-Wednesday, for the best men in the year. The next was the
comitia posteriora, which was held a few weeks later, and at which any
student who had distinguished himself in the quadragesimal exercises
subsequent to Ash-Wednesday had his seniority reserved to him. Lastly,
there was the comitia minora, for students who had in no special way

* See Reports dated November 7, 1899, and January 20, 1900.
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distinguished themselves. In the fifteenth century an important part
in the ceremony on each of these occasions was taken by a certain
“ould bachilour,” who sat upon a three-legged stool or tripos before the
proctors and tested the abilities of the would-be graduates by arguing
some question with the “eldest son,” who was selected from them as
their representative. To assist the latter in what was often an unequal
contest his “father,” that is, the officer of his college who was to present
him for his degree, was allowed to come to his assistance.

Originally the ceremony was a serious one, and had a certain reli-
gious character. It took place in Great St Mary’s Church, and marked
the admission of the student to a position with new responsibilities,
while the season of Lent was chosen with a view to bring this into
prominence. The Puritan party objected to the observance of such ec-
clesiastical ceremonies, and in the course of the sixteenth century they
introduced much license and buffoonery into the proceedings. The part
played by the questionist became purely formal. A serious debate still
sometimes took place between the father of the senior questionist and
a regent master who represented the University; but the discussion was
prefaced by a speech by the bachelor, who came to be called Mr Tripos
just as we speak of a judge as the bench, or of a rower as an oar. Ulti-
mately public opinion permitted Mr Tripos to say pretty much what he
pleased, so long as it was not dull and was scandalous. The speeches he
delivered or the verses he recited were generally preserved by the Reg-
istrary, and were known as the tripos verses: originally they referred to
the subjects of the disputations then propounded. The earliest copies
now extant are those for 1575.

The University officials, to whom the personal criticisms in which
the tripos indulged were by no means pleasing, repeatedly exhorted him
to remember “while exercising his privilege of humour, to be modest
withal.” In 1740, says Mr Mullinger*, “the authorities after condemn-
ing the excessive license of the tripos announced that the comitia at
Lent would in future be conducted in the Senate-House; and all mem-
bers of the University, of whatever order or degree, were forbidden to
assail or mock the disputants with scurrilous jokes or unseemly witti-
cisms. About the year 1747–8, the moderators initiated the practice
of printing the honour lists on the back of the sheets containing the

* J.B. Mullinger, The University of Cambridge, Cambridge, vol. i, 1873, pp. 175,
176.
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tripos verses, and after the year 1755 this became the invariable prac-
tice. By virtue of this purely arbitrary connection these lists themselves
became known as the tripos; and eventually the examination itself, of
which they represented the results, also became known by the same
designation.”

The tripos ceased to deliver his speech about 1750, but the issue of
tripos verses continued for nearly 150 years longer. During the latter
part of this time they consisted of four sets of verses, usually in Latin,
but occasionally in Greek, in which current topics in the University were
treated lightly or seriously as the writer thought fit. They were written
for the proctors and moderators by undergraduates or commencing
bachelors, who were supposed each to receive a pair of white kid gloves
in recognition of their labours. Thus gradually the word tripos changed
its meaning “from a thing of wood to a man, from a man to a speech,
from a speech to sets of verses, from verses to a sheet of coarse foolscap
paper, from a paper to a list of names, and from a list of names to a
system of examination*.”

In 1895 the proctors and moderators, without consulting the Sen-
ate, sent in no verses, and thus, in spite of widespread regret, an in-
teresting custom of many centuries standing was destroyed. No doubt
it may be argued that the custom had never been embodied in statute
or ordinance, and thus was not obligatory. Also it may be said that
its continuance was not of material benefit to anybody. I do not think
that such arguments are conclusive, and personally I regret the disap-
pearance of historic ties unless it can be shown that they cause incon-
venience, which of course in this case could not be asserted.

* Wordsworth, Scholae Academicae, Cambridge, 1877, p. 21.
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CHAPTER VIII.

THREE GEOMETRICAL PROBLEMS.

Among the more interesting geometrical problems of antiquity are
three questions which attracted the special attention of the early Greek
mathematicians. Our knowledge of geometry is derived from Greek
sources, and thus these questions have attained a classical position in
the history of the subject. The three questions to which I refer are
(i) the duplication of a cube, that is, the determination of the side of a
cube whose volume is double that of a given cube; (ii) the trisection of
an angle; and (iii) the squaring of a circle, that is, the determination
of a square whose area is equal to that of a given circle—each problem
to be solved by a geometrical construction involving the use of straight
lines and circles only, that is, by Euclidean geometry.

With the restriction last mentioned all three problems are insol-
uble†. To duplicate a cube the length of whose side is a, we have to
find a line of length x, such that x3 = 2a3. Again, to trisect a given
angle, we may proceed to find the sine of the angle, say a, then, if
x is the sine of an angle equal to one-third of the given angle, we
have 4x3 = 3x − a. Thus the first and second problems, when con-
sidered analytically, require the solution of a cubic equation; and since
a construction by means of circles (whose equations are of the form
x2 + y2 + ax + by + c = 0) and straight lines (whose equations are of
the form αx + βy + γ = 0) cannot be equivalent to the solution of a
cubic equation, it is inferred that the problems are insoluble if in our

† F. Klein, Vorträge über ausgewählte Fragen der Elementargeometrie, Leipzig,
1895.
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constructions we are restricted to the use of circles and right lines. If
the use of the conic sections is permitted, both of these questions can
be solved in many ways. The third problem is different in character,
but under the same restrictions it also is insoluble.

I propose to give some of the constructions which have been pro-
posed for solving the first two of these problems. To save space, I shall
not draw the necessary diagrams, and in most cases I shall not add the
proofs: the latter present but little difficulty. I shall conclude with some
historical notes on approximate solutions of the quadrature of the circle.

The Duplication of the Cube*.

The problem of the duplication of the cube was known in ancient
times as the Delian problem, in consequence of a legend that the Delians
had consulted Plato on the subject. In one form of the story, which is
related by Philoponus†, it is asserted that the Athenians in 430 b.c.,
when suffering from the plague of eruptive typhoid fever, consulted the
oracle at Delos as to how they could stop it. Apollo replied that they
must double the size of his altar which was in the form of a cube. To the
unlearned suppliants nothing seemed more easy, and a new altar was
constructed either having each of its edges double that of the old one
(from which it followed that the volume was increased eight-fold) or by
placing a similar cubic altar next to the old one. Whereupon, according
to the legend, the indignant god made the pestilence worse than before,
and informed a fresh deputation that it was useless to trifle with him,
as his new altar must be a cube and have a volume exactly double that
of his old one. Suspecting a mystery the Athenians applied to Plato,
who referred them to the geometricians. The insertion of Plato’s name
is an obvious anachronism. Eratosthenes‡ relates a somewhat similar
story, but with Minos as the propounder of the problem.

* See Historia Problematis de Cubi Duplicatione by N.T. Reimer, Göttingen, 1798;
and Historia Problematis Cubi Duplicandi by C.H. Biering, Copenhagen, 1844:
also Das Delische Problem, by A. Sturm, Linz, 1895–7. Some notes on the
subject are given in my History of Mathematics.

† Philoponus ad Aristotelis Analytica Posteriora, bk. i, chap. vii.
‡ Archimedis Opera cum Eutocii Commentariis, ed. Torelli, Oxford, 1792, p. 144;

ed. Heiberg, Leipzig, 1880–1, vol. iii, pp. 104–107.
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In an Arab work, the Greek legend was distorted into the following
extraordinarily impossible piece of history, which I cite as a curiosity
of its kind. “Now in the days of Plato,” says the writer, “a plague
broke out among the children of Israel. Then came a voice from heaven
to one of their prophets, saying, ‘Let the size of the cubic altar be
doubled, and the plague will cease’; so the people made another altar
like unto the former, and laid the same by its side. Nevertheless the
pestilence continued to increase. And again the voice spake unto the
prophet, saying, ‘They have made a second altar like unto the former,
and laid it by its side, but that does not produce the duplication of
the cube.’ Then applied they to Plato, the Grecian sage, who spake to
them, saying, ‘Ye have been neglectful of the science of geometry, and
therefore hath God chastised you, since geometry is the most sublime
of all the sciences.’ Now, the duplication of a cube depends on a rare
problem in geometry, namely. . . ”. And then follows the solution of
Apollonius, which is given later.

If a is the length of the side of the given cube and x that of the
required cube, we have x3 = 2a3, that is, x : a = 3

√
2 : 1. It is probable

that the Greeks were aware that the latter ratio is incommensurable, in
other words, that no two integers can be found whose ratio is the same
as that of 3

√
2 : 1, but it did not therefore follow that they could not

find the ratio by geometry: in fact, the side and diagonal of a square
are instances of lines whose numerical measures are incommensurable.

I proceed now to give some of the geometrical constructions which
have been proposed for the duplication of the cube*. With one ex-
ception, I confine myself to those which can be effected by the aid of
the conic sections.

Hippocrates† (circ. 420 b.c.) was perhaps the earliest mathemati-
cian who made any progress towards solving the problem. He did not
give a geometrical construction, but he reduced the question to that of
finding two means between one straight line (a), and another twice as
long (2a). If these means are x and y, we have a : x = x : y = y : 2a,
from which it follows that x3 = 2a3. It is in this form that the problem

* On the application to this problem of the traditional Greek methods of analysis
by Hero and Philo (leading to the solution by the use of Apollonius’s circle), by
Nicomedes (leading to the solution by the use of the conchoid), and by Pappus
(leading to the solution by the use of the cissoid), see Geometrical Analysis by
J. Leslie, Edinburgh, second edition, 1811, pp. 247–250, 453.

† Proclus, ed. Friedlein, pp. 212, 213.
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is always presented now. Formerly any process of solution by finding
these means was called a mesolabum.

One of the first solutions of the problem was that given by Archy-
tas* in or about the year 400 b.c. His construction is equivalent to the
following. On the diameter OA of the base of a right circular cylinder
describe a semicircle whose plane is perpendicular to the base of the
cylinder. Let the plane containing this semicircle rotate round the gen-
erator through O, then the surface traced out by the semicircle will cut
the cylinder in a tortuous curve. This curve will itself be cut by a right
cone, whose axis is OA and semi-vertical angle is (say) 60◦, in a point
P , such that the projection of OP on the base of the cylinder will be to
the radius of the cylinder in the ratio of the side of the required cube
to that of the given cube. Of course the proof given by Archytas is geo-
metrical; and it is interesting to note that in it he shows himself familiar
with the results of the propositions Euc. iii, 18, iii, 35, and xi, 19. To
show analytically that the construction is correct, take OA as the axis
of x, and the generator of the cylinder drawn through O as axis of z,
then with the usual notation, in polar coordinates, if a is the radius of
the cylinder, we have for the equation of the surface described by the
semicircle r = 2a sin θ; for that of the cylinder r sin θ = 2a cosφ; and
for that of the cone sin θ cosφ = 1

2
. These three surfaces cut in a point

such that sin3 θ = 1
2
, and therefore (r sin θ)3 = 2a3. Hence the volume

of the cube whose side is r sin θ is twice that of the cube whose side is a.
The construction attributed to Plato† (circ. 360 b.c.) depends on

the theorem that, if CAB and DAB are two right-angled triangles,
having one side, AB, common, their other sides, AD and BC, parallel,
and their hypothenuses, AC and BD, at right angles, then if these
hypothenuses cut in P , we have PC : PB = PB : PA = PA : PD.
Hence, if such a figure can be constructed having PD = 2PC, the
problem will be solved. It is easy to make an instrument by which the
figure can be drawn.

The next writer whose name is connected with the problem is
Menaechmus‡, who in or about 340 b.c. gave two solutions of it.

In the first of these he pointed out that two parabolas having a
common vertex, axes at right angles, and such that the latus rectum

* Archimedis Opera, ed. Torelli, p. 143; ed. Heiberg, vol. iii, pp. 98–103.
† Ibid., ed. Torelli, p. 135; ed. Heiberg, vol. iii, pp. 66–71.
‡ Ibid., ed. Torelli, pp. 141–143; ed. Heiberg, vol. iii, pp. 92–99.
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of the one is double that of the other will intersect in another point
whose abscissa (or ordinate) will give a solution. If we use analysis
this is obvious; for, if the equations of the parabolas are y2 = 2ax and
x2 = ay, they intersect in a point whose abscissa is given by x3 = 2a3.
It is probable that this method was suggested by the form in which
Hippocrates had cast the problem: namely, to find x and y so that
a : x = x : y = y : 2a, whence we have x2 = ay and y2 = 2ax.

The second solution given by Menaechmus was as follows. Describe
a parabola of latus rectum l. Next describe a rectangular hyperbola,
the length of whose real axis is 4l, and having for its asymptotes the
tangent at the vertex of the parabola and the axis of the parabola. Then
the ordinate and the abscissa of the point of intersection of these curves
are the mean proportionals between l and 2l. This is at once obvious
by analysis. The curves are x2 = ly and xy = 2l2. These cut in a point
determined by x3 = 2l3 and y3 = 4l3. Hence l : x = x : y = y : 2l.

The solution of Apollonius*, which was given about 220 b.c., was
as follows. The problem is to find two mean proportionals between two
given lines. Construct a rectangle OADB, of which the adjacent sides
OA and OB are respectively equal to the two given lines. Bisect AB in
C. With C as centre describe a circle cutting OA produced in a and cut-
ting OB produced in b, so that aDb shall be a straight line. If this circle
can be so described, it will follow that OA : Bb = Bb : Aa = Aa : OB,
that is, Bb and Aa are the two mean proportionals between OA and
OB. It is impossible to construct the circle by Euclidean geometry, but
Apollonius gave a mechanical way of describing it.

The only other construction of antiquity to which I will refer is
that given by Diocles and Sporus†. It is as follows. Take two sides of a
rectangle OA, OB, equal to the two lines between which the means are
sought. Suppose OA to be the greater. With centre O and radius OA
describe a circle. Let OB produced cut the circumference in C and let
AO produced cut it in D. Find a point E on BC so that if DE cuts
AB produced in F and cuts the circumference in G, then FE = EG.
If E can be found, then OE is the first of the means between OA and
OB. Diocles invented the cissoid in order to determine E, but it can
be found equally conveniently by the aid of conics.

* Ibid., ed. Torelli, p. 137; ed. Heiberg, vol. iii, pp. 76–79. The solution is given
in my History of Mathematics, London, 1901, p. 84.

† Ibid., ed. Torelli, pp. 138, 139, 141; ed. Heiberg, vol. iii, pp. 78–84, 90–93.
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In more modern times several other solutions have been suggested.
I may allude in passing to three given by Huygens*, but I will enunciate
only those proposed respectively by Vieta, Descartes, Gregory of St
Vincent, and Newton.

Vieta’s construction is as follows†. Describe a circle, centre O,
whose radius is equal to half the length of the larger of the two given
lines. In it draw a chord AB equal to the smaller of the two given
lines. Produce AB to E so that BE = AB. Through A draw a
line AF parallel to OE. Through O draw a line DOCFG, cutting
the circumference in D and C, cutting AF in F , and cutting BA
produced in G, so that GF = OA. If this line can be drawn then
AB : GC = GC : GA = GA : CD.

Descartes pointed out‡ that the curves x2 = ay and x2+y2 = ay+bx
cut in a point (x, y) such that a : x = x : y = y : b. Of course this
is equivalent to the first solution given by Menaechmus, but Descartes
preferred to use a circle rather than a second conic.

Gregory’s construction was given in the form of the following the-
orem§. The hyperbola drawn through the point of intersection of two
sides of a rectangle so as to have the two other sides for its asymptotes
meets the circle circumscribing the rectangle in a point whose distances
from the asymptotes are the mean proportionals between two adjacent
sides of the rectangle. This is the geometrical expression of the propo-
sition that the curves xy = ab and x2 + y2 = ay + bx cut in a point
(x, y) such that a : x = x : y = y : b.

One of the constructions proposed by Newton is as follows∥. Let
OA be the greater of two given lines. Bisect OA in B. With centre O
and radius OB describe a circle. Take a point C on the circumference
so that BC is equal to the other of the two given lines. From O draw
ODE cutting AC produced in D, and BC produced in E, so that the
intercept DE = OB. Then BC : OD = OD : CE = CE : OA.
Hence OD and CE are two mean proportionals between any two lines
BC and OA.

* Opera Varia, Leyden, 1724, pp. 393–396.
† Opera Mathematica, ed. Schooten, Leyden, 1646, prop, v, pp. 242–243.
‡ Geometria, bk. iii, ed. Schooten, Amsterdam, 1659, p. 91.
§ Gregory of St Vincent, Opus Geometricum Quadraturae Circuli, Antwerp, 1647,

bk. vi, prop. 138, p. 602.
∥ Arithmetica Universalis, Ralphson’s (second) edition, 1728, p. 242; see also

pp. 243, 245.
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The Trisection of an Angle*.

The trisection of an angle is the second of these classical problems,
but tradition has not enshrined its origin in romance. The following
two constructions are among the oldest and best known of those which
have been suggested; they are quoted by Pappus†, but I do not know
to whom they were due originally.

The first of them is as follows. Let AOB be the given angle. From
any point P in OB draw PM perpendicular to OA. Through P draw
PR parallel to OA. On MP take a point Q so that if OQ is produced to
cut PR in R then QR = 2 ·OP . If this construction can be made, then
AOR = 1

3
AOB. The solution depends on determining the position

of R. This was effected by a construction which may be expressed
analytically thus. Let the given angle be tan−1(b/a). Construct the
hyperbola xy = ab, and the circle (x− a)2 + (y − b)2 = 4(a2 + b2). Of
the points where they cut, let x be the abscissa which is greatest, then
PR = x − a, and tan−1(b/x) = 1

3
tan−1(b/a).

The second construction is as follows. Let AOB be the given angle.
Take OB = OA, and with centre O and radius OA describe a circle.
Produce AO indefinitely and take a point C on it external to the circle
so that if CB cuts the circumference in D then CD shall be equal to
OA. Draw OE parallel to CDB. Then, if this construction can be
made, AOE = 1

3
AOB. The ancients determined the position of the

point C by the aid of the conchoid: it could be also found by the use
of the conic sections.

I proceed to give a few other solutions; confining myself to those
effected by the aid of conics.

Among the other constructions given by Pappus‡ I may quote the
following. Describe a hyperbola whose eccentricity is two. Let its centre
be C and its vertices A and A′. Produce CA′ to S so that A′S = CA′.
On AS describe a segment of a circle to contain the given angle. Let

* On the bibliography of the subject see the supplements to L’Intermédiaire des
Mathématiciens, Paris, May and June, 1904.

† Pappus, Mathematicae Collectiones, bk. iv, props. 32, 33 (ed. Commandino,
Bonn, 1670, pp. 97–99). On the application to this problem of the traditional
Greek methods of analysis see Geometrical Analysis, by J. Leslie, Edinburgh,
second edition, 1811, pp. 245–247.

‡ Pappus, bk. iv, prop. 34, pp. 99–104.
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the orthogonal bisector of AS cut this segment in O. With centre O
and radius OA or OS describe a circle. Let this circle cut the branch
of the hyperbola through A′ in P . Then SOP = 1

3
SOA.

In modern times one of the earliest of the solutions by a direct use
of conics was suggested by Descartes, who effected it by the intersection
of a circle and a parabola. His construction* is equivalent to finding the
points of intersection other than the origin, of the parabola y2 = 1

4
x and

the circle x2+y2− 13
4
x+4ay = 0. The ordinates of these points are given

by the equation 4y3 = 3y − a. The smaller positive root is the sine of
one-third of the angle whose sine is a. The demonstration is ingenious.

One of the solutions proposed by Newton is practically equivalent
to the third one which is quoted above from Pappus. It is as follows†.
Let A be the vertex of one branch of a hyperbola whose eccentricity is
two, and let S be the focus of the other branch. On AS describe the
segment of a circle containing an angle equal to the supplement of the
given angle. Let this circle cut the S branch of the hyperbola in P .
Then PAS will be equal to one-third of the given angle.

The following elegant solution is due to Clairaut‡. Let AOB be the
given angle. Take OA = OB, and with centre O and radius OA describe
a circle. Join AB, and trisect it in H, K, so that AH = HK = KB.
Bisect the angle AOB by OC cutting AB in L. Then AH = 2 · HL.
With focus A, vertex H, and directrix OC, describe a hyperbola. Let
the branch of this hyperbola which passes through H cut the cir-
cle in P . Draw PM perpendicular to OC and produce it to cut
the circle in Q. Then by the focus and directrix property we have
AP : PM = AH : HL = 2 : 1, ∴ AP = 2 · PM = PQ. Hence, by
symmetry, AP = PQ = QR. ∴ AOP = POQ = QOR.

I may conclude by giving the solution which Chasles§ regards as the
most fundamental. It is equivalent to the following proposition. If OA
and OB are the bounding radii of a circular arc AB, then a rectangular
hyperbola having OA for a diameter and passing through the point of
intersection of OB with the tangent to the circle at A will pass through

* Geometria, bk. iii, ed. Schooten, Amsterdam, 1659, p. 91.
† Arithmetica Universalis, problem xlii, Ralphson’s (second) edition, London,

1728, p. 148; see also pp. 243–245.
‡ I believe that this was first given by Clairaut, but I have mislaid my reference.

The construction occurs as an example in the Geometry of Conics, by C. Taylor,
Cambridge, 1881, No. 308, p. 126.

§ Traité des sections coniques, Paris, 1865, art. 37, p. 36.

• Project • Gutenberg • #26839 •



CH. VIII] THE QUADRATURE OF THE CIRCLE. 211

one of the two points of trisection of the arc.

The Quadrature of the Circle*.

The object of the third of the classical problems was the deter-
mination of a side of a square whose area should be equal to that of
a given circle.

The investigation, previous to the last two hundred years, of this
question was fruitful in discoveries of allied theorems, but in more re-
cent times it has been abandoned by those who are able to realize what
is required. The history of this subject has been treated by compe-
tent writers in such detail that I shall content myself with a very brief
allusion to it.

Archimedes showed† (what possibly was known before) that the
problem is equivalent to finding the area of a right-angled triangle
whose sides are equal respectively to the perimeter of the circle and
the radius of the circle. Half the ratio of these lines is a number, usu-
ally denoted by π.

That this number is incommensurable had been long suspected,
and has been now demonstrated. The earliest analytical proof of it was
given by Lambert‡ in 1761; in 1803 Legendre§ extended the proof to
show that π2 was also incommensurable; and recently Lindemann∥ has

* See Montucla’s Histoire des Recherches sur la Quadrature du Cercle, edited by
P.L. Lacroix, Paris, 1831; also various articles by A. De Morgan, and especially
his Budget of Paradoxes, London, 1872. A popular sketch of the subject has
been compiled by H. Schubert, Die Quadratur des Zirkels, Hamburg, 1889; and
since the publication of the earlier editions of these Recreations Prof. F. Rudio of
Zurich has given an analysis of the arguments of Archimedes, Huygens, Lambert,
and Legendre on the subject, with an introduction on the history of the problem,
Leipzig, 1892.

† Archimedis Opera, ΚÔκλου µèτρησις, prop. i, ed. Torelli, pp. 203–205; ed.
Heiberg, vol. i, pp. 258–261, vol. iii, pp. 269–277.

‡ Mémoires de l’Académie de Berlin for 1761, Berlin, 1768, pp. 265–322.
§ Legendre’s Geometry, Brewster’s translation, Edinburgh, 1824, pp. 239–245.
∥ Ueber die Zahl π, Mathematische Annalen, Leipzig, 1882, vol. xx, pp. 213–

225. The proof leads to the conclusion that, if x is a root of a rational integral
algebraical equation, then ex cannot be rational: hence, if πi was the root of
such an equation, eπi could not be rational; but eπi is equal to −1, and therefore
is rational; hence πi cannot be the root of such an algebraical equation, and
therefore neither can π.
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shown that π cannot be the root of a rational algebraical equation.
An earlier attempt by James Gregory to give a geometrical demon-

stration of this is worthy of notice. Gregory proved* that the ratio
of the area of any arbitrary sector to that of the inscribed or circum-
scribed polygons is not expressible by a finite number of algebraical
terms. Hence he inferred that the quadrature was impossible. This
was accepted by Montucla, but it is not conclusive, for it is conceiv-
able that some particular sector might be squared, and this particular
sector might be the whole circle.

In connection with Gregory’s proposition above cited, I may add
that Newton† proved that in any closed oval an arbitrary sector
bounded by the curve and two radii cannot be expressed in terms
of the co-ordinates of the extremities of the arc by a finite number of
algebraical terms. The argument is condensed and difficult to follow:
the same reasoning would show that a closed oval curve cannot be
represented by an algebraical equation in polar co-ordinates. From
this proposition no conclusion as to the quadrature of the circle is to
be drawn, nor did Newton draw any. In the earlier editions of this
work I expressed an opinion that the result presupposed a particular
definition of the word oval, but on more careful reflection I think that
the conclusion is valid without restriction.

With the aid of the quadratrix, or the conchoid, or the cissoid, the
quadrature of the circle is easy, but the construction of those curves
assumes a knowledge of the value of π, and thus the question is begged.

I need hardly add that, if π represented merely the ratio of the
circumference of a circle to its diameter, the determination of its nu-
merical value would have but slight interest. It is however a mere
accident that π is defined usually in that way, and it really represents
a certain number which would enter into analysis from whatever side
the subject was approached.

I recollect a distinguished professor explaining how different would
be the ordinary life of a race of beings born, as easily they might be,
so that the fundamental processes of arithmetic, algebra and geometry
were different to those which seem to us so evident, but, he added, it is
impossible to conceive of a universe in which e and π should not exist.

* Vera Circuli et Hyperbolae Quadratura, Padua, 1668: this is reprinted in Huy-
gens’s Opera Varia, Leyden, 1724, pp. 405–462.

† Principia, bk. i, section vi, lemma xxviii.
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I have quoted elsewhere an anecdote, which perhaps will bear rep-
etition, that illustrates how little the usual definition of π suggests its
properties. De Morgan was explaining to an actuary what was the
chance that a certain proportion of some group of people would at the
end of a given time be alive; and quoted the actuarial formula, involving
π, which, in answer to a question, he explained stood for the ratio of the
circumference of a circle to its diameter. His acquaintance, who had
so far listened to the explanation with interest, interrupted him and
exclaimed, “My dear friend, that must be a delusion, what can a circle
have to do with the number of people alive at the end of a given time?”
In reality the fact that the ratio of the length of the circumference of
a circle to its diameter is the number denoted by π does not afford the
best analytical definition of π, and is only one of its properties.

The use of a single symbol to denote this number 3.14159 . . . seems
to have been introduced about the beginning of the eighteenth century.
W. Jones* in 1706 represented it by π; a few years later† John Bernoulli
denoted it by c; Euler in 1734 used p, and in 1736 used c; Chr. Goldback
in 1742 used π; and after the publication of Euler’s Analysis the symbol
π was generally employed.

The numerical value of π can be determined by either of two meth-
ods with as close an approximation to the truth as is desired.

The first of these methods is geometrical. It consists in calculating
the perimeters of polygons inscribed in and circumscribed about a cir-
cle, and assuming that the circumference of the circle is intermediate
between these perimeters‡. The approximation would be closer if the
areas and not the perimeters were employed. The second and modern
method rests on the determination of converging infinite series for π.

We may say that the π-calculators who used the first method re-
garded π as equivalent to a geometrical ratio, but those who adopted
the modern method treated it as the symbol for a certain number which
enters into numerous branches of mathematical analysis.

It may be interesting if I add here a list of some of the approxi-
mations to the value of π given by various writers§. This will indicate

* Synopsis Palmariorum Matheseos, London, 1706, pp. 243, 263 et seq.
† See notes by G. Eneström in the Bibliotheca Mathematica, Stockholm, 1889,

vol. iii, p. 28; Ibid., 1890, vol. iv, p. 22.
‡ The history of this method has been written by K.E.I. Selander, Historik öfver

Ludolphska Talet, Upsala, 1868.
§ For the methods used in classical times and the results obtained, see the notices
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incidentally those who have studied the subject to the best advantage.
The ancient Egyptians* took 256/81 as the value of π, this is equal

to 3.1605 . . . ; but the rougher approximation of 3 was used by the
Babylonians† and by the Jews‡. It is not unlikely that these numbers
were obtained empirically.

We come next to a long roll of Greek mathematicians who attacked
the problem. Whether the researches of the members of the Ionian
School, the Pythagoreans, Anaxagoras, Hippias, Antipho, and Bryso
led to numerical approximations for the value of π is doubtful, and their
investigations need not detain us. The quadrature of certain lunes by
Hippocrates of Chios is ingenious and correct, but a value of π cannot
be thence deduced; and it seems likely that the later members of the
Athenian School concentrated their efforts on other questions.

It is probable that Euclid§, the illustrious founder of the Alexand-
rian School, was aware that π was greater than 3 and less than 4, but
he did not state the result explicitly.

The mathematical treatment of the subject began with Archi-
medes, who proved that π is less than 31

7
and greater than 310

71
, that

is, it lies between 3.1428 . . . and 3.1408 . . . . He established∥ this by
inscribing in a circle and circumscribing about it regular polygons
of 96 sides, then determining by geometry the perimeters of these
polygons, and finally assuming that the circumference of the circle
was intermediate between these perimeters: this leads to the result
6336/20171

4
< π < 14688/46731

2
,1 from which he deduced the lim-

of their authors in M. Cantor’s Geschichte der Mathematik, Leipzig, vol. i, 1880.
For medieval and modern approximations, see the article by A. De Morgan on
the Quadrature of the Circle in vol. xix of the Penny Cyclopaedia, London, 1841;
with the additions given by B. de Haan in the Verhandelingen of Amsterdam,
1858, vol. iv, p. 22: the conclusions were tabulated, corrected, and extended by
Dr J.W.L. Glaisher in the Messenger of Mathematics, Cambridge, 1873, vol. ii,
pp. 119–128; and Ibid., 1874, vol. iii, pp. 27–46.

* Ein mathematisches Handbuch der alten Aegypter (i.e. the Rhind papyrus), by
A. Eisenlohr, Leipzig, 1877, arts. 100–109, 117, 124.

† Oppert, Journal Asiatique, August, 1872, and October, 1874.
‡ 1 Kings, ch. 7, ver. 23; 2 Chronicles, ch. 4, ver. 2.
§ These results can be deduced from Euc. iv, 15, and iv, 8: see also book xii,

prop. 16.
∥ Archimedis Opera, ΚÔκλου µèτρησις, prop. iii, ed. Torelli, Oxford, 1792, pp. 205–

216; ed. Heiberg, Leipzig, 1880, vol. i, pp. 263-271.

1. Inserted 14688/
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its given above. This method is equivalent to using the proposition
sin θ < θ < tan θ, where θ = π/96: the values of sin θ and tan θ were
deduced by Archimedes from those of sin 1

3
π and tan 1

3
π by repeated

bisections of the angle. With a polygon of n sides this process gives a
value of π correct to at least the integral part of (2 log n−1.19) places of
decimals. The result given by Archimedes is correct to 2 places of dec-
imals. His analysis leads to the conclusion that the perimeters of these
polygons for a circle whose diameter is 4970 feet would lie between
15610 feet and 15620 feet—actually it is about 15613 feet 9 inches.

Apollonius discussed these results, but his criticisms have been lost.
Hero of Alexandria gave* the value 3, but he quoted† the result

22/7: possibly the former number was intended only for rough ap-
proximations.

The only other Greek approximation that I need mention is that
given by Ptolemy‡, who asserted that π = 3◦8′30′′. This is equivalent
to taking π = 3 + 8

60
+ 30

3600
= 3 17

120
= 3.1416̇.

The Roman surveyors seem to have used 3, or sometimes 4, for
rough calculations. For closer approximations they often employed 31

8

instead of 31
7
, since the fractions then introduced are more convenient

in duodecimal arithmetic. On the other hand Gerbert§ recommended
the use of 22/7.

Before coming to the medieval and modern European mathemati-
cians it may be convenient to note the results arrived at in India and
the East.

Baudhayana∥ took 49/16 as the value of π.
Arya-Bhata¶, circ. 530, gave 62832/20000, which is equal to 3.1416.

He showed that, if a is the side of a regular polygon of n sides inscribed
in a circle of unit diameter, and if b is the side of a regular inscribed
polygon of 2n sides, then b2 = 1

2
− 1

2
(1 − a2)

1
2 . From the side of an

inscribed hexagon, he found successively the sides of polygons of 12,
24, 48, 96, 192, and 384 sides. The perimeter of the last is given as
equal to

√
9.8694, from which his result was obtained by approximation.

* Mensurae, ed. Hultsch, Berlin, 1864, p. 188.
† Geometria, ed. Hultsch, Berlin, 1864, pp. 115, 136.
‡ Almagest, bk. vi, chap. 7; ed. Halma, vol. i, p. 421.
§ Œuvres de Gerbert, ed. Olleris, Clermont, 1867, p. 453.
∥ The Sulvasutras by G. Thibaut, Asiatic Society of Bengal, 1875, arts. 26–28.
¶ Leçons de calcul d’Aryabhata, by L. Rodet in the Journal Asiatique, 1879, se-

ries 7, vol. xiii, pp. 10, 21.
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Brahmagupta*, circ. 650, gave
√
10, which is equal to 3.1622 . . . .

He is said to have obtained this value by inscribing in a circle of unit
diameter regular polygons of 12, 24, 48, and 96 sides, and calculat-
ing successively their perimeters, which he found to be

√
9.65,

√
9.81,√

9.86,
√
9.87 respectively; and to have assumed that as the number of

sides is increased indefinitely the perimeter would approximate to
√
10.

