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PREFACE

The heroic age of non-euclidean geometry is passed. It is long since the days
when Lobatchewsky timidly referred to his system as an ‘imaginary geometry’,
and the new subject appeared as a dangerous lapse from the orthodox doctrine
of Euclid. The attempt to prove the parallel axiom by means of the other usual
assumptions is now seldom undertaken, and those who do undertake it, are
considered in the class with circle-squarers and searchers for perpetual motion–
sad by-products of the creative activity of modern science.

In this, as in all other changes, there is subject both for rejoicing and regret.
It is a satisfaction to a writer on non-euclidean geometry that he may proceed
at once to his subject, without feeling any need to justify himself, or, at least,
any more need than any other who adds to our supply of books. On the other
hand, he will miss the stimulus that comes to one who feels that he is bringing
out something entirely new and strange. The subject of non-euclidean geome-
try is, to the mathematician, quite as well established as any other branch of
mathematical science; and, in fact, it may lay claim to a decidedly more solid
basis than some branches, such as the theory of assemblages, or the analysis
situs.

Recent books dealing with non-euclidean geometry fall naturally into two
classes. In the one we find the works of Killing, Liebmann, and Manning,1 who
wish to build up certain clearly conceived geometrical systems, and are careless
of the details of the foundations on which all is to rest. In the other category
are Hilbert, Vablen, Veronese, and the authors of a goodly number of articles on
the foundations of geometry. These writers deal at length with the consistency,
significance, and logical independence of their assumptions, but do not go very
far towards raising a superstructure on any one of the foundations suggested.

The present work is, in a measure, an attempt to unite the two tendencies.
The author’s own interest, be it stated at the outset, lies mainly in the fruits,
rather than in the roots; but the day is past when the matter of axioms may be
dismissed with the remark that we ‘make all of Euclid’s assumptions except the
one about parallels’. A subject like ours must be built up from explicitly stated
assumptions, and nothing else. The author would have preferred, in the first
chapters, to start from some system of axioms already published, had he been
familiar with any that seemed to him suitable to establish simultaneously the
euclidean and the principal non-euclidean systems in the way that he wished.
The system of axioms here used is decidedly more cumbersome than some others,
but leads to the desired goal.

There are three natural approaches to non-euclidean geometry. (1) The
elementary geometry of point, line, and distance. This method is developed
in the opening chapters and is the most obvious. (2) Projective geometry,
and the theory of transformation groups. This method is not taken up until
Chapter XVIII, not because it is one whit less important than the first, but
because it seemed better not to interrupt the natural course of the narrative

1Detailed references given later
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by interpolating an alternative beginning. (3) Differential geometry, with the
concepts of distance-element, extremal, and space constant. This method is
explained in the last chapter, XIX.

The author has imposed upon himself one or two very definite limitations.
To begin with, he has not gone beyond three dimensions. This is because of
his feeling that, at any rate in a first study of the subject, the gain in gener-
ality obtained by studying the geometry of n-dimensions is more than offset
by the loss of clearness and naturalness. Secondly, he has confined himself, al-
most exclusively, to what may be called the ‘classical’ non-euclidean systems.
These are much more closely allied to the euclidean system than are any oth-
ers, and have by far the most historical importance. It is also evident that a
system which gives a simple and clear interpretation of ternary and quaternary
orthogonal substitutions, has a totally different sort of mathematical signifi-
cance from, let us say, one whose points are determined by numerical values
in a non-archimedian number system. Or again, a non-euclidean plane which
may be interpreted as a surface of constant total curvature, has a more lasting
geometrical importance than a non-desarguian plane that cannot form part of
a three-dimensional space.

The majority of material in the present work is, naturally, old. A reader,
new to the subject, may find it wiser at the first reading to omit Chapters X,
XV, XVI, XVIII, and XIX. On the other hand, a reader already somewhat
familiar with non-euclidean geometry, may find his greatest interest in Chap-
ters X and XVI, which contain the substance of a number of recent papers
on the extraordinary line geometry of non-euclidean space. Mention may also
be made of Chapter XIV which contains a number of neat formulae relative
to areas and volumes published many years ago by Professor d’Ovidio, which
are not, perhaps, very familiar to English-speaking readers, and Chapter XIII,
where Staude’s string construction of the ellipsoid is extended to non-euclidean
space. It is hoped that the introduction to non-euclidean differential geometry
in Chapter XV may prove to be more comprehensive than that of Darboux, and
more comprehensible than that of Bianchi.

The author takes this opportunity to thank his colleague, Assistant-Professor
Whittemore, who has read in manuscript Chapters XV and XIX. He would
also offer affectionate thanks to his former teachers, Professor Eduard Study of
Bonn and Professor Corrado Segre of Turin, and all others who have aided and
encouraged (or shall we say abetted?) him in the present work.
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CHAPTER I

FOUNDATION FOR METRICAL GEOMETRY IN A LIMITED
REGION

In any system of geometry we must begin by assuming the existence of
certain fundamental objects, the raw material with which we are to work. What
names we choose to attach to these objects is obviously a question quite apart
from the nature of the logical connexions which arise from the various relations
assumed to exist among them, and in choosing these names we are guided
principally by tradition, and by a desire to make our mathematical edifice as
well adapted as possible to the needs of practical life. In the present work we
shall assume the existence of two sorts of objects, called respectively points and
distances.2 Our explicit assumptions shall be as follows:—

Axiom I. There exists a class of objects, containing at least two
members, called points.

It will be convenient to indicate points by large Roman letters as A, B, C.

Axiom II. The existence of any two points implies the existence of
a unique object called their distance.

If the points be A and B it will be convenient to indicate their distance by
AB or BA. We shall speak of this also as the distance between the two points,
or from one to the other.

We next assume that between two distances there may exist a relation ex-
pressed by saying that the one is congruent to the other. In place of the words

2There is no logical or mathematical reason why the point should be taken as undefined
rather than the line or plane. This is, however, the invariable custom in works on the founda-
tions of geometry, and, considering the weight of historical and psychological tradition in its
favour, the point will probably continue to stand among the fundamental indefinables. With
regard to the others, there is no such unanimity. Veronese, Fondamenti di geometria, Padua,
1891, takes the line, segment, and congruence of segments. Schur, ‘Ueber die Grundlagen der
Geometrie,’ Mathematische Annalen, vol. lv, 1902, uses segment and motion. Hilbert, Die
Grundlagen der Geometrie, Leipzig, 1899, uses practically the same indefinables as Veronese.
Moore, ‘The projective Axioms of Geometry,’ Transactions of the American Mathematical
Society, vol. iii, 1902, and Veblen, ‘A System of Axioms for Geometry,’ same Journal, vol. v,
1904, use segment and order. Pieri, ‘Della geometria elementare come sistema ipotetico dedut-
tivo,’ Memorie della R. Accademia delle Scienze di Torino, Serie 2, vol. xlix, 1899, introduces
motion alone, as does Padoa, ‘Un nuovo sistema di definizioni per la geometria euclidea,’
Periodico di matematica, Serie 3, vol. i, 1903. Vahlen, Abstrakte Geometrie, Leipzig, 1905,
uses line and separation. Peano, ‘La geometria basata sulle idee di punto e di distanza,’ Atti
della R. Accademia di Torino, vol. xxxviii, 1902-3, and Levy, ‘I fondamenti della geometria
metrica-proiettiva,’ Memorie Accad. Torino, Serie 2, vol. liv, 1904, use distance. I have made
the same choice as the last-named authors, as it seemed to me to give the best approach to
the problem in hand. I cannot but feel that the choice of segment or order would be a mistake
for our present purpose, in spite of the very condensed system of axioms which Veblen has
set up therefor. For to reach congruence and measurement by this means, one is obliged to
introduce the six-parameter group of motions (as in Ch. XVIII of this work), i.e. base metrical
geometry on projective. It is, on the other hand, an inelegance to base projective geometry on
a non-projective conception such as ‘between-ness’, whereas writers like Vahlen require both
projective and ‘affine’ geometry, before reaching metrical geometry, a very roundabout way
to reach what is, after all, the fundamental part of the subject.
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‘is congruent to’ we shall write the symbol ≡. The following assumptions shall
be made with regard to the congruent relation:—

Axiom III. AB ≡ AB.

Axiom IV. AA ≡ BB.

Axiom V. If AB ≡ CD and CD ≡ EF , then AB ≡ EF .

These might have been put into purely logical form by saying that we as-
sumed that every distance was congruent to itself, that the distances of any
two pairs of identical points are congruent, and that the congruent relation is
transitive.

Let us next assume that there may exist a triadic relation connecting three
distances which is expressed by a saying that the first AB is congruent to the
sum of the second CD and the third PQ. This shall be written AB ≡ CD+PQ.

Axiom VI. If AB ≡ CD + PQ, then AB ≡ PQ+ CD.

Axiom VII. If AB ≡ CD + PQ and PQ ≡ RS, then AB ≡ CD +RS.

Axiom VIII. If AB ≡ CD+PQ and A′B′ ≡ AB, then A′B′ ≡ CD+PQ.

Axiom IX. AB ≡ AB + CC.

Definition. The distance of two identical points shall be called a null distance.
Definition. If AB and CD be two such distances that there exists a not null

distance PQ fulfilling the condition that AB is congruent to the sum of CD and
PQ, then AB shall be said to be greater than CD. This is written AB > CD.

Definition. If AB > CD, then CD shall be said to be less than AB. This is
written CD < AB.

Axiom X. Between any two distances AB and CD there exists one,
and only one, of the three relations

AB ≡ CD, AB > CD, AB < CD.

Theorem 1. If AB ≡ CD, then CD ≡ AB.
For we could not have AB ≡ CD + PQ where PQ was not null. Nor could

we have CD ≡ AB + PQ for then, by VIII, AB ≡ AB + PQ contrary to X.
Theorem 2. If AB ≡ CD + PQ and C ′D′ ≡ CD, then

AB ≡ C ′D′ + PQ.

The proof is immediate.

Axiom XI. If A and C be any two points there exists such a point
B distinct from either that

AB ≡ AC + CB.

10



This axiom is highly significant. In the first place it clearly involves the
existence of an infinite number of points. In the second it removes the possibility
of a maximum distance. In other words, there is no distance which may not be
extended in either direction. It is, however, fundamentally important to notice
that we have made no assumption as to the magnitude of the amount by which
a distance may be so extended; we have merely premised the existence of such
extension. We shall make the concept of extension more explicit by the following
definitions.

Definition. The assemblage of all points C possessing the property that AB ≡
AC + CB shall be called the segment of A and B, or of B and A, and written
(AB) or (BA). The points A and B shall be called the extremities of the
segment, all other points thereof shall be said to be within it.

Definition. The assemblage of all points B different from A and C such that
AB ≡ AC + CB shall be called the extension of (AC) beyond C.

Axiom XII. If AB ≡ AC + CB where AC ≡ AD +DC,
then AB ≡ AD +DB where DB ≡ DC + CB.

The effect of this axiom is to establish a serial order among the points of
a segment and its extensions, as will be seen from the following theorems. We
shall also be able to show that our distances are scalar magnitudes, and that
addition of distances is associative.

Axiom XIII. If AB ≡ PQ+RS there is a single point C of (AB) such
that AC ≡ PQ, CB ≡ RS.

Theorem 3. If AB > CD and CD > EF , then AB > EF .
To begin with AB ≡ EF is impossible. If then EF > AB, let us put

EF ≡ EG+GF , where EG ≡ AB.