Bhaskara, circ. 1150, gave two approximations. One†—possibly
copied from Arya-Bhata, but said to have been calculated afresh by
Archimedes’s method from the perimeters of regular polygons of 384
sides—is 3927/1250, which is equal to 3.1416: the other‡ is 754

240
, which

is equal to 3.1416̇, but it is uncertain whether this was not given only
as an approximate value.

Among the Arabs the values 22/7,
√
10, and 62832/20000 were

given by Alkarisimi§, circ. 830; and no doubt were derived from Indian
sources. He described the first as an approximate value, the second as
used by geometricians, and the third as used by astronomers.

In Chinese works the values 3, 22
7
, 157

50
are said to occur: probably

the last two results were copied from the Arabs.
Returning to European mathematicians, we have the following suc-

cessive approximations to the value of π: many of those prior to the
eighteenth century having been calculated originally with the view of
demonstrating the incorrectness of some alleged quadrature.

Leonardo of Pisa∥, in the thirteenth century, gave for π the value
1440/4581

3
which is equal to 3.1418 . . . . In the fifteenth century, Pur-

bach¶ gave or quoted the value 62832/20000, which is equal to 3.1416̇;
Cusa believed that the accurate value was 3

4
(
√
3 +

√
6) which is equal

to 3.1423 . . . ; and, in 1464, Regiomontanus** is said to have given a
value equal to 3.14243.

* Algebra. . . from Brahmegupta and Bhascara, trans. by H.T. Colebrooke, London,
1817, chap. xii, art. 40, p. 308.

† Ibid., p. 87.
‡ Ibid., p. 95.
§ The Algebra of Mohammed ben Musa, ed. by F. Rosen, London, 1831, pp. 71–72.
∥ Boncompagni’s Scritti di Leonardo, vol. ii (Practica Geometriae), Rome, 1862,

p. 90.
¶ Appendix to the De Triangulis of Regiomontanus, Basle, 1541, p. 131.
** In his correspondence with Cardinal Cusa, De Quadratura Circuli, Nuremberg,

1533, wherein he proved that Cusa’s result was wrong. I cannot quote the exact
reference, but the figures are given by competent writers and I have no doubt
are correct.
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Vieta*, in 1579, showed that π was greater than 31415926535/1010,
and less than 31415926537/1010. This was deduced from the perimeters
of the inscribed and circumscribed polygons of 6 × 216 sides, obtained
by repeated use of the formula 2 sin2 1

2
θ = 1 − cos θ. He also gave† a

result equivalent to the formula

2

π
=

√
2

2

√
(2 +

√
2)

2

√
{2 +

√
(2 +

√
2)}

2
· · · .

The father of Adrian Metius‡, in 1585, gave 355/113, which is equal
to 3.14159292 . . . , and is correct to 6 places of decimals. This was a cu-
rious and lucky guess, for all that he proved was that π was intermediate
between 377/120 and 333/106, whereon he jumped to the conclusion
that he should obtain the true fractional value by taking the mean of
the numerators and the mean of the denominators of these fractions.

In 1593 Adrian Romanus§ calculated the perimeter of the inscribed
regular polygon of 1073, 741824 (i.e. 230) sides, from which he deter-
mined the value of π correct to 15 places of decimals.

L. van Ceulen devoted no inconsiderable part of his life to the
subject. In 1596∥ he gave the result to 20 places of decimals: this was
calculated by finding the perimeters of the inscribed and circumscribed
regular polygons of 60 × 233 sides, obtained by the repeated use of a
theorem of his discovery equivalent to the formula 1−cosA = 2 sin2 1

2
A.

I possess a finely executed engraving of him of this date, with the result
printed round a circle which is below his portrait. He died in 1610, and
by his directions the result to 35 places of decimals (which was as far as
he had then calculated it) was engraved on his tombstone¶ in St Peter’s
Church, Leyden. His posthumous arithmetic** contains the result to 32
places; this was obtained by calculating the perimeter of a polygon, the

* Canon Mathematicus seu ad Triangula, Paris, 1579, pp. 56, 66: probably this
work was printed for private circulation only, it is very rare.

† Vietae Opera, ed. Schooten, Leyden, 1646, p. 400.
‡ Arithmeticae libri duo et Geometriae, by A. Metius, Leyden, 1626, pp. 88, 89.

[Probably issued originally in 1611.]
§ Ideae Mathematicae, Antwerp, 1593: a rare work, which I have never been able

to consult.
∥ Vanden Circkel, Delf, 1596, fol. 14, p. 1; or De Circulo, Leyden, 1619, p. 3.
¶ The inscription is quoted by Prof. de Haan in the Messenger of Mathematics,

1874, vol. iii, p. 25.
** De Arithmetische en Geometrische Fondamenten, Leyden, 1615, p. 163; or p. 144

of the Latin translation by W. Snell, published at Leyden in 1615 under the
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number of whose sides is 262, i.e. 4, 611686, 018427, 387904. Van Ceulen
also compiled a table of the perimeters of various regular polygons.

Willebrord Snell*, in 1621, obtained from a polygon of 230 sides an
approximation to 34 places of decimals. This is less than the numbers
given by van Ceulen, but Snell’s method was so superior that he ob-
tained his 34 places by the use of a polygon from which van Ceulen had
obtained only 14 (or perhaps 16) places. Similarly, Snell obtained from
a hexagon an approximation as correct as that for which Archimedes
had required a polygon of 96 sides, while from a polygon of 96 sides
he determined the value of π correct to seven decimal places instead of
the two places obtained by Archimedes. The reason is that Archimedes,
having calculated the lengths of the sides of inscribed and circumscribed
regular polygons of n sides, assumed that the length of 1/nth of the
perimeter of the circle was intermediate between them; whereas Snell
constructed from the sides of these polygons two other lines which gave
closer limits for the corresponding arc. His method depends on the the-
orem 3 sin θ/(2 + cos θ) < θ < (2 sin 1

3
θ + tan 1

3
θ), by the aid of which

a polygon of n sides gives a value of π correct to at least the integral
part of (4 log n − .2305) places of decimals, which is more than twice
the number given by the older rule. Snell’s proof of his theorem is
incorrect, though the result is true.

Snell also added a table† of the perimeters of all regular inscribed
and circumscribed polygons, the number of whose sides is 10×2n where
n is not greater than 19 and not less than 3. Most of these were
quoted from van Ceulen, but some were recalculated. This list has
proved useful in refuting circle-squarers. A similar list was given by
James Gregory‡.

In 1630 Grienberger§, by the aid of Snell’s theorem, carried the
approximation to 39 places of decimals. He was the last mathematician
who adopted the classical method of finding the perimeters of inscribed
and circumscribed polygons. Closer approximations serve no useful

title Fundamenta Arithmetica et Geometrica. This was reissued, together with
a Latin translation of the Vanden Circkel, in 1619, under the title De Circulo;
in which see pp. 3, 29–32, 92.

* Cyclometricus, Leyden, 1621, p. 55.
† It is quoted by Montucla, ed. 1831, p. 70.
‡ Vera Circuli et Hyperbolae Quadratura, prop. 29, quoted by Huygens, Opera

Varia, Leyden, 1724, p. 447.
§ Elementa Trigonometrica, Rome, 1630, end of preface.
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purpose. Proofs of the theorems used by Snell and other calculators in
applying this method were given by Huygens in a work* which may be
taken as closing the history of this method.

In 1656 Wallis† proved that

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · · ·

,

and quoted a proposition given a few years earlier by Viscount
Brouncker to the effect that

π

4
= 1 +

12

2 +

32

2 +

52

2 +
. . . ,

but neither of these theorems was used to any large extent for cal-
culation.

Subsequent calculators have relied on converging infinite series, a
method that was hardly practicable prior to the invention of the calcu-
lus, though Descartes‡ had indicated a geometrical process which was
equivalent to the use of such a series. The employment of infinite series
was proposed by James Gregory§, who established the theorem that
θ = tan θ − 1

3
tan3 θ + 1

5
tan5 θ − · · · , the result being true only if θ lies

between −1
4
π and 1

4
π.

The first mathematician to make use of Gregory’s series for ob-
taining an approximation to the value of π was Abraham Sharp∥, who,
in 1699, on the suggestion of Halley, determined it to 72 places of

* De Circula Magnitudine Inventa, 1654; Opera Varia, pp. 351–387. The proofs
are given in G. Pirie’s Geometrical Methods of Approximating the Value of π,
London, 1877, pp. 21–23.

† Arithmetica Infinitorum, Oxford, 1656, prop. 191. An analysis of the investi-
gation by Wallis was given by Cayley, Quarterly Journal of mathematics, 1889,
vol. xxiii, pp. 165–169.

‡ See Euler’s paper in the Novi Commentarii Academiae Scientiarum, St Peters-
burg, 1763, vol. viii, pp. 157–168.

§ See the letter to Collins, dated Feb. 15, 1671, printed in the Commercium Epis-
tolicum, London, 1712, p. 25, and in the Macclesfield Collection, Correspondence
of Scientific Men of the Seventeenth Century, Oxford, 1841, vol. ii, p. 216.

∥ See Life of A. Sharp by W. Cudworth, London, 1889, p. 170. Sharp’s work is
given in one of the preliminary discourses (p. 53 et seq.) prefixed to H. Sherwin’s
Mathematical Tables. The tables were issued at London in 1705: probably the
discourses were issued at the same time, though the earliest copies I have seen
were printed in 1717.
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decimals (71 correct). He obtained this value by putting θ = 1
6
π in

Gregory’s series.
Machin*, earlier than 1706, gave the result to 100 places (all cor-

rect). He calculated it by the formula

1
4
π = 4 tan−1 1

5
− tan−1 1

239
.

De Lagny†, in 1719, gave the result to 127 places of decimals (112
correct), calculating it by putting θ = 1

6
π in Gregory’s series.

Hutton‡, in 1776, and Euler§, in 1779, suggested the use of the
formulae 1

4
π = tan−1 1

2
+ tan−1 1

3
or 1

4
π = 5 tan−1 1

7
+ 2 tan−1 3

79
, but

neither carried the approximation as far as had been done previously.
Vega, in 1789∥, gave the value of π to 143 places of decimals (126

correct); and, in 1794¶, to 140 places (136 correct).
Towards the end of the last century Baron Zach saw in the Radcliffe

Library, Oxford, a manuscript by an unknown author which gives the
value of π to 154 places of decimals (152 correct).

In 1841 Rutherford** calculated it to 208 places of decimals (152
correct), using the formula 1

4
π = 4 tan−1 1

5
− tan−1 1

70
+ tan−1 1

99
.

In 1844 Dase†† calculated it to 205 places of decimals (200 correct),
using the formula 1

4
π = tan−1 1

2
+ tan−1 1

5
+ tan−1 1

8
.

In 1847 Clausen‡‡ carried the approximation to 250 places of
decimals (248 correct), calculating it independently by the formulae
1
4
π = 2 tan−1 1

3
+ tan−1 1

7
and 1

4
π = 4 tan−1 1

5
− tan−1 1

239
.

In 1853 Rutherford§§ carried his former approximation to 440 places
of decimals (all correct), and William Shanks prolonged the approxima-
tion to 530 places. In the same year Shanks published an approximation

* W. Jones’s Synopsis Palmariorum, London, 1706, p. 243; and Maseres, Scrip-
tores Logarithmici, London, 1796, vol. iii, pp. vii–ix, 155–164.

† Histoire de l’Académie for 1719, Paris, 1721, p. 144.
‡ Philosophical Transactions, 1776, vol. lxvi, pp. 476–492.
§ Nova Acta Academiae Scientiarum Petropolitanae for 1793, St Petersburg, 1798,

vol. xi, pp. 133–149: the memoir was read in 1779.
∥ Nova Acta Academiae Scientiarum Petropolitanae for 1790, St Petersburg, 1795,

vol. ix, p. 41.
¶ Thesaurus Logarithmorum (logarithmisch-trigonometrischer Tafeln), Leipzig,

1794, p. 633.
** Philosophical Transactions, 1841, p. 283.
†† Crelle’s Journal, 1844, vol. xxvii, p. 198.
‡‡ Schumacher, Astronomische Nachrichten, vol. xxv, col. 207.
§§ Proceedings of the Royal Society, Jan. 20, 1853, vol. vi, pp. 273-275.
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to 607 places*: and in 1873 he carried the approximation to 707 places
of decimals†. These were calculated from Machin’s formula.

In 1853 Richter, presumably in ignorance of what had been done in
England, found the value of π to 333 places‡ of decimals (330 correct); in
1854 he carried the approximation to 400 places§; and in 1855 carried
it to 500 places∥.

Of the series and formulae by which these approximations have
been calculated, those used by Machin and Dase are perhaps the easiest
to employ. Other series which converge rapidly are the following,

π

6
=

1

2
+

1

2
· 1

3 · 23
+

1 · 3
2 · 4

· 1

5 · 25
+ · · · ,

and

π

4
= 2 + 22 tan−1 1

28
+ tan−1 1

443
− 5 tan−1 1

1393
− 10 tan−1 1

11018
,

the latter of these is due to Mr Escott¶.
As to those writers who believe that they have squared the circle

their number is legion and, in most cases, their ignorance profound, but
their attempts are not worth discussing here. “Only prove to me that it
is impossible,” said one of them, “and I will set about it immediately”;
and doubtless the statement that the problem is insoluble has attracted
much attention to it.

Among the geometrical ways of approximating to the truth the
following is one of the simplest. Inscribe in the given circle a square,
and to three times the diameter of the circle add a fifth of a side of the
square, the result will differ from the circumference of the circle by less
than one-seventeen-thousandth part of it.

An approximate value of π has been obtained experimentally by
the theory of probability. On a plane a number of equidistant parallel
straight lines, distance apart a, are ruled; and a stick of length l, which

* Contributions to Mathematics, W. Shanks, London, 1853, pp. 86, 87.
† Proceedings of the Royal Society, 1872–3, vol. xxi, p. 318; 1873–4, vol. xxii,

p. 45.
‡ Grunert’s Archiv, vol. xxi, p. 119.
§ Ibid., vol. xxiii, p. 476: the approximation given in vol. xxii, p. 473, is correct

only to 330 places.
∥ Ibid., vol. xxv, p. 472; and Elbingen Anzeigen, No. 85.
¶ L’Intermédiaire des mathématiciens, Paris, Dec. 1896, vol. iii, p. 276.
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is less than a, is dropped on to the plane. The probability that it will
fall so as to lie across one of the lines is 2l/πa. If the experiment is
repeated many hundreds of times, the ratio of the number of favourable
cases to the whole number of experiments will be very nearly equal to
this fraction: hence the value of π can be found. In 1855 Mr A. Smith*

of Aberdeen made 3204 trials, and deduced π = 3.1553. A pupil of Prof.
De Morgan*, from 600 trials, deduced π = 3.137. In 1864 Captain Fox†

made 1120 trials with some additional precautions, and obtained as
the mean value π = 3.1419.

Other similar methods of approximating to the value of π have been
indicated. For instance, it is known that if two numbers are written
down at random, the probability that they will be prime to each other
is 6/π2. Thus, in one case‡ where each of 50 students wrote down 5
pairs of numbers at random, 154 of the pairs were found to consist of
numbers prime to each other. This gives 6/π2 = 154/250, from which
we get π = 3.12.

* A. De Morgan, Budget of Paradoxes, London, 1872, pp. 171, 172 [quoted from
an article by De Morgan published in 1861].

† Messenger of Mathematics, Cambridge, 1873, vol. ii, pp. 113, 114.
‡ Note on π by R. Chartres. Philosophical Magazine, London, series 6, vol. xxxix,

March, 1904, p. 315.
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CHAPTER IX.

MERSENNE’S NUMBERS.

One of the unsolved riddles of higher arithmetic, to which I have
alluded in Chapter I, is the discovery of the method by which Mersenne
or his contemporaries determined values of p which make a number of
the form 2p − 1 a prime. It is convenient to describe such primes
as Mersenne’s Numbers . In this chapter, for shortness, I use N to
denote a number of the form 2p − 1. In a memoir in the Messenger of
Mathematics in 1891 I gave a brief sketch of the history of the problem.
I here repeat the facts in somewhat more detail, and add a sketch of
methods used in attacking the problem.

Mersenne’s enunciation of the results associated with his name is
in the preface to his Cogitata†. The passage is as follows:

“Vbi fuerit operae pretium aduertere xxviii numeros a Petro Bungo
pro perfectis exhibitos, capite xxviii, libri de Numeris, non esse omnes
Perfectos, quippe 20 sunt imperfecti, adeovt [adeunt?] solos octo perfectos
habeat. . . qui sunt è regione tabulae Bungi, 1, 2, 3, 4, 8, 10, 12, et 29:
quique soli perfecti sunt, vt qui Bungum habuerint, errori medicinam
faciant.

Porrò numeri perfecti adeo rari sunt, vt vndecim dumtaxat potuerint
hactenus inueniri: hoc est, alii tres a Bongianis differentes: neque enim
vllus est alius perfectus ab illis octo, nisi superes exponentem numerum
62, progressionis duplae ab 1 incipientis. Nonus enim perfectus est potes-
tas exponentis 68 minus 1. Decimus, potestas exponentis 128, minus 1.
Vndecimus denique, potestas 258, minus 1, hoc est potestas 257, vnitate
decurtata, multiplicata per potestatem 256.

Qui vndecim alios repererit, nouerit se analysim omnem, quae fuerit
hactenus, superasse: memineritque interea nullum esse perfectum à 17000

† Cogitata Physico-Mathematica, Paris, 1644, praefatio generalis, article 19.

223
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potestate ad 32000; & nullum potestatum interuallum tantum assignari
posse, quin detur illud absque perfectis. Verbi gratia, si fuerit exponens
1050000, nullus erit numerus progressionis duplae vsque ad 2090000, qui
perfectis numeris seruiat, hoc est qui minor vnitate, primus existat.

Vnde clarum est quàm rari sint perfecti numeri, & quàm merito viris
perfectis comparentur; esseque vnam ex maximis totius Matheseos diffi-
cultatibus, praescriptam numerorum perfectorum multitudinum exhibere;
quemadmodum & agnoscere num dati numeri 15, aut 20 caracteribus con-
stantes, sint primi necne, cùm nequidem saeculum integrum huic examini,
quocumque modo hactenus cognito, sufficiat.

It is evident that, if p is not a prime, then N is composite, and two
or more of its factors can be written down by inspection. Hence we may
confine ourselves to prime values of p. Mersenne, in effect, asserted that
the only values of p, not greater than 257, which make N a prime, are
1, 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257: I assume that the number 67
is a misprint for 61. With this correction we have no reason to doubt
the truth of the statement, but it has not been definitely established.

There are 56 primes not greater than 257. The determination of
the prime or composite character of N for the 9 cases when p is less
than 20 presents no difficulty: in only one of them is N composite.
For 2 of the remaining 47 cases (namely, when p = 23 and 37) the
decomposition of N had been given by Fermat. For 9 of them (namely,
when p = 29, 43, 73, 83, 131, 179, 191, 239, 251) the factors of N were
given by Euler. He also proved that N was prime when p = 31. Plana
gave the factors of N when p = 41. Landry and Le Lasseur discovered
the factors in 10 cases (namely, when p = 47, 53, 59, 79, 97, 113, 151,
211, 223, and 233), but their analysis has not been published. Seelhoff
showed that N was prime when p = 61, Cunningham gave the factors
when p = 197, and Cole the factors when p = 67. Statements have
been made that the composite character of N when p = 89, and its
prime character when p = 127 have been proved, but the proofs have
not been published or verified.

Thus there are 21 values of p for which Mersenne’s statement still
awaits verification. These are 71, 89, 101, 103, 107, 109, 127, 137, 139,
149, 157, 163, 167, 173, 181, 193, 199, 227, 229, 241, 257. For these
values N is (according to Mersenne) prime when p = 127, and 257, and
is composite for the other values, but as explained above it is probable
that the character of N is known when p = 89 and 127.

To put the matter in another way. According to Mersenne’s state-
ment (corrected by the substitution of 61 for 67), 44 of the 56 primes
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less than 258 make N composite and the remaining 12 primes make N
prime. In 25 out of the 44 cases in which N is said to be composite we
know its factors, and in 19 cases the statement is still unverified. In 10
out of the 12 cases in which he said that N was prime his statement
has been verified, and in 2 cases it is still unverified.

From the wording of the last clause in the above quotation it has
been conjectured that the result had been communicated to Mersenne,
and that he published it without being aware of how it was proved. In
itself this seems probable. He was a good mathematician, but not an
exceptional genius. It would be strange if he established a proposition
which has baffled Euler, Lagrange, Legendre, Gauss, Jacobi, and other
mathematicians of the first rank; but if the proposition is due to Fer-
mat, with whom Mersenne was in constant correspondence, the case is
altered, and not only is the absence of a demonstration explained, but
we cannot be sure that we have attacked the problem on the best lines.

The known results as to the prime or composite character of N ,
and in the latter case its smallest factor, are given in the table on the
following page. The cases that remain as yet unverified are marked
with an asterisk.

Before describing the methods used for attacking the problem it
will be convenient to state in more detail when and by whom these
results were established.

The factors (if any) of such values of N as are less than a million
can be verified easily: they have been known for a long time, and I
need not allude to them in detail.

The factors of N when p = 11, 23, and 37 had been indicated by
Fermat*, some four years prior to the publication of Mersenne’s work,
in a letter dated October 18, 1640. The passage is as follows:

En la progression double, si d’un nombre quarré, généralement parlant,
vous ôtez 2 ou 8 ou 32 &c., les nombres premiers moindres de l’unite
qu’un multiple du quaternaire, qui mesureront le reste, feront l’effet requis.
Comme de 25, qui est un quarré, ôtez 2; le reste 23 mesurera la 11e

puissance −1; ôtez 2 de 49, le reste 47 mesurera la 23e puissance −1.
Ôtez 2 de 225, le reste 223 mesurera la 37e puissance −1, &c.

The factors of N when p = 29, 43, and 73 were given by Euler†

* Oeuvres de Fermat, Paris, vol. ii, 1894, p. 210; or Opera Mathematica, Toulouse,
1679, p. 164; or Brassinne’s Précis, Paris, 1853, p. 144.

† Commentarii Academiae Scientiarum Petropolitanae, 1738, vol. vi, p. 103; or
Commentationes Arithmeticae Collectae, vol. i, p. 2.
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p Value of N = 2p − 1

1 1 prime
2 3 prime
3 7 prime
5 31 prime
7 127 prime
11 2047 = 23× 89 composite
13 8191 prime
17 131071 prime
19 524287 prime
23 8388607 = 47× 178481 composite Fermat
29 536870911 = 233× 1103× 2089 composite Euler
31 2147483647 prime Euler
37 137438953471 = 223× 616318177 composite Fermat
41 2199023255551 = 13367× 164511353 composite Plana
43 8796093022207 = 431× 9719× 2099863 composite Euler
47 2351× 4513× 13264529 composite Landry
53 6361× 69431× 20394401 composite Landry
59 179951× 3203431780337 composite Landry
61 2305843009213693951 prime Seelhoff
67 ≡ 0 (193707721) composite Cole
71 2361183241434822606847 ∗
73 ≡ 0 (439) composite Euler
79 ≡ 0 (2687) composite Le Lasseur
83 ≡ 0 (167) composite Euler
89 618970019642690137449562111 ∗
97 ≡ 0 (11447) composite Le Lasseur

101 2535301200456458802993406410751 ∗
103 10141204801825835211973625643007 ∗
107 162259276829213363391578010288127 ∗
109 649037107316853453566312041152511 ∗
113 ≡ 0 (3391) composite Le Lasseur
127 170141183460469231731687303715884105727 ∗
131 ≡ 0 (263) composite Euler
137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
151 ≡ 0 (18121) composite Le Lasseur
157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
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p Value of N = 2p − 1

173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
179 ≡ 0 (359) composite Euler
181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
191 ≡ 0 (383) composite Euler
193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
197 ≡ 0 (7487) composite Cunningham
199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
211 ≡ 0 (15193) composite Le Lasseur
223 ≡ 0 (18287) composite Le Lasseur
227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
233 ≡ 0 (1399) composite Le Lasseur
239 ≡ 0 (479) composite Euler
241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗
251 ≡ 0 (503) composite Euler
257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∗

in 1732. The fact that N is composite for the values p = 83, 131,
179, 191, 239, and 251 follows from a proposition enunciated, at the
same time, by Euler to the effect that, if 4n+3 and 8n+7 are primes,
then 24n+3 − 1 ≡ 0 (mod 8n + 7). This was proved by Lagrange* in
his classical memoir of 1775. The proposition also covers the cases of
p = 11 and p = 23. This is the only general theorem on the subject
which is yet established.

The fact that N is prime when p = 31 was proved by Euler† in
1771. Fermat had asserted, in the letter mentioned above, that the
only possible prime factors of 2p ± 1, when p was prime, were of the
form np+1, where n is an integer. This was proved by Euler‡ in 1748,
who added that, since 2p ± 1 is odd, every factor of it must be odd,
and therefore if p is odd n must be even. But if p is a given number
we can define n much more closely, and Euler showed that the prime
factors (if any) of 231 − 1 were necessarily primes of the form 248n+ 1
or 248n+63; also they must be less than

√
231 − 1, that is, than 46339.

* Nouveaux Mémoires de l’Académie des Sciences de Berlin, 1775, pp. 323–356.
† Histoire de l’Académie des Sciences for 1772, Berlin, 1774, p. 36. See also

Legendre, Théorie des Nombres, third edition, Paris, 1830, vol. i, pp. 222–229.
‡ Novi Commentarii Academiae Scientiarum Petropolitanae, vol. i, p. 20; or Com-

mentationes Arithmeticae Collectae, St Petersburg, 1849, vol. i, pp. 55, 56.
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Hence it is necessary to try only forty divisors to see if 231 − 1 is a
prime or composite.

The factors of N when p = 41 were given by Plana* in 1859. He
showed that the prime factors (if any) are primes of the form 328n+1 or
328n+247, and lie between 1231 and

√
241 − 1, that is, 1048573. Hence

it is necessary to try only 513 divisors to see if 241 − 1 is composite:
the seventeenth of these divisors gives the required factors. This is
the same method of attacking the problem which was used by Euler
in 1771, but it would be very laborious to employ it for values of p
greater than 41. Plana† added the forms of the prime divisors of N ,
if p is not greater than 101.

That N is prime when p = 127 seems to have been verified by
Lucas‡ in 1876 and 1877. The demonstration has not been published.

The discovery of the factors of N for the values p = 47, 53, and 59
is due apparently to the late F. Landry, who established theorems on
the factors (if any) of numbers of certain forms. Instead of publishing
his results he issued a challenge to all mathematicians to solve the
general problem. This is contained in a rare pamphlet published at
Paris in 1867, of which I possess a copy, in which the factors of certain
numbers are given, and on page 8 of which it is implied that he had
obtained the factors of 2p − 1 when p = 47, 53, and 59. He seems
to have communicated his results to Lucas, who quoted them in the
memoir cited below§.

The factors of N when p = 79 and 113 were given first by
Le Lasseur, and were quoted by Lucas in the same memoir§.

A factor of N when p = 233 was discovered later by Le Lasseur,
and was quoted by Lucas in 1882∥.

The factors of N when p = 97, 151, 211, and 223 were determined
subsequently by Le Lasseur, and were quoted by Lucas¶ in 1883.

* G.A.A. Plana, Memorie della Reale Accademia delle Scienze di Torino, Series 2,
vol. xx, 1863, p. 130.

† Ibid., p. 137.
‡ Sur la Théorie des Nombres Premiers, Turin, 1876, p. 11; and Recherches sur

les Ouvrages de Léonard de Pise, Rome, 1877, p. 26, quoted by Lieut.-Colonel
A.J.C. Cunningham, Proceedings of the London Mathematical Society, Nov. 14,
1895, vol. xxvii, p. 54.

§ American Journal of Mathematics, 1878, vol. i, p. 236.
∥ Récréations, 1882–3, vol. i, p. 241.
¶ Ibid., vol. ii, p. 230.
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That N is prime when p = 61 had been conjectured by Landry and
in 1886 a demonstration was offered by Seelhoff*. His demonstration
is open to criticism, but the fact has been verified by others†, and may
be accepted as proved.

That N is composite when p = 89 seems to have been verified
by Lucas‡ in 1891, but the demonstration has not been published, nor
have the actual factors been discovered.

That 7487 is a factor of N when p = 197 was shown by A.J.C. Cun-
ningham in 1895§.

That N is not prime when p = 67 seems to have been verified by
Lucas∥ in 1876 and 1877. The composite nature of1 N = 2p − 1 when
p = 67 was confirmed by E. Fauquembergue¶, and was also implied by
Lucas** in 1891. The factors were given by F.N. Cole†† in 1903.

Bickmore in the memoir‡‡ cited below showed that 1433 is another
factor of N if p = 179; and that 1913 and 5737 are other factors of
N if p = 239.

I turn next to consider the methods by which these results can
be obtained. It is impossible to believe that the statement made by
Mersenne rested on an empirical conjecture, but the riddle as to how
it was discovered is still, after nearly 250 years, unsolved.

I cannot offer any solution of the riddle. But it may be interesting
to indicate some ways which have been used in attacking the problem.

* P.H.H. Seelhoff, Zeitschrift für Mathematik und Physik, 1886, vol. xxxi, p. 178.
† See Weber-Wellstein, Encyclopaedie der Elementar-Mathematik, p. 48; and

F.N. Cole, Bulletin of the American Mathematical Society, December, 1903,
p. 136.

‡ Théorie des Nombres, Paris, 1891, p. 376.
§ Proceedings of the London Mathematical Society, March 14, 1895, vol. xxvi,

p. 261.
∥ Sur la Théorie des Nombres Premiers, Turin, 1876, p. 11, quoted by Lieut-

Colonel A.J.C. Cunningham, Proceedings of the London Mathematical Society,
Nov. 14, 1895, vol. xxvii, p. 54, and Recherches sur les Ouvrages de Léonard de
Pise, Rome, 1877, p. 26.

¶ L’Intermédiaire des mathématiciens, Paris, Sept. 1894, vol. i, p. 148.
** Théorie des Nombres, Paris, 1891, p. 376.
†† On the Factoring of Large Numbers, Bulletin of the American Mathematical

Society, December, 1903, pp. 134–137.
‡‡ C.E. Bickmore, Messenger of Mathematics, Cambridge, 1895, vol. xxv, p. 19.

1. Corrected: originally N 2p = 1
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The object is to find a prime divisor q (other than N and 1) of a number
N when N is of the form 2p−1 and p is a prime. It can be easily shown
that q must be of the form 2pt+ 1. Also q must be of one of the forms
8i ± 1: for N is of the form 2A2 − B2, where A is even and B odd,
hence* any factor of it must be of the form 2a2− b2, that is, of the form
8i±1, and 2 must be a quadratic residue of q. The theory of residues is,
however, of but little use in finding factors of the cases that still await
solution, though the possibility some day of finding a complete series of
solutions by properties of residues must not be neglected†. Our present
knowledge of the means of factorizing N has been summed up in the
statement‡ that a prime factor of the form 2pt+1 can be found directly
by rules due to Legendre, Gauss, and Jacobi, when t = 1, 3, 4, 8, or
12; and that a factor of the form 2ptt′ + 1 can be found indirectly by
a method due to Bickmore when t = 1, 3, 4, 8, or 12, and t′ is an odd
integer greater than 3. But this only indicates how little has yet been
done towards finding a general solution of the problem.

First. There is the simple but crude method of trying all possible
prime divisors q which are of the form 2pt + 1 as well as of one of the
forms 8i ± 1.

The chief known results for the smaller factors may be summarized
by saying that a prime of this form will divide N when t = 1, if p = 11,
23, 83, 131, 179, 191, 239, or 251; when t = 3, if p = 37, 73, or 233;
when t = 5, if p = 43; when t = 15, if p = 113; when t = 17, if p = 79;
when t = 19, if p = 29, or 197; when t = 25, if p = 47; when t = 41,
if p = 223; when t = 59, if p = 97; when t = 163, if p = 41; when
t = 1525, if p = 59; when t = 4, if p = 11, 29, 179, or 239; when t = 8,
if p = 11; when t = 12, if p = 239; when t = 36, if p = 29, or 211; when
t = 60, if p = 53, or 151; and when t = 1445580, if p = 67.

Of the 25 cases in which we know that Mersenne’s statement of
the composite character of N is correct all save 3 can be easily verified
by trial in this way. For neglecting all values of t not exceeding, say,

* Legendre, Théorie des Nombres, third edition, Paris, 1830, vol. i, § 143. In the
case of Mersenne’s numbers, B = b = 1.

† For methods of finding the residue indices of 2 see Bickmore, Messenger of Math-
ematics, May, 1895, vol. xxv, pp. 15–21; see also Lieut-Colonel A.J.C. Cunning-
ham on 2 as a 16-ic residue, Proceedings of the London Mathematical Society,
1895–6, vol. xxvii, pp. 85–122.

‡ Transactions of the British Association for the Advancement of Science (Ipswich
Meeting), 1895, p. 614.
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60 which make q either composite or not of one of the forms 8i± 1 we
have in each case only some 20 or so divisors to try. Of the 3 other
cases in which Mersenne’s statement of the composite character of N
has been verified, one verification (p = 41) is due to Plana, who frankly
confessed that the result was reached “par un heureux hasard”; a second
is due to Landry (p = 59), who did not explain how he obtained the
factors; and the third is due to Cole (p = 67), who established it by
the use of quadratic residues of N , involving laborious numerical work.

Of the 10 cases in which we know that Mersenne’s statement of
the prime character of N is correct all save one may be verified by
trial in this way, for the number of possible factors is not large. The
exception is the case where p equals 61, which Seelhoff and others have
shown to be prime.