Then CD ≡ CH +HD; CH ≡ EF.

Then CD ≡ CK +KD; CK ≡ AB

which is against our hypothesis.
We see as a corollary, to this, that if C and D be any two points of (AB),

one at least being within it, AB > CD.
It will follow from XIII that two distinct points of a segment cannot deter-

mine congruent distances from either end thereof. We also see from XII that if
C be a point of (AB), and D a point of (AC), it is likewise a point of (AB).
Let the reader show further that every point of a segment, whose extremities
belong to a given segment, is, itself, a point of that segment.

Theorem 4. If C be a point of (AB), then every point D of (AB) is either a
point of (AC) or of (CB).

If AC ≡ AD we have C and D identical. If AC > AD we may find a point
of (AC)

[
and so of (AB)

]
whose distance from A is congruent to AD, and this

will be identical with D. If AC < AD we find C as a point of (AD), and hence,
by XII, D is a point of (CB).
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Theorem 5. If AB ≡ AC +CB and AB ≡ AD+DB while AC > AD, then
CB < DB.

Theorem 6. If AB ≡ PQ+RS and A′B′ ≡ PQ+RS, then A′B′ ≡ AB.
The proof is left to the reader.
Theorem 7. If AB ≡ PQ+RS and AB ≡ PQ+ LM , then RS ≡ LM .

For if AB ≡ AC + CB, and AC ≡ PQ, then CB ≡ RS ≡ LM .

If AB ≡ PQ+RS

it will be convenient to write PQ ≡ (AB −RS),

and say that PQ is the difference of the distances AB and RS. When we are
uncertain as to whether AB > RS or RS > AB, we shall write their difference∣∣AB −RS

∣∣.
Theorem 8. If AB ≡ PQ+ LM and AB ≡ P ′Q′ + L′M ′

while PQ ≡ P ′Q′,

then LM ≡ L′M ′.

Theorem 9. If AB ≡ PQ+RS and AB ≡ P ′Q′ +R′S′

while PQ > P ′Q′,

then RS < R′S′.

Definition. The assemblage of all points of a segment and its extensions shall
be called a line.

Definition. Two lines having in common a single point are said to cut or
intersect in that point.

Notice that we have not as yet assumed the existence of two such lines. We
shall soon, however, make this assumption explicitly.

Axiom XIV. Two lines having two common distinct points are iden-
tical.

The line determined by two points A and B shall be written AB or BA.
Theorem 10. If C be a point of the extension of (AB) beyond B and D

another point of this same extension, then D is a point of (BC) if BC ≡ BD
or BC > BD; otherwise C is a point of (BD).

Axiom XV. All points do not lie in one line.

Axiom XVI. If B be a point of (CD) and E a point of (AB) where
A is not a point of the line BC, then the line DE contains a point F
of (AC).

The first of these axioms is clearly nothing but an existence theorem. The
second specifies certain conditions under which two lines, not given by means
of common points, must, nevertheless, intersect. It is clear that some such
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assumption is necessary in order to proceed beyond the geometry of a single
straight line.

Theorem 11. If two distinct points A and B be given, there is an infinite
number of distinct points which belong to their segment.

This theorem is an immediate consequence of the last two axioms. It may
be interpreted otherwise by saying that there is no minimum distance, other
than the null distance.

Theorem 12. The manifold of all points of a segment is dense.
Theorem 13. If A, B, C, D, E form the configuration of points described in

Axiom XVI, the point E is a point of (DF ).
Suppose that this were not the case. We should either have F as a point

of (DE) or D as a point of (EF ). But then, in the first case, C would be a
point of (DB) and in the second D would be a point of (BC), both of which
are inconsistent with our data.

Definition. Points which belong to the same line shall be said to be on it
or to be collinear . Lines which contain the same point shall be said to pass
through it, or to be concurrent .

Theorem 14. If A, B, C be three non-collinear points, and D a point within
(AB) while E is a point of the extension of (BC) beyond C, then the line DE
will contain a point F of (AC).

Take G, a point of (ED), different from E and D. Then AG will contain a
point L of (BE), while G belongs to (AL). If L and C be identical, G will be
the point required. If L be a point of (CE) then EG goes through F within
(AG) as required. If L be within (BC), then BG goes through H of (AC) and
K of (AE), so that, by 13, G and H are points of (BK). H must then, by 4,
either be a point of (BG) or of (GK). But if H be a point of (BG), C is a point
of (BL), which is untrue. Hence H is a point of (GK), and (AH) contains F
of (EG). We see also that it is impossible that C should belong to (AF ) or A
to (FC). Hence F belongs to (AC).

Theorem 15. If A, B, C be three non-collinear points, no three points, one
within each of their three segments, are collinear.

The proof is left to the reader.
Definition. If three non-collinear points be given, the locus of all points of

all segments determined by each of these, and all points of the segment of the
other two, shall be called a Triangle. The points originally chosen shall be called
the vertices, their segments the sides. Any point of the triangle, not on one of
its sides, shall be said to be within it. If the three given points be A, B, C
their triangle shall be written 4ABC. Let the reader show that this triangle is
completely determined by all points of all segments having A as one extremity,
while the other belongs to (BC).

It is interesting to notice that XVI, and 13 and 14, may be summed up as
follows3:—

3Some writers, as Pasch, Neuere Geometrie, Leipzig, 1882, p. 21, give Axiom XVI in this
form. I have followed Veblen, loc. cit., p. 351, in weakening the axiom to the form given.
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Theorem 16. If a line contain a point of one side of a triangle and one of
either extension of a second side, it will contain a point of the third side.

Definition. The assemblage of all points of all lines determined by the vertices
of a triangle and all points of the opposite sides shall be called a plane.

It should be noticed that in defining a plane in this manner, the vertices of
the triangle play a special rôle. It is our next task to show that this specialization
of function is only apparent, and that any other three non-collinear points of
the plane might equally well have been chosen to define it.4

Theorem 17. If a plane be determined by the vertices of a triangle, the
following points lie therein:—

(a) All points of every line determined by a vertex, and a point of the line
of the other two vertices.

(b) All points of every line which contains a point of each of two sides of the
triangle.

(c) All points of every line containing a point of one side of the triangle and
a point of the line of another side.

(d) All points of every line which contains a point of the line of each of two
sides.

The proof will come at once from 16, and from the consideration that if we
know two points of a line, every other point thereof is either a point of their
segment, or of one of its extensions. The plane determined by three points as A,
B, C shall be written the plane ABC. We are thus led to the following theorem.

Theorem 18. The plane determined by three vertices of a triangle is identical
with that determined by two of their number and any other point of the line of
either of the remaining sides.

Theorem 19. Any one of the three points determining a plane may be re-
placed by any other point of the plane, not collinear with the two remaining
determining points.

Theorem 20. A plane may be determined by any three of its points which
are not collinear.

Theorem 21. Two planes having three non-collinear points in common are
identical.

Theorem 22. If two points of a line lie in a plane, all points thereof lie in
that plane.

Axiom XVII. All points do not lie in one plane.

Definition. Points or lines which lie in the same plane shall be called coplanar.
Planes which include the same line shall be called coaxal . Planes, like lines,
which include the same point, shall be called concurrent.

Definition. If four non-coplanar points be given, the assemblage of all points
of all segments having for one extremity one of these points, and for the other,
a point of the triangle of the other three, shall be called a tetrahedron. The four

4The treatment of the plane and space which constitute the rest of this chapter are taken
largely from Schur, loc. cit. He in turn confesses his indebtedness to Peano.
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given points shall be called its vertices, their six segments its edges, and the four
triangles its faces. Edges having no common vertex shall be called opposite. Let
the reader show that, as a matter of fact, the tetrahedron will be determined
completely by means of segments, all having a common extremity at one vertex,
while the other extremity is in the face of the other three vertices. A vertex
may also be said to be opposite to a face, if it do not lie in that face.

Definition. The assemblage of all points of all lines which contain either a
vertex of a tetrahedron, and a point of the opposite face, or two points of two
opposite edges, shall be called a space.

It will be seen that a space, as so defined, is made up of fifteen regions,
described as follows:—

(a) The tetrahedron itself.
(b) Four regions composed of the extensions beyond each vertex of segments

having one extremity there, and the other extremity in the opposite face.
(c) Four regions composed of the other extensions of the segments mentioned

in (b).
(d) Six regions composed of the extensions of segments whose extremities

are points of opposite edges.
Theorem 23. All points of each of the following figures will lie in the space

defined by the vertices of a given tetrahedron.
(a) A plane containing an edge, and a point of the opposite edge.
(b) A line containing a vertex, and a point of the plane of the opposite face.
(c) A line containing a point of one edge, and a point of the line of the

opposite edge.
(d) A line containing a point of the line of each of two opposite edges.
(e) A line containing a point of one edge, and a point of the plane of a face

not containing that edge.
(f ) A line containing a point of the line of one edge, and a point of the plane

of a face not containing that edge.
The proof will come directly if we take the steps in the order indicated, and

hold fast to 16, and the definitions of line, plane, and space.
Theorem 24. In determining a space, any vertex of a tetrahedron may be

replaced by any other point, not a vertex, on the line of an edge through the
given vertex.

Theorem 25. In determining a space, any vertex of a tetrahedron may be
replaced by any point of that space, not coplanar with the other three vertices.

Theorem 26. A space may be determined by any four of its points which are
not coplanar.

Theorem 27. Two spaces which have four non-coplanar points in common
are identical.

Theorem 28. A space contains wholly every line whereof it contains two
distinct points.

Theorem 29. A space contains wholly every plane whereof it contains three
non-collinear points.
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Practical limitation. Points belonging to different spaces shall not be
considered simultaneously in the present work.5

Suppose that we have a plane containing the point E of the segment (AB)
but no point of the segment (BC). Take F and G two other points of the
plane, not collinear with E, and construct the including space by means of the
tetrahedron whose vertices are A, B, F , G. As C lies in this space, it must lie in
one of the fifteen regions individualized by the tetrahedron; or, more specifically,
it must lie in a plane containing one edge, and a point of the opposite edge.
Every such plane will contain a line of the plane EFG, as may be immediately
proved, and 16 will show that in every case this plane must contain either a
point of (AC) or one of (BC).

Theorem 30. If a plane contain a point of one side of a triangle, but no point
of a second side, it must contain a point of the third.

Theorem 31. If a line in the plane of a triangle contain a point of one side of
the triangle and no point of a second side, it must contain a point of the third
side.

Definition. If a point within the segment of two given points be in a given
plane, those points shall be said to be on opposite sides of the plane; otherwise,
they shall be said to be on the same side of the plane. Similarly, we may define
opposite sides of a line.

Theorem 32. If two points be on the same side of a plane, a point opposite
to one is on the same side as the other; and if two points be on the same side,
a point opposite to one is opposite to both.

The proof comes at once from 30.
Theorem 33. If two planes have a common point they have a common line.
Let P be the common point. In the first plane take a line through P . If

this be also a line of the second plane, the theorem is proved. If not, we may
take two points of this line on opposite sides of the second plane. Now any
other point of the first plane, not collinear with the three already chosen, will
be opposite to one of the last two points, and thus determine another line of
the first plane which intersects the second one. We hereby reach a second point
common to the two planes, and the line connecting the two is common to both.

It is immediately evident that all points common to the two planes lie in
this line.