Thus practically we may say that simple empirical trials would at
once lead us to all the conclusions known except in the case of p = 41
due to Plana, of p = 59 due to Landry, of p = 61 due to Seelhoff, and of
p = 67 due to Cole. In fact, save for these four results the conclusions
of all mathematicians to date could be obtained by anyone by a few
hours’ arithmetical work.

As p increases the number of factors to be tried increases so fast
that, if p is large, it would be practically impossible to apply the test to
obtain large factors. This is an important point, for it has been asserted
that in the cases still awaiting verification there are no factors less than
50, 000. Hence, we may take it as reasonably certain that this cannot
have been the method by which the result was originally obtained; nor,
as here enunciated, is it likely to give many factors not yet known. Of
course it is possible there may be ways by which the number of possible
values of t might be further limited, and if we could find them we might
thus diminish the number of possible factors to be tried, but it will be
observed that the values of N which still await verification are very
large, for instance, when p = 257, N contains no less than 78 digits.

It is hardly necessary to add that if q is known and is not very
large we can determine whether or not it is a factor of N without the
labour of performing the division.

For instance, if we want to verify that q = 13367 is a factor of N
when p = 41, we proceed thus. Take the power of 2 nearest to q or to
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its square-root. We have to the modulus q

214 = 16384 ≡ 3017 ≡ 7× 431 ,
∴ 228 ≡ 49(−1377) ≡ −638 ,
∴ 227 ≡ −319 ,
∴ 214+27 ≡ (3017)(−319) ≡ 1 ,
∴ 241 ≡ 1 .

Second. We can proceed by reducing the problem to the solution
of an indeterminate equation.

It is clear that we can obtain a factor of N if we can express it as
the difference of the squares, or more generally of the nth powers, of
two integers u and v. Further, if we can express a multiple of N , say
mN , in this form, we can find a factor of mN and (with certain obvious
limitations as to the value of m) this will lead to a factor of N . It may
be also added that if m can be found so that N/m is expressible as a
continued fraction of a certain form, a certain continuant* defined by
the form of the continued fraction is a factor of N .

Since N can always be expressed as the difference of two squares,
this method seems a natural one by which to attack the problem. If
we put

N = n2 + a = (n+ b)2 − (b2 + 2bn− a),

we can make use of the known forms of u and v, and thus obtain an
indeterminate equation between two variables x and y of the form

x2 = (2py +H)2 − 4(K − y)

where H and K are numbers which can be easily calculated. Integral
values of x and y where y < K will determine values of u and v, and
thus give factors of N .

We can also attack the problem by indeterminate equations in an-

* See J.G. Birch in the Messenger of Mathematics, August, 1902, vol. xxii, pp. 52–
55.
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other way. For the factors must be of the form 2pt+1 and 8ps+1, hence

(2pt+ 1)(8ps+ 1) = N ,

= 2p − 1 ,

= 2(2p−1 − 1) + 1 ,

∴ 4s+ t+ 8pst = (2p−1 − 1)/p ,

= (say)α + 8pβ .

Hence 4s+ t = α + 8px, and st = β − x ,

where x ≯ β and t is odd. These results again lead to an indetermi-
nate equation.

But, in both cases, unless p is small, the resulting equations are
intractable.

Third. A not uncommon method of attacking problems such as
this, dealing with the factorization of large numbers, is through the
theory of quadratic forms*. At best this is a difficult method to use,
and we have no reason to think that it would have been employed by a
mathematician of the seventeenth century. I here content myself with
alluding to it.

Fourth. There is yet another way in which the problem might be
attacked. The problem will be solved if we can find an odd prime q so
that to it as modulus 2p+y ≡ z, and 2y ≡ z, where y and z may have
any values we like to choose. If such values of q, y, and z can be found,
we have 2y(2p − 1) ≡ 0. Therefore 2p = 1, that is, q is a divisor of N .

For example, to the modulus 23, we have

28 ≡ 3 ,

216 ≡ 32 .

Also 25 ≡ 32 .

Therefore 216 − 25 ≡ 0 ,

∴ 211 − 1 ≡ 0 .

Without going further into the matter we may say that the à priori
determination of the values q, y, and z introduces us to an almost

* For a sketch of this see G.B. Mathews, Theory of Numbers, part 1, Cambridge,
1891, pp. 261-271. See also F.N. Cole’s paper, On the Factoring of Large Num-
bers, Bulletin of the American Mathematical Society, December, 1903, pp. 134-
137; and Quadratic Partitions by A.J.C. Cunningham, London, 1904.
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untrodden field. It is just possible (though I should suppose unlikely)
that the key to the riddle is to be found on methods of finding q, y, z,
to satisfy the above conditions. For instance, if we could say what was
the remainder when 2x was divided by a prime q of the form 2pt + 1,
and if the remainders were the same when x = u and x = v, then to
the modulus q we should have, 2u ≡ 2v, and therefore 2u−v ≡ 1.

It should however be noted that Jacobi’s Canon Arithmeticus
and the similar canon drawn up by Cunningham would, if carried far
enough, enable us to solve the problem by this method. Cunningham’s
Canon gives the solution of the congruence 2x ≡ R for all prime moduli
less than 1000, but it is of no use in determining factors of N larger than
1000. It is however possible that if R or q have certain forms such a
canon might be constructed, and thus lead to a solution of the problem.

Fifth. It is noteworthy that the odd values of p specified by
Mersenne are primes of one of the four forms 2q ± 1 or 2q ± 3, but
it is not the case that all primes of these forms make N a prime, for
instance, N is composite if p = 23 + 3 = 11 or if p = 25 − 3 = 29.

This fact has suggested to more than one mathematician the possi-
bility that some test as to the prime or composite character of N when
p is of one of these forms may be discoverable. Of course this is merely
a conjecture. There is however this to say for it, that we know that
Fermat* had paid attention to numbers of this form.

Sixth. The number N when expressed in the binary scale, consists
of 1 repeated p times. This has suggested whether the work connected
with the determination of factors of N might not with advantage be
expressed in the binary scale. A method based on the use of properties
of this scale has been indicated by G. de Longchamps†, but as there
given it would be unlikely to lead to the discovery of large divisors. I
am, however, inclined to think that greater advantages would be gained
by working in a scale whose radix was 4p or may-be 8p—the resulting
numbers being then expressed by a reasonably small number of digits.
In fact when expressed in the latter scale in only one out of the 25 cases
in which the factors of N are known does the smallest factor contain
more than two digits.

* Ex. gr., see above, page 31.
† Comptes rendus de l’Académie des Sciences, Paris, Nov. 1877, vol. lxxxv,

pp. 950–952.
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Seventh. I have reserved to the last the description of the method
which seems to me to be the most hopeful.

We know by Fermat’s Theorem that if x+1 is a prime then 2x − 1
is divisible by x + 1. Hence if 2pt + 1 is a prime we have, to the
modulus 2pt + 1

22pt − 1 ≡ 0 ,

∴ (2p − 1)(1 + 2p + 22p + · · ·+ 2(2t−1)p) ≡ 0 .

Hence, a divisor of 2p−1 will be known, if we can find a value of t such
that 2pt + 1 is prime and the second factor is prime to it.

This method may be used to establish Euler’s theorem of 1732. For
if we put t = 1, and if 2p+1 is a prime, we have, to the modulus 2p+1

(2p − 1)(2p + 1) ≡ 0 .

Hence 2p ≡ 1 if 2p+1 is prime to 2p+1. This is the case if p = 4m+3.
Hence 2p+ 1 is a factor of N if p = 11, 23, 83, 131, 179, 191, 239, and
251, for in these cases 2p + 1 is prime.

The problem of Mersenne’s Numbers is a particular case of the de-
termination of the factors of an−1. This has been the subject of inves-
tigations by many mathematicians: an outline of their conclusions has
been given by Bickmore*. I ought also to add a reference to the general
method suggested by F.W. Lawrence† for the factorization of any high
number: it is possible that Fermat used some method analogous to this.

Finally, I should add that machines‡ have been devised for inves-
tigating whether a number is prime, but I do not know that any have
been constructed suitable for numbers as large as those involved in the
numbers in question.

* Messenger of Mathematics, Cambridge, 1895–6, vol. xxv, pp. 1–44; also 1896–7,
vol. xxvi, pp. 1–38; see also a note by Mr E.B. Escott in the Messenger, 1903–4,
vol. xxxiii, p. 49.

† Ibid., 1894–5, vol. xxiv, pp. 100–109; Quarterly Journal of Mathematics, 1896,
vol. xxviii, pp. 285–311; and Transactions of the London Mathematical Society,
May 13, 1897, vol. xxviii, pp. 465–475.

‡ F.W. Lawrence, Quarterly Journal of Mathematics, 1896, already quoted,
pp. 310–311; see also C.A. Laisant, Comptes Rendus Association Français pour
l’avancement des sciences, 1891 (Marseilles), vol. xx, pp. 165–8.
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CHAPTER X.

ASTROLOGY.

Astrologers professed to be able to foretell the future, and
within certain limits to control it. I propose to give in this chapter
a concise account of the rules they used for this purpose†.

I have not attempted to discuss the astrology of periods earlier
than the middle ages, for the technical laws of the ancient astrology
are not known with accuracy. At the same time there is no doubt that,
as far back as we have any definite historical information, the art was
practised in the East; that thence it was transplanted to Egypt, Greece,
and Rome; and that the medieval astrology was founded on it. It is
probable that the rules did not differ materially from those described in
this chapter‡, and it may be added that the more intelligent thinkers of
the old world recognised that the art had no valid pretences to accuracy.
I may note also that the history of the development of the art ceases
with the general acceptance of the Copernican theory, after which the
practice of astrology rapidly became a mere cloak for imposture.

† I have relied mainly on the Manual of Astrology by Raphael—whose real name
was R.C. Smith—London, 1828, to which the references to Raphael hereafter
given apply; and on Cardan’s writings, especially his commentary on Ptolemy’s
work and his Geniturarum Exempla. I am indebted also for various references
and gossip to Whewell’s History of the Inductive Sciences; to various works
by Raphael, published in London between 1825 and 1832; and to a pamphlet
by M. Uhlemann, entitled Grundzüge der Astronomie und Astrologie, Leipzig,
1857.

‡ On the influences attributed to the planets, see The Dialogue of Bardesan on
Fate, translated by W. Cureton in the Spicilegium Syriacum, London, 1855.

236
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All the rules of the medieval astrology—to which I confine myself—
are based on the Ptolemaic astronomy, and originate in the Tetrabiblos*

which is said, it may be falsely, to have been written by Ptolemy himself.
The art was developed by numerous subsequent writers, especially by
Albohazen†, and Firmicus. The last of these collected the works of most
of his predecessors in a volume‡, which remained a standard authority
until the close of the sixteenth century.

I may begin by reminding the reader that though there was a fairly
general agreement as to the methods of procedure and interpretation—
which alone I attempt to describe—yet there was no such thing as a
fixed code of rules or a standard text-book. It is therefore difficult to
reduce the rules to any precise and definite form, and almost impossi-
ble, within the limits of a chapter, to give detailed references. At the
same time the practice of the elements of the art was tolerably well
established and uniform, and I feel no doubt that my account, as far
as it goes, is substantially correct.

There were two distinct problems with which astrologers concerned
themselves. One was the determination in general outline of the life
and fortunes of an enquirer: this was known as natal astrology , and
was effected by the erection of a scheme of nativity. The other was the
means of answering any specific question about the individual: this was
known as horary astrology . Both depended on the casting or erecting
of a horoscope. The person for whom it was erected was known as
the native.

A horoscope was cast according to the following rules§. The space
between two concentric and similarly situated squares was divided into
twelve spaces, as shown in the annexed diagram. These twelve spaces
were known technically as houses ; they were numbered consecutively
1, 2, . . . , 12 (see figure); and were described as the first house, the se-
cond house, and so on. The dividing lines were termed cusps : the line
between the houses 12 and 1 was called the cusp of the first house,
the line between the houses 1 and 2 was called the cusp of the second
house, and so on, finally the line between the houses 11 and 12 was
called the cusp of the twelfth house. Each house had also a name of its

* There is an English translation by J. Wilson, London [n.d.]; and a French trans-
lation is given in Halma’s edition of Ptolemy’s works.

† De judiciis astrorum, ed. Liechtenstein, Basle, 1571.
‡ Astronomicorum, eight books, Venice, 1499.
§ Raphael, pp. 91–109.
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own—thus the first house was called the ascendant house, the eighth
house was called the house of death, and so on—but as these names
are immaterial for my purpose I shall not define them.

Next, the positions which the various astrological signs and planets
had occupied at some definite time and place (for instance, the time
and place of birth of the native, if his nativity was being cast) were
marked on the celestial sphere. This sphere was divided into twelve
equal spaces by great circles drawn through the zenith, the angle be-
tween any two consecutive circles being 30◦. The first circle was drawn
through the East point, and the space between it and the next circle
towards the North corresponded to the first house, and sometimes was
called the first house. The next space, proceeding from East to North,
corresponded to the second house, and so on. Each of the twelve spaces
between these circles corresponded to one of the twelve houses, and
each of the circles to one of the cusps.

In delineating* a horoscope, it was usual to begin by inserting the
zodiacal signs. A zodiacal sign extends over 30◦, and was marked on
the cusp which passed through it: by its side was written a number
indicating the distance to which its influence extended in the earlier of
the two houses divided by the cusp. Next the position of the planets in
these signs were calculated, and each planet was marked in its proper

* Raphael, pp. 118–131.
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house and near the cusp belonging to the zodiacal sign in which the
planet was then situated: it was followed by a number indicating its
right ascension measured from the beginning of the sign. The name of
the native and the date for which the horoscope was cast were inserted
usually in the central square. The diagram near the end of this chapter
is a facsimile of the horoscope of Edward VI as cast by Cardan and will
serve as an illustration of the above remarks.

We are now in a position to explain how a horoscope was read or
interpreted. Each house was associated with certain definite questions
and subjects, and the presence or absence in that house of the various
signs and planets gave the answer to these questions or information
on these subjects.

These questions cover nearly every point on which information
would be likely to be sought. They may be classified roughly as follows.
For the answer, so far as it concerns the native, to all questions con-
nected with his life and health, look in house 1; for questions connected
with his wealth, refer to house 2; for his kindred and communications
to him, refer to 3; for his parents and inheritances, refer to 4; for his
children and amusements, refer to 5; for his servants and illnesses, refer
to 6; for his marriage and amours, refer to 7; for his death, refer to 8;
for his learning, religion and travels, refer to 9; for his trade and repu-
tation, refer to 10; for his friends, refer to 11; and finally for questions
connected with his enemies, refer to house 12.

I proceed to describe briefly the influences of the planets, and shall
then mention those of the zodiacal signs; I should note however that
in practice the signs were in many respects more influential than the
planets.

The astrological “planets” were seven in number, and included the
Sun and the Moon. They were Saturn or the Great Infortune, Jupiter
or the Great Fortune, Mars or the Lesser Infortune, the Sun, Venus
or the Lesser Fortune, Mercury, and the Moon: the above order being
that of their apparent times of rotation round the earth.

Each of them had a double signification. In the first place it im-
pressed certain characteristics, such as good fortune, feebleness, &c., on
the dealings of the native with the subjects connected with the house
in which it was located; and in the second place it imported certain
objects into the house which would affect the dealings of the native
with the subjects of that house.
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To describe the exact influence of each planet in each house would
involve a long explanation, but the general effect of their presence may
be indicated roughly as follows*. The presence of Saturn is malignant:
that of Jupiter is propitious: that of Mars is on the whole injurious:
that of the Sun indicates respectability and moderate success: that
of Venus is rather favourable: that of Mercury implies rapid practical
action: and lastly the presence of the Moon merely faintly reflects the
influence of the planet nearest her, and suggests rapid changes and
fickleness. Besides the planets, the Moon’s nodes and some of the more
prominent fixed stars† also had certain influences.

These vague terms may be illustrated by taking a few simple cases.
For example, in casting a nativity, the life, health, and general

career of the native were determined by the first or ascendant house,
whence comes the expression that a man’s fortune is in the ascendant.
Now the most favourable planet was Jupiter. Therefore, if at the instant
of birth Jupiter was in the first house, the native might expect a long,
happy, healthy life; and being born under Jupiter he would have a
“jovial” disposition. On the other hand, Saturn was the most unlucky
of all the planets, and was as potent as malignant. If at the instant of
birth he was in the first house, his potency might give the native a long
life, but it would be associated with an angry and unhappy temper, a
spirit covetous, revengeful, stern, and unloveable, though constant in
friendship no less than in hate, which was what astrologers meant by a
“saturnine” character. Similarly a native born under Mercury, that is,
with Mercury in the first house, would be of a mercurial nature, while
anyone born under Mars would have a martial bent.

Moreover it was the prevalent opinion that a jovial person would
have his horoscope affected by Jupiter, even if that planet had not
been in the ascendant at the time of birth. Thus the horoscope of an
adult depended to some extent on his character and previous life. It
is hardly necessary to point out how easily this doctrine enabled an
astrologer to make the prediction of the heavens agree with facts that
were known or probable.

In the same way the other houses are affected. For instance, no
astrologer, who believed in the art, would have wished to start on a
long journey when Saturn was in the ninth house or house of travels;

* Raphael, pp. 70–90; pp. 204–209.
† Raphael, pp. 129–131,
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and, if at the instant of birth Saturn was in that house, the native
always would incur considerable risk on his journeys.

Moreover every planet was affected to some extent by its aspect
(conjunction, opposition, or quadrature) to every other planet accord-
ing to elaborate rules* which depended on their positions and directions
of motion: in particular the angular distance between the Sun and the
Moon—sometimes known as the “part of fortune”—was regarded as
specially important, and this distance affected the whole horoscope.
In general, conjunction was favourable, quadrature unfavourable, and
opposition ambiguous.

Each planet not only influenced the subjects in the house in which
it was situated, but also imported certain objects into the house. Thus
Saturn was associated with grandparents, paupers, beggars, labourers,
sextons, and gravediggers. If, for example, he was present in the fourth
house, the native might look for a legacy from some such person; if
he was present in the twelfth house, the native must be careful of the
consequences of the enmity of any such person; and so on.

Similarly Jupiter was associated generally with lawyers, priests,
scholars, and clothiers; but, if he was conjoined with a malignant planet,
he represented knaves, cheats, and drunkards. Mars indicated soldiers
(or, if in a watery sign, sailors on ships of war), masons, doctors, smiths,
carpenters, cooks, and tailors; but, if afflicted with Mercury or the
Moon, he denoted the presence of thieves. The Sun implied the action
of kings, goldsmiths, and coiners; but, if afflicted by a malignant planet,
he denoted false pretenders. Venus imported musicians, embroiderers,
and purveyors of all luxuries; but, if afflicted, prostitutes and bullies.
Mercury imported astrologers, philosophers, mathematicians, states-
men, merchants, travellers, men of intellect, and cultured workmen;
but, if afflicted, he signified the presence of pettifoggers, attorneys,
thieves, messengers, footmen, and servants. Lastly, the presence of the
Moon introduced sailors and those engaged in inferior offices.

I come now to the influence and position of the zodiacal signs. So
far as the first house was concerned, the sign of the zodiac which was
there present was even more important than the planet or planets, for
it was one of the most important indications of the durations of life.

Each sign was connected with certain parts of the body—ex. gr.
Aries influenced the head, neck and shoulders—and that part of the

* Raphael, pp. 132–170.
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body was affected according to the house in which the sign was. Fur-
ther each sign was associated with certain countries and connected the
subjects of the house in which the sign was situated with those coun-
tries: ex. gr. Aries was associated especially with events in England,
France, Syria, Verona, Naples, &c.

The sign in the first house determined also the character and ap-
pearance of the native*. Thus the character of a native born under
Aries (m) was passionate; under Taurus (f ) was dull and cruel; under
Gemini (m) was active and ingenious; under Cancer (f ) was weak and
yielding; under Leo (m) was generous, resolute, and ambitious; under
Virgo (f ) was sordid and mean; under Libra (m) was amorous and
pleasant; under Scorpio (f ) was cold and reserved; under Sagittarius
(m) was generous, active, and jolly; under Capricorn (f ) was weak and
narrow; under Aquarius (m) was honest and steady; and under Pisces
(f ) was phlegmatic and effeminate.

Moreover the signs were regarded as alternately masculine and fem-
inine, as indicated above by the letters m or f placed after each sign. A
masculine sign is fortunate, and all planets situated in the same house
have their good influence rendered thereby more potent and their un-
favourable influence mitigated. But all feminine signs are unfortunate,
their direct effect is evil, and they tend to nullify all the good influence
of any planet which they afflict (i.e. with which they are connected),
and to increase all its evil influences, while they also import an element
of fickleness into the house and often turn good influences into malig-
nant ones. The precise effect of each sign was different on every planet.

I think the above account is sufficient to enable the reader to form
a general idea of the manner in which a horoscope was cast and inter-
preted, and I do not propose to enter into further details. This is the less
necessary as the rules—especially as to the relative importance to be
assigned to various planets when their influence was conflicting—were
so vague that astrologers had little difficulty in finding in the horoscope
of a client any fact about his life of which they had information or any
trait of character which they suspected him to possess.

That this vagueness was utilized by quacks is notorious, but no
doubt many an astrologer in all honesty availed himself of it, whether
consciously or unconsciously. It must be remembered also that the rules
were laid down at a time when men were unacquainted with any exact

* Raphael, pp. 61–69.
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science, with the possible exception of mathematics, and further that,
if astrology had been reduced to a series of inelastic rules applicable
to all horoscopes, the number of failures to predict the future correctly
would have rapidly led to a recognition of the folly of the art. As it was,
the failures were frequent and conspicuous enough to shake the faith
of most thoughtful men. Moreover it was a matter of common remark
that astrologers showed no greater foresight in meeting the difficulties
of life than their neighbours, while they were neither richer, wiser, nor
happier for their supposed knowledge. But though such observations
were justified by reason they were often forgotten in times of difficulty
and danger. A prediction of the future and the promise of definite
advice as to the best course of action, revealed by the heavenly bodies
themselves, appealed to the strongest desires of all men, and it was with
reluctance that the futility of the advice was gradually recognized.

The objections to the scheme had been stated clearly by several
classical writers. Cicero* pointed out that not one of the futures fore-
told for Pompey, Crassus, and Caesar had been verified by their subse-
quent lives, and added that the planets, being almost infinitely distant,
cannot be supposed to affect us. He also alluded to the fact, which was
especially pressed by Pliny†, that the horoscopes of twins are practi-
cally identical though their careers are often very different, or as Pliny
put it, every hour in every part of the world are born lords and slaves,
kings and beggars.

In answer to the latter obvious criticism astrologers replied by quot-
ing the anecdote of Publius Nigidius Figulus, a celebrated Roman as-
trologer of the time of Julius Caesar. It is said that when an opponent
of the art urged as an objection the different fates of persons born in two
successive instants, Nigidius bade him make two contiguous marks on
a potter’s wheel, which was revolving rapidly near them. On stopping
the wheel, the two marks were found to be far removed from each other.
Nigidius received the name of Figulus, the potter, in remembrance of
this story, but his argument, says St Augustine‡, who gives us the nar-
rative, was as fragile as the ware which the wheel manufactured.

On the other hand Seneca and Tacitus may be cited as being on

* Cicero, De Divinatione, ii, 42.
† Pliny, Historia Naturalis, vii, 49; xxix, 1.
‡ St Augustine, De Civitate Dei, bk. v, chap. iii; Opera omnia, ed. Migne, vol. vii,

p. 143.
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the whole favourable to the claims of astrology, though both recognized
that it was mixed up with knavery and fraud. An instance of successful
prediction which is given by the latter of these writers* may be used
more correctly as an illustration of how the ordinary professors of the
art varied their predictions to suit their clients and themselves. The
story deals with the first introduction of the astrologer Thrasyllus to
the emperor Tiberius. Those who were brought to Tiberius on any im-
portant matter were admitted to an interview in an apartment situated
on a lofty cliff in the island of Capreae. They reached this place by a
narrow path overhanging the sea, accompanied by a single freedman of
great bodily strength; and on their return, if the emperor had conceived
any doubts of their trustworthiness, a single blow buried the secret and
its victim in the ocean. After Thrasyllus had, in this retreat, stated the
results of his art as they concerned the emperor, the latter asked the
astrologer whether he had calculated how long he himself had to live.
The astrologer examined the aspect of the stars, and while he did this
showed, as the narrative states, hesitation, alarm, increasing terror,
and at last declared that the present hour was for him critical, perhaps
fatal. Tiberius embraced him, and told him he was right in supposing
he had been in danger but that he should escape it; and made him
thenceforth a confidential counsellor. But Thrasyllus would have been
but a sorry astrologer had he not foreseen such a question and prepared
an answer which he thought fitted to the character of his patron.

A somewhat similar story is told† of Louis XI of France. He sent for
a famous astrologer whose death he was meditating, and asked him to
show his skill by foretelling his own future. The astrologer replied that
his fate was uncertain, but it was so inseparably interwoven with that
of his questioner that the latter would survive him but by a few hours,
whereon the superstitious monarch not only dismissed him uninjured,
but took steps to secure his subsequent safety. The same anecdote
is also related of a Scotch student who, being captured by Algerian
pirates, predicted to the Sultan that their fates were so involved that
he should predecease the Sultan by only a few weeks. This may have
been good enough for a barbarian, but with a civilized monarch it

* Annales, vi, 22: quoted by Whewell, History of the Inductive Sciences, vol. i,
p. 313.

† Personal Characteristics from French History, by Baron F. Rothschild, London,
1896, p. 10. The story was introduced by Sir Walter Scott in Quentin Durward
(chap. xv).
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probably would in most cases be less effectual, as certainly it is less
artistic, than the answer of Thrasyllus.

I may conclude by mentioning a few notable cases of horoscopy.
Among the most successful instances of horoscopy enumerated by

Raphael* is one by W. Lilly, given in his Monarchy or No Monarchy,
published in 1651, in which he predicted a plague in London so terrible
that the number of deaths should exceed the number of coffins and
graves, to be followed by “an exorbitant fire.” The prediction was amply
verified in 1665 and 1666. In fact Lilly’s success was embarrassing, for
the Committee of the House of Commons, which sat to investigate the
causes of the fire and ultimately attributed it to the papists, thought
that he must have known more about it than he chose to declare, and
on Oct. 25, 1666, summoned him before them. I may add that Lilly
proved himself a match for his questioners.

An even more curious instance of a lucky hit is told of Flamsteed†,
the first astronomer royal. It is said that an old lady who had lost some
property wearied Flamsteed by her perpetual requests that he would
use his observatory to discover her property for her. At last, tired
out with her importunities, he determined to show her the folly of her
demand by making a prediction, and, after she had found it false, to
explain again to her that nothing else could be expected. Accordingly
he drew circles and squares round a point that represented her house
and filled them with all sorts of mystical symbols. Suddenly striking
his stick into the ground he said, “Dig there and you will find it.” The
old lady dug in the spot thus indicated, and found her property; and it
may be conjectured that she believed in astrology for the rest of her life.

Perhaps the belief that the royal observatory was built for such
purposes may be still held, for De Morgan, writing in 1850, says that
“persons still send to Greenwich to have their fortunes told, and in one
case a young gentleman wrote to know who his wife was to be, and
what fee he was to remit.”

It is easier to give instances of success in horoscopy than of failure.
Not only are all ambiguous predictions esteemed to be successful, but it
is notorious that prophecies which have been verified by the subsequent

* Manual of Astrology, p. 37.
† The story, though in a slightly different setting, is given in The London Chron-

icle, Dec. 3, 1771, and it is there stated that Flamsteed attributed the result to
the direct action of the devil.
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course of events are remembered and quoted, while the far more numer-
ous instances in which the prophecies have been falsified are forgotten
or passed over in silence.

As exceptionally well-authenticated instances of failures I may men-
tion the twelve cases collected by Cardan in his Geniturarum Exempla.
These are good examples because Cardan was not only the most em-
inent astrologer of his time, but was a man of science, and perhaps it
is not too much to say was accustomed to accurate habits of thought;
moreover, as far as I can judge, he was perfectly honest in his belief
in astrology. To English readers the most interesting of these is the
horoscope of Edward VI of England, the more so as Cardan has left a
full account of the affair, and has entered into the reasons of his failure
to predict Edward’s death.

To show how Cardan came to be mixed up in the transaction I
should explain that in 1552 Cardan went to Scotland to prescribe for
John Hamilton, the archbishop of St Andrews, who was ill with asthma
and dropsy and about whose treatment the physicians had disagreed*.
On his return through London, Cardan stopped with Sir John Cheke,
the Professor of Greek at Cambridge, who was tutor to the young king.
Six months previously, Edward had been attacked by measles and small-
pox which had made his health even weaker than before. The king’s
guardians were especially anxious to know how long he would live, and
they asked Cardan to cast Edward’s nativity with particular reference
to that point.

The Italian was granted an audience in October, of which he wrote
a full account in his diary, quoted in the Geniturarum Exempla. The
king, says he†, was “of a stature somewhat below the middle height, pale
faced, with grey eyes, a grave aspect, decorous, and handsome. He was

* Luckily they left voluminous reports on the case and the proper treatment for it.
The only point on which there was a general agreement was that the phlegm, in-
stead of being expectorated, collected in his Grace’s brains, and that thereby the
operations of the intellect were impeded. Cardan was celebrated for his success
in lung diseases, and his remedies were fairly successful in curing the asthma.
His fee was 500 crowns for travelling expenses from Pavia, 10 crowns a day, and
the right to see other patients; the archbishop actually gave him 2300 crowns in
money and numerous presents in kind; his fees from other persons during the
same time must have amounted to about an equal sum (see Cardan’s De Libris
Propriis, ed. 1557, pp. 159–175; Consilia Medica, Opera, vol. ix, pp. 124–148;
De Vita Propria, ed. 1557, pp. 138, 193 et seq.).

† I quote from Morley’s translation, vol. ii, p. 135 et seq.
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rather of a bad habit of body than a sufferer from fixed diseases, and
had a somewhat projecting shoulder-blade.” But, he continues, he was
a boy of most extraordinary wit and promise. He was then but fifteen
years old and he was already skilled in music and dialectics, a master
of Latin, English, French, and fairly proficient in Greek, Italian, and

Spanish. He “filled with the highest expectation every good and learned
man, on account of his ingenuity and suavity of manners. . . . When a
royal gravity was called for, you would think that it was an old man
you saw, but he was bland and companionable as became his years. He
played upon the lyre, took concern for public affairs, was liberal of mind,
and in these respects emulated his father, who, while he studied to be
[too] good, managed to seem bad.” And in another place* he describes
him as “that boy of wondrous hopes.” At the close of the interview
Cardan begged leave to dedicate to Edward a work on which he was
then engaged. Asked the subject of the work, Cardan replied that he
began by showing the cause of comets. The subsequent conversation, if
it is reported correctly, shows good sense and considerable logical skill
on the part of the young king.

* De Rerum Varietate, p. 285.
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I have reproduced on the previous page a facsimile of Cardan’s
original drawing of Edward’s horoscope. The horoscope was cast and
read with unusual care. I need not quote the minute details given
about Edward’s character and subsequent career, but obviously the
predictions were founded on the impressions derived from the above-
mentioned interview. The conclusion about his length of life was that
he would certainly live past middle age, though after the age of 55 years
3 months and 17 days various diseases would fall to his lot*.

In the following July the king died, and Cardan felt it necessary
for his reputation to explain the cause of his error. The title of his dis-
sertation is Quae post consideravi de eodem†. In effect his explanation
is that a weak nativity can never be predicted from a single horoscope,
and that to have ensured success he must have cast the nativity of every
one with whom Edward had come intimately into contact; and, failing
the necessary information to do so, the horoscope could be regarded
only as a probable prediction.

This was the argument usually offered to account for non-success.
A better defence would have been the one urged by Raphael‡ and by
Southey§ that there might be other planets unknown to the astrologer
which had influenced the horoscope, but I do not think that medieval
astrologers assigned this reason for failure.

I have not alluded to the various adjuncts of the art, but astrologers
so frequently claimed the power to be able to raise spirits that perhaps I
may be pardoned for remarking that I believe some of the more impor-
tant and elaborate of these deceptions were effected not infrequently by
means of a magic lantern, the pictures being sometimes thrown on to
a mirror, and at other times on to a thick cloud of smoke which caused
the images to move and finally disappear in a fantastic way capable
of many explanations∥.

I would conclude by repeating again that though the practice of
astrology was so often connected with impudent quackery, yet one ought
not to forget that nearly every physician and man of science in medieval
Europe was an astrologer. These observers did not consider that its

* Geniturarum Exempla, p. 19.
† Ibid., p. 23.
‡ The Familiar Astrologer, London, 1832, p. 248.
§ The Doctor, chap. 92.
∥ See ex. gr. the life of Cellini, chap. xiii, Roscoe’s translation, pp. 144-146. See

also Sir David Brewster’s Letters on Natural Magic.
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rules were definitely established, and they laboriously collected much
of the astronomical evidence that was to crush their art. Thus, though
there never was a time when astrology was not practised by knaves,
there was a period of intellectual development when it was honestly
accepted as a difficult but a real science.
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CHAPTER XI.

CRYPTOGRAPHS AND CIPHERS.

The art of constructing cryptographs or ciphers—intelligible to
those who know the key and unintelligible to others—has been studied
for centuries. Their usefulness on certain occasions, especially in time
of war, is obvious, while it may be a matter of great importance to
those from whom the key is concealed to discover it. But the romance
connected with the subject, the not uncommon desire to discover a
secret, and the implied challenge to the ingenuity of all from whom the
key is hidden, have attracted to the subject the attention of many to
whom its utility is a matter of indifference.

The leading authorities on the subject, few of which are less than
a century old, are enumerated in an article by J.E. Bailey in the ninth
edition of the Encyclopaedia Britannica, and references to various his-
toric ciphers are there given. My knowledge of the subject, however, is
limited to ciphers which I have met with in the course of casual read-
ing, and I prefer to discuss the subject as it has presented itself to me,
with no attempt to make it historically complete and no reference to
other authorities. In fact the theory of the subject is not sufficiently
important to make it worth while to try to deal with it historically
or exhaustively.

Most writers use the words cryptograph and cipher as synonymous.
I employ them, however, with different meanings, which I proceed to
define.

A cryptograph may be defined as a manner of writing in which the
letters or symbols employed are used in their normal sense, but are so
arranged that the communication is intelligible only to those possessing

250
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the key. The word is sometimes used to denote the communication
made. A simple example is a communication in which every word is
spelt backwards. Thus:

ymene deveileb ot eb gniriter troper noitisop no ssorc daor.

A cipher may be defined as a manner of writing by characters ar-
bitrarily invented or by an arbitrary use of letters, words, or characters
in other than their ordinary sense, intelligible only to those possessing
the key. The word is sometimes used to denote the communication
made. A simple example is when each letter is replaced by the one
that immediately follows it in the natural order of the alphabet, a be-
ing replaced by b, b by c, and so on, and finally z by a. In this cipher
the above message would read:

fofnz cfmjfwfe up cf sfujsjoh sfqpsu qptjujpo po dsptt spbe.

In both cryptographs and ciphers the essential feature is that the
communication may be freely given to all the world though it is un-
intelligible save to those who possess the key. The key must not be
accessible to anyone, and if possible it should be known only to those
using the cryptograph or cipher. The art of constructing a cryptograph
lies in the concealment of the proper order of the essential letters or
words: the art of constructing a cipher lies in concealing what letters
or words are represented by the symbols used. In an actual commu-
nication cipher symbols may be arranged cryptographically, and thus
further hinder a reading of the message. Thus the message given above
would read in a cryptographic cipher as

znfof efwfjmfc pu fc hojsjufs uspqfs opjujtpq op ttpsd ebps.

If the message were sent in Latin or some foreign language it would
further diminish the chance of it being read by a stranger through whose
hands it passed. But I may confine myself to messages in English, and
for the present to simple cryptographs and ciphers.

A communication in cryptograph or cipher must be in writing or
in some permanent form. Thus to make small muscular movements—
such, ex. gr., as talking on the fingers, or breathing long and short in
the Morse dot and dash system, or making use of pre-arranged signs
by a fan or stick, or flashing signals by light—do not here concern us.
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Again, the mere fact that the message is concealed or conveyed se-
cretly does not make it a cryptograph or cipher. The majority of stories
dealing with secret communications are concerned with the artfulness
with which the message is concealed or conveyed and have nothing to
do with cryptographs or ciphers. Many of the ancient instances of se-
cret communication are of this type*. Illustrations are to be found in
messages conveyed by pigeons, or wrapped round arrows shot over the
head of a foe, or written on the paper wrapping of a cigarette, or the use
of ink which becomes visible only when the recipient treats the paper
on which it is written by some chemical or physical process.

Again, a communication in a foreign language or in any recognized
notation like shorthand is not an instance of a cipher. A letter in Chi-
nese or Polish or Russian might be often used for conveying a secret
message from one part of England to another, but it fails to fulfil our
test that if published to all the world it would be concealed from ev-
eryone, unless submitted to some special investigation. On the other
hand, in practice, foreign languages or systems of shorthand which are
but little known may serve to conceal a communication better than an
easy cipher, for in the last case the key may be found with but little
trouble, while in the other cases, though the key may be accessible, it
is probable that there are only a few who know where to look for it. An
illustration of this is afforded by the system used by Pepys in writing
his Diary which is further alluded to below.

I proceed to enumerate some of the better known types of cryp-
tographs. There are at least three distinct types. The first type com-
prises those in which the order of the letters is changed in some pre-
arranged manner. The second type comprises those in which the con-
cealment is due to the introduction of non-significant letters. The third
type comprises those in which the letters used are written in fragments.
The types are not exclusive, and any particular cryptograph may com-
prise the distinctive feature of two or all the types.

A cryptograph of the first type is one in which the successive letters
of the message are re-arranged in some pre-determined manner.

One of the most obvious cryptographs of this type is to write each
word or the message itself backwards. He would, however, be a careless
reader who could be deceived by this. Here is an instance in which the

* A long list of classical authorities for different devices used in ancient times for
concealing messages is given in Mercury by J. Wilkins, London, 1641, pp. 27–36.
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whole message is written backwards:

tsop yb tnes tnemeerga fo seniltuo smret ruo tpecca yeht.

In such a case it is unnecessary to indicate the division into words by
leaving spaces between them, and we might divide the letters artifi-
cially, as thus:

Ts opybtne stne meer gafos eniltu osmret ruot peccaye ht.

Systems of this kind which depend on altering the places of letters
or lines in some pre-arranged manner have always been common. I
quote a couple of instances* from Wilkins’s book to which I have already
referred—it was a work which seems to have been studied diligently
by many of those who took part in the civil disturbances of the 17th
century, and gives an excellent account of some of the easier systems
of cryptographs and ciphers.

The first example I take from him is where the letters which make
up the communication are written vertically up or down. Thus the
message: The pestilence continues to increase might be written thus:

e i o t n l i t
s n t i o e t h
a c s n c n s e
e r e u e c e p

Again, Wilkins says that the cryptograph may be yet further ob-
scured by placing the letters which make up the message in any pre-
arranged but discontinuate order. For instance if the message runs to
four lines we may put the first letter at the beginning of the first line,
the second at the beginning of the fourth line, the third at the end of
the first line, the fourth at the end of the fourth line, the fifth at the
beginning of the second line, the sixth at the beginning of the third
line, the seventh at the end of the second line, the eighth at the end
of the third line, and so on. Thus the message: Wee shall make an
Irruption upon the Enemie, from the North, at ten of the clock this

* Mercury, or the Secret and Swift Messenger, by J. Wilkins, London, 1641,
pp. 50–52.
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night would read thus:

Wm rpeta hhs cteinpke
haih fonoih kftoe nil
anoerr ocgt tthmnu rl
eauo mhtei nlen ettes,

where, to obscure the message further, it is divided arbitrarily into
what appear to be words.

Another instance of a cryptograph of this type may be constructed
thus. First, by writing the message in lines of some arranged length, say,
for instance, each containing seventeen letters—the letters in successive
lines being arranged vertically under those corresponding to them in
the upper line—and either leaving no spaces between the words or in-
serting some pre-arranged letter or letters or digits between them, such
as j, q, z. The message can be then sent as a cryptograph by writing
the letters in order in successive vertical lines. This only comes to say-
ing that we write successively the 1st, 18th, 35th letters of the original
message, and then the 2nd, 19th, 36th letters, and so on. To confuse
the decipherer the final reading may be arbitrarily put into what might
represent words. If, however, we know the clue number, say c, it is easy
enough to read the communication. For if it divides into the number
of letters n times with a remainder r it suffices to re-write the message
in lines putting n + 1 letters in each of the first r lines, and n letters
in each of the last c − r lines, and then the communication can be
read by reading the columns downwards. For instance, if the following
communication, containing 270 letters, were received: Ahtzeipqhgesoa
eouazsesewaeqtmusfdtbenzcesjteottqizyczhtzjioarhqettjrfesftnzmroomoh
yearziaqneornbreotlennkaerwizesjuasjodezwjzzszjbrrittjnfjlweuzroqyfoht
qayeizsleopjidihaloalhpepkrheanazsrvliimosiadygtpekijscerqvvjqjqajqnyji
ntkaehsbhsnbgoaotqetqeuuesayqurntpebqstzamztqrj , and the clue num-
ber were 17 we should put 16 letters in each of the first 15 lines and
15 letters in each of the last 2 lines. The communication could then
be discovered by reading the columns downwards: the letters j, q, and
z marking the ends of words.

Another cryptograph of this type may be constructed by arrang-
ing the letters cyclically, and agreeing that the communication is to be
made by selected letters, as, for instance, every seventh, second, sev-
enth, second, and so on. Thus if the communication were Ammunition
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too low to allow of a sortie, which consists of 32 letters, the successive
significant letters would come in the order 7, 9, 16, 18, 25, 27, 2, 4, 13,
15, 24, 28, 5, 8, 20, 22, 1, 6, 21, 26, 11, 14, 32, 10, 31, 12, 17, 23, 3,
29, 30, 19—the numbers being selected as in the decimation problem
given above on pages 19–20, and being struck out from the 32 cycle as
soon as they are determined. The above communication would then
read Ttriooalmolaoonmsueoawotnliotifw . This is a good cryptograph,
but it is troublesome to construct, especially if the message is long, and
for that reason is not to be recommended.

A cryptograph of the second type is one in which the message is
expressed in ordinary writing, but in it are introduced a number of
dummies or non-significant letters or digits thus concealing which of
the letters are relevant.

One way of picking out those letters which are relevant is by the use
of a perforated card of the shape of (say) a sheet of note-paper, which
when put over such a sheet permits only such letters as are on certain
portions of it to be visible. Such a card is known as a grille. An example
of a grille with four openings is figured below. A communication made
in this way may be easily concealed from anyone who does not possess

A B

CD

a card of the same pattern. If the recipient possesses such a card he
has only to apply it in order to read the message.

The use of the grille may be rendered less easy to detect if it be
used successively in different positions, for instance, with the edges AB
and CD successively put along the top of the paper containing the
message. On the next page, for instance, is a message which, with the
aid of the grille figured above, is at once intelligible. On applying the
grille to it with the line AB along the top HK we get the first half
of the communication, namely, 1000 rifles se. On applying the grille
with the line CD along the top HK we get the rest of the message,
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namely, nt to L to-day. The other spaces in the paper are filled with
non-significant letters or numerals in any way we please. Of course any
one using such a grille would not divide the sheet of paper on which
the communication was written into cells, but in the figure I have done
so in order to render the illustration clearer.

981 264 070 523 479 100

NTT ORI SON SON AHY DTC

BFS PUM OLT KFE LJO EGX

AEU QJT EGO FLE HV E WLA

FML AES REM REM ODA SSE

Y ZZ EPD QJC EKS TIM OEF

H K

We can avoid the awkward expedient of having to use a perforated
card, which may fall into undesired hands, by introducing a certain
pre-arranged number of dummies or non-significant letters or symbols
between those which make up the message. Thus, to take an extreme
case, we might arrange that only every 101st letter should form our
communication, and the intervening 100 letters should be written at
random. But such a communication would be 101 times longer than
the message, a nearly fatal objection if it had to be written in a hurry or
telegraphed. A better method, and one which is not easily discovered by
a stranger, is to arrange that (say) only every alternate second and third
letter shall be relevant. Thus the first, third, sixth, eighth, eleventh,
etc., letters are those that make up the message. Such a communication
would be only two and a half times as long as the message, but even
that might be a great disadvantage if time in sending the message
was of importance. For a message written at leisure this need not
matter much, and in such a code the introduction of a sufficient number
of unnecessary letters in some pre-arranged manner gives an effectual
means of conveying a message in secret.

We can also avoid the use of a perforated card if it be arranged
that every nth word shall give the message, the other words being non-
significant, though of course inserted as far as possible so as to make the
complete communication run as a whole. But the difficulty of compos-
ing a document of this kind and its great length render it unsuitable for
any purpose except an occasional communication composed at leisure
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and sent in writing. This method is said to have been used by the Earl
of Argyle when plotting against James II.

Similarly any system that rests on picking out certain letters in a
document, which letters form a communication in ordinary writing, is
a cryptograph. Thus a communication conveyed by a newspaper, in
which the letters making up the message are indicated by pen dots or
pin pricks or in some other agreed way, is a cryptograph.

A kind of secret writing which may perhaps be considered to con-
stitute a third type of cryptograph is a communication on paper which
is legible only when the paper is folded in a particular way. An example
is a message written across the edges of a strip of paper wrapped spiral-
wise round a stick called a scytale. When the paper is unwound and
taken off the stick the letters appear broken, and may seem to consist
of arbitrary signs, but by wrapping the paper round a similar stick the
message can be again read. This system is said to have been used by
the Lacedemonians*. The concealment can never have been effectual
against an intelligent reader who got possession of the paper.

The defect of the method is that the broken letters at once attract
attention and suggest the system used. If the fact can be concealed
that the visible symbols are parts of letters the cryptograph would be
much improved. As an illustration take the appended communication
which is said to have been given to the Young Pretender during his
wanderings after Culloden. If it be creased along the lines BB and

CC (CC being along the second line of the second score), and then
folded over, with B inside, so that the crease C lies over the line A
(which is the second line of the first score) thus leaving only the top

* For references, see Wilkins, supra, p. 38.
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and bottom of the piece of paper visible, it will be found to read conceal
yourself, your foes look for you. I have seen what purports to be the
original, but of the truth of the anecdote I know nothing, and the
desirability of concealing himself must have been so patent that it was
hardly necessary to communicate it by a cryptograph.

I proceed next to some of the more common types of ciphers. It is
immaterial whether we invent characters to denote the various letters;
or whether we employ special symbols to represent them, such as the
symbol ( for a, the symbol : for b, and so on; or whether we use the
letters in a non-natural sense, such as the letter z for a, the letter y
for b, and so on. The rules for reading the cipher will be the same
in each case.

In early times it was a common practice to invent arbitrary symbols
to represent the letters. If the symbols are invented for the purpose they
provoke attention, hence it would seem that preferably we should use
symbols which are not likely to attract special notice. For instance,
the symbols may be musical notes, in which case the message would
appear as a piece of music. Geometrical figures have also been used
for the same purpose. It is not even necessary to employ written signs.
Natural objects have often been used, as in a necklace of beads, or
a bouquet of flowers, where the different shaped or coloured beads or
different flowers stand for different letters or words. An even more
subtle form of disguising the cipher is to make the different distances
between consecutive knots or beads indicate the different letters.

Of all such systems we may say that a careful scrutiny shows that
different symbols are being used, and as soon as the various symbols
are distinguished one from the other no additional complication is in-
troduced, while for practical purposes they are more trouble to send
or receive than those written in symbols in current use. Accordingly
I confine myself to ciphers written by the use of the current letters
and numerals.

It is convenient to divide ciphers into four classes. The first class
comprises ciphers in which the same letter or word is always represented
by the same symbol, and this symbol always represents the same letter
or word. The second class comprises ciphers in which the same letter
or word is, in some or all cases, represented by more than one symbol,
and this symbol always represents the same letter or word. The third
class comprises ciphers in which the same symbol represents sometimes
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one letter or word and sometimes another. The fourth class comprises
ciphers in which each letter or word is always represented by the same
symbol, but more than one letter or word may be represented by the
same symbol.

A cipher of the first type then is one in which the same letter
or word is always represented by the same symbol, and this symbol
always represents the same letter or word.

Perhaps the simplest illustration of a cipher of this type is to em-
ploy one language, but written as far as practical in the alphabet of
another language. It is said that during the Indian Mutiny messages
in English, but written in Greek characters, were used freely, and suc-
cessfully baffled the ingenuity of the enemy, into whose hands they fell.
If this is true, the intelligence of the Hindoos must have been much
less than that with which they are usually credited. The device, how-
ever, is an old one, for we are told* that Edward VI was accustomed
to make notes in cipher “with Greek characters, to the end that they
who waited on him should not read them.”

A common cipher of this type is made by using the actual letters
of the alphabet, but in a non-natural sense as indicating other letters.
Thus we may use each letter to represent the one immediately following
it in the natural order of the alphabet—the letters being supposed to
be cyclically arranged—a standing for b wherever it occurs, b standing
for c, and so on, and finally z standing for a. Or more generally we
may write the letters of the alphabet in a line, and under them re-write
the letters in any order we like. For instance

a b c d e f g h i j k l m n o p q r s t u v w x y z
o l k m a z s q x e u f y r t h c w b v n i d g j p

In such a scheme, we must in our communication replace a by o, b
by l, etc. The recipient will prepare a key by rearranging the letters
in the second line in their natural order and placing under them the
corresponding letter in the first line. Then wherever a comes in the
message he receives he will replace it by e; similarly he will replace b
by s, and so on.

A cipher of this kind is not uncommonly used in military signalling,
the order of the letters being given by the use of a key-word. If, for
instance, Pretoria is chosen as the key-word, we write the letters in

* Sir John Hayward, Life of Edward VI., edition of 1636, p. 20.
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this order, striking out any which occur more than once, and continue
with the unused letters of the alphabet in their natural order, writing
the whole in two lines thus:

p r e t o i a b c d f g h
z y x w v u s q n m l k j

Then in using the cipher p is replaced by z and vice versâ, r by y, and
so on. A long message in such a cipher would be easily discoverable, but
it is rapidly composed by the sender and read by the receiver, and for
some purposes may be useful, especially if the discovery of the purport
of the message is, after a few hours, immaterial.

A summary of the usual rules for reading ciphers of this type,
whether written in English, French, German, Italian, Dutch, Latin,
or Greek, was given by D.A. Conradus in 1742*; and similar rules have
been given by various later writers. In English the letter which occurs
most frequently is e. The next most common letters are said to be t,
a, o, and i ; then n; then r, s, and h; then d and l ; then c, w, u, and m;
then f, y, g, p, and b; then v and k ; and then x, q, j, and z. The most
common double letters are ee, ll, oo, and ss ; while in more than half
the cases of a double letter at the end of a word, the letter is either l
or s. Also, t and h form a common conjunction. I need not, however,
go here into further details of this kind.

Assuming that the division into words is given, that non-significant
symbols are not introduced, and that the problem is not complicated
by the avoidance of the use of common words, a communication of
any considerable length can usually be read with but little difficulty.
The hints given by Conradus will at once suggest certain hypotheses
as to which letters stand for which. Taking one of these hypotheses we
write the message, replacing the symbols by the letters we conjecture
that they represent and replace the others by dots. If the hypothesis
is tenable, the arrangement will probably suggest some of the missing
letters. If, for example, we find two words emphs-all and empht-e
where the missing letter is represented by the same symbol, the first
word shows us that the missing letter is h, m, or t, and the second word
shews us that it must be e, h, i, or o, hence it must be h. Every fresh
letter so determined makes the hypothesis more probable and renders

* Gentleman’s Magazine, 1742, vol. xii, pp. 133–135, 185–186, 241–242, 473–475.
See also the Collected Works of E.A. Poe in 4 volumes, vol. i, p. 30 et seq.
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it easier to guess what the remaining symbols represent. The chief
difficulty is to get a working hypothesis for the first few letters—if it
is the true solution, probably the puzzle will be readily solved—but to
make up a working hypothesis for even a few letters requires patience.

Ciphers of this class in which the division between the words is
given are to be avoided. If we leave a space between such words a
would-be decipherer is given an immense help. He will naturally try if
a word denoted by a single symbol can be an i or an a, while the words
of two or three letters will often stand revealed and so provide a definite
groundwork on which he can construct the key. A long word may also
betray the secret. For instance, if the decipherer has reason to suspect
that the message related to something connected with Birmingham,
and he found that a particular word of ten letters had its second and
fifth letters alike, as also its fourth and tenth letters, he would naturally
see how the key would work if the word represented Birmingham, and
on this hypothesis would at once know the letters represented by eight
symbols. With reasonable luck this should suffice to enable him to tell
if the hypothesis was tenable. The effect of this can be avoided by
leaving no spaces between the words, but this might lead to confusion
and is not to be recommended. We can also use letters which occur
but rarely, such as j, q, x, z, to separate words, and probably this is
the best method.

Ciphers of this type suggest themselves naturally to those ap-
proaching the subject for the first time, and are commonly made by
merely shifting the letters a certain number of places forward. If this
is done we may decrease the risk of detection by altering the amount
of shifting at short (and preferably irregular) intervals. Thus it may
be agreed that if initially we shift every letter one place forward then
whenever we come to the letter (say) n we shall shift every letter one
more place forward. In this way the cipher changes continually, and
is essentially changed to one of the third class; but even with this im-
provement it is probable that an expert would decode a fairly long
message without much difficulty.

We can have ciphers for numerals as well as for letters: such ciphers
are common in many shops. Any word or sentence containing ten
different letters will answer the purpose. Thus, an old tradesman of my
acquaintance used the excellent precept Be just O Man—the first letter
representing 1, the second 2, and so on. In this cipher the price 10/6
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would be marked bn/t. This is an instance of a cipher of the first type.
A cipher of the second type is one in which the same letter or word

is, in some or all cases, represented by more than one symbol, and this
symbol always represents the same letter or word. Such ciphers were
uncommon before the Renaissance, but the fact that to those who held
the key they were not more difficult to write or read than ciphers of
the first type, while the key was not so easily discovered, led to their
common adoption in the seventeenth century.

A simple instance of such a cipher is given by the use of numerals
to denote the letters of the alphabet. Thus a may be represented by
11 or by 37 or by 63, b by 12 or by 38 or by 64, and so on, and finally
z by 36 or by 62 or by 88, while we can use 89 or 90 to signify the
end of a word and the numbers 91 to 99 to denote words or sentences
which constantly occur. Of course in practice no one would employ the
numbers in an order like this, which suggests their meaning, but it will
serve to illustrate the principle. I have deliberately used numbers of
only two digits, as the recipient can then point off the symbols used
in twos, and will know that each pair of symbols represents a letter,
word, or sentence in the message. A disadvantage of this cipher is that
since each letter is denoted by two symbols the length of the message
is doubled by putting it in cipher.

The cipher can be improved by introducing after every (say)
eleventh digit a non-significant digit. If this is done the recipient of
the message must erase every twelfth digit before he begins to read
the message. With this addition the difficulty of discovering the key
is considerably increased.

The same principle is sometimes applied with letters instead of
numbers. For instance, if we take a word (say) of n letters, preferably
all different, and construct a table as shown below of n2 cells, each
cell is defined by two letters of the key-word. Thus, if we choose the
word smoking-cap we shall have 100 cells, and each cell is determined
uniquely by the two letters denoting its row and column. If we fill these
cells in order with the letters of the alphabet we shall have a system
similar to that explained above, where a will be denoted by ss or og
or no, and so for the other letters. The last 22 cells may be used to
denote the first 22 letters of the alphabet, or better, three or four of
them may be used after the end of a word to show that it is ended,
and the rest may be used to denote words or sentences which are likely
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S M O K I N G C A P

S a b c d e f g h i j

M k l m n o p q r s t

O u v w x y z a b c d

K e f g h i j k l m n

I o p q r s t u v w x

N y z a b c d e f g h

G i j k l m n o p q r

C s t u v w x y z

A

P

to occur frequently.
Like the similar cipher with numbers this can be improved by in-

troducing after every mth letter any single letter which it is agreed
shall be non-significant. To decipher a communication so written it is
necessary to know the clue-word and the clue-number.

Here for instance is a communication written in the above cipher
with the clue-word smoking-cap, and with 7 as the clue-number: ngmk
sigrioicpssamckscakqignassnxmigpoasuiamnocmpaminscnogcpncisyiksk
amsssgnncaekknoomkhscpcmscbgpngsiawssgiggndiica1. In this sentence
the letters denoting the 79th, 80th, 81st, and 82nd cells have been
used to denote the end of a word, and no use has been made of the
last 18 cells.

Another cipher of this type is made as follows*. The sender and
recipient of the message furnish themselves with identical copies of some
book. In the cipher only numerals are used, and these numerals indicate
the locality of the letters in the book. For example, the first letter in
the communication might be indicated by 79–8–5, meaning that it is
the 5th letter in the 8th line of the 79th page. But though secrecy might

* The method is well known. It is mentioned by E.A. Poe, Collected Works,
vol. iii, pp. 338–9, but is much older.

1. The original text read . . . sssgnnn. . . , which leads to gobbledegook in the deci-
phered message.
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be secured, it would be very tedious to prepare or decode a message,
and the method is not as safe as some of those described below.

Another cipher of this type is for the sender and receiver to agree
on some common book of reference and to agree further on a number
which, if desired, may be communicated as part of the message. To
employ this cipher the page of the book indicated by the given number
must be used. The first letter in it is taken to signify a, the next b, and
so on–any letter which occurs a second time or more frequently being
neglected. It may be also arranged that after n letters of the message
have been ciphered, the next n letters shall be written in a similar
cipher taken from the pth following page of the book, and so on. Thus
the possession of the code-book would be of little use to anyone who
did not also know the numbers employed. It is so easy to conceal the
clue number that with ordinary prudence it would be almost impossible
for an unauthorized person to discover a message sent in this cipher.
The clue number may be communicated indirectly in many ways. For
instance, it may be arranged that the number to be used shall be the
number sent, plus (say) q, or that the number to be used shall be an
agreed multiple of the number actually sent.

A cipher of the third type is one in which the same symbol rep-
resents sometimes one letter or word and sometimes another. Usually
such ciphers are easily made or read by those who have the key, but
are difficult to discover by those who do not possess it.

A simple example is the employment of pre-arranged numbers in
shifting forward the letters that make the communication. For instance,
if we agree on the clue number (say) 4276, then the first letter in the
communication is replaced by the fourth letter which follows it in the
natural order of the alphabet: for instance, if it were an a it would be
replaced by e. The next letter is replaced by the second letter which
follows it in the natural order of the alphabet: for instance, if it were an
a it would be replaced by c. The next letter is replaced by the seventh
after it. The next by the sixth after it. The next by the fourth, and
so on to the end of the message. Of course to read the message the
recipient would reverse the process. If the letters of the alphabet are
written at uniform intervals along a ruler, and another ruler similarly
marked with the digits can slide along it, the letter corresponding to
the shifting of any given number of places can be read at once.

It would be undesirable to allow the division into words to appear
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in the message, and either the words must be run on continuously, or
preferably the less common letters j, q, z may be used to mark the
division of words. It is also well to conceal the number of digits in
the clue-number. This can be done and the cipher much improved by
inserting after every (say) mth letter a non-significant letter.

Here for instance is a communication written in this cipher with
the clue-numbers 4276 and 7: atpznhvaxuxhiepxafwghzniyprpsikbdkzy
ygkqprgezuytlkobldifebzmxlpogquyitcmgxkckuexvsqkaziaggsigaytnvvsstyv
uaslywgjuzmcsfctqbpwjvaepfxhibwpxiultxlavvtqzoxwkvtuvvfheqbxnpvismp
hzmqtuwxjykeevltif . The recipient would begin by striking out every
eighth letter. He would then shift back every letter 4, 2, 7, 6, 4, 2, &c.,
places respectively, and in reading it would leave out the letters j, q,
and z as only marking the ends of words.

This is an excellent cipher, and it has the additional merit of not
materially lengthening the message. It can be rendered still more diffi-
cult by arranging that either or both the clue-numbers shall be changed
according to some definite scheme, and it may be further agreed that
they shall change automatically every day or week.

A somewhat similar system was proposed by Wilkins*. He took
a key-word, such as prudentia, and constructed as many alphabets as
there were letters in it, each alphabet being arranged cyclically and
beginning respectively with the letters p, r, u, d, e, n, t, i, and a. He
thus got a table like the following, giving nine possible letters which
might stand for any letter of the alphabet. Using this we may vary
the cipher in successive words or letters of the communication. Thus

a b c d e f g h i k l m n o p q r s t u v w x y z
p q r s t u v w x y z a b c d e f g h i k l m n o
r s t u v w x y z a b c d e f g h i k l m n o p q
u v w x y z a b c d e f g h i k l m n o p q r s t
d e f g h i k l m n o p q r s t u v w x y z a b c
e f g h i k l m n o p q r s t u v w x y z a b c d
n o p q r s t u v w x y z a b c d e f g h i k l m
t u v w x y z a b c d e f g h i k l m n o P q r s
i k l m n o p q r s t u v w x y z a b c d e f g h
a b c d e f g h i k l m n o p q r s t u v w x y z

* Mercury, by J. Wilkins, London, 1641, pp. 59, 60.
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the message The prisoners have mutinied and seized the railway station
would, according as the cipher changes in successive words or letters,
read as Hwt fhziedvhi bupy pxwmqmhg erh ervmrq max zirteig station or
as Hyy svvlwnthm lehx uukzgmiq tvd gvcciq mqe frcoanr atpkcrr. I have
taken Wilkins’s key-word, but it is obvious that it would be desirable to
omit a wherever it appears in it, since otherwise, if the cipher changes
in successive words, some of the words may appear unaltered in the
cipher, as is shown in the first of the examples given above.

A cipher of the fourth type is one in which each letter is always
represented by the same symbol, but more than one letter may be
represented by the same symbol. Such ciphers were not uncommon at
the beginning of the nineteenth century, and were usually framed by
means of a key-sentence containing about as many letters as there are
letters in the alphabet.

Thus if the key-phrase is The fox jumped over the garden gate, we
write under it the letters of the alphabet in their usual sequence as
shown below:

T h e f o x j u m p e d o v e r t h e g a r d e n g a t e .
a b c d e f g h i j k l m n o p q r s t u v w x y z a b c .

Then we write the message replacing a by t or a, b by h or t, c by e, d
by f, and so on. Here is such a message. M foemho nea ge eoo jmdhohg
avf teg ev ume afrmeo. But it will be observed that in the cipher a may
represent a or u, d may represent l or w, e may represent c or k or o or
s or x, g may represent t or z, h may represent b or r, o may represent
e or m, r may represent p or v, and t may represent a or b or q. And
the recipient, in deciphering it, must judge as best he can which is the
right meaning to be assigned to these letters when they appear.

An instance of a cipher of the fourth type is afforded by a note
sent by the Duchess de Berri to her adherents in Paris, in which she
employed the key phrase

l e g o u v e r n e m e n t p r o v i s o i r e.
a b c d e f g h i j k l m n o p q r s t u v x y.

Hence in putting her message into cipher she replaced a by l, b by e, c
by g, and so on. She forgot however to supply the key to the recipients
of the message, but her friend Berryer had little difficulty in reading
it by the aid of the rules I have indicated, and thence deduced the
key-phrase she had employed.
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Having considered various classes of cryptographs and ciphers I
may now consider what features we should regard as important in
choosing a cipher intended for practical use.

In the first place, it is obvious that the means employed should be
such as not to excite suspicion if the communication falls into unautho-
rized hands. But this is a counsel of perfection, and almost impossible
to attain.

In the second place, we may say that, under modern conditions in
war, finance, or diplomacy, a cipher may be useless unless it can be tele-
graphed or telephoned. If this is deemed important, it will practically
restrict us to the use of the 26 letters of the alphabet, the 10 numerical
symbols for the digits, to which if we like we may add a few additional
marks such as punctuation stops, brackets, &c. The same condition
will require that the message should not be unduly lengthened by be-
ing turned into cipher. Hence any considerable use of non-significant
symbols is to be deprecated.

In the third place, the key to the cipher should be such that it
can be easily reproduced from memory. For, if the key is so elaborate
that those who use it are obliged to preserve it in some tangible and
accessible form, unauthorized persons may obtain the power of reading
messages. Hence the key should be reproducible at will. Further, it
is desirable that the key should be of such a character that it (or a
change of it) can be telegraphed or otherwise communicated without
the probability of exciting suspicion.

In the fourth place, a cipher should be capable of change at short
intervals. So that if the reading of one message in it be discovered
subsequent messages may be undecipherable even though the system
used is unaltered.

Lastly, no ambiguity should be possible in deciphering the commu-
nication. This will exclude ciphers of the fourth type.

Accordingly in choosing a good cipher we should seek for one in
which only current letters, symbols, or words are employed; such that
its use does not unduly lengthen the message; such that the key to
it can be reproduced at will and need not be kept in a form which
might betray the secret to an unauthorized person; such that the key
to it changes or can be changed at short intervals; and such that it is
not ambiguous. Many ciphers of the second and third types fulfil these
conditions, but it is generally desirable to avoid ciphers of the first type
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unless circumstances permit of the free use of a code-book.
The use of instruments giving a cipher, which is or can be varied

constantly and automatically, has been often recommended. Several
have been constructed on the lines of the well-known letter-locks*. The
possession of the key of the instrument as well as a knowledge of the
clue-word is necessary to enable anyone to read a message, but the risk
of some instrument, when set, falling into unauthorized hands must
be taken into account. Since equally good ciphers can be constructed
without the use of mechanical devices I do not think their employment
can be recommended.

This chapter has already run to such a length that I cannot find
space to describe more than one or two ciphers that appear in history
or fiction, but, we may say that until recently most of the historical
ciphers are not difficult to read.

It is said that Julius Caesar in making secret memoranda was ac-
customed to move every letter four places forward, writing d for a, e
for b, &c. This would be a very easy instance of a cipher of the first
type, but it may have been effective at that time. His nephew Augus-
tus sometimes used a similar cipher, in which each letter was moved
forward one place†.

Bacon proposed a cipher in which each letter was denoted by a
group of five letters consisting of A and B only. Since there are 32
such groups, he had 6 symbols to spare, which he could use to separate
words or to which he could assign special meanings. A message in this
cipher would be five times as long as the original message. This may
be compared with the far superior system of the five (or four) digit
codebook system in use at the present time.

Charles I used ciphers freely in important correspondence—the ma-
jority being of the second type. He was foolish enough to take a cabinet
containing many confidential letters in cipher, to some of which their

* See, for instance, the descriptions of those devised by Sir Charles Wheatstone,
given in his Scientific Papers, London, 1879, pp. 342–347; and by Capt. Baz-
eries in Comptes Rendus, Association Français pour l’avancement des sciences,
vol. xx (Marseilles), 1891, p. 160, et seq.