5This means, of course, that we shall not consider geometry of more than three dimensions.
It would not, however, strictly speaking, be accurate to say that we consider the geometry of
a single space only, for we shall make various mutually contradictory hypotheses about space.
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CHAPTER II

CONGRUENT TRANSFORMATIONS

In Chapter I we laid the foundation for the present work. We made a num-
ber of explicit assumptions, and, building thereon, we constructed that three-
dimensional type of space wherewith we shall, from now on, be occupied. An
essential point in our system of axioms is this. We have taken as a fundamental
indefinable, distance, and this, being subject to the categories greater and less,
is a magnitude. In other words, we have laid the basis for a metrical geome-
try. Yet, the principal use that we have made of these metrical assumptions,
has been to prove a number of descriptive theorems. In order to complete our
metrical system properly we shall need two more assumptions, the one to give
us the concept of continuity, the other to establish the possibility of congruent
transformations.

Axiom XVIII. If all points of a segment (AB) be divided into two
such classes that no point of the first shall be at a greater distance
from A than is any point of the second; then there exists such a point
C of the segment, that no point of the first class is within (CB) and
none of the second within (AC).

It is manifest that A will belong to the first class, and B to the second, while
C may be ascribed to either. It is the presence of this point common to both,
that makes it advisable to describe the two classes in a negative, rather than in
a positive manner.

Theorem 1. If AB and PQ be any two distances whereof the second is not
null, there will exist in the segment (AB) a finite or null number n of points Pk

possessing the following properties:

PQ ≡ AP1 ≡ PkPk+1; APk+1 ≡ APk + PkPk+1; PnB < PQ.

Suppose, firstly, that AB < PQ then, clearly, n = 0. If, however, AB ≡ PQ
then n = 1 and P1 is identical with B. There remains the third case where
AB > PQ. Imagine the theorem to be untrue. We shall arrive at a contradiction
as follows. Let us divide all points of the segment into two classes. A point H
shall belong to the first class if we may find such a positive integer n that

PnH < PQ, AH ≡ APn + PnH,

the succession of points Pk being taken as above. All other points of the segment
shall be assigned to the second class. It is clear that neither class will be empty.
If H be a point of the first class, and K one of the second, we cannot have K
within (AH), for then we should find AK ≡ APn + PnK; PnK < PQ contrary
to the rule of dichotomy. We have therefore a cut of the type demanded by
Axiom XVIII, and a point of division C. Let D be such a point of (AC) that
DC < PQ. Then, as we may find n, so large that PnD < PQ, we shall either
have PnC < PQ or else we shall be able to insert a point Pn+1 within (AC)
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making Pn+1C < PQ. If, then, in the first case we construct Pn+1, or in the
second Pn+2, it will be a point within (CB), as PnB > PQ, and this involves
a contradiction, for it would require Pn+1 or Pn+2 to belong to both classes at
once. The theorem is thus proved.

It will be seen that this theorem is merely a variation of the axiom of
Archimedes,6 which says, in non-technical language, that if a sufficient number
of equal lengths be laid off on a line, any point of that line may be surpassed.
We are not able to state the principle in exactly this form, however, for we can-
not be sure that our space shall include points of the type Pn in the extension
of (AB) beyond B.

Theorem 2. In any segment there is a single point whose distances from the
extremities are congruent.

The proof is left to the reader.
The point so found shall be called the middle point of the segment. It will

follow at once that if k be any positive integer, we may find a set of points
P1P2 . . . P2k−1 of the segment (AB) possessing the following properties

AP1 ≡ PjPj+1 ≡ P2k−1B; APj+1 ≡ APj + PjPj+1.

We may express the relation of any one of these congruent distances to AB

by writing PjPj+1 ≡
1
2k
AB.

Theorem 3. If a not null distance AB be given and a positive integer m, it is
possible to find m distinct points of the segment (AB) possessing the properties

AP1 ≡ PjPj+1; APj+1 ≡ APj + PjPj+1.

It is merely necessary to take k so that 2k > m+ 1 and find AP1 ≡
1
2k
AB.

Theorem 4. When any segment (AB) and a positive integer n are given,
there exist n− 1 points D1D2 . . . Dn−1 of the segment (AB) such that

AD1 ≡ DjDj+1 ≡ Dn−1B; ADj+1 ≡ ADj +DjDj+1.

If the distance AB be null, the theorem is trivial. Otherwise, suppose it to
be untrue. Let us divide the points of (AB) into two classes according to the

6A good deal of attention has been given in recent years to this axiom. For an account of the
connexion of Archimedes’ axiom with the continuity of the scale, see Stolz, ‘Ueber das Axiom
des Archimedes,’ Mathematische Annalen, vol. xxxix, 1891. Halsted, Rational Geometry
(New York, 1904), has shown that a good deal of the subject of elementary geometry can be
built up without the Archimedian assumption, which accounts for the otherwise somewhat
obscure title of his book. Hilbert, loc. cit., Ch. IV, was the first writer to set up the theory
of area independent of continuity, and Vahlen has shown, loc. cit., pp. 297–8, that volumes
may be similarly handled. These questions are of primary importance in any work that deals
principally with the significance and independence of the axioms. In our present work we shall
leave non-archimedian or discontinuous geometries entirely aside, and that for the reason that
their analytic treatment involves either a mutilation of the number scale, or an adjunction
of transfinite elements thereto. We shall, in fact, make use of our axiom of continuity XVIII
wherever, and whenever, it is convenient to do so.
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following scheme. A point P1 shall belong to the first class if we may construct n
congruent distances according to the method already illustrated, reaching such
a point Pn of (AB) that PnB > AP1; all other points of (AB) shall be assigned
to the second class. B will clearly be a point of the second class, but every point
of (AB) at a lesser distance from A than a point of the first class, will itself be
a point of the first class. We have thus once more a cut as demanded by Axiom
XVIII, and a point of division D1; and this point is different from A.

Let us next assume that the number of successive distances congruent to AD1

which, by 1, may be marked in (AB), is k, and let Dk be the last extremity of
the resulting segments, so that DkB < AD1. Let Dk−1 be the other extremity
of this last segment. Suppose, first, that k < n. Let PQ be such a distance
that AD1 > PQ > DkB. Let P1 be such a point of (AD1) that AP1 > PQ,
kP1D1 < PQ−DkB. Then, by marking k successive distances by our previous
device, we reach Pk such a point of (ADk) that

PkB < DkB + (PQ−DkB) < PQ < AP1.

But this is a contradiction, for k is at most equal to n − 1, and as P1 is a
point of the first class, there should be at least one more point of division Pk+1.
Hence k = n. But k > n leads to a similar contradiction. For we might then
find QI of the second class so that (k − 2)D1Q1 <

1
2AD1. Then mark k − 2

successive congruent distances, reaching Qk−2 such a point of (ADk−1) that
Qk−2Dk−1 >

1
2AD1. Hence,

Qk−2Dk >
1
2AD1 +AD1 > AQ1,

and we may find a (k − 1)th point Qk−1. But k − 1 = n and this leads us to
a contradiction with the assumption that Q1 should be a point of the second
class; i.e. k = n. Lastly, we shall find that Dk and B are identical. For otherwise
we might find Q1 of the second class so that nD1Q1 < DnB and marking n
successive congruent distances reach Qn within (DnB), impossible when Q1

belongs to class two. Our theorem is thus entirely proved, and D1 is the point
sought.

It will be convenient to write AD1 ≡
1
n
AB.

Theorem 5. If AB and PQ be given, whereof the latter is not null, we may

find n so great that
1
n
AB < PQ.

The proof is left to the reader.
We are at last in a position to introduce the concept of number into our scale

of distance magnitudes. Let AB and PQ be two distances, whereof the latter
is not null. It may be possible to find such a distance RS that qRS ≡ PQ;
pRS ≡ AB. In this case the number

p

q
shall be called the numerical measure of

AB in terms of PQ, or, more simply the measure. It is clear that this measure
may be equally well written

p

q
or

np

nq
. There may, however, be no such distance

as RS. Then, whatever positive integer q may be, we may find LM so that
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qLM ≡ PQ, and p so that LM > (AB − pLM). By this process we have

defined a cut in our number system of such a nature that
p

q
and

p+ 1
q

appear

in the lower and upper divisions respectively. If
p

q
be a number of the lower, and

p′ + 1
q′

one of the upper division, we shall see at once by reducing to a lowest

common denominator that
p

q
<

p′ + 1
q′

. Every rational number will fall into

the one or the other division. Lastly there is no largest number in the lower
division nor smallest in the upper. For suppose that

p

q
is the largest number

of the lower division. Then if LM > (AB − pLM), we may find n so large

that
1
n
LM < (AB − pLM). Let us put L1M1 ≡

1
n
LM . At the same time as

PQ ≡ nqL1M1 we may, by 1, find k so large that L1M1 > (AB−(np+k)L1M1).

Under these circumstances
np+ k

nq
is a number of the lower division, yet larger

than
p

q
. In the same way we may prove that there is no smallest number in the

upper. We have therefore defined a unique irrational number, and this may be
taken as the measure of AB in terms of PQ.

Suppose, conversely, that
p

q
is any rational fraction, and there exists such a

distance AB′ that qAB′ > pPQ. Then in (AB′) we may find such a point B
that AB ≡ p

q
PQ, i.e. there will exist a distance having the measure

p

q
in terms

of PQ. Next let r be any irrational number, and let there be such a number
p+ 1
q

in the corresponding upper division of the rational number system that

a distance qAB′ > ((p + 1)PQ) may be found. Then the cut in the number
system will give us a cut in the segment (AB′), as demanded by XVIII, and a
point of division B. The numerical measure of AB in terms of PQ will clearly
be r.

Theorem 6. If two distances, whereof the second is not null, be given, there
exists a unique numerical measure for the first in terms of the second, and if a
distance be given, and there exist a distance having a given numerical measure
in terms thereof, there will exist a distance having any chosen smaller numerical
measure.

Theorem 7. If two distances be congruent, their measures in terms of any
third distance are equal.

It will occasionally be convenient to write the measure of PQ in the form
MPQ.

Theorem 8. If r > n and if distances rPQ and nPQ exist, then rPQ > nPQ.
When m and n are both rational, this comes immediately by reducing to

a common denominator. When one or both of these numbers is irrational, we
may find a number in the lower class of the larger which is larger than one in
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the upper class of the smaller, and then apply I, 3.
Theorem 9. If AB > CD, the measure of AB in terms of any chosen not

null distance is greater than that of CD in terms of the same distance.
This comes at once by reduction ad absurdum.
It will hereafter be convenient to apply the categories, congruent greater

and less, to segments, when these apply respectively to the distances of their
extremities. We may similarly speak of the measure of a segment in terms
of another one. Let us notice that in combining segments or distances, the
associative, commutative, and distributive laws of multiplication hold good;
e.g.

r · nPQ ≡ n · rPQ ≡ rnPQ, n(AB + CD) ≡ nAB + nCD.

Notice, in particular, that the measure of a sum is the sum of the measures.
Definition. The assemblage of all points of a segment, or of all possible

extensions beyond one extremity, shall be called a half-line. The other extremity
of the segment shall be called the bound of the half-line. A half-line bounded
by A and including a point B shall be written |AB. Notice that every point of
a line is the bound of two half-lines thereof.