† Of some of Caesar’s correspondence, Suetonius says (cap. 56) si quis investi-
gare et persequi velit, quartam elementorum literam, id est, d pro a, et perinde
reliquas commutet. And of Augustus he says (cap. 88) quoties autem per notas
scribit, b pro a, c pro b, ac deinceps eadem ratione, sequentes literas ponit; pro
x autem duplex a.
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readings were appended, on the field of Naseby, where they fell into
the hands of Fairfax*. The House of Commons sent them to a com-
mittee presided over by a Mr Tate. It is commonly believed that the
Committee referred the papers to J. Wallis†, then Fellow of Queens’
College, Cambridge, and subsequently Savilian Professor at Oxford,
who discovered the key to them. At any rate the letters were read.

In these ciphers each letter was represented by a number. The
clues to some of the ciphers were provided by the King who had writ-
ten over the number the letter which it represented, as shown in the
following quotation:

c a t o l i c k s i n F
11 18 45 35 23 27 11 25 47 28 40 148 haue layed

t h i r p u r s e s t o g e t h e r
45 31 27 51 33 62 50 47 7 48 45 35 21 7 46 32 7 51

f o r s u p l y of a r m e s. – – –
15 35 50 a 47 62 33 23 74 k1 17 51 42 7 47. – – –

The published letters show that the King used different ciphers at
different times, though perhaps he used the same one in all correspon-
dence with any particular person, but the general character of those
he employed is the same. The sentence quoted above is taken from a
letter from Queen Henrietta Maria of January 26, 1643. In this and
another letter a few months later a is represented by 17 or 18, b by 13,
c by 11 or 12, d by 5, e by 7 or 8 or 9 or 10, f by 15 or 16, g by 21,
h by 31 or 32, i by 27 or 28, k by 25, l by 23 or 24, m by 42 or 44, n
by 39 or 40 or 41, o by 35 or 36 or 37 or 38, p by 33 or 34, r by 50 or
51 or 52, s by 47 or 48, t by 45 or 46, u by 62 or 63, w by 58, and y
by 74 or 77. Numbers of three digits were used to represent particular
people or places. Thus 148 stood for France, 189 for the King, 260 for
the Queen, 354 for Prince Rupert, and so on. Further, there were a
few special symbols, thus k1 stood for but , n1 for to, and f 1 for is.
The numbers 2 to 4 and 65 to 72 were non-significant, and were to be
struck out or neglected by the recipient of the message. Each symbol
is separated from that which follows it by a full-stop.

* First Report of the Royal Commission on Historical Manuscripts, 1870, pp. 2,
4.

† See his letters on Cryptography, Opera, vol. iii, pp. 659–672.
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The Queen seems to have found writing in cipher a great trouble.
In the letter from which I have already quoted a sentence she says
. . . que je suis extrement tourmantee du mal de teete qui fait que je
mesteray en syfre par un autre se qui jovois fait moy mesme, and she
uses the cipher only for the particular words it was desired to conceal.
Thus she writes Mr Capell nous a fait voir que sy 27, 23, &c., &c. If
by this she saved herself trouble, she did it at the cost of rendering the
cipher much easier to read.

The system used by Charles was in considerable repute during the
seventeenth century, but even without extraneous help it is possible for
a diligent student to discover the key if the message is fairly long. An
excellent illustration of this fact is to be found in the writings of the
late Sir Charles Wheatstone. A paper in cipher, every page of which
was initialled by Charles I, and countersigned by Lord Digby, was pur-
chased some years ago by the British Museum. It was believed to be
a state paper of importance. It consists of a series of numbers (about
150 different symbols being used) without any clue to their meaning,
or any indication of a division between the words employed. The task
of reading it was rendered the more difficult by the supposition, which
proved incorrect, that the document was in English; but notwithstand-
ing this, Sir Charles Wheatstone discovered the key*. In this cipher
a was represented by any of the numbers 12, 13, 14, 15, 16, or 17, b
by 18 or 19, and so on, while some 65 special words were represented
by particular numbers.

I may note in passing that Charles also used a species of shorthand,
in which the letters were represented by four strokes varying in length
and position. Essentially the system is simple, though it is troublesome
to read or write.

The famous diary of Samuel Pepys is commonly said to have been
written in cipher, but in reality it is written in shorthand according
to a system invented by T. Shelton†. It is however somewhat diffi-
cult to read, for the vowels are usually omitted, and Pepys used some
arbitrary signs for terminations, particles, and certain words—so far
turning it into a cipher. Further, in certain places, when the matter

* The document, its translation, and the key used are given in Wheatstone’s
Scientific Papers, London, 1879, pp. 321–341.

† Tachy-graphy by T. Shelton. The earliest edition I have seen is dated 1641. A
somewhat similar system by W. Cartwright was issued by J. Rich under the title
Semographie, London, 1644.
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is such that it can hardly be expressed with decency, he changed from
English to a foreign language, or inserted non-significant letters. Shel-
ton’s system had been forgotten when attention was first attracted to
the diary. Accordingly we may say that, to those who first tried to
read it, it was written in cipher, but Pepys’s contemporaries would
have properly described it as being written in shorthand, though with
a few modifications of his own invention.

A system of shorthand specially invented for the purpose is a true
cipher. One such system in which each letter is represented either by a
dot or by a line of constant length was used by the Earl of Glamorgan,
better known by his subsequent title as Marquis of Worcester, in 1645,
as also by Charles I. in some of his private correspondence. It is a cipher
of the first type and has the defects inherent in almost every cipher of
this kind: in fact Glamorgan’s letter was deciphered, and the system
discovered by Mr Dircks*. Obsolete systems of shorthand† might be
thus used to form an effective cipher.

It is always difficult to read a very short message in cipher, since
necessarily the clues are few in number. When the Chevalier de Rohan
was sent to the Bastille, on suspicion of treason, there was no evidence
against him except what might be extracted from Monsieur Latruau-
mont. The latter died without making any admission. De Rohan’s
friends had arranged with him to communicate the result of Latruau-
mont’s examination, and accordingly in sending him some fresh body
linen they wrote on one of the shirts Mg dulhxcclgu ghj yxuj, lm ct ulgc
alj. For twenty-four hours de Rohan pored over the message, but, failing
to read it, he admitted his guilt, and was executed November 27, 1674.

The cipher is a very simple one of the first type, but the commu-
nication is so short that unless the key were known it would not be
easy to read it. Had de Rohan suspected that the second word was
prisonnier, it would have given him 7 out of the 12 letters used, and
as the first and third words suggest the symbols used for l and t, he
could hardly have failed to read the message.

* Life of the Marquis of Worcester by H. Dircks, London, 1865. Worcester’s system
of shorthand was described by him in his Century of Inventions, London, 1663,
sections 3, 4, 5.

† Various systems, including those used in classical and medieval times, are de-
scribed in the History of Shorthand by T. Anderson, London, 1882.
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The following cipher is said to have been employed by Marie An-
toinette*. I take it that it was used in the method indicated on page 265

AB A
O

B
P

C
Q

D
R

E
S

F
T

G
V

H
X

I
Y

L
Z

M
N

CD M
Z

A
N

B
O

C
P

D
Q

E
R

F
S

G
T

H
V

I
X

L
Y

EF L
N

M
O

A
P

B
Q

C
R

D
S

E
T

F
V

G
X

H
Y

I
Z

GH I
N

L
O

M
P

A
Q

B
R

C
S

D
T

E
V

F
X

G
Y

H
Z

IL H
N

I
O

L
P

M
Q

A
R

B
S

C
T

D
V

E
X

F
Y

G
Z

MN G
N

H
O

I
P

L
Q

M
R

A
S

B
T

C
V

D
X

E
Y

F
Z

OP F
N

G
O

H
P

I
Q

L
R

M
S

A
T

B
V

C
X

D
Y

E
Z

QR E
N

F
O

G
P

H
Q

I
R

L
S

M
T

A
V

B
X

C
Y

D
Z

ST D
N

E
O

F
P

G
Q

H
R

I
S

L
T

M
V

A
X

B
Y

C
Z

VX C
N

D
O

E
P

F
Q

G
R

H
S

I
T

L
V

M
X

A
Y

B
Z

YZ B
N

C
O

D
P

E
Q

F
R

G
S

H
T

I
V

L
X

M
Y

A
Z

above. If so, the first word in the communication would be rewritten
according to the scheme given in the first line, a being replaced by o,
and vice versâ, b by p, and so on. The second word would be rewritten
according to the scheme in the second line, and so on.

* The key is given, but without explanation, in Juniper Hall, by C. Hill, London,
1904, p. 13.
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One of the modern systems is the five digit code-book cipher, to
which I have already alluded. According to the general belief, it is fre-
quently employed in certain official communications at the present day.
A code dictionary is prepared in which every word likely to be used
is printed, and the words are numbered consecutively 00000, 00001, . . .
up, if necessary, to 99999. Thus each word is represented by a number
of five digits, and there are 105 such numbers available. The message
is first written down in words. Below that it is written in numbers,
each word being replaced by the number corresponding to it. To each
of these numbers is added some definite prearranged clue-number—
the words in the dictionary being assumed to be arranged cyclically,
so that if the resulting number exceeds 105 it is denoted only by the
excess above 105. The resulting numbers are sent as a message. On re-
ceipt of a message it is divided into consecutive groups of five numbers,
each group representing a word. From each number is subtracted the
prearranged clue-number, and then the message can be read off by the
code dictionary. When a code message is published by the Government
receiving it, the construction of the sentences is usually altered before
publication, so that the key may not be discoverable by anyone in pos-
session of the code-book or who has seen the cipher message. This is
a rule applicable to all cryptographs and ciphers.

This is a cipher with 105 symbols, and as each symbol consists of
five digits, a message of n words is denoted by 5n digits, and probably
is not longer than the message when written in the ordinary way. Since
however the number of words required is less than 105, the spare num-
bers may be used to represent collocations of words which constantly
occur, and if so the cipher message may be slightly shortened.

If the clue number is the same all through the message it would be
possible by not more than 105 trials to discover the message. This is
not a serious risk, but, slight though it is, it can be avoided if the clue
number is varied; the clue number might, for instance, be 781 for the
first three words, 791 for the next five words, 801 for the next seven
words, and so on. Further it may be arranged that the clue numbers
shall be changed every day; thus on the seventh day of the month they
might be 781, 791, &c., and on the eighth day 881, 891, &c., and so on.

This cipher can however be further improved by inserting at some
step, say after each mth digit, an unmeaning digit. For example, if,
in the original message written in numbers, we insert a 9 after every
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seven digits we shall get a collection of words (each represented by
five digits), most of which would have no connection with the original
message, and probably the number of digits used in the message itself
would no longer be a multiple of 5. Of course the receiver has only to
reverse the process in order to read the message.

It is however unnecessary to use five symbols for each word. For
if we make a similar code with the twenty-six letters of the alphabet
instead of the ten digits, four letters for each word or phrase would give
us 264, that is, 456976 possible variations. Thus the message would be
shorter and the power of the code increased. Further, if we like to use
the ten digits and the twenty-six letters of the alphabet—all of which
are easily telegraphed—we could, by only using three symbols, obtain
363, that is, 46656 possible words, which would be sufficient for all
practical purposes.

This code, at any rate with these modifications, is undecipher-
able by strangers, but it has the disadvantages that those who use it
must always have the code dictionary available, and that it takes a
considerable time to code or decode a communication. For practical
purposes its use would be confined to communications which could be
deciphered at leisure in an office, It is especially suitable in the case
of communications between officials, each supplied with a competent
staff of secretaries or clerks—as from an ambassador to his chief, or
a commander in the field to his war office. It is an excellent example
of a cipher of the first type, but it is not clear that it possesses any
superiority over some of the simple ciphers of the third type.

One of the best known writers on the subject of cryptographs and
ciphers is E.A. Poe, indeed probably a good many readers have made
their first acquaintance with a cipher in his story of The Gold Bug,
the interest of which turns on reading a simple cipher of the first type.
In earlier times J. Tritheim of Spanheim, G. Porta of Naples, Cardan,
Niceron, and J. Wilkins occupied much the same position, while when-
ever ciphers were freely used skilful decipherers seem to have arisen.

Poe wrote an essay on cryptography in which he said that it may be
roundly asserted that human ingenuity cannot concoct a cipher which
human ingenuity cannot resolve—a conclusion which is hardly justified
by the known facts. In an earlier article he once made a similar re-
mark so far as ciphers of the first class are concerned, with the implied
limitation that only 26 symbols may be used. In this sense the obser-
vation is correct. His assertion excited some attention, and numerous
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communications in cipher were sent to him. More than one of his cor-
respondents did not play the game fairly, not only employing foreign
languages, but using several different ciphers in the same communica-
tion. Nevertheless he resolved all except one; and he proved that this
last was a fraud, being merely a jargon of random characters, having
no meaning whatever.
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CHAPTER XII.

HYPER-SPACE†.

I propose to devote the remaining pages to the consideration,
from the point of view of a mathematician, of certain properties of
space, time, and matter, and to a sketch of some hypotheses as to their
nature. I shall not discuss the metaphysical theories that profess to

† On the possibility of the existence of space of more than three dimensions see
C.H. Hinton, Scientific Romances, London, 1886, a most interesting work, from
which I have derived much assistance in compiling the earlier part of this chapter;
his later work, The Fourth Dimension, London, 1904, may be also consulted.
See also G.F. Rodwell, Nature, May 1, 1873, vol. viii, pp. 8, 9; and E.A. Abbott,
Flatland, London, 1884.

The theory of Non-Euclidean geometry is due primarily to Lobatschewsky,
Geometrische Untersuchungen zur Theorie der Parallellinien, Berlin, 1840 (orig-
inally given in a lecture in 1826); to Gauss (ex. gr. letters to Schumacher, May 17,
1831, July 12, 1831, and Nov. 28, 1846, printed in Gauss’s collected works); and
to J. Bolyai, Appendix to the first volume of his father’s Tentamen, Maros-
Vásárkely, 1832; though the subject had been discussed by J. Saccheri as long
ago as 1733: its development was mainly the work of G.F.B. Riemann, Ueber die
Hypothesen welche der Geometrie zu Grunde liegen, written in 1854, Göttinger
Abhandlungen, 1866–7, vol. xiii, pp. 131–152 (translated in Nature, May 1 and 8,
1873, vol. viii, pp. 14–17, 36–37); H.L.F. von Helmholtz, Göttinger Nachrichten,
June 3, 1868, pp. 193–221; and E. Beltrami, Saggio di Interpretazione della Ge-
ometria non-Euclidea, Naples, 1868, and the Annali di Matematica, series 2,
vol. ii, pp. 232–255: see an article by von Helmholtz in the Academy, Feb. 12,
1870, vol. i, pp. 128–131. Within the last twenty-five years the theory has been
treated by several mathematicians.

A bibliography of hyper-space, compiled by G.B. Halsted, appeared in the
American Journal of Mathematics, vol. i (1878), pp. 261–276, 384–385; and
vol. ii (1879), pp. 65–70.

276
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account for the origin of our conceptions of them, for these theories
lead to no practical result and rest on assertions which are incapable
of definite proof—a foundation which does not commend itself to a
scientific student. Space, time, and matter cannot be defined; but the
means of measuring them and the investigation of their properties fall
within the domain of mathematics.

I devote this chapter to considerations connected with space, leav-
ing the subjects of time and mass to the following two chapters.

I shall confine my remarks on the properties of space to two spec-
ulations which recently have attracted considerable attention. These
are (i) the possibility of the existence of space of more than three di-
mensions, and (ii) the possibility of kinds of geometry, especially of two
dimensions, other than those which are treated in the usual text-books.
These problems are related. The term hyper-space was used originally
of space of more than three dimensions, but now it is often employed to
denote also any Non-Euclidean space. I attach the wider meaning to it,
and it is in that sense that this chapter is on the subject of hyper-space.

In regard to the first of these questions, the conception of a world
of more than three dimensions is facilitated by the fact that there is no
difficulty in imagining a world confined to only two dimensions—which
we may take for simplicity to be a plane, though equally well it might be
a spherical or other surface. We may picture the inhabitants of flatland
as moving either on the surface of a plane or between two parallel and
adjacent planes. They could move in any direction along the plane,
but they could not move perpendicularly to it, and would have no
consciousness that such a motion was possible. We may suppose them
to have no thickness, in which case they would be mere geometrical
abstractions: or, preferably, we may think of them as having a small
but uniform thickness, in which case they would be realities.

Several writers have amused themselves by expounding and illus-
trating the conditions of life in such a world. To take a very simple
instance, in flatland—or any even dimensional space—a knot is impos-
sible, a simple alteration which alone would make some difference in
the experience of the inhabitants as compared with our own.

If an inhabitant of flatland was able to move in three dimensions, he
would be credited with supernatural powers by those who were unable
so to move; for he could appear or disappear at will, could (so far as
they could tell) create matter or destroy it, and would be free from so
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many constraints to which the other inhabitants were subject that his
actions would be inexplicable by them.

We may go one step lower, and conceive of a world of one
dimension—like a long tube—in which the inhabitants could move
only forwards and backwards. In such a universe there would be lines
of varying lengths, but there could be no geometrical figures. To those
who are familiar with space of higher dimensions, life in line-land would
seem somewhat dull. It is commonly said that an inhabitant could
know only two other individuals; namely, his neighbours, one on each
side. If the tube in which he lived was itself of only one dimension,
this is true; but we can conceive an arrangement of tubes in two or
three dimensions, where an occupant would be conscious of motion in
only one dimension, and yet which would permit of more variety in the
number of his acquaintances and conditions of existence.

Our conscious life is in three dimensions, and naturally the idea
occurs whether there may not be a fourth dimension. No inhabitant of
flatland could realize what life in three dimensions would mean, though,
if he evolved an analytical geometry applicable to the world in which he
lived, he might be able to extend it so as to obtain results true of that
world in three dimensions which would be to him unknown and incon-
ceivable. Similarly we cannot realize what life in four dimensions is like,
though we can use analytical geometry to obtain results true of that
world, or even of worlds of higher dimensions. Moreover the analogy
of our position to the inhabitants of flatland enables us to form some
idea of how inhabitants of space of four dimensions would regard us.

Just as the inhabitants of flatland might be conceived as being
either mere geometrical abstractions, or real and of a uniform thickness
in the third dimension, so, if there is a fourth dimension, we may be
regarded either as having no thickness in that dimension, in which event
we are mere (geometrical) abstractions—as indeed idealist philosophers
have asserted to be the case—or as having a uniform thickness in that
dimension, in which event we are living in four dimensions although we
are not conscious of it. In the latter case it is reasonable to suppose
that the thickness in the fourth dimension of bodies in our world is
small and possibly constant; it has been conjectured also that it is
comparable with the other dimensions of the molecules of matter, and
if so it is possible that the constitution of matter and its fundamental
properties may supply experimental data which will give a physical
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basis for proving or disproving the existence of this fourth dimension.

If we could look down on the inhabitants of flatland we could see
their anatomy and what was happening inside them. Similarly an in-
habitant of four-dimensional space could see inside us.

An inhabitant of flatland could get out of a room, such as a rectan-
gle, only through some opening, but, if for a moment he could step into
three dimensions, he could reappear on the other side of any bound-
aries placed to retain him. Similarly, if we came across persons who
could move out of a closed prison-cell without going through any of the
openings in it, there might be some reason for thinking that they did it
by passing first in the direction of the fourth dimension and then back
again into our space. This however is unknown.

Again, if a finite solid was passed slowly through flatland, the in-
habitants would be conscious only of that part of it which was in their
plane. Thus they would see the shape of the object gradually change
and ultimately vanish. In the same way, if a body of four dimensions
was passed through our space, we should be conscious of it only as a
solid body, namely, the section of the body by our space, whose form
and appearance gradually changed and perhaps ultimately vanished.
It has been suggested that the birth, growth, life, and death of ani-
mals may be explained thus as the passage of finite four-dimensional
bodies through our three-dimensional space. I believe that this idea
is due to Mr Hinton.

The same argument is applicable to all material bodies. The im-
penetrability and inertia of matter are necessary consequences; the con-
servation of energy follows, provided that the velocity with which the
bodies move in the fourth dimension is properly chosen: but the inde-
structibility of matter rests on the assumption that the body does not
pass completely through our space. I omit the details connected with
change of density as the size of the section by our space varies.

We cannot prove the existence of space of four dimensions, but it
is interesting to enquire whether it is probable that such space actu-
ally exists. To discuss this, first let us consider how an inhabitant of
flatland might find arguments to support the view that space of three
dimensions existed, and then let us see whether analogous arguments
apply to our world. I commence with considerations based on geometry
and then proceed to those founded on physics.
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Inhabitants of flatland would find that they could have two tri-
angles of which the elements were equal, element to element, and yet
which could not be superposed. We know that the explanation of this
fact is that, in order to superpose them, one of the triangles would have
to be turned over so that its undersurface came on to the upper side,
but of course such a movement would be to them inconceivable. Possi-
bly however they might have suspected it by noticing that inhabitants
of one-dimensional space might experience a similar difficulty in com-
paring the equality of two lines, ABC and CB′A′, each defined by a set
of three points. We may suppose that the lines are equal and such that
corresponding points in them could be superposed by rotation round
C—a movement inconceivable to the inhabitants—but an inhabitant
of such a world in moving along from A to A′ would not arrive at the
corresponding points in the two lines in the same relative order, and
thus might hesitate to believe that they were equal. Hence inhabitants
of flatland might infer by analogy that by turning one of the triangles
over through three-dimensional space they could make them coincide.

We have a somewhat similar difficulty in our geometry. We can con-
struct triangles in three dimensions—such as two spherical triangles—
whose elements are equal respectively one to the other, but which can-
not be superposed. Similarly we may have two spirals whose elements
are equal respectively, one having a right-handed twist and the other
a left-handed twist, but it is impossible to make one fill exactly the
same parts of space as the other does. Again, we may conceive of two
solids, such as a right hand and a left hand, which are exactly simi-
lar and equal but of which one cannot be made to occupy exactly the
same position in space as the other does. Those are difficulties similar
to those which would be experienced by the inhabitants of flatland in
comparing triangles; and it may be conjectured that in the same way
as such difficulties in the geometry of an inhabitant in space of one
dimension are explicable by temporarily moving the figure into space
of two dimensions by means of a rotation round a point, and as such
difficulties in the geometry of flatland are explicable by temporarily
moving the figure into space of three dimensions by means of a rota-
tion round a line, so such difficulties in our geometry would disappear
if we could temporarily move our figures into space of four dimensions
by means of a rotation round a plane—a movement which of course
is inconceivable to us.
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Next we may enquire whether the hypothesis of our existence in
a space of four dimensions affords an explanation of any difficulties or
apparent inconsistencies in our physical science*. The current concep-
tion of the luminiferous ether, the explanation of gravity, and the fact
that there are only a finite number of kinds of matter, all the atoms
of each kind being similar, present such difficulties and inconsistencies.
To see whether the hypothesis of a four-dimensional space gives any
aid to their elucidation, we shall do best to consider first the analogous
problems in two dimensions.

We live on a solid body, which is nearly spherical, and which moves
round the sun under an attraction directed to it. To realize a corre-
sponding life in flatland we must suppose that the inhabitants live on
the rim of a (planetary) disc which rotates round another (solar) disc
under an attraction directed towards it. We may suppose that the
planetary world thus formed rests on a smooth plane, or other surface
of constant curvature; but the pressure on this plane and even its ex-
istence would be unknown to the inhabitants, though they would be
conscious of their attraction to the centre of the disc on which they
lived. Of course they would be also aware of the bodies, solid, liquid,
or gaseous, which were on its rim, or on such points of its interior as
they could reach.

Every particle of matter in such a world would rest on this plane
medium. Hence, if any particle was set vibrating, it would give up
a part of its motion to the supporting plane. The vibrations thus
caused in the plane would spread out in all directions, and the plane
would communicate vibrations to any other particles resting on it. Thus
any form of energy caused by vibrations, such as light, radiant heat,
electricity, and possibly attraction, could be transmitted from one point
to another without the presence of any intervening medium which the
inhabitants could detect.

If the particles were supported on a uniform elastic plane film, the
intensity of the disturbance at any other point would vary inversely
as the distance of the point from the source of disturbance; if on a
uniform elastic solid medium, it would vary inversely as the square
of that distance. But, if the supporting medium was vibrating, then,

* See a note by myself in the Messenger of Mathematics, Cambridge, 1891,
vol. xxi, pp. 20–24, from which the above argument is extracted. The ques-
tion has been treated by Mr Hinton on similar lines.
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wherever a particle rested on it, some of the energy in the plane would
be given up to that particle, and thus the vibrations of the intervening
medium would be hindered when it was associated with matter.

If the inhabitants of this two-dimensional world were sufficiently
intelligent to reason about the manner in which energy was transmitted
they would be landed in a difficulty. Possibly they might be unable to
explain gravitation between two particles—and therefore between the
solar disc and their disc—except by supposing vibrations in a rigid
medium between the two particles or discs. Again, they might be able
to detect that radiant light and heat, such as the solar light and heat,
were transmitted by vibrations transverse to the direction from which
they came, though they could realize only such vibrations as were in
their plane, and they might determine experimentally that in order to
transmit such vibrations a medium of great rigidity (which we may call
ether) was necessary. Yet in both the above cases they would have also
distinct evidence that there was no medium capable of resisting motion
in the space around them, or between their disc and the solar disc. The
explanation of these conflicting results lies in the fact that their universe
was supported by a plane, of which they were necessarily unconscious,
and that this rigid elastic plane was the ether which transmitted the
vibrations.

Now suppose that the bodies in our universe have a uniform thick-
ness in the fourth dimension, and that in that direction our universe
rests on a homogeneous elastic body whose thickness in that direction
is small and constant. The transmission of force and radiant energy,
without the intervention of an intervening medium, may be explained
by the vibrations of the supporting space, even though the vibrations
are not themselves in the fourth dimension. Also we should find, as in
fact we do, that the vibrations of the luminiferous ether are hindered
when it is associated with matter. I have assumed that the thickness
of the supporting space is small and uniform, because then the inten-
sity of the energy transmitted from a source to any point would vary
inversely as the square of the distance, as is the case; whereas if the
supporting space was a body of four dimensions, the law would be that
of the inverse cube of the distance.

The application of this hypothesis to the third difficulty mentioned
above—namely, to show why there are in our universe only a finite
number of kinds of atoms, all the atoms of each kind having in common
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a number of sharply defined properties—will be given later*.
Thus the assumption of the existence of a four-dimensional homo-

geneous elastic body on which our three-dimensional universe rests,
affords an explanation of some difficulties in our physical science.

It may be thought that it is hopeless to try to realize a figure in
four dimensions. Nevertheless attempts have been made to see what
the sections of such a figure would look like.

If the boundary of a solid is φ(x, y, z) = 0, we can obtain some idea
of its form by taking a series of plane sections by planes parallel to z = 0,
and mentally superposing them. In four dimensions the boundary of
a body would be φ(x, y, z, ω) = 0, and attempts have been made to
realize the form of such a body by making models of a series of solids
in three dimensions formed by sections parallel to ω = 0. Again, we can
represent a solid in perspective by taking sections by three co-ordinate
planes. In the case of a four-dimensional body the section by each of
the four co-ordinate solids will be a solid, and attempts have been made
by drawing these to get an idea of the form of the body. Of course a
four-dimensional body will be bounded by solids.

The possible forms of regular bodies in four dimensions, analogous
to polyhedrons in space of three dimensions, have been discussed by
Mr Stringham†.

I now turn to the second of the two problems mentioned at the
beginning of the chapter: namely, the possibility of there being kinds
of geometry other than those which are treated in the usual elementary
text-books. This subject is so technical that in a book of this nature
I can do little more than give a sketch of the argument on which the
idea is based.

The Euclidean system of geometry, with which alone most people
are acquainted, rests on a number of independent axioms and postu-
lates. Those which are necessary for Euclid’s geometry have, within
recent years, been investigated and scheduled. They include not only
those explicitly given by him, but some others which he unconsciously
used. If these are varied, or other axioms are assumed, we get a differ-
ent series of propositions, and any consistent body of such propositions

* See below, p. 317 (3).
† American Journal of Mathematics, 1880, vol. iii, pp. 1–14.
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constitutes a system of geometry. Hence there is no limit to the number
of possible Non-Euclidean geometries that can be constructed.

Among Euclid’s axioms and postulates is one on parallel lines,
which is usually stated in the form that if a straight line meets two
straight lines, so as to make the two interior angles on the same side
of it taken together less than two right angles, then these straight lines
being continually produced will at length meet upon that side on which
are the angles which are less than two right angles. Expressed in this
form the axiom is far from obvious, and from early times numerous
attempts have been made to prove it*. All such attempts failed, and
it is now known that the axiom cannot be deduced from the other ax-
ioms assumed by Euclid. It can be replaced by other statements about
parallel lines, such as that the distance between two parallel lines is al-
ways the same, but such alternative statements, though perhaps primâ
facie more axiomatic, are not to be preferred to Euclid’s form, since his
statement brings out prominently a characteristic feature of the space
with which he is concerned.

The earliest conception of a body of Non-Euclidean geometry was
due to the discovery, made independently by Saccheri, Lobatschewsky,
and John Bolyai, that a consistent system of geometry of two dimen-
sions can be produced on the assumption that the axiom on parallels is
not true, and that through a point a number of straight (that is, geode-
tic) lines can be drawn parallel to a given straight line. The resulting
geometry is called hyperbolic.

Riemann later distinguished between boundlessness of space and
its infinity, and showed that another consistent system of geometry of
two dimensions can be constructed in which all straight lines are of a fi-
nite length, so that a particle moving along a straight line will return to
its original position. This leads to a geometry of two dimensions, called
elliptic geometry , analogous to the hyperbolic geometry, but character-
ized by the fact that through a point no straight line can be drawn
which, if produced far enough, will not meet any other given straight
line. This can be compared with the geometry of figures drawn on the
surface of a sphere.

Thus according as no straight line, or only one straight line, or a
pencil of straight lines can be drawn through a point parallel to a given

* Some of the more interesting and plausible attempts have been collected by
J. Richard in his Philosophie de Mathématiques, Paris, 1903.
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straight line, we have three systems of geometry of two dimensions
known respectively as elliptic, parabolic or homaloidal or Euclidean,
and hyperbolic.

In the parabolic and hyperbolic systems straight lines are infinitely
long. In the elliptic they are finite. In the hyperbolic system there are
no similar figures of unequal size; the area of a triangle can be deduced
from the sum of its angles, which is always less than two right angles;
and there is a finite maximum to the area of a triangle. In the elliptic
system all straight lines are of the same finite length; any two lines
intersect; and the sum of the angles of a triangle is greater than two
right angles. In the elliptic system it is possible to get from one point
to a point on the other side of a plane without passing through the
plane, namely, by going the other way round the straight line joining
the two points; thus a watch-dial moving face upwards continuously
forward in a plane in a straight line in the direction from the mark vi
to the mark xii will finally appear to a stationary observer with its
face downwards; and if originally the mark iii was to the right of the
observer it will finally be on his left hand.

In spite of these and other peculiarities of hyperbolic and elliptical
geometries, it is impossible to prove by observation that one of them
is not true of the space in which we live. For in measurements in each
of these geometries we must have a unit of distance; and if we live in
a space whose properties are those of either of these geometries, and
such that the greatest distances with which we are acquainted (ex. gr.
the distances of the fixed stars) are immensely smaller than any unit,
natural to the system, then it may be impossible for our observations to
detect the discrepancies between the three geometries. It might indeed
be possible by observations of the parallaxes of stars to prove that the
parabolic system and either the hyperbolic or elliptic system were false,
but never can it be proved by measurements that Euclidean geometry
is true. Similar difficulties might arise in connection with excessively
minute quantities. In short, though the results of Euclidean geometry
are more exact than present experiments can verify for finite things,
such as those with which we have to deal, yet for much larger things
or much smaller things or for parts of space at present inaccessible to
us they may not be true.

If however we go a step further and ask what is meant by saying
that a geometry is true or false, I can only quote the remark of Poincaré,
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that the selection of a geometry is really a matter of convenience, and
that that geometry is the best which enables us to state the physical
laws in the simplest form. This opinion has been strongly controverted,
but at any rate it expresses one view of the question.

The above refers only to hyper-space of two dimensions. Natu-
rally there arises the question whether there are different kinds of Non-
Euclidean space of three or more dimensions. Riemann showed that
there are three kinds of Non-Euclidean space of three dimensions hav-
ing properties analogous to the three kinds of Non-Euclidean space of
two dimensions already discussed. These are differentiated by the test
whether at every point no geodetical surface, or one geodetical surface,
or a fasciculus of geodetical surfaces can be drawn parallel to a given
surface: a geodetical surface being defined as such that every geodetic
line joining two points on it lies wholly on the surface. It may be added
that each of the three systems of geometry of two dimensions described
above may be deduced as properties of a surface in each of these three
kinds of Non-Euclidean space of three dimensions.

It is evident that the properties of Non-Euclidean space of three
dimensions are deducible only by the aid of mathematics, and cannot
be illustrated materially, for in order to realize or construct surfaces
in Non-Euclidean space of two dimensions we think of or use models
in space of three dimensions; similarly the only way in which we could
construct models illustrating Non-Euclidean space of three dimensions
would be by utilizing space of four dimensions.

We may proceed yet further and conceive of Non-Euclidean ge-
ometries of more than three dimensions, but this remains, as yet, an
unworked field.

Returning to the former question of Non-Euclidean geometries, I
wish again to emphasize the fact that, if the axioms enunciated by
Euclid are replaced by others, it is possible to construct other con-
sistent systems of geometry. Some of these are interesting, but those
which have been mentioned above have a special importance, from the
somewhat sensational fact that they lead to no results necessarily in-
consistent with the properties, as far as we can observe them, of the
space in which we live; we are not at present acquainted with any other
systems which are consistent with our experience.
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CHAPTER XIII.

TIME AND ITS MEASUREMENT.

The problems connected with time are totally different in character
from those concerning space which I discussed in the last chapter. I
there stated that the life of people living in space of one dimension
would be uninteresting, and that probably they would find it impossible
to realize life in space of higher dimensions. In questions connected with
time we find ourselves in a somewhat similar position. Mentally, we
can realize a past and a future—thus going backwards and forwards—
actually we go only forwards. Hence time is analogous to space of one
dimension. Were our time of two dimensions, the conditions of our
life would be infinitely varied, but we can form no conception of what
such a phrase means, and I do not think that any attempts have been
made to work it out.

I shall concern myself here mainly with questions concerning the
measurement of time, and shall treat them rather from a historical
than from a philosophical point of view.

In order to measure anything we must have an unalterable unit of
the same kind, and we must be able to determine how often that unit is
contained in the quantity to be measured. Hence only those things can
be measured which are capable of addition to things of the same kind.

Thus to measure a length we may take a foot-rule, and by applying
it to the given length as often as is necessary, we shall find how many
feet the length contains. But in comparing lengths we assume as the
result of experience that the length of the foot-rule is constant, or rather
that any alteration in it can be determined; and, if this assumption
was denied, we could not prove it, though, if numerous repetitions of
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the experiment under varying conditions always gave the same result,
probably we should feel no doubt as to the correctness of our method.

It is evident that the measurement of time is a more difficult matter.
We cannot keep a unit by us in the same way as we can keep a foot-
rule; nor can we repeat the measurement over and over again, for time
once passed is gone for ever. Hence we cannot appeal directly to our
sensations to justify our measurement. Thus, if we say that a certain
duration is four hours, it is only by a process of reasoning that we can
show that each of the hours is of the same duration.

The establishment of a scientific unit for measuring durations has
been a long and slow affair. The process seems to have been as follows.
Originally man observed that certain natural phenomena recurred after
the interval of a day, say from sunrise to sunrise. Experience—for
example, the amount of work that could be done in it—showed that
the length of every day was about the same, and, assuming that this
was accurately so, man had a unit by which he could measure durations.
The present subdivision of a day into hours, minutes, and seconds is
artificial, and apparently is derived from the Babylonians.

Similarly a month and a year are natural units of time though it is
not easy to determine precisely their beginnings and endings.

So long as men were concerned merely with durations which were
exact multiples of these units or which needed only a rough estimate,
this did very well; but as soon as they tried to compare the different
units or to estimate durations measured by part of a unit they found
difficulties. In particular it cannot have been long before it was noticed
that the duration of the same day differed in different places, and that
even at the same place different days differed in duration at different
times of the year, and thus that the duration of a day was not an
invariable unit.

The question then arises as to whether we can find a fixed unit by
which a duration can be measured, and whether we have any assurance
that the seconds and minutes used to-day for that purpose are all of
equal duration. To answer this we must see how a mathematician
would define a unit of time. Probably he would say that experience
leads us to believe that, if a rigid body is set moving in a straight
line without any external force acting on it, it will go on moving in
that line; and those times are taken to be equal in which it passes over
equal spaces: similarly, if it is set rotating about a principal axis passing
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through its centre of mass, those times are taken to be equal in which
it turns through equal angles. Our experiences are consistent with
this statement, and that is as high an authority as a mathematician
hopes to get.

The spaces and the angles can be measured, and thus durations
can be compared. Now the earth may be taken roughly as a rigid body
rotating about a principal axis passing through its centre of mass, and
subject to no external forces affecting its rotation: hence the time it
takes to turn through four right angles, i.e. through 360◦, is always
the same; this is called a sidereal day: the time to turn through one
twenty-fourth part of 360◦, i.e. through 15◦, is an hour: the time to turn
through one-sixtieth part of 15◦, i.e. through 15′, is a minute: and so on.

If, by the progress of astronomical research, we find that there are
external forces affecting the rotation of the earth, mathematics would
have to be invoked to find what the time of rotation would be if those
forces ceased to act, and this would give us a correction to be applied
to the unit chosen. In the same way we may say that although an
increase of temperature affects the length of a foot-rule, yet its change
of length can be determined, and thus applied as a correction to the
foot-rule when it is used as the unit of length. As a matter of fact
there is reason to think that the earth takes about one sixty-sixth of a
second longer to turn through four right angles now than it did 2500
years ago, and thus the duration of a second is just a trifle longer to-
day than was the case when the Romans were laying the foundations
of the power of their city.

The sidereal day can be determined only by refined astronomical
observations and is not a unit suitable for ordinary purposes. The
relations of civil life depend mainly on the sun, and he is our natural
time keeper. The true solar day is the time occupied by the earth in
making one revolution on its axis relative to the sun; it is true noon
when the sun is on the meridian. Owing to the motion of the sun
relative to the earth, the true solar day is about four minutes longer
than a sidereal day.

The true solar day is not however always of the same duration.
This is inconvenient if we measure time by clocks (as now for nearly
two centuries has been usual in Western Europe) and not by sun-dials,
and therefore we take the average duration of the true solar day as
the measure of a day: this is called the mean solar day. Moreover
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to define the noon of a mean solar day we suppose a point to move
uniformly round the ecliptic coinciding with the sun at each apse, and
further we suppose a fictitious sun, called the mean sun, to move in the
celestial equator so that its distance from the first point of Aries is the
same as that of this point: it is mean noon when this mean sun is on
the meridian. The mean solar day is divided into hours, minutes, and
seconds; and these are the usual units of time in civil life.

The time indicated by our clocks and watches is mean solar time;
that marked on ordinary sun-dials is true solar time. The difference
between them is the equation of time: this may amount at some periods
of the year to a little more than a quarter of an hour. In England we
take the Greenwich meridian as our origin for longitudes, and instead
of local mean solar time we take Greenwich mean solar time as the
civil standard.

Of course mean time is a comparatively recent invention. The
French were the last civilized nation to abandon the use of true time:
this was in 1816.

Formerly there was no common agreement as to when the day be-
gan. In parts of ancient Greece and in Japan the interval from sunrise
to sunset was divided into 12 hours, and that from sunset to sunrise
into 12 hours. The Jews, Chinese, Athenians, and, for a long time, the
Italians, divided their day into 24 hours, beginning at the hour of sun-
set, which of course varies every day: this method is said to be still used
in certain villages near Naples, except that the day begins half-an-hour
after sunset—the clocks being re-set once a week. Similarly the Baby-
lonians, Assyrians, Persians, and until recently the modern Greeks and
the inhabitants of the Balearic Islands counted the twenty-four hours of
the day from sunrise. Until the middle of last century, the inhabitants
of Basle reckoned the twenty-four hours from our 11.0 p.m. The ancient
Egyptians and Ptolemy counted the twenty-four hours from noon: this
is the practice of modern astronomers. In Western Europe the day is
taken to begin at midnight—as was first suggested by Hipparchus—and
is divided into two equal periods of twelve hours each.

The week of seven days is an artificial unit of time. It had its origin
in the East, and was introduced into the West by the Roman emper-
ors, and, except during the French Revolution, has been subsequently
in general use among civilized races. The names of the days are de-
rived from the seven astrological planets, arranged, as was customary,
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in the order of their apparent times of rotation round the earth, namely,
Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and the Moon. The
twenty-four hours of the day were dedicated successively to these plan-
ets: and the day was consecrated to the planet of the first hour.

Thus if the first hour was dedicated to Saturn, the second would
be dedicated to Jupiter, and so on; but the day would be Saturn’s day.
The twenty-fourth hour of Saturn’s day would be dedicated to Mars,
thus the first hour of the next day would belong to the Sun; and the
day would be Sun’s day. Similarly the next day would be Moon’s day;
the next, Mars’s day; the next, Mercury’s day: the next, Jupiter’s day;
and the next, Venus’s day.

The astronomical month is a natural unit of time depending on the
motion of the moon, and containing about 291

2
days. The months of the

calendar have been evolved gradually as convenient divisions of time,
and their history is given in numerous astronomies. In the original
Julian arrangement the months in a leap year contained alternately
31 and 30 days, while in other years February had 29 days. This was
altered by Augustus in order that his month should not be inferior to
one named after his uncle.

The solar tropical year is another natural unit of time. According
to a recent determination, it contains 365.242216 days, that is, 365d.

5h. 48m. 47s..4624.
The Egyptians knew that it contained between 365 and 366 days,

but the Romans did not profit by this information, for Numa is said
to have reckoned 355 days as constituting a year—extra months being
occasionally intercalated, so that the seasons might recur at about the
same period of the year.

In 46 b.c. Julius Caesar decreed that thenceforth the year should
contain 365 days, except that in every fourth or leap year one additional
day should be introduced. He ordered this rule to come into force on
January 1, 45 b.c. The change was made on the advice of Sosigenes
of Alexandria.

It must be remembered that the year 1 a.d. follows immediately
1 b.c., that is, there is no year 0, and thus 45 b.c. would be a leap
year. All historical dates are given now as if the Julian calendar was
reckoned backwards as well as forwards from that year*. As a matter of
fact, owing to a mistake in the original decree, the Romans, during the

* Herschel, Astronomy, London, 11th ed. 1871, arts. 916–919.

• Project • Gutenberg • #26839 •



292 TIME AND ITS MEASUREMENT. [CH. XIII

first 36 years after 45 b.c., intercalated the extra day every third year,
thus producing an error of 3 days. This was remedied by Augustus, who
directed that no intercalation of an extra day should be made in any of
the twelve years a.u.c. 746 to 757 inclusive, but that the intercalation
should be again made in the year a.u.c. 761 (that is, 8 a.d.) and
every succeeding fourth year.

The Julian calendar made the year, on an average, contain 365.25
days. The actual value is, very approximately, 365.242216 days. Hence
the Julian year is too long by about 111

4
minutes: this produces an

error of nearly one day in 128 years. If the extra day in every thirty-
second leap year had been omitted—as was suggested by some unknown
Persian astronomer—the error would have been less than one day in
100,000 years. It may be added that Sosigenes was aware that his rule
made the year slightly too long.

The error in the Julian calendar of rather more than eleven min-
utes a year gradually accumulated, until in the sixteenth century the
seasons arrived some ten days earlier than they should have done. In
1582 Gregory XIII corrected this by omitting ten days from that year,
which therefore contained only 355 days. At the same time he decreed
that thenceforth every year which was a multiple of a century should
be or not be a leap year according as the multiple was or was not
divisible by four.

The fundamental idea of the reform was due to Lilius, who died
before it was carried into effect. The work of framing the new calendar
was entrusted to Clavius, who explained the principles and necessary
rules in a prolix but accurate work* of over 700 folio pages. The plan
adopted was due to a suggestion of Pitatus made in 1552 or perhaps
1537: the alternative and more accurate proposal of Stöffler, made in
1518, to omit one day in every 134 years being rejected by Lilius and
Clavius for reasons which are not known.

Clavius believed the year to contain 365.2425432 days, but he
framed his calendar so that a year, on the average, contained 365.2425
days, which he thought to be wrong by one day in 3323 years: in reality
it is a trifle more accurate than this, the error amounting to one day
in about 3600 years.

The change was unpopular, but Riccioli† tells us that, as those

* Romani Calendarii a Greg. XIII, restituti Explicatio, Rome, 1603.
† Chronologia Reformata, Bonn, 1669, vol. ii, p. 206.
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miracles which take place on fixed dates—ex. gr. the liquefaction of
the blood of S. Januarius—occurred according to the new calendar,
the papal decree was presumed to have a divine sanction—Deo ipso
huic correctioni Gregorianae subscribente—and was accepted as a nec-
essary evil.

In England a bill to carry out the same reform was introduced in
1584, but was withdrawn after being read a second time; and the change
was not finally effected till 1752, when eleven days were omitted from
that year. In Roman Catholic countries the new style was adopted
in 1582. In Scotland the change was made in 1600. In the German
Lutheran States it was made in 1700. In England, as I have said above,
it was introduced in 1752; and in Ireland it was made in 1782. It is
well known that the Greek Church still adheres to the Julian calendar.

The Mohammedan year contains 12 lunar months, or 3541
3

days,
and thus has no connection with the seasons.

The Gregorian change in the calendar was introduced in order to
keep Easter at the right time of year. The date of Easter depends on
that of the vernal equinox, and as the Julian calendar made the year of
an average length of 365.25 days instead of 365.242216 days, the vernal
equinox came earlier and earlier in the year, and in 1582 had regreded
to within about ten days of February.

The rule for determining Easter is as follows*. In 325 the Nicene
Council decreed that the Roman practice should be followed; and after
463 (or perhaps, 530) the Roman practice required that Easter-day
should be the first Sunday after the full moon which occurs on or next
following the vernal equinox—full moon being assumed to occur on
the fourteenth day from the day of the preceding new moon (though
as a matter of fact it occurs on an average after an interval of rather
more than 143

4
days), and the vernal equinox being assumed to fall on

March 21 (though as a matter of fact it sometimes falls on March 22).
This rule and these assumptions were retained by Gregory on the

ground that it was inexpedient to alter a rule with which so many
traditions were associated; but, in order to save disputes as to the
exact instant of the occurrence of the new moon, a mean sun and a
mean moon defined by Clavius were used in applying the rule. One
consequence of using this mean sun and mean moon and giving an

* De Morgan, Companion to the Almanac, London, 1845, pp. 1–36; Ibid., 1846,
pp. 1–10.
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artificial definition of full moon is that it may happen, as it did in 1818
and 1845, that the actual full moon occurs on Easter Sunday. In the
British Act, 24 Geo. II. cap. 23, the explanatory clause which defines
full moon is omitted, but practically full moon has been interpreted
to mean the Roman ecclesiastical full moon; hence the Anglican and
Roman rules are the same. Until 1774 the German Lutheran States
employed the actual sun and moon. Had full moon been taken to mean
the fifteenth day of the moon, as is the case in the civil calendar, then
the rule might be given in the form that Easter-day is the Sunday on
or next after the calendar full moon which occurs next after March 21.

Assuming that the Gregorian calendar and tradition are used, there
still remains one point in this definition of Easter which might lead to
different nations keeping the feast at different times. This arises from
the fact that local time is introduced. For instance the difference of
local time between Rome and London is about 50 minutes. Thus the
instant of the first full moon next after the vernal equinox might occur
in Rome on a Sunday morning, say at 12.30 a.m., while in England it
would still be Saturday evening, 11.40 p.m., in which case our Easter
would be one week earlier than at Rome. Clavius foresaw the difficulty,
and the Roman Communion all over the world keep Easter on that day
of the month which is determined by the use of the rule at Rome. But
presumably the British Parliament intended time to be determined by
the Greenwich meridian, and if so the Anglican and Roman dates for
Easter might differ by a week; whether such a case has ever arisen or
been discussed I do not know, and I leave to ecclesiastics to say how
it should be settled.

The usual method of calculating the date on which Easter-day falls
in any particular year is involved, and possibly the following simple
rule* may be unknown to some of my readers.

Let m and n be numbers as defined below. (i) Divide the number
of the year by 4, 7, 19; and let the remainders be a, b, c, respectively.
(ii) Divide 19c + m by 30, and let d be the remainder. (iii) Divide
2a + 4b + 6d + n by 7, and let e be the remainder. (iv) Then the
Easter full moon occurs d days after March 21; and Easter-day is the
(22 + d + e)th of March or the (d + e− 9)th day of April, except that
if the calculation gives d = 29 and e = 6 (as happens in 1981) then

* It is due to Gauss, and his proof is given in Zach’s Monatliche Correspondenz,
August, 1800, vol. ii, pp. 221–230.
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Easter-day is on April 19 and not on April 26, and if the calculation
gives d = 28, e = 6, and also c > 10 (as happens in 1954) then Easter-
day is on April 18 and not on April 25, that is, in these two cases
Easter falls one week earlier than the date given by the rule. These
two exceptional cases cannot occur in the Julian calendar, and in the
Gregorian calendar they occur only very rarely. It remains to state the
values of m and n for the particular period. In the Julian calendar we
have m = 15, n = 6. In the Gregorian calendar we have, from 1582
to 1699 inclusive, m = 22, n = 2; from 1700 to 1799, m = 23, n = 3;
from 1800 to 1899, m = 23, n = 4; from 1900 to 2099, m = 24, n = 5;
from 2100 to 2199, m = 24, n = 6; from 2200 to 2299, m = 25, n = 0;
from 2300 to 2399, m = 26, n = 1; and from 2400 to 2499, m = 25,
n = 1. Thus for the year 1908 we have m = 24, n = 5; hence a = 0,
b = 4, c = 8; d = 26; and e = 2: therefore Easter Sunday will be on
the 19th of April. After the year 4200 the form of the rule will have
to be slightly modified.

The dominical letter and the golden number of the ecclesiastical
calendar can be at once determined from the values of b and c. The
epact, that is, the moon’s age at the beginning of the year, can be
also easily calculated from the above data in any particular case; the
general formula was given by Delambre, but its value is required so
rarely by any but professional astronomers and almanack-makers that
it is unnecessary to quote it here.

We can evade the necessity of having to recollect the values of m
and n by noticing that, if N is the given year, and if {N/x} denotes
the integral part of the quotient when N is divided by x, then m is the
remainder when 15 + ξ is divided by 30, and n is the remainder when
6 + η is divided by 7: where, in the Julian calendar, ξ = 0, and η = 0;
and, in the Gregorian calendar, ξ = {N/100} − {N/400} − {N/300},
and η = {N/100} − {N/400} − 2.

If we use these values of m and n, and if we put for a, b, c, their
values, namely, a = N −4{N/4}, b = N −7{N/7}, c = N −19{N/19},
the rule given on the preceding page takes the following form. “Divide
19N −{N/19}+15+ ξ by 30, and let the remainder be d. Next divide
6(N + d + 1) − {N/4} + η by 7, and let the remainder be e. Then
Easter full moon is on the dth day after March 21, and Easter-day is
on the (22 + d + e)th of March or the (d + e − 9)th of April as the
case may be; except that if the calculation gives d = 29, and e = 6,
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or if it gives d = 28, e = 6, and c > 10, then Easter-day is on the
(d + e − 16)th of April.”

Thus, if N = 1899, we divide 19(1899)−99+15+(18−4−6) by 30,
which gives d = 5, and then we proceed to divide 6(1899+5+1)− 474
+(18−4−2) by 7, which gives e = 6: therefore Easter-day is on April 2.

The above rules cover all the cases worked out with so much labour
by Clavius and others*.

I may add here a rule, quoted by Zeller, for determining the day
of the week corresponding to any given date. Suppose that the pth
day of the qth month of the year N anno domini is the rth day of the
week, reckoned from the preceding Saturday. Then r is the remainder
when p+ 2q+ {3(q+ 1)/5}+N + {N/4}− η is divided by 7; provided
January and February are reckoned respectively as the 13th and 14th
months of the preceding year.

For instance, Columbus first landed in the New World on Oct. 12,
1492. Here p = 12, q = 10, N = 1492, η = 0. If we divide 12 + 20 + 6
+ 1492 + 373 by 7 we get r = 6; hence it was on a Friday. Again,
Charles I was executed on Jan. 30, 1649. Here p = 30, q = 13,
N = 1648, η = 0, and we find r = 3; hence it was on a Tuesday.
As another example, the battle of Waterloo was fought on June 18,
1815. Here p = 18, q = 6, N = 1815, η = 12, and we find r = 1;
hence it took place on a Sunday.

I proceed now to give a short account of some of the means of
measuring time which were formerly in use.

Of devices for measuring time, the earliest of which we have any
positive knowledge are the styles or gnomons erected in Egypt and
Asia Minor. These were sticks placed vertically in a horizontal piece
of ground, and surrounded by three concentric circles, such that every
two hours the end of the shadow of the stick passed from one circle to
another. Some of these have been found at Pompeii and Tusculum.

The sun-dial is not very different in principle. It consists of a rod
or style fixed on a plate or dial; usually, but not necessarily, the style is
placed so as to be parallel to the axis of the earth. The shadow of the

* Most of the above-mentioned facts about the calendar are taken from Delambre’s
Astronomie, Paris, 1814, vol. iii, chap. xxxviii; and his Histoire de l’astronomie
moderne, Paris, 1821, vol. i, chap. i: see also A. De Morgan, The Book of
Almanacs, London, 1851; S. Butcher, The Ecclesiastical Calendar, Dublin, 1877;
and C. Zeller, Acta Mathematica, Stockholm, 1887, vol. ix, pp. 131–136: on the
chronological details see J.L. Ideler, Lehrbuch der Chronologie, Berlin, 1831.
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style cast on the plate by the sun falls on lines engraved there which
are marked with the corresponding hours.

The earliest sun-dial, of which I have read, is that made by Berosus
in 540 b.c. One was erected by Meton at Athens in 433 b.c. The
first sun-dial at Rome was constructed by Papirius Cursor in 306 b.c.
Portable sun-dials, with a compass fixed in the face, have been long
common in the East as well as in Europe. Other portable instruments
of a similar kind were in use in medieval Europe, notably the sun-rings,
hereafter described, and the sun-cylinders*.

I believe it is not generally known that a sun-dial can be so con-
structed that the shadow will, for a short time near sunrise and sunset,
move backwards on the dial†. This was discovered by Nonez. The ex-
planation is as follows. Every day the sun appears to describe a circle
round the pole, and the line joining the point of the style to the sun
describes a right cone whose axis points to the pole. The section of
this cone by the dial is the curve described by the extremity of the
shadow, and is a conic. In our latitude the sun is above the horizon
for only part of the twenty-four hours, and therefore the extremity of
the shadow of the style describes only a part of this conic. Let QQ′

be the arc described by the extremity of the shadow of the style from
sunrise at Q to sunset at Q′, and let S be the point of the style and
F the foot of the style, i.e. the point where the style meets the plane
of the dial. Suppose that the dial is placed so that the tangents drawn
from F to the conic QQ′ are real, and that P and P ′, the points of
contact of these tangents, lie on the arc QQ′. If these two conditions
are fulfilled, then the shadow will regrede through the angle QFP as
its extremity moves from Q to P , it will advance through the angle
PFP ′ as its extremity moves from P to P ′, and it will regrede through
the angle P ′FQ′ as its extremity moves from P ′ to Q′.

If the sun’s apparent diurnal path crosses the horizon—as always
happens in temperate and tropical latitudes—and if the plane of the
dial is horizontal, the arc QQ′ will consist of the whole of one branch
of a hyperbola, and the above conditions will be satisfied if F is within
the space bounded by this branch of the hyperbola and its asymptotes.

* Thus Chaucer in the Shipman’s Tale, “by my chilindre it is prime of day,” and
Lydgate in the Siege of Thebes, “by my chilyndre I gan anon to see. . . that it
drew to nine.”

† Ozanam, 1803 edition, vol. iii, p. 321; 1840 edition, p. 529.
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As a particular case, in a place of latitude 12◦ N. on a day when the
sun is in the northern tropic (of Cancer) the shadow on a dial whose
face is horizontal and style vertical will move backwards for about two
hours between sunrise and noon.

If, in the case of a given sun-dial placed in a certain position, the
conditions are not satisfied, it will be possible to satisfy them by tilting
the sun-dial through an angle properly chosen. This was the rational-
istic explanation, offered by the French encyclopaedists, of the miracle
recorded in connection with Isaiah and Hezekiah*. Suppose, for in-
stance, that the style is perpendicular to the face of the dial. Draw
the celestial sphere. Suppose that the sun rises at M and culminates
at N , and let L be a point between M and N on the sun’s diurnal
path. Draw a great circle to touch the sun’s diurnal path MLN at L,
let this great circle cut the celestial meridian in A and A′, and of the
arcs AL, A′L suppose that AL is the less and therefore is less than
a quadrant. If the style is pointed to A, then, while the sun is ap-
proaching L, the shadow will regrede, and after the sun passes L the
shadow will advance. Thus if the dial is placed so that a style which
is normal to it cuts the meridian midway between the equator and the
tropic, then between sunrise and noon on the longest day the shadow
will move backwards through an angle

sin−1(cosω sec 1
2
ω)− cot−1{sinω cos(l − 1

2
ω)(cos2 l − sin2 ω)−

1
2} ,

where l is the latitude of the place and ω is the obliquity of the ecliptic.
The above remarks refer to the sun-dials in ordinary use. In 1892

General Oliver brought out in London a dial with a solid style, the
section of the style being a certain curve whose form was determined
empirically by the value of the equation of time as compared with the
sun’s declination†. The shadow of the style on the dial gives the local
mean time, though of course in order to set the dial correctly at any
place the latitude of the place must be known: the dial may be also
set so as to give the mean time at any other locality whose longitude
relative to the place of observation is known.

The sun-ring or ring-dial is another instrument for measuring solar
time‡. One of the simplest type is figured in the accompanying diagram.
* 2 Kings, chap. xx, vv. 9–11.
† An account of this sun-dial with a diagram was given in Knowledge, July 1,

1892, pp. 133, 134.
‡ See Ozanam, 1803 edition, vol. iii, p. 317; 1840 edition, p. 526.
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The sun-ring consists of a thin brass band, about a quarter of an inch
wide, bent into the shape of a circle, which slides between two fixed
circular rims—the radii of the circles being about one inch. At one
point of the band there is a hole; and when the ring is suspended from
a fixed point attached to the rims so that it hangs in a vertical plane
containing the sun, the light from the sun shines through this hole and
makes a bright speck on the opposite inner or concave surface of the
ring. On this surface the hours are marked, and, if the ring is properly
adjusted, the spot of light will fall on the hour which indicates the
solar time. The adjustment for the time of year is made as follows.
The rims between which the band can slide are marked on their outer
or convex side with the names of the months, and the band containing
the hole must be moved between the rims until the hole is opposite to
that month for which the ring is being used.

For determining times near noon the instrument is reliable, but for
other hours in the day it is accurate only if the time of year is properly
chosen, usually near one of the equinoxes. This defect may be corrected
by marking the hours on a curved brass band affixed to the concave
surface of the rims. I possess two specimens of rings of this kind. These
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rings were distributed widely. Of my two specimens, one was bought in
the Austrian Tyrol and the other in London. Astrolabes and sea-rings
can be used as sun-rings.

Clepsydras or water-clocks, and hour-glasses or sand-clocks, afford
other means of measuring time. The time occupied by a given amount
of some liquid or sand in running through a given orifice under the same
conditions is always the same, and by noting the level of the liquid
which has run through the orifice, or which remains to run through it,
a measure of time can be obtained.

The burning of graduated candles gives another way of measuring
time, and we have accounts of those used by Alfred the Great for the
purpose. Incense sticks were used by the Chinese in a similar way.

Modern clocks and watches* comprise a train of wheels turned by
a weight, spring, or other motive power, and regulated by a pendulum,
balance, fly-wheel, or other moving body whose motion is periodic and
time of vibration constant. The direction of rotation of the hands of a
clock was selected originally so as to make the hands move in the same
direction as the shadow on a sun-dial whose face is horizontal—the dial
being situated in our hemisphere.

The invention of clocks with wheels is attributed by tradition to
Pacificus of Verona, circ. 850, and also to Gerbert, who is said to have
made one at Magdeburg in 996: but there is reason to believe that these
were sun-clocks. The earliest wheel-clock of which we have historical
evidence was one sent by the Sultan of Egypt in 1232 to the Emperor
Frederick II, though there seems to be no doubt that they had been
made in Italy at least fifty years earlier.

The oldest clock in England of which we know anything was one
erected in 1288 in or near Westminster Hall out of a fine imposed on
a corrupt Lord Chief Justice. The bells, and possibly the clock, were
staked by Henry VIII on a throw of dice and lost, but the site was
marked by a sun-dial, destroyed about sixty years ago, and bearing the
inscription Discite justiciam moniti. In 1292 a clock was erected in
Canterbury Cathedral at a cost of £30. One erected at Glastonbury
Abbey in 1325 is at present in the Kensington Museum and is in regular
action. Another made in 1326 for St Alban’s Abbey showed the astro-
nomical phenomena, and seems to have been one of the earliest clocks
that did so. One put up at Dover in 1348 is still in good working order.

* See Clock and Watch Making by Lord Grimthorpe, 7th edition, London, 1883.
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The clocks at Peterborough and Exeter were of about the same date,
and portions of them remain in situ. Most of these early clocks were
regulated by horizontal balances: pendulums being then unknown. Of
the elaborate clocks of a later date, that at Strasburg made by Dasy-
podius in 1571, and that at Lyons constructed by Lippeus in 1598, are
especially famous: the former was restored in 1842, though in a manner
which destroyed most of the ancient works.

In 1370, Vick constructed a clock for Charles V with a weight as
motive power and a vibrating escapement—a great improvement on
the rough time-keepers of an earlier date.

The earliest clock regulated by a pendulum seems to have been
made in 1621 by a clockmaker named Harris, of Covent Garden, Lon-
don, but the theory of such clocks is due to Huygens*. Galileo had dis-
covered previously the isochronism of a pendulum, but did not apply
it to the regulation of the motion of clocks. Hooke made such clocks,
and possibly discovered independently this use of the pendulum: he
invented or re-invented the anchor pallet.

A watch may be defined as a clock which will go in any position.
Watches, though of a somewhat clumsy design, were made at Nurem-
berg by P. Hele early in the sixteenth century—the motive power being
a ribbon of steel, wound round a spindle, and connected at one end
with a train of wheels which it turned as it unwound—and possibly
a few similar time-pieces had been made in the previous century. By
the end of the sixteenth century they were not uncommon. At this
time they were usually made in the form of fanciful ornaments such
as skulls, or as large pendants, but about 1620 the flattened oval form
was introduced, rendering them more convenient to carry in a pocket
or about the person. In the seventeenth century their construction was
greatly improved, notably by the introduction of the spring balance by
Huygens in 1674, and independently by Hooke in 1675—both mathe-
maticians having discovered that small vibrations of a coiled spring, of
which one end is fixed, are practically isochronous. The fusee had been
used by R. Zech of Prague in 1525, but was re-invented by Hooke.

Clocks and watches are usually moved and regulated in the manner
indicated above. Other motive powers and other devices for regulating
the motion may be met with occasionally. Of these I may mention a
clock in the form of a cylinder, usually attached to another weight as

* Horologium Oscillatorium, Paris, 1673.
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in Atwood’s machine, which rolls down an inclined plane so slowly that
it takes twelve hours to roll down, and the highest point of the face
always marks the proper hour*.

A water-clock made on a somewhat similar plan is described by
Ozanam† as one of the sights of Paris at the beginning of the last
century. It was formed of a hollow cylinder divided into various com-
partments each containing some mercury, so arranged that the cylinder
descended with uniform velocity between two vertical pillars on which
the hours were marked at equidistant intervals.

Other ingenious ways of concealing the motive power have been
described in the columns of La Nature‡. Of such mysterious timepieces
the following are not uncommon examples, and probably are known to
most readers of this book. One kind of clock consists of a glass dial
suspended by two thin wires; the hands however are of metal, and the
works are concealed in them or in the pivot. Another kind is made
of two sheets of glass in a frame containing a spring which gives to
the hinder sheet a very slight oscillatory motion–imperceptible except
on the closest scrutiny–and each oscillation moves the hands through
the requisite angles. Some so-called perpetual motion timepieces were
described above on pages 77–78. Lastly, I have seen in France a clock
the hands of which were concealed at the back of the dial, and carried
small magnets; pieces of steel in the shape of insects were placed on the
dial, and, following the magnets, served to indicate the time.

The position of the sun relative to the points of the compass de-
termines the solar time. Conversely, if we take the time given by a
watch as being the solar time—and it will differ from it by only a few
minutes at the most—and we observe the position of the sun, we can
find the points of the compass§. To do this it is sufficient to point the
hour-hand to the sun, and then the direction which bisects the angle
between the hour and the figure xii will point due south. For instance,
if it is four o’clock in the afternoon, it is sufficient to point the hour-
hand (which is then at the figure iiii) to the sun, and the figure ii
on the watch will indicate the direction of south. Again, if it is eight

* Ozanam, 1803 edition, vol. ii, p. 39; 1840 edition, p. 212; or La Nature, Jan. 23,
1892, pp. 123, 124.

† Ozanam, 1803 edition, vol. ii, p. 68; 1840 edition, p. 225.
‡ See especially the volumes issued in 1874, 1877, and 1878.
§ The rule is given by W.H. Richards, Military Topography, London, 1883, p. 31,

though it is not stated quite correctly. I do not know who first enunciated it.
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o’clock in the morning, we must point the hour-hand (which is then
at the figure viii) to the sun, and the figure x on the watch gives the
south point of the compass.

Between the hours of six in the morning and six in the evening the
angle between the hour and xii which must be bisected is less than
180◦, but at other times the angle to be bisected is greater than 180◦;
or perhaps it is simpler to say that at other times the rule gives the
north point and not the south point.

The reason is as follows. At noon the sun is due south, and it makes
one complete circuit round the points of the compass in 24 hours. The
hour-hand of a watch also makes one complete circuit in 12 hours.
Hence, if the watch is held in the plane of the ecliptic with its face
upwards, and the figure xii on the dial is pointed to the south, both
the hour-hand and the sun will be in that direction at noon. Both move
round in the same direction, but the angular velocity of the hour-hand
is twice as great as that of the sun. Hence the rule. The greatest error
due to the neglect of the equation of time is less than 2◦. Of course in
practice most people, instead of holding the face of the watch in the
ecliptic, would hold it horizontal, and in our latitude no serious error
would be thus introduced.

In the southern hemisphere where at noon the sun is due north
the rule requires modification. In such places the hour-hand of a watch
(held face upwards in the plane of the ecliptic) and the sun move in
opposite directions. Hence, if the watch is held so that the figure xii
points to the sun, then the direction which bisects the angle between
the hour of the day and the figure xii will point due north.
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CHAPTER XIV.