Definition. A relation between two sets of points (P ) and (Q) such that
there is a one to one correspondence of distinct points, and the distances of
corresponding pairs of points are in every case congruent, while the sum of two
distances is carried into a congruent sum, is called a congruent transformation.
Notice that, by V, the assemblage of all congruent transformations form a group.
If, further, a congruent transformation be possible (P ) to (Q), and there be two
sets of points (P ′) and (Q′) such that a congruent transformation is possible
from the set (P )(P ′) to the set (Q)(Q′) then we shall say that the congruent
transformation from (P ) to (Q) has been enlarged to include the sets (P ′) and
(Q′).

It is evident that a congruent transformation will carry points of a segment,
line, or half-line, into points of a segment, line, or half-line respectively. It will
also carry coplanar points into coplanar points, and be, in fact, a collineation,
or linear transformation as defined geometrically. In the eighteenth chapter
of the present work we shall see how the properties of congruent figures may
be reached by defining congruent transformations as a certain six-parameter
collineation group.

Axiom XIX. If a congruent transformation exist between two sets
of points, to each half-line bounded by a point of one set may be made
to correspond a half-line bounded by the corresponding point of the
other set, in such wise that the transformation may be enlarged to
include all points of these two half-lines at congruent distances from
their respective bounds.7

7The idea of enlarging a congruent transformation to include additional points is due to
Pasch, loc. cit. He merely assumes that if any point be adjoined to the one set, a corresponding
point may be adjoined to the other. We have to make a much clumsier assumption, and
proceed more circumspectly, for fear of passing out of our limited region.
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Theorem 10. If a congruent transformation carry two chosen points into two
other chosen points, it may be enlarged to include all points of their segments.

Theorem 11. If a congruent transformation carry three non-collinear points
into three other such points, it may be enlarged to include all points of their
respective triangles.

Theorem 12. If a congruent transformation carry four non-coplanar points
into four other such points, it may be enlarged to include all points of their
respective tetrahedra.

Definition. Two figures which correspond in a congruent transformation shall
be said to be congruent.

We shall assume hereafter that every congruent transformation with which
we deal has been enlarged to the greatest possible extent. Under these circum-
stances:—

Theorem 13. If two distinct points be invariant under a congruent transfor-
mation, the same is true of all points of their line.

Theorem 14. If three non-collinear points be invariant under a congruent
transformation, the same is true of all points of their plane.

Theorem 15. If four non-coplanar points be invariant under a congruent
transformation the same is true of all points of space.

Definition. The assemblage of all points of a plane on one side of a given
line, or on that given line, shall be called a half-plane. The given line shall be
called the bound of the half-plane. Each line in a plane is thus the bound of two
half-planes thereof.

Suppose that we have two non-collinear half-lines with a common bound A.
Let B and C be two other points of one half-line, and B′ and C ′ two points
of the other. Then by Ch. I, 16, a half-line bounded by A which contains a
point of (BB′) will also contain a point of (CC ′), and vice versa. We may thus
divide all half-lines of this plane, bounded by this point, into two classes. The
assemblage of all half-lines which contain points of segments whose extremities
lie severally on the two given half-lines shall be called the interior angle of, or
between, the given half-lines. The half-lines themselves shall be called the sides
of the angle. If the half-lines be |AB, |AC, their interior angle may be indicated
]BAC or ]CAB. The point A shall be called the vertex of the angle.

Definition. The assemblage of all half-lines coplanar with two given non-
collinear half-lines, and bounded by the common bound of the latter, but not
belonging to their interior angle, shall be called the exterior angle of the two
half-lines. The definitions for sides and vertex shall be as before. If no mention
be made of the words interior or exterior we shall understand by the word
angle, interior angle. Notice that, by our definitions, the sides are a part of
the interior, but not of the exterior angle. Let the reader also show that if a
half-line of an interior angle be taken, the other half-line, collinear therewith,
and having the same bound belongs to the exterior angle.

Definition. The assemblage of all half-lines identical with two identical half-
lines, shall be called their interior angle. The given bound shall be the vertex,
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and the given half-lines the sides of the angle. This angle shall also be called a
null angle. The assemblage of all half-lines with this bound, and lying in any
chosen plane through the identical half-lines, shall be called their exterior angle
in this plane. The definition of sides and vertex shall be as before.

Definition. Two collinear, but not identical, half-lines of common bound shall
be said to be opposite.

Definition. The assemblage of all half-lines having as bound the common
bound of two opposite half-lines, and lying in any half-plane bounded by the
line of the latter, shall be called an angle of the two half-lines in that plane. The
definitions of sides and vertex shall be as usual. We notice that two opposite
half-lines determine two angles in every plane through their line.

We have thus defined the angles of any two half-lines of common bound. The
exterior angle of any two such half-lines, when there is one, shall be called a re-
entrant angle. Any angle determined by two opposite half-lines shall be called
a straight angle. As, by definition, two half-lines form an angle when, and only
when, they have a common bound, we shall in future cease to mention this fact.
Two angles will be congruent, by our definition of congruent figures, if there
exist a congruent transformation of the sides of one into the sides of the other,
in so far as corresponding distances actually exist on the corresponding half-
lines. Every half-line of the interior or exterior angle will similarly be carried
into a corresponding half-line, or as much thereof as actually exists and contains
corresponding distances.

Definition. The angles of a triangle shall be those non-re-entrant angles
whose vertices are the vertices of the triangle, and whose sides include the sides
of the triangle.

Definition. The angle between a half-line including one side of a triangle,
and bounded at a chosen vertex, and the opposite of the other half-line which
goes to make the angle of the triangle at that vertex, shall be called an exterior
angle of the triangle. Notice that there are six of these, and that they are not
to be confused with the exterior angles of their respective sides.

Theorem 16. If two triangles be so related that the sides of one are congruent
to those of the other, the same holds for the angles.

This is an immediate result of 11.
The meanings of the words opposite and adjacent as applied to sides and

angles of a triangle are immediately evident, and need not be defined. There
can also be no ambiguity in speaking of sides including an angle.

Theorem 17. Two triangles are congruent if two sides and the included angle
of one be respectively congruent to two sides and the included angle of the other.

The truth of this is at once evident when we recall the definition of congruent
angles, and 12.

Theorem 18. If two sides of a triangle be congruent, the opposite angles are
congruent.

Such a triangle shall, naturally, be called isosceles.
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Theorem 19. If three half-lines lie in the same half-plane and have their
common bound on the bound of this half-plane; then one belongs to the interior
angle of the other two.

Let the half-lines be |AB, |AC, |AD. Connect B with H and K, points
of the opposite half-lines bounding this half-plane. If |AC, |AD contain points
of the same two sides of the triangle BHK the theorem is at once evident; if
one contain a point of (BH) and the other a point of (BK), then B belongs to
]CAD.

Theorem 20. If |AB be a half-line of the interior ]CAD, then |AC does not
belong to the interior ]BAD.

Definition. Two non-re-entrant angles of the same plane with a common side,
but no other common half-lines, shall be said to be adjacent. The angle bounded
by their remaining sides, which includes the common side, shall be called their
sum. It is clear that this is, in fact, their logical sum, containing all common
points.

Definition. An angle shall be said to be congruent to the sum of two non-re-
entrant angles, when it is congruent to the sum of two adjacent angles, respec-
tively congruent to them.

Definition. Two angles congruent to two adjacent angles whose sum is a
straight angle shall be said to be supplementary . Each shall be called the sup-
plement of the other.

Definition. An angle which is congruent to its supplement shall be called a
right angle.

Definition. A triangle, one of whose angles is a right angle, shall be called a
right triangle.

Definition. The interior angle formed by two half-lines, opposite to the half-
lines which are the sides of a given interior angle, shall be called the vertical of
that angle. The vertical of a straight angle will be the other half-plane, coplanar
therewith, and having the same bound.

Theorem 21. If two points be at congruent distances from two points copla-
nar with them, all points of the line of the first two are at congruent distances
from the latter two.

For we may find a congruent transformation keeping the former points in-
variant, while the latter are interchanged.

Theorem 22. If |AA1
′ be a half-line of the interior ]BAA1, then we cannot

have a congruent transformation keeping |AB invariant and carrying |AA1 into
|AA1

′.
We may suppose that A1 and A1

′ are at congruent distances from A. Let
H be the point of the segment (A1A1

′) equidistant from A1 and A1
′. We may

find a congruent transformation carrying AA1HA1
′ into AA1

′HA1. Let this
take the half-line |AB into |AC (in the same plane). Then if |AA1 and |AA1

′

be taken sufficiently small, A1A1
′ will meet AB or AC as we see by I. 16. This

will involve a contradiction, however, for if D be the intersection, it is easy
to see that we shall have simultaneously DA1 ≡ DA1

′ and DA1 > DA1
′ or
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DA1 < DA1
′ for D is unaltered by the congruent transformation, while A1 goes

into A1
′.

There is one case where this reasoning has to be modified, namely, when
|AC and |AB are opposite half-lines, for here I. 16 does not hold. Let us notice,
however, that we may enlarge our transformation to include the ]BAA1 and
]BAA1

′ respectively. If |AB1 and |AC1 be two half-lines of the first angle,
|AC1 being in the interior angle of ]BAB1, to them will correspond |AB1

′ and
|AC1

′, the latter being in the interior angle of ]BAB1
′, while by definition,

corresponding half-lines always determine congruent angles with |AB. If, then,
we choose any half-line |AL of the interior ]BAA1

′, it may be shown that we
may find two corresponding half-lines |AL1 |AL1

′ so situated that |AL1 belongs
to the interior ]BAL1

′ and ]L1
′AL is congruent to ]LAL1. The proof is

tedious, and depends on showing that as a result of our Axiom XVIII, if in any
segment the points be paired in such a way that the extremities correspond,
and the greater of two distances from an extremity correspond to the greater
of the two corresponding distances from the other extremity, then there is one
self-corresponding point.8 These corresponding half-lines being found, we may
apply the first part of our proof without fear of mishap.

Theorem 23. If |AC be a half-line of the interior ]BAD, it is impossible to
have ]BAC and ]BAD mutually congruent.

Theorem 24. An angle is congruent to its vertical.
We have merely to look at the congruent transformation interchanging a side

of one with a side of the other.
We see as a result of 24 that if a half-line |AB make right angles with the

opposite half-lines |AC, |AC ′, the verticals obtained by extending (AB) beyond
A will be right angles congruent to the other two. We thus have four mutually
congruent right angles at the point A. Under these circumstances we shall say
that they are mutually perpendicular there.

Theorem 25. If two angles of a triangle be congruent, the triangle is isosceles.
This is an immediate result of 18.
Given two non-re-entrant angles. The first shall be said to be greater than

the second, when it is congruent to the sum of the second, and a not null angle.
The second shall under these circumstances, and these alone, be said to be less
than the first. As the assemblage of all congruent transformations is a group,
we see that the relations greater than, less than, and congruent when applied
to angles are mutually exclusive. For if we had two angles whereof the first
was both greater than and less than the second, then we should have an angle
that would be both greater than and less than itself, an absurd result, as we
see from 23. We shall write > in place of greater than, and < for less than, ≡
means congruence. Two angles between which there exists one of these three
relations shall be said to be comparable. We shall later see that any two angles
are comparable. The reason why we cannot at once proceed to prove this fact,
is that, so far, we are not very clear as to just what can be done with our

8Cf. Enriques, Geometria proiettiva, Bologna, 1898, p. 80.
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congruent transformations. As for the a priori question of comparableness, we
have perfectly clear definitions of greater than, less than, and equal as applied
to infinite assemblages, but are entirely in the dark as to whether when two
such assemblages are given, one of these relations must necessarily hold.9

Theorem 26. An exterior angle of a triangle is comparable with either of the
opposite interior angles.