MATTER AND ETHER THEORIES.

Matter, like space and time, cannot be defined, but either the
statement that matter is whatever occupies space or the statement
that it is anything which can be seen, touched, or weighed, suggests its
more important characteristics to anyone already familiar with it.

The means of measuring matter and some of its properties are
treated in most text-books on mechanics, and I do not propose to dis-
cuss them. I confine the chapter to an account of some of the hypotheses
by physicists as to the ultimate constitution of matter, but I exclude
metaphysical conjectures, which from their nature are mere assertions
incapable of proof and are not subject to mathematical analysis. The
question is intimately associated with the explanation of the phenom-
ena of attraction, light, chemistry, electricity, and other branches of
physics.

I commence with a list of some of the more plausible of the hy-
potheses formerly proposed which accounted for the obvious properties
of matter, and shall then discuss how far they explain or are consis-
tent with other facts†. The interest of the list is largely historical, for
within the last few years new views as to the constitution of matter

† I have based my account mainly on Recent Advances in Physical Science, by
P.G. Tait, Edinburgh, 1876 (chaps, xii, xiii); and on the article Atom by J. Clerk
Maxwell in the Encyclopaedia Britannica or his Collected Works, vol. ii, pp. 445–
484: see also W.M. Hicks’s address, Report of the British Association (Ipswich
meeting), 1895, vol. lxv, pp. 595–606. For the more recent speculations see
J.J. Thomson, Electricity and Matter, Westminster, 1904, and J. Larmor, Aether
and Matter, Cambridge, 1900.
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have been propounded, but the details of these more recent hypotheses
are so complicated and technical that only professional mathematicians
can understand them. Accordingly I allude to them only briefly.

I. Hypothesis of Continuous Matter. It may be sup-
posed that matter is homogeneous and continuous, in which case there
is no limit to the infinite divisibility of bodies. This view was held
by Descartes*.

This conjecture is consistent with the facts deducible by untrained
observation, but there are many other phenomena for which it does
not account; moreover there seems to be no way of reconciling such a
structure of matter either with the facts of chemical changes or with the
results of spectrum analysis. At any rate the theory must be regarded
as extremely improbable.

II. Atomic Theories. If matter is not continuous we must
suppose that every body is composed of aggregates of molecules. If so,
it seems probable that each such molecule is built up by the association
of two or more atoms, that the number of kinds of atoms is finite, and
that the atoms of any particular kind are alike. As to the nature of the
atoms the following hypotheses have been made.

(i) Popular Atomic Hypothesis. The popular view is that every
atom of any particular kind is a minute indivisible article possessing
definite qualities, everlasting in its form and properties, and infinitely
hard.

This statement is plausible, but the difficulties to which it leads
appear to be insuperable. In fact we have reason to think that the atoms
which form a molecule are composite systems in incessant vibration at
a rate characteristic of the molecule, and it is most probable that they
are elastic.

Newton seems to have hazarded a conjecture of this kind when
he suggested† that the difficulties, connected with the fact that the
velocity of sound was one-ninth greater than that required by theory,
might be overcome if the particles of air were little rigid spheres whose
distance from one another under normal conditions was nine times the

* Descartes, Principia, vol. ii, pp. 18, 23.
† Newton, Principia, bk. ii, prop. 50.
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diameter of any one of them. This was ingenious, but obviously the
view is untenable, because, if such a structure of air existed, the air
could not be compressed beyond a certain limit, namely, about 1/1021st
part of its original volume, which has been often exceeded. The true
explanation of the difficulty noticed by Newton was given by Laplace.

(ii) Boscovich’s Hypothesis. In 1759 Boscovich suggested* that
the facts might be explained by supposing that an atom was an in-
finitely small indivisible mass which was a centre of force—the law of
force being attractive for sensible distances, alternately attractive and
repulsive for minute distances, and repulsive for infinitely small dis-
tances. In this theory all action between bodies is action at a distance.

He explained the apparent extension of bodies by saying that two
parts are consecutive (or similarly that two bodies are in contact) when
the nearest pair of atoms in them are so close to one another that the
repulsion at any point between them is sufficiently great to prevent any
other atom coming between them. It is essential to the theory that the
atom shall have a mass but shall not have dimensions.

This hypothesis is not inconsistent with any known facts, but it has
been described, perhaps not unjustly, as a mere mathematical fiction,
and certainly it is opposed to the apparent indications of our senses.
At any rate it is artificial, though it may be a prejudice to regard that
as an argument against its adoption. To some extent this view was
accepted by Faraday.

Lord Kelvin, better known as Sir William Thomson, has shown†

that, if we assume the existence of gravitation, then each of the above
hypotheses will account for cohesion.

(iii) Hypothesis of an Elastic Solid Ether. Some physicists have
tried to explain the known phenomena by properties of the medium
through which our impressions are derived. By postulating that all
space is filled with a medium possessed of many of the characteristics
of an elastic solid, it has been shown by Fresnel, Green, Cauchy, Neu-
mann, MacCullagh, and others that a large number of the properties
of light and electricity may be explained. In spite of the difficulties to
which this hypothesis necessarily leads, and of its inherent improbabil-

* Philosophiae naturalis Theoria redacta ad unicam Legem Virium, Vienna, 1759.
† Proceedings of the Royal Society of Edinburgh, April 21, 1862, vol. iv, pp. 604–

606.
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ity, it has been discussed by Stokes, Lamé, Boussinesq, Sarrau, Lorenz,
Lord Rayleigh, and Kirchhoff.

This hypothesis has been modified and rendered somewhat more
plausible by von Helmholtz, Lommel, Ketteler*, and Voigt, who based
their researches on the assumption of a mutual reaction between the
ether and the material molecules located in it: on this view the prob-
lems connected with refraction and dispersion have been simplified. Fi-
nally, Sir William Thomson, in his Baltimore Lectures, 1885, suggested
a mechanical analogue to represent the relations between matter and
this ether, by which a possible constitution of the ether can be realized.
He also suggested later a form of labile ether , from whose properties
most of the more familiar physical phenomena can be deduced, pro-
vided the arrangement can be considered stable; a labile ether is an
elastic solid, and its properties in two dimensions may be compared
with those of a soap-bubble film, in three dimensions.

It is, however, difficult to criticise any of these hypotheses as a
theory of the constitution of matter until the arrangement of the atoms
or their nature is more definitely expressed.

III. Dynamical Theories. In recent years the suggestion
has been made that the so-called atoms may be forms of motion
(ex. gr. permanent eddies) in one elementary material known as the
ether; on this view all the atoms are constituted of the same matter, but
the physical conditions are different for the different kinds of atoms. It
has been said that there is an initial difficulty in any such hypothesis,
since the all-pervading elementary fluid must possess inertia, so that to
explain matter we assume the existence of a fluid possessing one of the
chief characteristics of matter. This is true as far as it goes, but it is
not more unreasonable than to attribute all the fundamental properties
of matter to the atoms themselves, as is done by many writers. The
next paragraph contains a statement of one of the earliest attempts to
formulate a dynamical atomic hypothesis.

(i) The Vortex Ring Hypothesis. This hypothesis assumes that
each atom is a vortex ring in an incompressible frictionless homoge-
neous fluid.

* Theoretische Optik, Braunschweig, 1885.
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Vortex rings—though, since friction is brought into play, of an im-
perfect character—can be produced in air by many smokers. Better
specimens can be formed by taking a cardboard box in one side of
which a circular hole is cut, filling it with smoke, and hitting the op-
posite side sharply. The tendency of the particles forming a ring to
maintain their annular connection may be illustrated by placing such
a box on one side of a room in a direct line with the flame of a lighted
candle on the other side. If properly aimed, the ring will travel across
the room and put out the flame. If the box is filled only with air, so
that the ring is not visible, the experiment is more effective.

In 1858 von Helmholtz* showed that a closed vortex filament in a
perfect fluid is indestructible and retains certain characteristics always
unaltered. In 1867 Sir William Thomson propounded† the idea that
matter consists of vortex rings in a fluid which fills space. If the fluid
is perfect we could neither create new vortex rings nor destroy those
already created, and thus the permanence of the atoms is explained.
Moreover the atoms would be flexible, compressible, and in incessant
vibration at a definite fundamental rate. This rate is very rapid, and
Sir William Thomson gave the number of vibrations per second of a
sodium ring as probably being greater than 1014.

By a development of this hypothesis Prof. J.J. Thomson‡ showed,
some years ago, that chemical combination may be explained. He sup-
posed that a molecule of a compound is formed by the linking together
of vortex filaments representing atoms of different elements: this ar-
rangement may be compared with that of helices on an anchor ring.
For stability not more than six filaments may be combined together,
and their strengths must be equal. Another way of explaining chemi-
cal combination on the vortex atom hypothesis has been suggested by
W.M. Hicks. It is known§ that a spherical mass of fluid, whose interior
possesses vortex motion, can move through liquid like a rigid sphere,
and he has shown that one of these spherical vortices can swallow up
another, thus forming a compound element.

* Crelle’s Journal, 1858, vol. lv, pp. 25–55; translated by Tait in the Philosophical
Magazine, June, 1867, supplement, series 4, vol. xxxiii, pp. 485–512.

† Proceedings of the Royal Society of Edinburgh, Feb. 18, 1867, vol. vi, pp. 94–105.
‡ A Treatise on the Motion of Vortex Rings, Cambridge, 1883.
§ See a memoir by M.J.M. Hill in the Philosophical Transactions of the Royal

Society, London, 1894, part i, pp. 213–246.
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(ii) The Vortex Sponge Hypothesis. Any vortex atom hypothe-
sis labours under the difficulty of requiring that the density of the fluid
ether shall be comparable with that of ordinary matter. In order to
obviate this and at the same time to enable it to transmit transver-
sal radiations Sir William Thomson suggested what has been termed,
not perhaps very happily, the vortex sponge hypothesis*: this rests
on the assumption that laminar motion can be propagated through a
turbulently moving inviscid liquid. The mathematical difficulties con-
nected with such motion have prevented an adequate discussion of this
hypothesis, and I therefore confine myself to merely mentioning it.

These hypotheses, of vortex motion in a fluid, account for the in-
destructibility of matter and for many of its properties. But in order to
explain statical electrical attraction it would seem necessary to suppose
that the ether is elastic; in other words, that an electric field must be a
field of strain. If so, complete fluidity in the ether would be impossible,
and hence the above theories are now regarded as untenable.

(iii) The Ether-Squirts Hypothesis. Prof. Karl Pearson† has sug-
gested another dynamical theory in which an atom is conceived as a
point at which ether is pouring into our space from space of four di-
mensions.

If an observer lived in two dimensional space filled with ether and
confined by two parallel and adjacent surfaces, and if through a hole
in one of these surfaces fresh ether were squirted into this space, the
variations of pressure thereby produced might give the impression of a
hard impenetrable body. Similarly an ether-squirt from space of four
dimensions into our space might give us the impression of matter.

It seems necessary on this hypothesis to suppose that there are
also ether-sinks, or atoms of negative mass; but as ether-squirts and
ether-sinks would repel one another we may suppose that the latter
have moved out of the universe known to our senses.

By defining the mass of an atom as the mean rate at which ether
is squirting into our space at that point, we can deduce the Newtonian
law of gravitation, and by assuming certain periodic variations in the
rate of squirting we can deduce some of the phenomena of cohesion, of
chemical action, and of electromagnetism and light. But of course the

* Philosophical Magazine, London, October, 1887, series 5, vol. xxiv, pp. 342–353.
† American Journal of Mathematics, 1891, vol. xiii, pp. 309–362.
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hypothesis rests on the assumption of the existence of a world beyond
our senses.

(iv) The Electron Hypothesis. MacCullagh, in 1837 and 1839,
proposed to account for optical phenomena on the assumption of an
elastic ether possessing elasticity of the type required to enable it to re-
sist rotation. This suggestion has been recently modified and extended
by Dr J. Larmor*, and, as now enunciated, it accounts for many of the
electrical and magnetic (as well as the optical) properties of matter.

The hypothesis is however very artificial. The assumed ether is
a rotationally elastic incompressible fluid. In this fluid Larmor intro-
duces monad electric elements or electrons, which are nuclei of radial
rotational strain. He supposes that these electrons constitute the basis
of matter. He further supposes that an electrical current consists of
a procession of these electrons, and that a magnetic particle is one in
which these entities are revolving in minute orbits. Dynamical consid-
erations applied to such a system lead to an explanation of nearly all
the more obvious phenomena. By further postulating that the orbital
motion of electrons in the atom constitute it a fluid vortex it is possi-
ble to apply the hydrodynamical pulsatory theory of Bjerknes or Hicks
and obtain an explanation of gravitation.

Thus on this view mass is explained as an electrical manifestation.
Electricity in its turn is explained by the existence of electrons, that is,
of nuclei of strain in the ether, which are supposed to be in incessant and
rapid motion. Whilst, to render this possible, properties are attributed
to the ether which are apparently inconsistent with our experience of
the space it fills. Put thus, the hypothesis seems very artificial. Perhaps
the utmost we can say for it is that, from some points of view, it may,
so far as analysis goes, be an approximation to the true theory; in
any case much work will have to be done before it can be considered
established even as a working hypothesis.

Most of the above was written in 1891. Since then investigations
on radio-activity have opened up new avenues of conjecture which tend
to strengthen the electron theory as a working hypothesis. More than
thirty years ago Clerk Maxwell had shown that light and electricity were
closely connected phenomena. It was then believed that both were due
to waves in the hypothetical ether, but it was supposed that the phe-

* Philosophical Transactions of the Royal Society, London, 1894, pp. 719–822;
1895, pp. 695–743.
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nomena of matter on the one side and of light and electricity on the
other were sharply distinguished one from the other. The differences,
however, between matter and light tend to disappear as investigations
proceed. In 1895 Röntgen established the existence of rays which could
produce light, which had the same velocity as light, which were not
affected by a magnet, and which could traverse wood and certain other
opaque substances like glass. A year later Becquerel showed that ura-
nium was constantly emitting rays which, though not affecting the eye
as light, were capable of producing an image on a photographic plate.
Like Röntgen rays they can go through thin sheets of metal; like heat
rays they burn the skin; like electricity they generate ozone from oxy-
gen. Passed into the air they enable it to conduct the electric current.
Their speed has been measured and found to be rather more than half
that of light and electricity. It was soon found that thorium possessed a
similar property, but in 1903 Prof. Curie showed that radium possessed
radio-activity to an extent previously unsuspected in any body, and in
fact the rays were so powerful as to make the substance directly visible.
Further experiments showed that numerous bodies are radio-active, but
the effects are so much more marked in radium that it is convenient to
use that substance for most experimental purposes.

Radium gives off no less than three kinds of rays besides a radio-
active emanation. In these discharges there appears to be a gradual
change from what had been supposed to be an elementary form of
matter to another. This leads to the belief that of the known forms of
matter some, perhaps even all, are not absolutely stable. On the other
hand, it may be that only radio-active bodies are unstable, and that in
their disintegration we are watching the final stage in the evolution of
stable and constant forms of matter. It may, however, in any case turn
out that some, or perhaps all, of the so-called elements may be capable
of resolution into different combinations of electrons or electricity.

At an earlier date J.J. Thomson had concluded that the glow, seen
when an electric current passes through a high vacuum tube, is due to
a rush of minute particles across the tube. He calculated their weight,
their velocity, and the charge of electricity transported by or repre-
sented by them, and found these to be constant. They were deflected
like Becquerel rays. All space seems to contain them, and electricity,
if not identical with them, is at least carried by them. This suggested
that these minute particles might be electrons. If so, they might thus
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give the ultimate explanation of electricity as well as matter, and the
atom of the chemist would be not an irreducible unit of matter, but a
system comprising numerous such minute particles. These conclusions
are consistent with those subsequently deduced from experiments with
radium. In 1904 the hypothesis was carried one stage further. In that
year J.J. Thomson investigated the conditions of stability of certain
systems of revolving particles; and on the hypothesis that an atom of
matter consists of a number of particles carrying negative charges of
electricity revolving in orbits within a sphere of positive electrification
he deduced many of the properties of the different chemical atoms cor-
responding to different possible stable systems of this kind. His scheme
led to results agreeing closely with the results of Mendeléeff’s periodic
hypothesis. An interesting consequence of this view is that Franklin’s
description of electricity as subtle particles pervading all bodies, may
turn out to be substantially correct. It is also remarkable that cor-
puscles somewhat analogous to those whose existence was suggested in
Newton’s corpuscular theory of light should be now supposed to exist
in cathode and Becquerel rays.

(v) The Bubble Hypothesis*. The difficulty of conceiving the mo-
tion of matter through a solid elastic medium has been met in another
way, namely, by suggesting that what we call matter is a deficiency of
the ether, and that this region of deficiency can move through the ether
in a manner somewhat analogous to that in which a bubble can move in
a liquid. To express this in technical language we may suppose the ether
to consist of an arrangement of minute uniform spherical grains piled
together so closely that they cannot change their neighbours, although
they can move relatively one to another. Places where the number of
grains is less or greater than the number necessary to render the piling
normal, move through the medium, as a wave moves through water,
though the grains do not move with them. Places where the ether is in
excess of the normal amount would repel one another and move away
out of our ken, but places where it is below the normal amount would
attract each other according to the law of gravity, and constitute par-
ticles of matter which would be indestructible. It is alleged that the
theory accounts for the known phenomena of gravity, electricity, and
light, provided the size of its grains is properly chosen. Reynolds has
calculated that for this purpose their diameter should be rather more

* O. Reynolds, Submechanics of the Universe, Cambridge, 1903.
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than 5×10−18 centimetres, and that the pressure in the medium would
be about 104 tons per square centimetre. This theory is in itself more
plausible than the electron hypothesis, but its consequences have not
yet been fully worked out.

Returning from these novel hypotheses to the classical theories of
matter, we may now proceed a step further. Before a hypothesis on
the structure of matter can be ranked as a scientific theory we may
reasonably expect it to afford some explanation of three facts. These
are (a) the Newtonian law of attraction; (b) the fact that there are
only a finite number of ultimate kinds of matter—such as oxygen, iron,
etc.—which can be arranged in a series such that the properties of the
successive members are connected by a regular law; and (c) the main
results of spectrum analysis.

In regard to the first point (a), we can say only that none of the
above theories are inconsistent with the known laws of attraction; and
as far as the ether-squirts, the electron, and the bubble hypotheses
are concerned, they have been elaborated into a form from which the
gravitational law of attraction can be deduced. But we may still say
that as to the cause of gravity—or indeed of force—we know nothing.

Newton, in his Letters to Bentley, while declaring his ignorance of
the cause of gravity, refused to admit the possibility of force acting at
a finite distance through a vacuum. “You sometimes speak of gravity,”
said he*, “as essential and inherent to matter: pray do not ascribe
that notion to me, for the cause of gravity is what I do not pretend
to know.” And in another place he wrote†, “’Tis inconceivable, that
inanimate brute matter should (without the mediation of something
else which is not material) operate upon and affect other matter without
mutual contact; as it must if gravitation in the sense of Epicurus, be
essential and inherent in it. . . That gravity should be innate, inherent,
and essential to matter, so that one body may act upon another at a
distance thro’ a vacuum, without the mediation of anything else, by
and through which their action and force may be conveyed from one to
another, is to me so great an absurdity, that I believe no man who has in

* Letter dated Jan. 17, 1693. I quote from the original, which is in the Library
of Trinity College, Cambridge; it is printed in the Letters to Bentley, London,
1756, p. 20.

† Letter dated Feb. 25, 1693; ibid., pp. 25, 26.
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philosophical matters a competent faculty of thinking can ever fall into
it. Gravity must be caused by an agent acting constantly according to
certain laws, but whether this agent be material or immaterial, I have
left to the consideration of my readers.”

I have already alluded to conjectural explanations of gravity depen-
dent on the ether-squirts, the electron, and the bubble hypotheses. Of
other conjectures as to the cause of gravity, three, which do not involve
the idea of force acting at a distance, may be here mentioned:

(1) The first of these conjectures was propounded by Newton in
the Queries at the end of his Opticks, where he suggested as a possible
explanation the existence of a stress in the ether surrounding a particle
of matter*.

This has been elaborated on a statical basis by Maxwell, who
showed† that the stress would have to be at least 3000 times greater
than that which the strongest steel would support. Sir William Thom-
son (Lord Kelvin) has suggested‡ a dynamical way of producing the
stress by supposing that space is filled with an incompressible fluid,
constantly being annihilated by each atom of matter at a rate pro-
portional to its mass, a constant supply being kept up at an infinite
distance. It is true that this avoids Maxwell’s difficulty, but we have no
right to introduce such sinks and sources of fluid unless we have other
grounds for believing in their existence. The conclusion is that New-
ton’s conjecture is very improbable unless we adopt the ether-squirts
theory: on that hypothesis it is a plausible explanation.

I should add that Maclaurin implies§ that though the above expla-
nation was Newton’s early opinion, yet his final view was that he could
not devise any tenable hypothesis about the cause of gravitation.

(2) In 1782 Le Sage of Geneva suggested∥ that gravity was caused
by the bombardment of streams of ultramundane corpuscles. These

* Quoted by S.P. Rigaud in his Essay on the Principia, Oxford, 1838, appendix,
pp. 68–70. On other guesses by Newton see Rigaud, text, pp. 61–62, and refer-
ences there given.

† Article Attraction, in Encyclopaedia Britannica, or Collected Works, vol. ii,
p. 489.

‡ Proceedings of the Royal Society of Edinburgh, Feb. 7, 1870, vol. vii, pp. 60–63.
§ An Account of Sir Isaac Newton’s Philosophical Discoveries, London, 1748,

p. 111.
∥ Mémoires de l’Académie des Sciences for 1782, Berlin, 1784, pp. 404–432: see

also the first two books of his Traité de Physique, Geneva, 1818.
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corpuscles are supposed to come in all directions from space and to be
so small that inter-collisions are rare.

A body by itself in space would receive on an average as many blows
on one side as on another, and therefore would have no tendency to
move. But, if there are two bodies, each will screen the other from some
of the bombarding corpuscles. Thus each body will receive more blows
on the side remote from the other body than on the side turned towards
it. Hence the two bodies will be impelled each towards the other.

In order to make this force between two particles vary directly as
the product of their masses and inversely as the square of the distance
between them, Le Sage showed that it was sufficient to suppose that
the mass of a body was proportional to the area of a section at right
angles to the direction in which it was attracted. This requires that
the constitution of a body shall be molecular, and that the distances
between consecutive molecules shall be very large compared with the
sizes of the molecules. On the vortex hypothesis we may suppose that
the ultramundane corpuscles are vortex rings.

This is ingenious, and it is possible that if the corpuscles were per-
fectly elastic the theory might be tenable*. But the results of Maxwell’s
numerical calculation show, first, that the particles must be imperfectly
elastic; second, that merely to produce the effect of the attraction of the
earth on a mass of one pound would require that Le Sage’s corpuscles
should expend energy at the rate of at least billions† of foot-pounds per
second; and third, that it is probable that the effect of such a bombard-
ment would be to raise the temperature of all bodies beyond a point
consistent with our experience. Finally, it seems probable that the
distance between consecutive molecules would have to be considerably
greater than is compatible with the results given below.

Tait summed up the objections to these two hypotheses by say-
ing‡, “One common defect of these attempts is. . . that they all demand
some prime mover, working beyond the limits of the visible universe
or inside each atom: creating or annihilating matter, giving additional
speed to spent corpuscles, or in some other way supplying the exhaus-
tion suffered in the production of gravitation. Another defect is that

* See a paper by Sir William Thomson (Lord Kelvin) in the Proceedings of the
Royal Society of Edinburgh, Dec. 18, 1871, vol. vii, pp. 577–589.

† I use billion with the English (and not the French) meaning, that is, a billion
= 1012.

‡ Properties of Matter, London, 1885, art. 164.
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they all make gravitation a mere difference-effect, as it were; thereby
implying the presence of stores of energy absolutely gigantic in com-
parison with anything hitherto observed, or even suspected to exist, in
the universe; and therefore demanding the most delicate adjustments,
not merely to maintain the conservation of energy which we observe,
but to prevent the whole solar and stellar systems from being instan-
taneously scattered in fragments through space. In fact, the cause of
gravitation remains undiscovered.”

(3) There is another conjecture on the cause of gravity which I
may mention*. It is possible that the attraction of one particle on
another might be explained if both of them rested on a homogeneous
elastic body capable of transmitting energy. This is the case if our
three-dimensional universe rests in the direction of a fourth dimension
on a four-dimensional homogeneous elastic body (which we may call the
ether) whose thickness in the fourth dimension is small and constant.

The results of spectrum analysis lead us to suppose that every
molecule of matter in our universe is in constant vibration. On the
above hypothesis these vibrations would cause a disturbance in the
supporting space, i.e. in the ether. This disturbance would spread out
uniformly in all directions; the intensity diminishing as the square of
the distance from the centre of vibration, but the rate of vibration re-
maining unaltered. The transmission of light and radiant heat may be
explained by such vibrations transversal to the direction of propaga-
tion. It is possible that gravity may be caused by vibrations in the
supporting space which are wholly longitudinal or are compounded of
vibrations which are partly longitudinal and partly transversal in any
of the three directions at right angles to the direction of propagation.
If we define the mass of a molecule as proportional to the intensity
of these vibrations caused by it, then at any other point in space the
intensity of the vibration there would vary as the mass of the molecule
and inversely as the square of the distance from the molecule; hence,
if we may assume that such vibrations of the medium spreading out
from any centre would draw to that centre a particle of unit mass at
any other point with a force proportional to the intensity of the vibra-
tion there, then the Newtonian law of attraction would follow. This
conjecture is consistent either with Boscovich’s hypothesis or with the

* See an article by myself in the Messenger of Mathematics, Cambridge, 1891,
vol. xxi, pp. 20–24.
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vortex theory. It would be interesting if the results of a branch of pure
mathematics so abstract as the theory of hyperspace should be found
to be closely connected with one of the most fundamental problems
of material science.

I should sum up the effect of this discussion on gravity on the
relative probabilities of the hypotheses as to the constitution of matter
enumerated above, by saying that it does not enable us to discriminate
between them.

The fact that the number of kinds of matter (chemical elements)
is finite and the consequences of spectrum analysis are closely related
and may be treated together. The results of spectrum analysis show
that every molecule of any species of matter, such as hydrogen, vibrates
with (so far as we can tell) exactly equal sets of periods of vibration.
This then is one of the characteristics of the particular kind of matter,
and it is probable that any explanation of why the molecules of each
kind have a definite set of periods of vibration will account also for the
fact that the number of kinds of matter is finite.

Various attempts to explain why the molecules of matter are capa-
ble only of certain definite periods of vibration have been made, and it
may be interesting if I give them briefly.

(1) To begin with, I may note the conjecture that it depends on
properties of time. This, however, is impossible, for the continuity
of certain spectra proves that in these cases there is nothing which
prevents the period of vibration from taking any one of millions of
different values: thus no explanation dependent on the nature of time
is permissible.

(2) It has been suggested that there may have been a sorting
agency, and only selected specimens of the infinite number of species
formed originally have got into our universe. The objection to this is
that no explanation is offered as to what has become of the excluded
molecules.

(3) The finite number of species might be explained by supposing
a physical connection to exist between all the molecules in the universe,
just as two clocks whose rates are nearly the same tend to go at the
same rate if their cases are connected.

Maxwell’s objection to this is that we have no other reason for
supposing that such a connection exists, but if we are living in a space of
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four dimensions as suggested above in chapter xii, this connection does
exist, for all the molecules rest on one and the same body. This body is
capable of transmitting vibrations, hence, no matter how the molecules
were set vibrating originally, they would fall into certain groups, and
all the members of each group would vibrate at the same rate. It
was the possibility of obtaining thus a physical connection between the
various particles in our universe that first suggested to me the idea of
a supporting medium in a fourth dimension.

(4) If we accept Boscovich’s hypothesis or that of an elastic solid
ether, and if we may lay it down as axiomatic that the mass of every
sub-atom is the same, we may conceive that the number of ways of
combining the sub-atoms into a permanent system is limited, and that
the period of vibration depends on the form in which the sub-atoms
are combined into an atom. This view is not inconsistent with any
known facts. I may add that it is probable that the chemical atom is
the essential vibrating system, for the sodium spectrum, to take one
instance, is the same as that of all its compounds.

(5) In the same way we may suppose that the vortex rings are
formed so that they can have only a definite number of stable forms
produced by interlinking or kinking.

(6) Similarly we may modify the popular hypothesis by treat-
ing the atoms as indivisible aggregates of sub-atoms which are in all
respects equal and similar, and can be combined in only a limited num-
ber of forms which are permanent. But most of the old difficulties con-
nected with the atoms arise again in connection with the sub-atoms.

(7) I am not aware that Maxwell discussed any other hypotheses
in connection with this point, but it has been suggested recently that,
if the various forms of matter were evolved originally out of some one
primitive material, then there may have been periodic disturbances in
this matter when the atoms were being formed, such that they were
produced only at some definite phase in the period*.

Thus, if the disturbance is represented by the swinging of a pendu-
lum in a resisting medium, it might be supposed that the atoms were
formed at the points of maximum amplitude, and we should expect that
the atoms successively thrown off would form a series having the prop-
erties of its successive members connected by a regular periodic law.

* See Crookes on Mendeléeff’s periodic law, Nature, Sept. 2, 1886, vol. xxxiv,
pp. 423–432.
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This conjecture, when worked out in some detail, led to the conclusion
that some elements which ought to have appeared in the series were
missing, but it was possible to predict their properties and to suggest
the substances with which they were most likely to be found in com-
bination. Guided by these theoretical conclusions a careful chemical
analysis revealed the fact that such elements did exist.

That this hypothesis has led to new discoveries is something in its
favour, but I do not wish to be understood to say that it is a theory
which leads to results that have been verified subsequently. I should
say rather that we have obtained an analogy which is sufficiently like
the truth to suggest new discoveries. Such analogies are often the pre-
cursors of laws, so that it is not unreasonable to hope that ere long our
knowledge of this border-land of chemistry and physics may be more
definite, and thus that molecular physics may be brought within the
domain of mathematics. It is however very remarkable that J.J. Thom-
son’s conclusions on the stability of the orbital systems he devised
should agree so closely with Mendeléeff’s periodic law.

On the whole Maxwell thought that the phenomena point to a
common origin of all molecules of the same kind, that this was an
event not belonging to that order of nature under which we live, but
must have originated when or before the existing order was established,
and that so long as the present order exists it is immutable.

This is equivalent to saying that we have arrived at a point be-
yond which our limited experience does not enable us to carry the
explanation.

That we should be able to form an approximate idea of the size
of the molecules of matter is a testimony to the extraordinary advance
which mathematical physics has made recently.

Sir William Thomson, now Lord Kelvin, whose ingenuity seems to
know no limits—has suggested* four distinct methods of attacking the
problem. They lead to results which are not very different.

The first of these rests on an assertion of Cauchy that the phenom-
ena of prismatic colours show that the distance between consecutive
molecules of matter is comparable with the wave-lengths of light. Tak-
ing the most unfavourable case this would seem to indicate that in a

* See Nature, March 31, 1870, vol. i, pp. 531–553; and Tait’s Recent Advances,
pp. 303–318. The fourth method had been proposed by Loschmidt in 1863.
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transparent homogeneous solid or liquid medium there are not more
than 64 × 1024 molecules in a cubic inch, that is, that the distance
between consecutive molecules is greater than 1/(4× 108)th of an inch.

The second method is founded on the amount of work required to
draw out a film of liquid, such as a soap-bubble, to a given thickness.
This can be calculated from experiments in a capillary tube, and it
is found that, if a soap-bubble could be drawn out to a thickness of
1/108th of an inch there would be but a few molecules in its thickness.
This method is not quantitative.

Thirdly, Sir William Thomson proved that the contact phenomena
of electricity require that in an alloy of brass the distance between
two molecules, one of zinc and one of copper, shall be greater than
1/(7×108)th of an inch; hence the number of molecules in a cubic inch
of zinc or copper is not greater than 35 × 1025.

Lastly, the kinetic theory of gases leads to the conclusion that
certain phenomena of temperature and viscosity depend, inter alia,
on inter-molecular collisions, and so on the sizes and velocities of the
molecules, while the average velocity with which the molecules move
increases with the temperature. This leads to the conclusion that the
distance between two consecutive molecules of a gas at normal pres-
sure and temperature is greater than 1/(6 × 106)th of an inch, and is
less than 1/107th of an inch; while the actual size of the molecule is a
trifle greater than 1/(3 × 1020)th of a cubic inch; and the number of
molecules in a cubic inch is about 3 × 1020.

Thus it would seem that a cubic inch of gas at ordinary pressure and
temperature contains about 3 × 1020 molecules, all similar and equal,
and each molecule has a volume of about 1/(3×1025)th of a cubic inch;
while a cubic inch of the simplest solid or liquid contains rather less
than 1027 molecules, and perhaps each molecule has a volume of about
1/(3× 1026)th of a cubic inch. For instance, if a pea or a drop of water
whose radius is 1/16th inch was magnified to the size of the earth, then
there would be about thirty molecules in every cubic foot of it, and
probably the size of a molecule would be about the same as that of a
fives-ball. The average size of the minute drops of water in a very light
cloud can be calculated from the coloured rings produced when the sun
or moon shines through it. The radius of a drop is about 1/30000th of
an inch. Such a drop therefore would contain about 2 × 1013 separate
molecules. In gases and vapours, the number of atoms required to make
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up one of these molecules can be estimated, but in liquids the number
is not as yet known.