Let us take the triangle ABC, while D lies on the extension of (BC) beyond
C. Let E be the middle point of (AC) and letDE meet (AB) in F . IfDE > EF
find G of (DE) so that FE ≡ EG. Then we have ]BAC congruent to ]ECG
and less than ]ECD. If DE < EF we have ]BAC greater than an angle
congruent to ]ECD.

Theorem 27. Two angles of a triangle are comparable.
For they are comparable to the same exterior angle.
Theorem 28. If in any triangle one angle be greater than a second, the side

opposite the first is greater than that opposite the second.
Evidently these sides cannot be congruent. Let us then have the trian-

gle ABG where ]BAG > ]BGA. We may, by the definition of congruence,
find such a point C1 of (BG) that ]C1AG is congruent to ]C1GA and hence
C1A ≡ C1G. It thus remains to show that AB < (AC1 + C1B). Were such
not the case, we might find D1 of (AB) so that AD1 ≡ AC1, and the problem
reduces to comparing BC1 and BD1. Now in 4BD1C1 we have ]BD1C1 the
supplement of ]AD1C1 which is congruent to ]AC1D1 whose supplement is
greater than ]BC1D1. We have therefore returned to our original problem,
this time, however, with a smaller triangle. Now this reduction process may be
continued indefinitely, and if our original assumption be false, the inequalities
must always lie the same way. Next notice that, by our axiom of continuity,
the points Ci of (BG) must tend to approach a point C of that segment as a
limit, and similarly the points Di of (AB) tend to approach a limiting point,
D. If two points of (AB) be taken indefinitely close to D the angle which they
determine at any point of (BG) other than B will become indefinitely small.
On the other hand as Ci approaches C, ]APCi will tend to increase, where P
is any point of (AB) other than B, in which case the angle is constant. This
shows that C, and by the same reasoning D, cannot be other than B; so that
the difference between BCi and BDi can be made as small as we please. But,
on the other hand

C1G ≡ AC1 ≡ AD1; (BA−BG) ≡ (BD1 −BC1) ≡ (BDi −BCi)

Our theorem comes at once from this contradiction.
Theorem 29. If two sides of a triangle be not congruent, the angle opposite

the greater side is greater than that opposite the lesser.
Theorem 30. One side of a triangle cannot be greater than the sum of the

other two.
9Cf. Borel, Leçons sur la théorie des fonctions, Paris, 1898, pp. 102–8.
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Theorem 31. The difference between two sides of a triangle is less than the
third side.

The proofs of these theorems are left to the reader.
Theorem 32. Two distinct lines cannot be coplanar with a third, and per-

pendicular to it at the same point.
Suppose, in fact, that we have AC and AD perpendicular to BB′ at A. We

may assume AB ≡ AB′ so that by I. 31 AD will contain a single point E either
of (CB) or of (CB′). For definiteness, let E belong to (CB′). Then take F
on (BC), which is congruent to (B′C), so that BF ≡ B′E. Hence ]BB′F
is congruent to ]B′BE and therefore congruent to ]BB′E; which contradicts
23.10

Theorem 33. The locus of points in a plane at congruent distances from two
points thereof is the line through the middle point of their segment perpendicular
to their line.

Theorem 34. Two triangles are congruent if a side and two adjacent angles
of one be respectively congruent to a side and two adjacent angles of the other.

Theorem 35. Through any point of a given line will pass one line perpendic-
ular to it lying in any given plane through that line.

Let A be the chosen point, and C a point in the plane, not on the chosen
line. Let us take two such points B, B′ on the given line, that A is the middle
point of (BB′) and BB′ < CB, BB′ < CB′. If then CB ≡ CB′, AC is the line
required. If not, let us suppose that CB > CB′. We may make a cut in the
points of (CB) according to the following principle. A point P shall belong to
the first class if no point of the segment (PB) is at a distance from B greater
than its distance from B′, all other points of (CB) shall belong to the second
class. It is clear that the requirements of Axiom XVIII are fulfilled, and we
have a point of division D. We could not have DB < DB′, for then we might,
by 31, take E a point of (DC) so very near to D that for all points P of DE
PB < PB′, and this would be contrary to the law of the cut. In the same way
we could not have DB > DB′. Hence AD is the perpendicular required.

Theorem 36. If a line be perpendicular to two others at their point of
intersection, it is perpendicular to every line in their plane through that point.

The proof given in the usual textbooks will hold.
Theorem 37. All lines perpendicular to a given line at a given point are

coplanar.
Definition. The plane of all perpendiculars to a line at a point, shall be said

to be perpendicular to that line at that point.
10This is substantially Hilbert’s proof, loc. cit., p. 16. It is truly astonishing how much

geometers, ancient and modern, have worried over this theorem. Euclid puts it as his eleventh
axiom that all right angles are equal. Many modern textbooks prove that all straight angles
are equal, hence right angles are equal, as halves of equal things. This is not usually sound,
for it is not clear by definition why a right angle is half a straight angle. Others observe the
angle of a fixed and a rotating line, and either appeal explicitly to intuition, or to a vague
continuity axiom.
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Theorem 38. A congruent transformation which keeps all points of a line
invariant, will transform into itself every plane perpendicular to that line.

It is also clear that the locus of all points at congruent distances from two
points is a plane.

Theorem 39. If P be a point within the triangle ABC and there exist a
distance congruent to AB +AC, then

AB +AC > PB + PC.

To prove this let BP pass through D of (AC). Then as AC > AD a distance
exists congruent to AB+AD, and AB+AD > BP +PD. As AB+AD > PD
there exists a distance congruent to PD +DC, and hence PD +DC > PC,

DC > PC − PD; AB +AC > BP + PC.

Theorem 40. Any two right angles are congruent.
Let these right angles be ]AOC and ]A′O′C ′. We may assume O to be the

middle point of (AB) and O′ the middle point of (A′B′), where OA ≡ O′A′. We
may also suppose that distances exist congruent to AC+CB and to A′C ′+C ′B′.
Then AC > AO and A′C ′ > A′O′. Lastly, we may assume that AC ≡ A′C ′.
For if we had say, AC > A′C ′, we might use our cut proceeding in (OC). A
point P shall belong to the first class, if no point of (OP ) determines with A
a distance greater then A′C ′, otherwise it shall belong to the second class. We
find a point of division D, and see at once that AD ≡ A′C ′. Replacing the letter
D by C, we have AC ≡ A′C ′, 4ABC congruent to 4A′B′C ′, hence ]AOC
congruent to ]A′O′C ′.

Theorem 41. There exists a congruent transformation carrying any segment
(AB) into any congruent segment (A′B′) and any half-plane bounded by AB
into any half-plane bounded by A′B′.

We have merely to find O and O′ the middle points of (AB) and (A′B′)
respectively, and C and C ′ on the perpendiculars to AB and A′B′, at O and O′

so that OC ≡ O′C ′.
Theorem 42. If |OA be a given half-line, there will exist in any chosen half-

plane bounded by OA a unique half-line |OB making the ]AOB congruent to
any chosen angle.

The proof of this theorem depends immediately upon the preceding one.
Several results follow from the last four theorems. To begin with, any two

angles are comparable, as we see at once from 42. We see also that our Axioms
III–XIII and XVIII, may be at once translated into the geometry of the angle if
straight and re-entrant angles be excluded. We may then apply to angles system
of measurement entirely analogous to that applied to distances. An angle may
be represented unequivocally by a single number, in terms of any chosen not
null angle. We may extend our system of comparison to include straight and
re-entrant angles as follows. A straight angle shall be looked upon as greater
than every non-re-entrant angle, and less than every re-entrant one. Of two
re-entrant angles, that one shall be considered the less, whose corresponding
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interior angle is the greater. A re-entrant angle will be the logical sum of two
non-re-entrant angles, and shall have as a measure, the sum of their measures.

We have also found out a good deal about the congruent group. The principal
facts are as follows:—

(a) A congruent transformation may be found to carry any point into any
other point.

(b) A congruent transformation may be found to leave any chosen point
invariant, and carry any chosen line through this point, into any other such
line.

(c) A congruent transformation may be found to leave invariant any point,
and any line through it, but to carry any plane through this line, into any other
such plane.

(d) If a point, a line through it, and a plane through the line be invariant,
no further infinitesimal congruent transformations are possible.

The last assertion has not been proved in full; let the reader show that if a
point and a line through it be invariant, there is only one congruent transfor-
mation of the line possible, besides the identical one, and so on. The essential
thing is this. We shall demonstrate at length in Ch. XVIII that the congruent
group is completely determined by the requirement that it shall be an analytic
collineation group, satisfying these four requirements.

Suppose that we have two half-planes on opposite sides of a plane a which
contains their common bound l. Every segment whose extremities are one in
each of these half-planes will have a point in a, and, in fact, all such points will
lie in one half-plane of a bounded by l, as may easily be shown from the special
case where two segments have a common extremity.

Definition. Given two non-coplanar half-planes of common bound. The as-
semblage of all half-planes with this bound, containing points of segments whose
extremities lie severally in the two given half-planes, shall be called their inte-
rior dihedral angle, or, more simply, their dihedral angle. The assemblage of all
other half-planes with this bound shall be called their exterior dihedral angle.
The two given half-planes shall be called the faces, and their bound the edge of
the dihedral angle.

We may, by following the analogy of the plane, define null, straight, and re-
entrant dihedral angles. The definition of the dihedral angles of a tetrahedron
will also be immediately evident.

A plane perpendicular to the edge of a dihedral angle will cut the faces in
two half-lines perpendicular to the edge. The interior (exterior) angle of these
two shall be called a plane angle of the interior (exterior) dihedral angle.

Theorem 43. Two plane angles of a dihedral angle are congruent.
We have merely to take the congruent transformation which keeps invariant

all points of the plane whose points are equidistant from the vertices of the
plane angles. Such a transformation may properly be called a reflection in that
plane.

Theorem 44. If two dihedral angles be congruent, any two of their plane
angles will be congruent, and conversely.
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The proof is immediate. Let us next notice that we may measure any di-
hedral angle in terms of any other not null one, and that its measure is the
measure of its plane angle in terms of the plane angle of the latter.

Definition. If the plane angle of a dihedral angle be a right angle, the dihedral
angle itself shall be called right, and the planes shall be said to be mutually
perpendicular.

Theorem 45. If a plane be perpendicular to each of two other planes, and
the three be concurrent, then the first plane is also perpendicular to the line of
intersection of the other two.
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CHAPTER III

THE THREE HYPOTHESES

In the last chapter we discussed at some length the problem of comparing
distances and angles, and of giving them numerical measures in terms of known
units. We did not take up the question of the sum of the angles of a triangle,
and that shall be our next task. The axioms so far set up are insufficient to
determine whether this sum shall, or shall not, be congruent to the sum of two
right angles, as we shall amply see by elaborating consistent systems of geometry
where this sum is greater than, equal to, or less than two right angles. We must
first, however, give one or two theorems concerning the continuous change of
distances and angles.

Theorem 1. If a point P of a segment (AB) may be taken at as small a
distance from A as desired, and C be any other point, the ]ACP may be made
less than any given angle.

If C be a point of AB the theorem is trivial. If not, we may, by III. 4,
find |CD in the half-plane bounded by CA which contains B, so that ]ACD
is congruent to the given angle. If then |AB belong to the internal ]ACD, we
have ]ACB less than ]ACD, and, a fortiori, ]ACP < ]ACD. If |AD belong
to the internal ]ACB, |AD must contain a point E of CAB, and if we take P
within (AE), once more

]ACP < ]ACD.