Loschmidt asserted that a cube whose side is 1/4000th of a mil-
limetre is the smallest object which can be made visible at the present
time. Such a cube of oxygen or nitrogen would contain from 60 to 100
millions of molecules of the gas. Also on an average about 50 elemen-
tary molecules of the so-called elements are required to constitute one
molecule of organic matter. At least half of every living organism con-
sists of water, and we may for the moment suppose that the remainder
consists of organic matter. Hence the smallest living being which is vis-
ible under the microscope contains from 30 to 50 millions of elementary
molecules which are combined in the form of water, and from 30 to 50
millions of elementary molecules which are combined so as to make not
more than one million organic molecules.

Hence a very simple organism might be built up out of as few as a
million similar organic molecules. Maxwell did not consider that this
was sufficient to justify the current conclusions of physiologists, and said
that they must not suppose that structural details of infinitely small di-
mensions can furnish by themselves an explanation of the variety known
to exist in the properties and functions of the most minute organisms;
but physiologists have replied that whether their conjectures be right
or wrong Maxwell’s argument is vitiated by his non-consideration of
differences due to the physical (as opposed to the chemical) structure
of the organism and the consequent motions of the component parts.
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A SHORT ACCOUNT OF THE

HISTORY OF MATHEMATICS

By W.W. ROUSE BALL.

[Third Edition. Pp. xxiv + 527. Price 10s. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This book gives an account of the lives and discoveries of those mathe-
maticians to whom the development of the subject is mainly due. The
use of technicalities has been avoided and the work is intelligible to any
one acquainted with the elements of mathematics.

The author commences with an account of the origin and progress
of Greek mathematics, from which the Alexandrian, the Indian, and
the Arab schools may be said to have arisen. Next the mathematics
of medieval Europe and the renaissance are described. The latter part
of the book is devoted to the history of modern mathematics (begin-
ning with the invention of analytical geometry and the infinitesimal
calculus), the account of which is brought down to the present time.

This excellent summary of the history of mathematics supplies a want which
has long been felt in this country. The extremely difficult question, how far such
a work should be technical, has been solved with great tact. . . . The work contains
many valuable hints, and is thoroughly readable. The biographies, which include
those of most of the men who played important parts in the development of culture,
are full and general enough to interest the ordinary reader as well as the specialist.
Its value to the latter is much increased by the numerous references to authorities,
a good table of contents, and a full and accurate index.—The Saturday Review.

Mr. Ball’s book should meet with a hearty welcome, for though we possess
other histories of special branches of mathematics, this is the first serious attempt
that has been made in the English language to give a systematic account of the
origin and development of the science as a whole. It is written too in an attractive
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style. Technicalities are not too numerous or obtrusive, and the work is interspersed
with biographical sketches and anecdotes likely to interest the general reader. Thus
the tyro and the advanced mathematician alike may read it with pleasure and
profit.—The Athenæum.

A wealth of authorities, often far from accordant with each other, renders a
work such as this extremely formidable; and students of mathematics have reason
to be grateful for the vast amount of information which has been condensed into
this short account. . . . In a survey of so wide extent it is of course impossible to give
anything but a bare sketch of the various lines of research, and this circumstance
tends to render a narrative scrappy. It says much for Mr. Ball’s descriptive skill that
his history reads more like a continuous story than a series of merely consecutive
summaries.—The Academy.

We can heartily recommend to our mathematical readers, and to others also,
Mr. Ball’s History of Mathematics. The history of what might be supposed a dry
subject is told in the pleasantest and most readable style, and at the same time
there is evidence of the most careful research.—The Observatory.

All the salient points of mathematical history are given, and many of the
results of recent antiquarian research; but it must not be imagined that the book
is at all dry. On the contrary the biographical sketches frequently contain amusing
anecdotes, and many of the theorems mentioned are very clearly explained so as
to bring them within the grasp of those who are only acquainted with elementary
mathematics.—Nature.

Le style de M. Ball est clair et élégant, de nombreux aperçus rendent facile de
suivre le fil de son exposition et de fréquentes citations permettent à celui qui le
désire d’approfondir les recherches que l’auteur n’a pu qu’effleurer. . . . Cet ouvrage
pourra devenir très utile comme manuel d’histoire des mathématiques pour les étu-
diants, et il ne sera pas déplacé dans les bibliotheques des savants.—Bibliotheca
Mathematica.

The author modestly describes his work as a compilation, but it is thoroughly
well digested, a due proportion is observed between the various parts, and when
occasion demands he does not hesitate to give an independent judgment on a dis-
puted point. His verdicts in such instances appear to us to be generally sound and
reasonable. . . . To many readers who have not the courage or the opportunity to
tackle the ponderous volumes of Montucla or the (mostly) ponderous treatises of
German writers on special periods, it may be somewhat of a surprise to find what
a wealth of human interest attaches to the history of so “dry” a subject as math-
ematics. We are brought into contact with many remarkable men, some of whom
have played a great part in other fields, as the names of Gerbert, Wren, Leibnitz,
Descartes, Pascal, D’Alembert, Carnot, among others may testify, and with at least
one thorough blackguard (Cardan); and Mr. Ball’s pages abound with quaint and
amusing touches characteristic of the authors under consideration, or of the times
in which they lived.—Manchester Guardian.

There can be no doubt that the author has done his work in a very excellent
way. . . . There is no one interested in almost any part of mathematical science who
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will not welcome such an exposition as the present, at once popularly written and
exact, embracing the entire subject. . . . Mr. Ball’s work is destined to become a
standard one on the subject.—The Glasgow Herald.

A most interesting book, not only for those who are mathematicians, but for
the much larger circle of those who care to trace the course of general scientific
progress. It is written in such a way that those who have only an elementary
acquaintance with the subject can find on almost every page something of general
interest.—The Oxford Magazine.
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A PRIMER OF THE

HISTORY OF MATHEMATICS

By W.W. ROUSE BALL.

[Second Edition. Pp. iv + 148. Price 2s. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This book contains a sketch in popular language of the history of math-
ematics; it includes some notice of the lives and surroundings of those
to whom the development of the subject is mainly due as well as of
their discoveries.

This Primer is written in the agreeable style with which the author has made
us acquainted in his previous essays; and we are sure that all readers of it will be
ready to say that Mr. Ball has succeeded in the hope he has formed, that “it may
not be uninteresting” even to those who are unacquainted with the leading facts. It
is just the book to give an intelligent young student, and should allure him on to the
perusal of Mr. Ball’s “Short Account.” The present work is not a mere réchauffé of
that, though naturally most of what is here given will be found in equivalent form
in the larger work. . . . The choice of material appears to us to be such as should
lend interest to the study of mathematics and increase its educational value, which
has been the author’s aim. The book goes well into the pocket, and is excellently
printed.—The Academy.

We have here a new instance of Mr. Rouse Ball’s skill in giving in a small
space an intelligible account of a large subject. In 137 pages we have a sketch
of the progress of mathematics from the earliest records up to the middle of this
century, and yet it is interesting to read and by no means a mere catalogue.—The
Manchester Guardian.

It is not often that a reviewer of mathematical works can confess that he has
read one of them through from cover to cover without abatement of interest or fa-
tigue. But that is true of Mr. Rouse Ball’s wonderfully entertaining little “History of
Mathematics,” which we heartily recommend to even the quite rudimentary mathe-
matician. The capable mathematical master will not fail to find a dozen interesting
facts therein to season his teaching.—The Saturday Review.
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A fascinating little volume, which should be in the hands of all who do not pos-
sess the more elaborate History of Mathematics by the same author.—The Math-
ematical Gazette.

This excellent sketch should be in the hands of every student, whether he is
studying mathematics or no. In most cases there is an unfortunate lack of knowl-
edge upon this subject, and we welcome anything that will help to supply the
deficiency. The primer is written in a concise, lucid and easy manner, and gives
the reader a general idea of the progress of mathematics that is both interesting
and instructive.—The Cambridge Review.

Mr. Ball has not been deterred by the existence and success of his larger “His-
tory of Mathematics” from publishing a simple compendium in about a quarter of
the space. . . . Of course, what he now gives is a bare outline of the subject, but it
is ample for all except the most advanced proficients. There is no question that, as
the author says, a knowledge of the history of a science lends interest to its study,
and often increases its educational value. We can imagine no better cathartic for
any mathematical student who has made some way with the calculus than a careful
perusal of this little book.—The Educational Times.

The author has done good service to mathematicians by engaging in work
in this special field. . . . The Primer gives, in a brief compass, the history of the
advance of this branch of science when under Greek influence, during the Middle
Ages, and at the Renaissance, and then goes on to deal with the introduction of
modern analysis and its recent developments. It refers to the life and work of the
leaders of mathematical thought, adds a new and enlarged value to well-known
problems by treating of their inception and history, and lights up with a warm and
personal interest a science which some of its detractors have dared to call dull and
cold.—The Educational Review.

It is not too much to say that this little work should be in the possession of every
mathematical teacher. . . . The Primer gives in a small compass the leading events in
the development of mathematics. . . . At the same time, it is no dry chronicle of facts
and theorems. The biographical sketches of the great workers, if short, are pithy,
and often amusing. Well-known propositions will attain a new interest for the pupil
as he traces their history long before the time of Euclid.—The Journal of Education.

This is a work which all who apprehend the value of “mathematics” should
read and study. . . , and those who wish to learn how to think will find advantage
in reading it.—The English Mechanic.

The subject, so far as our own language is concerned, is almost Mr. Ball’s own,
and those who have no leisure to read his former work will find in this Primer a
highly-readable and instructive chapter in the history of education. The condensa-
tion has been skilfully done, the reader’s interest being sustained by the introduction
of a good deal of far from tedious detail.—The Glasgow Herald.

Mr. W.W. Rouse Ball is well known as the author of a very clever history of
mathematics, besides useful works on kindred subjects. His latest production is A
Primer of the History of Mathematics, a book of one hundred and forty pages, giving
in non-technical language a full, concise, and readable narrative of the development
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of the science from the days of the Ionian Greeks until the present time. Anyone
with a leaning towards algebraic or geometrical studies will be intensely interested in
this account of progress from primitive usages, step by step, to our present elaborate
systems. The lives of the men who by their research and discovery helped along
the good work are described briefly, but graphically. . . . The Primer should become
a standard text-book.—The Literary World.

This is a capital little sketch of a subject on which Mr. Ball is an acknowledged
authority, and of which too little is generally known. Mr. Ball, moreover, writes
easily and well, and has the art of saying what he has to say in an interesting
style.—The School Guardian.
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MATHEMATICAL

RECREATIONS AND ESSAYS

By W.W. ROUSE BALL.

[Fourth Edition. Pp. xvi + 402. Price 7s. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This work is divided into two parts; the first is on mathematical recre-
ations and puzzles, the second includes some miscellaneous essays and
an account of some problems of historical interest. In both parts ques-
tions which involve advanced mathematics are excluded.

The mathematical recreations include numerous elementary ques-
tions and paradoxes, as well as problems such as the proposition that to
colour a map not more than four colours are necessary, the explanation
of the effect of a cut on a tennis ball, the fifteen puzzle, the eight queens
problem, the fifteen school-girls, the construction of magic squares, the
theory and history of mazes, and the knight’s path on a chess-board.

The second part commences with sketches of the history of the
Mathematical Tripos at Cambridge, of the three famous classical prob-
lems in geometry (namely, the duplication of the cube, the trisection of
an angle, and the quadrature of the circle) and of Mersenne’s Numbers.
These are followed by essays on Astrology and Ciphers. The last three
chapters are devoted to an account of the hypotheses as to the nature
of Space and Mass, and the means of measuring Time.

Mr. Ball has already attained a position in the front rank of writers on subjects
connected with the history of mathematics, and this brochure will add another to
his successes in this field. In it he has collected a mass of information bearing upon
matters of more general interest, written in a style which is eminently readable,
and at the same time exact. He has done his work so thoroughly that he has left
few ears for other gleaners. The nature of the work is completely indicated to the
mathematical student by its title. Does he want to revive his acquaintance with the
Problèmes Plaisans et Délectables of Bachet, or the Récréations Mathématiques et
Physiques of Ozanam? Let him take Mr. Ball for his companion, and he will have
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the cream of these works put before him with a wealth of illustration quite delightful.
Or, coming to more recent times, he will have full and accurate discussion of ‘the
fifteen puzzle,’ ‘Chinese rings,’ ‘the fifteen school-girls problem’ et id genus omne.
Sufficient space is devoted to accounts of magic squares and unicursal problems
(such as mazes, the knight’s path, and geometrical trees). These, and many other
problems of equal interest, come under the head of ‘Recreations.’ The problems
and speculations include an account of the Three Classical Problems; there is also
a brief sketch of Astrology; and interesting outlines of the present state of our
knowledge of hyper-space and of the constitution of matter. This enumeration
badly indicates the matter handled, but it sufficiently states what the reader may
expect to find. Moreover for the use of readers who may wish to pursue the several
heads further, Mr. Ball gives detailed references to the sources from whence he
has derived his information. These Mathematical Recreations we can commend
as suited for mathematicians and equally for others who wish to while away an
occasional hour.—The Academy.

The idea of writing some such account as that before us must have been present
to Mr. Ball’s mind when he was collecting the material which he has so skilfully
worked up into his History of Mathematics. We think this because . . . many bits of
ore which would not suit the earlier work find a fitting niche in this. Howsoever the
case may be, we are sure that non-mathematical, as well as mathematical, readers
will derive amusement, and, we venture to think, profit withal, from a perusal of
it. The author has gone very exhaustively over the ground, and has left us little
opportunity of adding to or correcting what he has thus reproduced from his note-
books. The work before us is divided into two parts: mathematical recreations and
mathematical problems and speculations. All these matters are treated lucidly, and
with sufficient detail for the ordinary reader, and for others there is ample store of
references. . . . Our analysis shows how great an extent of ground is covered, and
the account is fully pervaded by the attractive charm Mr. Ball knows so well how
to infuse into what many persons would look upon as a dry subject.—Nature.

A fit sequel to its author’s valuable and interesting works on the history of
mathematics. There is a fascination about this volume which results from a happy
combination of puzzle and paradox. There is both milk for babes and strong meat
for grown men. . . . A great deal of the information is hardly accessible in any
English books; and Mr. Ball would deserve the gratitude of mathematicians for
having merely collected the facts. But he has presented them with such lucidity
and vivacity of style that there is not a dull page in the book; and he has added
minute and full bibliographical references which greatly enhance the value of his
work.—The Cambridge Review.

Mathematicians with a turn for the paradoxes and puzzles connected with num-
ber, space, and time, in which their science abounds, will delight in Mathematical
Recreations and Problems of Past and Present Times.—The Times.

Mathematicians have their recreations; and Mr. Ball sets forth the humours
of mathematics in a book of deepest interest to the clerical reader, and of no little
attractiveness to the layman. The notes attest an enormous amount of research.—
The National Observer.
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Mr. Ball, to whom we are already indebted for two excellent Histories of Math-
ematics, has just produced a book which will be thoroughly appreciated by those
who enjoy the setting of the wits to work. . . . He has collected a vast amount of
information about mathematical quips, tricks, cranks, and puzzles—old and new;
and it will be strange if even the most learned do not find something fresh in the
assortment.—The Observatory.

Mr. Rouse Ball has the true gift of story-telling, and he writes so pleasantly
that though we enjoy the fulness of his knowledge we are tempted to forget the
considerable amount of labour involved in the preparation of his book. He gives
us the history and the mathematics of many problems . . . and where the limits of
his work prevent him from dealing fully with the points raised, like a true worker
he gives us ample references to original memoirs. . . . The book is warmly to be
recommended, and should find a place on the shelves of every one interested in
mathematics and on those of every public library.—The Manchester Guardian.

A work which will interest all who delight in mathematics and mental exercises
generally. The student will often take it up, as it contains many problems which
puzzle even clever people.—The English Mechanic and World of Science.

This is a book which the general reader should find as interesting as the mathe-
matician. At all events, an intelligent enjoyment of its contents presupposes no more
knowledge of mathematics than is now-a-days possessed by almost everybody.—The
Athenæum.

An exceedingly interesting work which, while appealing more directly to those
who are somewhat mathematically inclined, it is at the same time calculated to
interest the general reader. . . . Mr. Ball writes in a highly interesting manner on a
fascinating subject, the result being a work which is in every respect excellent.—
The Mechanical World.

É um livro muito interessante, consagrado a recreios mathematicos, alguns
dos quaes são muito bellos, e a problemas interessantes da mesma sciencia, que
não exige para ser lido grandes conhecimentos mathematicos e que tem em gráo
elevado a qualidade de instruir, deleitando ao mesmo tempo.—Journal de sciencias
mathematicas, Coimbra.

The work is a very judicious and suggestive compilation, not meant mainly
for mathematicians, yet made doubly valuable to them by copious references. The
style in the main is so compact and clear that what is central in a long argument or
process is admirably presented in a few words. One great merit of this, or any other
really good book on such a subject, is its suggestiveness; and in running through
its pages, one is pretty sure to think of additional problems on the same general
lines.—Bulletin of the New York Mathematical Society.

A book which deserves to be widely known by those who are fond of solving
puzzles . . . and will be found to contain an admirable classified collection of inge-
nious questions capable of mathematical analysis. As the author is himself a skilful
mathematician, and is careful to add an analysis of most of the propositions, it may
easily be believed that there is food for study as well as amusement in his pages. . . .
Is in every way worthy of praise.—The School Guardian.
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Once more the author of a Short History of Mathematics and a History of
the Study of Mathematics at Cambridge gives evidence of the width of his reading
and of his skill in compilation. From the elementary arithmetical puzzles which
were known in the sixteenth and seventeenth centuries to those modern ones the
mathematical discussion of which has taxed the energies of the ablest investigator,
very few questions have been left unrepresented. The sources of the author’s in-
formation are indicated with great fulness. . . . The book is a welcome addition to
English mathematical literature.—The Oxford Magazine.
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A HISTORY OF THE STUDY OF

MATHEMATICS AT CAMBRIDGE

By W.W. ROUSE BALL.

[Pp. xvi + 264. Price 6s.]

THE UNIVERSITY PRESS, CAMBRIDGE.

This work contains an account of the development of the study of
mathematics in the university of Cambridge from the twelfth century
to the middle of the nineteenth century, and a description of the means
by which proficiency in that study was tested at various times.

The first part of the book is devoted to a brief account of the more
eminent of the Cambridge mathematicians, the subject matter of their
works, and their methods of exposition. The second part treats of the
manner in which mathematics was taught, and of the exercises and
examinations required of students in past times. A sketch is given of
the origin and history of the Mathematical Tripos; this includes the
substance of the earlier parts of the author’s work on that subject,
Cambridge, 1880. To explain the relation of mathematics to other
departments of study an outline of the general history of the university
and the organization of education therein is added.

The present volume is very pleasant reading, and though much of it necessarily
appeals only to mathematicians, there are parts—e.g. the chapters on Newton, on
the growth of the tripos, and on the history of the university—which are full of inter-
est for a general reader. . . . The book is well written, the style is crisp and clear, and
there is a humorous appreciation of some of the curious old regulations which have
been superseded by time and change of custom. Though it seems light, it must rep-
resent an extensive study and investigation on the part of the author, the essential
results of which are skilfully given. We can most thoroughly commend Mr. Ball’s
volume to all readers who are interested in mathematics or in the growth and the
position of the Cambridge school of mathematicians.—The Manchester Guardian.

Voici un livre dont la lecture inspire tout d’abord le regret que des travaux
analogues n’aient pas été faits pour toutes les Écoles célèbres, et avec autant de soin
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et de clarté. . . . Toutes les parties du livre nous out vivement intéressé.—Bulletin
des sciences mathématiques.

A book of pleasant and useful reading for both historians and mathematicians.
Mr. Ball’s previous researches into this kind of history have already established
his reputation, and the book is worthy of the reputation of its author. It is more
than a detailed account of the rise and progress of mathematics, for it involves
a very exact history of the University of Cambridge from its foundation.—The
Educational Times.

Mr. Ball is far from confining his narrative to the particular science of which
he is himself an acknowledged master, and his account of the study of mathematics
becomes a series of biographical portraits of eminent professors and a record not
only of the intellectual life of the élite but of the manners, habits, and discussions
of the great body of Cambridge men from the sixteenth century to our own. . . . He
has shown how the University has justified its liberal reputation, and how amply
prepared it was for the larger freedom which it now enjoys.—The Daily News.

Mr. Ball has not only given us a detailed account of the rise and progress of
the science with which the name of Cambridge is generally associated but has also
written a brief but reliable and interesting history of the university itself from its
foundation down to recent times. . . . The book is pleasant reading alike for the
mathematician and the student of history.—St. James’s Gazette.

A very handy and valuable book containing, as it does, a vast deal of interesting
information which could not without inconceivable trouble be found elsewhere. . . .
It is very far from forming merely a mathematical biographical dictionary, the
growth of mathematical science being skilfully traced in connection with the suc-
cessive names. There are probably very few people who will be able thoroughly to
appreciate the author’s laborious researches in all sorts of memoirs and transactions
of learned societies in order to unearth the material which he has so agreeably con-
densed. . . . Along with this there is much new matter which, while of great interest
to mathematicians, and more especially to men brought up at Cambridge, will be
found to throw a good deal of new and important light on the history of education
in general.—The Glasgow Herald.

Exceedingly interesting to all who care for mathematics. . . . After giving an
account of the chief Cambridge Mathematicians and their works in chronological
order, Mr. Rouse Ball goes on to deal with the history of tuition and examinations
in the University . . . and recounts the steps by which the word “tripos” changed its
meaning “from a thing of wood to a man, from a man to a speech, from a speech to
two sets of verses, from verses to a sheet of coarse foolscap paper, from a paper to
a list of names, and from a list of names to a system of examination.”—Never did
word undergo so many alterations.—The Literary World.

In giving an account of the development of the study of mathematics in the
University of Cambridge, and the means by which mathematical proficiency was
tested in successive generations, Mr. Ball has taken the novel plan of devoting the
first half of his book to . . . the more eminent Cambridge mathematicians, and of
reserving to the second part an account of how at various times the subject was
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taught, and how the result of its study was tested. . . . Very interesting information
is given about the work of the students during the different periods, with specimens
of problem-papers as far back as 1802. The book is very enjoyable, and gives a
capital and accurate digest of many excellent authorities which are not within the
reach of the ordinary reader.—The Scots Observer.
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AN ESSAY ON

THE GENESIS, CONTENTS, AND HISTORY OF

NEWTON’S “PRINCIPIA”

By W.W. ROUSE BALL.

[Pp. x + 175. Price 6s. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This work contains an account of the successive discoveries of Newton
on gravitation, the methods he used, and the history of his researches.

It commences with a review of the extant authorities dealing with
the subject. In the next two chapters the investigations made in 1666
and 1679 are discussed, some of the documents dealing therewith be-
ing here printed for the first time. The fourth chapter is devoted to
the investigations made in 1684: these are illustrated by Newton’s pro-
fessorial lectures (of which the original manuscript is extant) of that
autumn, and are summed up in the almost unknown memoir of Febru-
ary, 1685, which is here reproduced from Newton’s holograph copy. In
the two following chapters the details of the preparation from 1685 to
1687 of the Principia are described, and an analysis of the work is
given. The seventh chapter comprises an account of the researches of
Newton on gravitation subsequent to the publication of the first edition
of the Principia, and a sketch of the history of that work.

In the last chapter, the extant letters of 1678–1679 between Hooke
and Newton, and of those of 1686–1687 between Halley and Newton, are
reprinted, and there are also notes on the extant correspondence con-
cerning the production of the second and third editions of the Principia.

For the essay which we have before us, Mr Ball should receive the thanks of
all those to whom the name of Newton recalls the memory of a great man. The
Principia, besides being a lasting monument of Newton’s life, is also to-day the
classic of our mathematical writings, and will be so for some time to come. . . . The
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value of the present work is also enhanced by the fact that, besides containing a
few as yet unpublished letters, there are collected in its pages quotations from all
documents, thus forming a complete summary of everything that is known on the
subject. . . . The author is so well known a writer on anything connected with the
history of mathematics, that we need make no mention of the thoroughness of the
essay, while it would be superfluous for us to add that from beginning to end it is
pleasantly written and delightful to read. Those well acquainted with the Principia
will find much that will interest them, while those not so fully enlightened will
learn much by reading through the account of the origin and history of Newton’s
greatest work.—Nature.

An Essay on Newton’s Principia will suggest to many something solely mathe-
matical, and therefore wholly uninteresting. No inference could be more erroneous.
The book certainly deals largely in scientific technicalities which will interest experts
only; but it also contains much historical information which might attract many
who, from laziness or inability, would be very willing to take all its mathematics for
granted. Mr. Ball carefully examines the evidence bearing on the development of
Newton’s great discovery, and supplies the reader with abundant quotations from
contemporary authorities. Not the least interesting portion of the book is the ap-
pendix, or rather appendices, containing copies of the original documents (mostly
letters) to which Mr. Ball refers in his historical criticisms. Several of these bear
upon the irritating and unfounded claims of Hooke.—The Athenæum.

La savante monographie de M. Ball est rédigée avec beaucoup de soin, et à
plusieurs égards elle peut servir de modèle pour des écrits de la même nature.—
Bibliotheca Mathematica.

Newton’s Principia has world-wide fame as a classic of mathematical science.
But those who know thoroughly the contents and the history of the book are a
select company. It was at one time the purpose of Mr. Ball to prepare a new
critical edition of the work, accompanied by a prefatory history and notes, and
by an analytical commentary. Mathematicians will regret to hear that there is no
prospect in the immediate future of seeing this important book carried to completion
by so competent a hand. They will at the same time welcome Mr. Ball’s Essay on
the Principia for the elucidations which it gives of the process by which Newton’s
great work originated and took form, and also as an earnest of the completed
plan.—The Scotsman.

In this essay Mr. Ball presents us with an account highly interesting to math-
ematicians and natural philosophers of the origin and history of that remark-
able product of a great genius Philosophiae Naturalis Principia Mathematica, ‘The
Mathematical Principles of Natural Philosophy,’ better known by the short term
Principia. . . . Mr. Ball’s essay is one of extreme interest to students of physical sci-
ence, and it is sure to be widely read and greatly appreciated.—The Glasgow Herald.

To his well-known and scholarly treatises on the History of Mathematics
Mr. W.W. Rouse Ball has added An Essay on Newton’s Principia. Newton’s Prin-
cipia, as Mr. Ball justly observes, is the classic of English mathematical writings;
and this sound, luminous, and laborious essay ought to be the classical account
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of the Principia. The essay is the outcome of a critical edition of Newton’s great
work, which Mr. Ball tells us that he once contemplated. It is much to be hoped
that he will carry out his intention, for no English mathematician is likely to do the
work better or in a more reverent spirit. . . . It is unnecessary to say that Mr. Ball
has a complete knowledge of his subject. He writes with an ease and clearness
that are rare.—The Scottish Leader.

Le volume de M. Rouse Ball renferme tout ce que l’on peut désirer savoir
sur l’histoire des Principes; c’est d’ailleurs l’œuvre d’un esprit clair, judicieux, et
méthodique.—Bulletin des Sciences Mathématiques.

Mr. Ball has put into small space a very great deal of interesting matter, and
his book ought to meet with a wide circulation among lovers of Newton and the
Principia.—The Academy.

Admirers of Mr. W.W. Rouse Ball’s Short Account of the History of Mathe-
matics will be glad to receive a detailed study of the history of the Principia from
the same hand. This book, like its predecessors, gives a very lucid account of its
subject. We find in it an account of Newton’s investigations in his earlier years,
which are to some extent collected in the tract de Motu (the germ of the Principia)
the text of which Mr. Rouse Ball gives us in full. In a later chapter there is a full
analysis of the Principia itself, and after that an account of the preparation of the
second and third editions. Probably the part of the book which will be found most
interesting by the general reader is the account of the correspondence of Newton
with Hooke, and with Halley, about the contents or the publication of the Prin-
cipia. This correspondence is given in full, so far as it is recoverable. Hooke does
not appear to advantage in it. He accuses Newton of stealing his ideas. His vain and
envious disposition made his own merits appear great in his eyes, and be-dwarfed
the work of others, so that he seems to have believed that Newton’s great perfor-
mance was a mere expanding and editing of the ideas of Mr. Hooke—ideas which
were meritorious, but after all mere guesses at truth. This, at all events, is the most
charitable view we can take of his conduct. Halley, on the contrary, appears as a
man to whom we ought to feel most grateful. It almost seems as though Newton’s
physical insight and extraordinary mathematical powers might have been largely
wasted, as was Pascal’s rare genius, if it had not been for Halley’s single-hearted
and self-forgetful efforts to get from his friend’s genius all he could for the enlight-
enment of men. It was probably at his suggestion that the writing of the Principia
was undertaken. When the work was presented to the Royal Society, they under-
took its publication, but, being without the necessary funds, the expense fell upon
Halley. When Newton, stung by Hooke’s accusations, wished to withdraw a part
of the work, Halley’s tact was required to avert the catastrophe. All the drudgery,
worry, and expense fell to his share, and was accepted with the most generous good
nature. It will be seen that both the technical student and the general reader may
find much to interest him in Mr. Rouse Ball’s book.—The Manchester Guardian.

Une histoire très bien faite de la genèse du livre immortel de Newton. . . .
Le livre de M. Ball est une monographie précieuse sur un point important de
l’histoire des mathématiques. Il contribuera à accroître, si c’est possible, la gloire
de Newton, en révélant à beaucoup de lecteurs, avec quelle merveilleuse rapid-
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ité l’illustre géomètre anglais a élevé à la science ce monument immortel, les
Principia.—Mathesis.
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NOTES ON THE HISTORY OF

TRINITY COLLEGE,
CAMBRIDGE

By W.W. ROUSE BALL.

[Pp. xiv + 183. Price 2s. 6d. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This booklet gives a popular account of the History of Trinity Col-
lege, Cambridge, and so far as the author knows, it is as yet (1905)
the only work published on the subject. It was written mainly for the
use of his pupils, and contains such information and gossip about the
College and life there in past times as he believed would be interesting
to most undergraduates and members of the House.

This modest and unpretending little volume seems to us to do more for its
subject than many of the more formal volumes . . . treating of the separate col-
leges of the English universities. . . . In nine short, extremely readable, and truly
informing chapters it gives the reader a very vivid account at once of the origin and
development of the University of Cambridge, of the rise and gradual supremacy of
the colleges, of King’s Hall as founded by Edward II, of the suppression of King’s
Hall by Henry VIII on December 17, 1546, the foundation of Trinity College by
royal charter on December 19, and the subsequent fortunes of the premier college
of Cambridge. The subject is in a way treated under the successive heads of the
college, but this is quite subordinate to the handling and characterisation of the
subject under four great periods—namely, that during the Middle Ages, that dur-
ing the Renaissance, that under the Elizabethan statutes, and that during the last
half-century. The colleges arose from the determination of the University to pre-
vent students who were very young from seeking lodging, whether under the wing of
one or other of the religious orders—a circumstance which shows this University to
have been an essentially lay corporation. Early in the sixteenth century the college
had absorbed all the members of the University, and henceforth the University was
little more than the degree-granting body to students who lived and moved and
had their educational being under the colleges. . . . The University finally took the
form of an aggregate of separate and independent corporations, with a federal con-
stitution analogous in a rough sort of way to that of the United States of America,

• Project • Gutenberg • #26839 •



352

and different from similar corporations at Paris by the fact that these latter were
always subject to University supervision. . . . There is a good account of the effort
now going on to re-assert the University at the expense of the colleges. No one
who begins Mr. Ball’s book will lay it down till he has read it from beginning to
end.—The Glasgow Herald.

It is a sign of the times, and a very satisfactory one, when . . . a tutor . . . takes
the trouble to make the history of his college known to his pupils. Considering the
lack of good books about the Universities, we may thank Mr. Ball that he has been
good enough to print for a larger circle. Though he modestly calls his book only
“Notes,” yet it is eminently readable, and there is plenty of information, as well as
abundance of good stories, in its pages.—The Oxford Magazine.

Mr. Ball has put not only the pupils for whom he compiled these notes, but the
large world of Trinity men, under a great obligation by this compendious but lucid
and interesting history of the society to whose service he is devoted. The value of
his contribution to our knowledge is increased by the extreme simplicity with which
he tells his story, and the very suggestive details which, without much comment,
he has selected, with admirable discernment, out of the wealth of materials at
his disposal. His initial account of the development of the University is brief but
extremely clear, presenting us with facts rather than theories, but establishing,
with much distinctness, the essential difference between the hostels, out of which
the more modern colleges grew, and that monastic life which poorer students were
often tempted to join.—The Guardian.

An interesting and valuable book. . . . It is described by its author as “little
more than an orderly transcript” of what, as a Fellow and Tutor of the College,
he has been accustomed to tell his pupils. But while it does not pretend either to
the form or to the exhaustiveness of a set history, it is scholarly enough to rank as
an authority, and far more interesting and readable than most academic histories
are. It gives an instructive sketch of the development of the University and of the
particular history of Trinity, noting its rise and policy in the earlier centuries of
its existence, until, under the misrule of Bentley, it came into a state of disorder
which nearly resulted in its dissolution. The subsequent rise of the College and its
position in what Mr. Ball calls the Victorian renaissance, are drawn in lines no less
suggestive; and the book, as a whole, cannot fail to be welcome to every one who
is closely interested in the progress of the College.—The Scotsman.

Mr. Ball has succeeded very well in giving in this little volume just what an
intelligent undergraduate ought and probably often does desire to know about the
buildings and the history of his College. . . . The debt of the “royal and religious
foundation” to Henry VIII is explained with fulness, and there is much interest-
ing matter as to the manner of life and the expenses of students in the sixteenth
century.—The Manchester Guardian.
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