Theorem 2. If, in any triangle, one side and an adjacent angle remain fixed,
while the other side including this angle may be diminished at will, then the
external angle opposite to the fixed side will take and retain a value differing
from that of the fixed angle by less than any assigned value.

Let the fixed side be (AB), while C is the variable vertex within a fixed
segment (BD). We wish to show that if BC be taken sufficiently small, ]ACD
will necessarily differ from ]ABD by less than any chosen angle.

Let B1 be the middle point of (AB), and B2 the middle point of (B1B),
while B3 is a point of the extension of (AB) beyond B. Through each of the
points B1, B2, B3 construct a half-line bounded thereby, and lying in that half-
plane, bounded by AB which contains D, and let the angles so formed at B1,
B2, B3 all be congruent to ]ABD. We may certainly take BC so small that AC
contains a point of each of these half-lines, say C1, C2, C3 respectively. We may
moreover take BC so tiny that it is possible to extend (B1C1) beyond C1 to D1

so that B1C1 ≡ C1D1. AD1 will surely meet B2C2 in a point D2, when B1C1

is very small, and as AC3 differs infinitesimally from AB3, and hence exceeds
AB by a finite amount, it is greater than 2AC1 which differs infinitesimally
from 2AB1, or AB. We may thus find C ′ on the extension of (AC1) beyond
C1 so that AC1 ≡ C1C ′. C ′ will be at a small distance from C, and hence
on the other side of B2D2 from A and D1. Let D1C

′ meet B2D2 at H2. We
now see that, with regard to the 4AB1D1; the external angle at D1 (i.e. one of
the mutually vertical external angles) is ]B1D1D2 congruent to (]B1D1C

′ +
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]C ′D1D2), and ]B1D1C
′ is congruent to ]AB1D1, and, hence congruent to

]ABD. The ]C ′D1D2 is the difference between ]B1D1D2 and ]B1D1H2, and
as H2 and D2 approach B2 as a limiting position, the angles determined by B2,
D2 and D2, H2 at every point in space decrease together towards a null angle
as a limit. Hence ]C ′D1D2 becomes infinitesimal, and the difference between
]B1D1D2 and ]ABD becomes and remains infinitesimal. But as AB1 ≡ B1B,
and ]AB1D1 and ]B1BD are congruent, we see similarly that the difference
between ]B1CD and ]ABD will become, and remain infinitesimal. Lastly, the
difference between ]B1CD and ]ACD is ]B1CA which will, by our previous
reasoning, become infinitesimal with B1C1. The difference between ]ABD and
]ACD will therefore become and remain less than any assigned angle.

Fig. 1

Several corollaries follow immediately from this theorem.
Theorem 3. If in any triangle one side and an adjacent angle remain fixed,

while the other side including this angle becomes infinitesimal, the sum of the
angles of this triangle will differ infinitesimally from a straight angle.
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Theorem 4. If in any triangle one side and an adjacent angle remain fixed,
while the other side including this angle varies, then the measures of the third
side, and of the variable angles will be continuous functions of the measure of
the variable side first mentioned.

Of course a constant is here included as a special case of a continuous func-
tion.

Theorem 5. If two lines AB, AC be perpendicular to BC, then all lines
which contain A and points of BC are perpendicular to BC, and all points of
BC are at congruent distances from A.

To prove this let us first notice that our 4ABC is isosceles, and AB will be
congruent to every other perpendicular distance from A to BC. Such a distance
will be the distance from A to the middle point of (BC) and, in fact, to every
point of BC whose distance from B may be expressed in the form

m

2n
BC where

m and n are integers. Now such points will lie as close as we please to every
point of BC, hence by II. 31, no distance from A can differ from AB, and no
angle so formed can, by III. 2, differ from a right angle.

Theorem 6. If a set of lines perpendicular to a line l, meet a line m, the
distances of these points from a fixed point of m, and the angles so formed
with m, will vary continuously with the distances from a fixed point of l to the
intersections with these perpendiculars.

The proof comes easily from 2 and 5.
Definition. Given four coplanar points A, B, C, D so situated that no seg-

ment may contain points within three of the segments (AB), (BC), (CD),
(DA). The assemblage of all points of all segments whose extremities lie on
these segments shall be called a quadrilateral . The given points shall be called
its vertices, and the given segments its sides. The four internal angles ]DAB,
]ABC, ]BCD, ]CDA shall be called its angles. The definitions of opposite
sides and opposite vertices are obvious, as are the definitions for adjacent sides
and vertices.

Definition. A quadrilateral with right angles at two adjacent vertices shall
be called birectangular . If it have three right angles it shall be called trirect-
angular , and four right angles it shall be called a rectangle. Let the reader
convince himself that, under our hypotheses, birectangular and trirectangular
quadrilaterals necessarily exist.

Definition. A birectangular quadrilateral whose opposite sides adjacent to
the right angles are congruent, shall be said to be isosceles.

Theorem 7. Saccheri’s11. In an isosceles birectangular quadrilateral a line
through the middle point of the side adjacent to both right angles, which is

11Saccheri, Euclides ab omni naevo vindicatus, Milan, 1732. Accessible in Engel und
Staeckel, Theorie der Parallellinien von Euklid bis auf Gauss, Leipzig, 1895. The theorem
given above covers Saccheri’s theorems 1 and 2 on p. 50 of the last-named work. Saccheri’s is
the first systematic attempt of which we have a record to prove Euclid’s parallel postulate, and
proceeds according to modern method of assuming the postulate untrue. He builded better
than he knew, however, for the system so constructed is self-consistent, and not inconsistent,
as he attempted to show.
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perpendicular to the line of that side, will be perpendicular to the line of the
opposite side and pass through its middle point. The other two angles of the
quadrilateral are mutually congruent.

Let the quadrilateral be ABCD, the right angles having their vertices at
A and B. Then the perpendicular to AB at E the middle point of (AB) will
surely contain F point of (CD). It will be easy to pass a plane through this line
perpendicular to the plane of the quadrilateral, and by taking a reflection in
this latter plane, the quadrilateral will be transformed into itself, the opposite
sides being interchanged.

This theorem may be more briefly stated by saying that this line divides the
quadrilateral into two mutually congruent trirectangular ones.

Theorem 8. In a rectangle the opposite sides are mutually congruent, and
any isosceles birectangular quadrilateral whose opposite sides are mutually con-
gruent is necessarily a rectangle.

Theorem 9. If there exist a single rectangle, every isosceles birectangular
quadrilateral is a rectangle.

Let ABCD be the rectangle. The line perpendicular to AB at the middle
point of (AB) will divide it into two smaller rectangles. Continuing this process
we see that we can construct a rectangle whose adjacent sides may have any
measures that can be indicated in the form

m

2n
AB,

p

2q
AC, provided, of course,

that the distances so called for exist simultaneously on the sides of a birectan-
gular isosceles quadrilateral. Distances so indicated will be everywhere dense on
any line, hence, by 6 we may construct a rectangle having as one of its sides one
of the congruent sides of any isosceles birectangular quadrilateral, and hence,
by a repetition of the same process, a rectangle which is identical with this
quadrilateral. All isosceles birectangular quadrilaterals, and all trirectangular
quadrilaterals are under the present circumstances rectangles.

Be it noticed that, under the present hypothesis, Theorem 5 is superfluous.
Theorem 10. If there exist a single right triangle the sum of whose angles is

congruent to a straight angle, the same is true of every right triangle.
Let 4ABC be the given triangle, the right angle being ]ACB so that the

sum of the other two angles is congruent to a right angle. Let 4A′B′C ′ be any
other right triangle, the right angle being ]A′C ′B′. We have to prove that the
sum of its remaining angles also is congruent to a right angle. We see that both
]ABC and ]BAC are less than right angles, hence there will exist such a point
E of (AB) that ]EAC and ]ECA are congruent. Then ]EBC ≡ ]ECB since
]ACB is congruent to the sum of ]EAC and ]EBC. If D and F be the middle
points of (BC) and (AC) respectively, as 4EAC and 4EBC are isosceles, we
have, in the quadrilateral EDCF right angles at D, C, and F . The angle at E
is also a right angle, for it is one half the straight angle, ]AEB, hence EDCF is
a rectangle. Passing now to the 4A′C ′B′ we see that the perpendicular to A′C ′

at F ′ the middle point of (A′C ′), will meet (A′B′) in E′, and the perpendicular
to E′F ′ at E′ will meet (B′C ′) in D′. But, by an easy modification of 9, as
there exists one rectangle, the trirectangular quadrilateral E′F ′D′C ′ is also a
rectangle. It is clear that ]D′E′B′ ≡ ]D′E′C ′ since ]F ′E′D′ is a right angle
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and ]F ′E′A′ ≡ ]F ′E′C ′. Then 4C ′E′B′ is isosceles like 4A′E′C ′. From this
comes immediately that the sum of ]E′B′C ′ and ]E′A′C ′ is congruent to a
right angle, as we wished to show.

Theorem 11. If there exist any right triangle where the sum of the angles is
less than a straight angle, the same is true of all right triangles.

We see the truth of this by continuity. For we may pass from any right
triangle to any other by means of a continuous change of first the one, and then
the other of the sides which include the right angle. In this change, by 2, the
sum of the angles will either remain constant, or change continuously, but may
never become congruent to the sum of two right angles, hence it must always
remain less than that sum.

Theorem 12. If there exist a right triangle where the sum of the angles is
greater than two right angles, the same is true of every right triangle.

This comes immediately by reductio ad absurdum.
Theorem 13. If there exist any triangle where the sum of the angles is less

than (congruent to) a straight angle, then in every triangle the sum of the angles
is less than (congruent to) a straight angle.

Let us notice, to begin with, that our given 4ABC must have at least two
angles, say ]ABC and ]BAC which are less than right angles. At each point
of (AB) there will be a perpendicular to AB (in the plane BC). If two of
these perpendiculars intersect, all will, by 5, pass through this point, and a line
hence to C will surely be perpendicular to AB. If no two of the perpendiculars
intersect, then, clearly, some will meet (AC) and some (BC). A cut will thus
be determined among the points of (AB), and, by XVIII, we shall find a point
of division D. It is at once evident that the perpendicular to AB at D will
pass through C. In every case we may, therefore, divide our triangle into two
right triangles. In one of these the sum of the angles must surely be less than
(congruent to) a straight angle, and the same will hold for every right triangle.
Next observe that there can, under our present circumstances, exist no triangle
with two angles congruent to, or greater than right angles. Hence every triangle
can be divided into two right triangles as we have just done. In each of these
triangles, the sum of the angles is less than (congruent to) a straight angle,
hence in the triangle chosen, the sum of the angles is less than (congruent to) a
straight angle.

Theorem 14. If there exist any triangle where the sum of the angles is greater
than a straight angle, the same will be true of every triangle.

This comes at once by reductio ad absurdum.
We have now reached the fundamental fact that the sum of the angles of

a single triangle will determine the nature of the sum of the angles of every
triangle. Let us set the various possible assumptions in evidence.

The assumption that there exists a single triangle, the sum of whose angles is
congruent to a straight angle is called the Euclidean or Parabolic hypothesis.12

12There will exist, of course, numerous geometries, other than those which we give in the
following pages, where the sum of the angles of a triangle is still congruent to a straight angle,
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The assumption that there exists a triangle, the sum of whose angles is less
than a straight angle is called the Lobatchewskian or hyperbolic hypothesis.13

The assumption that there exists a triangle, the sum of whose angles is
greater than a straight angle, is called the Riemannian or elliptic hypothesis.14

Only under the elliptic hypothesis can two intersecting lines be perpendicular
to a third line coplanar with them.

Definition. The difference between the sum of the angles of a triangle, and
a straight angle shall be called the discrepancy of the triangle.

Theorem 15. If in any triangle a line be drawn from one vertex to a point
of the opposite side, the sum of the discrepancies of the resulting triangles is
congruent to the discrepancy of the given triangle.

The proof is immediate. Notice, hence, that if in any triangle one angle
remain constant, while one or both of the other vertices tend to approach the
vertex of the fixed angle, along fixed lines, the discrepancy of the triangle, when
not zero, will diminish towards zero as a limit. We shall make this more clear
by saying—

Theorem 16. If, in any triangle, one vertex remain fixed, the other vertices
lying on fixed lines through it, and if a second vertex may be made to come as
near to the fixed vertex as may be desired, while the third vertex does not tend
to recede indefinitely, then the discrepancy may be made less than any assigned
angle.

Theorem 17. If in any triangle one side may be made less than any as-
signed segment, while neither of the other sides becomes indefinitely large, the
discrepancy may be made less than any assigned angle.

If neither angle adjacent to the diminishing side tend to approach a straight
angle as a limit, it will remain less than some non-re-entrant angle, and 16 will
apply to all such angles simultaneously. If it do tend to approach a straight
angle, let the diminishing side be (AB), while ]BAC tends to approach a
straight angle. Then, as neither BC nor AC becomes indefinitely great, we see
that A must be very close to some point of the extension of (AB) beyond A,
or to A itself. If C do not approach A, we may apply 1 to show that ]ACB
becomes infinitesimal. If C do approach A we may take D the middle point of
(AC) and extend (BD) to E beyond D so that DE ≡ EB. Then we may apply

e.g. those lacking our strong axiom of continuity. Cf. Dehn, ‘Die Legendre’schen Sätze über
die Winkelsumme im Dreiecke’, Mathematische Annalen, vol. liii, 1900, and R. L. Moore,
‘Geometry in which the sum of the angles of a triangle is two right angles’, Transactions of
the American Mathematical Society, vol. viii, 1907.

13The three hypotheses were certainly familiar to Saccheri (loc. cit.), though the credit for
discovering the hyperbolic system is generally given to Gauss, who speaks of it in a letter to
Bolyai written in 1799. Lobatchewsky’s first work was published in Russian in Kasan, in 1829.
This was followed by an article ‘Géométrie imaginaire’, Crelle’s Journal, vol. xvii, 1837. All
spellings of Lobatchewsky’s name in Latin or Germanic languages are phonetic. The author
has seen eight or ten different ones.

14Riemann, Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, first read in
1854; see p. 272 of the second edition of his Gesammelte Werke, with explanations in the
appendix by Weber.
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Euclid’s own proof15 that the exterior angle of a triangle is greater than either
opposite interior one, so that the exterior angle at A which is infinitesimal, is
yet greater than ]ACB.

Theorem 18. If, in any system of triangles, one side of each may be made less
than any assigned segment, all thus diminishing together, while no side becomes
indefinitely great, the geometry of these triangles may be made to differ from
the geometry of the euclidean hypothesis by as little as may be desired.

A specious, if loose, way of stating this theorem is to say that in the in-
finitesimal domain, we have euclidean geometry.16

15Euclid, Book I, Proposition 16.
16This theorem, loosely proved, is taken as the basis of a number of works on non-euclidean

geometry, which start in the infinitesimal domain, and work to the finite by integration. Cf.
e.g. Flye Ste-Marie, Études analytiques sur la théorie des parallèles, Paris, 1871.
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CHAPTER IV

THE INTRODUCTION OF TRIGONOMETRIC FORMULAE

The first fundamental question with which we shall have to deal in this chap-
ter is the following. Suppose that we have an isosceles, birectangular quadri-
lateral ABCD, whose right angles are at A and B. Suppose, further, that AB
becomes infinitesimally small, AD remaining constant; what will be the limit

of the fraction
MCD

MAB
where MXY means the measure of XY in terms of some

convenient unit.17 But, first of all, we must convince ourselves, that, when AD
is given we may always construct a suitable quadrilateral; secondly, and most
important, we must show that a definite limit does necessarily exist for this
ratio, as AB decreases towards the null distance.

Theorem 1. If AD and AX be two mutually perpendicular lines we may find
such a point B on either half of AX bounded by A, that, a line being drawn
perpendicular to AB at any point P of (AB) we may find on the half thereof
bounded by P , which lies in the same half-plane bounded by AB as does D, a
point whose distance from P is greater than AD.

Let E be a point of the extension of (AD) beyond D. Draw a line there
perpendicular to AD. If B be a point of AX very close to A, and if a line
perpendicular to AB at P of (AB), meet the perpendicular at E at a point Q,
PQ differs but little from AE, and, hence, is greater than AD.

The net result of theorem 1 is this. If AD be given, and the right ]DAX,
any point of AX very near to A may be taken as the vertex of a second right
angle of an isosceles birectangular quadrilateral, having A as the vertex of one
right angle, and (AD) as one of the congruent sides.

Definition. We shall say that a distance may be made infinitesimal compared
with a second distance, if the ratio of the measure of the first to that of the
second may be made less than any assigned value.

Theorem 2. If in a triangle whereof one angle is constant, a second angle may
be made as small as desired, the side opposite this angle will be infinitesimal
compared to the other sides of the triangle.

Suppose that we have, in fact, 4PQR with ]PQR fixed, while ]PRQ be-
comes infinitesimal. It is clear that one of the angles ]PQR or ]QPR must be
greater than a right angle. Suppose it be ]QPR. Then, by hypothesis, no mat-
ter how large a positive integer n may be, I may find such positions for P and R,
that n points Qi may be found on |PQ so that ]PRQ ≡ ]QRQ1 ≡ ]QkRQk+1,
yet ]QRQn is less than any chosen angle. Now if RQ remain constantly greater

17The general treatment, and several of the actual proofs in this chapter are taken directly
from Gérard, La géométrie non-euclidienne, Paris, 1892. It has been possible to shorten some
of his work by the consideration that we have euclidean geometry in the infinitesimal domain.
On the other hand, several important points are omitted by him. There is no proof that the
required limit does actually exist, and worse still, he gives no proof that the resulting function
of M AD is necessarily continuous, thereby rendering valueless his solution of its functional
equation.
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than a given not null distance, the theorem is perfectly evident. If, on the other
hand, RQ decrease indefinitely, we may find S on |PQ but not in (PQ), so that
QR ≡ QS. Then, as geometry in the infinitesimal domain obeys the euclidean
hypothesis, ]QRS will differ infinitesimally from one half ]PQR. If, then,
we require ]QRQn to be less than this last-named amount, Qn will be within

(QS), and PQ < QkQk+1 and PQ <
1
n
QR. A similar proof holds when ]PQR

is greater than a right angle.
It will follow, as a corollary, that if in any triangle, one angle become in-

finitesimal, and neither of the other angles approaches a straight angle as a limit,
then the side opposite the infinitesimal angle becomes infinitesimal as compared
with either of the other sides.

Theorem 3. If in an isosceles birectangular quadrilateral, the congruent
sides remain constant in value, while the side adjacent to the two right angles
decreases indefinitely, the ratio of the measures of this and the opposite side
approaches a definite limit.

It will save circumlocution and involve no serious confusion if, during the
rest of this chapter, we speak of the ratio of two distances, instead of the ratio of

their measures, and write such a ratio simply
PQ

XY
. Let us then take the isosceles

birectangular quadrilateral A′ABB′, the right angles having their vertices at A
and B. Let us imagine that A and A′ are fixed points, while B is on a fixed line
at a very small distance from A. Let C be the middle point of (AB), and let
the perpendicular to AB at C meet (A′B′) at C ′, which, by Saccheri’s theorem,
is the middle point of (A′B′). Now, by III. 6, ]C ′A′A differs infinitesimally
from a right angle, as AC becomes infinitesimal, so that if C1 be the point of

(CC ′), or (CC ′) extended beyond C ′, for which CC1 ≡ AA′, C1C ′ <
1
n
A′C ′.

But
A′C ′

AC
≡ A′B′

AB
. Hence

A′C1

AC
− A′B′

AB
< δ where δ may be made less than

any assigned number. By a repeated use of this process we see that if D be such

a point of (AB) that AD =
k

2n
AB and D1 such a point of the perpendicular at

D that AA′ ≡ DD1, then, however small ε may be,
A′D1

AD
−A′B′

AB
< ε, and what

is more, we may take AB so small that this inequality shall hold for all such

points D at once, for, as AB decreases, every ratio
A′D1

AD
gets nearer and nearer

to
A′B′

AB
. Lastly, if P be any point of (AB), and P1 lie on the perpendicular at

P so that AA′ ≡ PP1, we may find one of our points recently called D of such
a nature that DP1 and D1P1 are infinitesimal as compared with AB. Hence
A′P1

AP
− A′B′

AB
< ε where ε is infinitesimal with AB. This shows that

A′B′

AB
approaches a definite limit, as AB approaches the null distance.

This limit is constantly equal to 1 in the euclidean case. In the other cases
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it is a variable depending on the measure of AA′. If this measure be x, we may
call our limit φ(x).

Let us next show that the function φ is continuous. Take A′ABB′ as before,
while A1 and B1 are respectively on the extensions of (AA′), beyond A′, and of
(BB′) beyond B′. Let the measure of AA′ be x, while that of A′A1 is ∆x,

A′B′

AB
= φ(x) + ε,

A1B1

AB
= φ(x+ ∆x) + η,

∣∣∣∣A1B1 −A′B′

AB

∣∣∣∣ = ∆φ(x) + η − ε.

Now A1B1 < (A1A′ +A′B′) +B′B1, 2A1A′ > |A1B1 −A′B′|,

and, however great m may be, we may take A1A′ so small that

A1A′ <
1

2m
AB,

then ∆φ(x) <
1
m

+ δ,

and, hence, φ is a continuous function.
We shall find the actual form of φ from its functional equation. Let x be

the measure of AC, (x − y) that of AC1, and (x + y) that of AC2; where C
and C1 are points within (AC2). Take a corresponding set of distances upon
a line near by, BD ≡ AC; BD1 ≡ AC1; BD2 ≡ AC2 while |AC and |BD are
in the same half-plane bounded by AB and perpendicular thereto. We know,
by 1, that this construction is possible. We shall presently suppose AB to be
infinitesimal. The perpendicular to CD at C will meet C2D2 and C1D1 in P
and R respectively, while the perpendicular to CD at D will meet these lines
at Q and S; the four last-named points will surely exist, if AB be very tiny.
]CC2P and ]CC1R will differ infinitesimally from right angles, so that by 2∣∣∣∣C2P − C1R

CC2

∣∣∣∣ = ε.

This infinitesimal ε is, in fact, of the second order. For, let us compare
4CC2P and 4CC1R. ]C1CR ≡ ]C2CP ; CC1 ≡ CC2. Also ]CC2P and
]CC1R differ infinitesimally. Hence, if, on (CP ) or (CP ) extended beyond P ,

we take CP ′ ≡ CR we have C2P ′ ≡ C1R; C2P − C1R < PP ′. But
PP ′

C2P
<

δ as the angle opposite (PP ′) is infinitesimal.
2
y
C2P =

2
y
C1R + 2ε where

ε is infinitesimal, as compared with MC2P meaning thereby the measure of
C2P . Lastly, let us use letters of the type δ, ε, η to indicate infinitesimals, and
remember that AB is an infinitesimal distance.
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C2P ≡ D2Q, C1R ≡ D1S,

2C2P ≡ |C2D2 − PQ|, 2C1R ≡ |C1D1 −RS|,
CD ≡ φ(x)AB + ε1AB,

C1D1 ≡ φ(x− y)AB + ε2AB,

C2D2 ≡ φ(x+ y)AB + ε3AB,

PQ ≡ φ(MCP )CD + δ1CD,

RS ≡ φ(MCR)CD + δ2CD,

But C2P > CC2 − CP and C2P is infinitesimal.

PQ ≡ φ(y)CD + δ3CD,

RS ≡ φ(y)CD + δ4CD.

Substitute in the first equation connecting C2P and C1R

[φ(x+ y) + ε3 − φ(x)φ(y)− φ(x)δ3 − φ(y)ε1 + δ3ε1] MAB =

= [φ(x)φ(y) + φ(x)δ4 + φ(y)ε1 + δ4ε1 − φ(x− y)− ε2] MAB + 2yε.

Hence φ(x+ y) + φ(x− y)− 2φ(x)φ(y) < η where η may be made less than
any assigned value

φ(x+ y) + φ(x− y) = 2φ(x)φ(y) (1)

This well-known equation may be easily solved. Let us assume that the unit
of measure of distance is well fixed

φ(0) = 1, φ(2x) = 2[φ(x)]2 − 1.

Let x1 be a value for x in the interval to which the equation applies, i.e. the
measure of an actual distance. We may find k so that φ(x1) = cos

x1

k
. We have

immediately

φ(2x1) = cos
2x1

k
, φ

(nx1

2m

)
= cos

( nx1

2mk

)
.

We also know that φ(x) − cos
x

k
is a continuous function. If, then, x be any

value of the argument, we may find n and m such large integers that x − nx1

2m

is infinitesimal. Hence φ(x)− cos
x

k
will be less than any assigned quantity, or

φ(x) = cos
x

k
. (2)

The function cosine has, of course, a purely analytical meaning, i.e. we write

φ(x) = 1− x2

k2 . 2!
+

x4

k4 . 4!
· · · .
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Of fundamental importance is the constant k. We shall find that it gives
the radius of a sphere (in our usual euclidean geometry) upon which the non-

euclidean plane may be developed. We shall, therefore, define the constant
1
k2

as the Measure of Curvature of Space.18 To find the nature of the value of k,

we see immediately that in the parabolic case
1
k2

= 0; in the elliptic φ is, at

most, equal to 1, hence
1
k2

is positive. In the hyperbolic case, 1 constitutes a

minimum value for φ and
1
k2

is negative, or k a pure imaginary. Under these
circumstances, we may, if we choose, remove all signs of imaginary values from
(2) by writing k′ = ik,

φ(x) = cosh
( x
k′

)
.

As a matter of fact, however, there is little or no gain in doing this.
It is now necessary to calculate another limit, that of the ratio of two simul-

taneously diminishing sides of a right triangle. Let us, then, suppose that we
have a right 4ABC whose right angle is ]ABC. We shall imagine that AB

becomes infinitesimal while ]BAC is constant. We seek the limit of
AB

AC
.19

That such a limit will actually exist may be proved by considerations similar
to those which established the existence of φ(x). We leave the details to the
reader. The limit is a function of the angle ]BAC, and if θ be the measure
of the latter, we may write our function f(θ); including therein, of course, the
possibility that this function should be a constant.

First of all it is incumbent upon us to show that this function is continuous.
Take C ′ on the extension of (BC) beyond C, and let ∆θ be the measure of
]CAC ′. If ∆θ be infinitesimal, then, by 2 CC ′ is infinitesimal as compared

with AC. Hence
AC ′

AB
− AC

AB
will become and remain less than any assigned

number, and f(θ) is continuous.
Suppose, now, that we have two half-lines |OY , |OZ lying in a half-plane

bounded by |OX. Let ]XOY and ]XOZ be each less than a right angle, and
have the measures θ, θ + φ;φ < θ. Take F on |OZ, and find B, so that

OF ≡ OB; ]Y OF ≡ ]Y OB,

|OB is within the interior angle ]XOY ; these points will certainly exist if OF
be very small. Connect F and B by a line meeting |OY in D, and through F , D,
B draw three lines perpendicular to |OX, and meeting it in E, C, A respectively,
which points also are sure to exist, if OF be small enough. C will be separated
from the middle point of (EA) by a distance infinitesimal compared with EA,
for the perpendicular to OX at such a point would meet (BF ) at a point whose
distance from D was infinitesimal as compared with OF .

18This fundamental concept is due to Riemann, loc. cit. We shall consider it more fully in
subsequent chapters, notably XIX.

19It is strange that Gérard, loc. cit., assumes this ratio from the euclidean case.
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OA

OB
= f(θ − φ) + ε1,

OC

OB
=
OC

OD
· OD
OB

= f(θ)f(φ) + ε2,

CA

OB
= f(θ − φ)− f(θ)f(φ) + ε3,

OE

OB
=
OE

OF
= f(θ + φ) + ε4

EC

OB
= f(θ)f(φ)− f(θ + φ) + ε5 ·

CA

OB
− EC

OB
= δ, infinitesimal.

f(θ + φ) + f(θ − φ) = 2f(θ)f(φ).

This is the functional equation that we had before, so that f = cos
θ

l
and l

must be real. If, then we so choose it that the measure of a right angle shall be
π

2
,

f(θ) = cos θ.

Let us not fail to notice that since ]ABC is a right angle we have, by III.
17,

lim.
BC

AC
= cos(

π

2
− θ) = sin θ. (3)

The extension of these functions to angles whose measures are greater than
π

2
will afford no difficulty, for, on the one hand, the defining series remains

convergent, and, on the other, the geometric extension may be effected as in the
elementary books.

Our next task is a most serious and fundamental one, to find the relations
which connect the measures and sides and angles of a right triangle. Let this
be the 4ABC with ]ABC as its right angle. Let the measure of ]BAC be ψ
while that of ]BCA is θ. We shall assume that both ψ and θ are less than

π

2
,

an obvious necessity under the euclidean or hyperbolic hypothesis, while under
the elliptic, such will still be the case if the sides of the triangle be not large,
and the case where the inequalities do not hold may be easily treated from the
cases where they do. Let us also call a, b, c the measures of BC, CA, AB
respectively.

We now make rather an elaborate construction.20 Take B1 in (AB) as near to
B as desired, and A1 on the extension of (AB) beyond A, so that A1A ≡ B1B,
and construct 4A1B1C1 ≡ 4ABC, C1 lying not far from C; a construction
which, by 1, is surely possible if BB1 be small enough. Let B1C1 meet (AC)
at C2. ]C1C2C will differ but little from ]BCA, and we may draw C1C3

20See figure on next page.
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Fig. 2

perpendicular to CC2, where C3 is a point of (CC2). Let us next find A2 on the
extension of (AC) beyond A so that A2A ≡ C2C and B2 on the extension of
(C1B1) beyond B1 so that B1B2 ≡ C1C2, which is certainly possible as C1C2

is very small. Draw A2B2. We saw that ]C1C2C will differ from ]BCA by
an infinitesimal (as B1B decreases) and ∠CC1B1 will approach a right angle as
a limit. We thus get two approximate expressions for sin θ whose comparison
yields

C1C3

C1C2

=
CC1

CC2

+ ε1 =
cos

a

k
BB1

CC2

+ ε2,

for CC1 − cos
a

k
BB1 is infinitesimal in comparison to BB1 or CC1. Again, we

see that a line through the middle point, of (AA1) perpendicular to AA2 will
also be perpendicular to A1C1, and the distance of the intersections will differ
infinitesimally from sinψAA1. We see that C1C3 differs by a higher infinitesimal

from sinψ cos
b

k
AA1, so that

cos
b

k
sinψ

AA1

CC1

+ ε3 =
cos

a

k
BB1

CC2

+ ε2.
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Next we see that AA1 ≡ BB1, and hence

cos
b

k
=

1
sinψ

cos
a

k
· C1C2

CC2

+ ε4.

Moreover, by construction C1C2 ≡ B1B2, CC2 ≡ AA2. A perpendicular to AA1

from the middle point of (AA2) will be perpendicular to A2B2, and the distance
of the intersections will differ infinitesimally from each of these expressions

sinψAA2,
1

cos
c

k

B1B2.

Hence cos
b

k
− cos

a

k
cos

c

k
< ε,

cos
b

k
= cos

a

k
cos

c

k
. (4)

To get the special formula for the euclidean case, we should develop all

cosines in power series, multiply through by k2, and then put
1
k2

= 0, getting

b2 = a2 + c2

the usual Pythagorean formula.
We have now a sufficient basis for trigonometry, the development whereof

merely requires a little analytic skill. It may not perhaps be entirely a waste of
time to work out some of the fundamental formulae. Let A, B, C be the vertices
of a triangle, and let us use these same letters, as is usual in elementary work,
to indicate the measures of the corresponding angles, while the measures of the
sides shall be a, b, c respectively. Begin by assuming that ]ABC is a right
angle so that B =

π

2
. Let D be such a point of (AC) that BD is perpendicular

to AC; the measures of AD and CD being b1 and b2, while the measure of BD
is a1.

cos
b1
k

=
cos

a

k

cos
a1

k

, cos
b2
k

=
cos

c

k

cos
a1

k

,

cos
(
b1 + b2
k

)
= cos

b

k
= cos

a

k
cos

c

k
,

cos
a

k
cos

c

k

(
1− cos2

a1

k

)
=
√

cos2
a1

k
− cos2

a

k

√
cos2

a1

k
− cos2

c

k
,

cos2
a

k
− cos2

c

k

(
cos2

a1

k
− 2
)

= cos2
a1

k
− cos2

a

k
− cos2

c

k
,(

1− cos2
a1

k

)(
1− cos2

a

k
cos2

c

k

)
=
(
1− cos2

a

k

)(
1− cos2

c

k

)
,

sin
a1

k
sin

b

k
= sin

a

k
sin

c

k
,
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sin
a

k

sin
b

k

=
sin

a1

k

sin
c

k

.

Now proceeding with the 4ADB as we did with the 4ABC we shall reach
two more sines whose ratio is

sin
a

k

sin
b

k

,

and so forth. Continuing thus we have in (AB) and (AC) two infinite series of
points. Let the reader show that the limit for each series cannot be other than
the point A itself. Now we have just seen in (3) that the limit of this ratio is
sinA, hence

sin
a

k
= sin

b

k
sinA. (5)

Let the reader deduce from (4) and (5) that

tan
c

k
= tan

b

k
cosA. (6)

cosB = cos
b

k
sinA. (7)

Let us next suppose that 4ABC is any triangle. If none of the angles be
greater than a right angle, we may connect any vertex with a point of the
opposite side by a line perpendicular to the line of that side, and we see at once
that

sin
a

k
: sin

b

k
: sin

c

k
= sinA : sinB : sinC.

Let us show that this formula holds universally, even when this construction
is not possible. Let us assume that B >

π

2
. We may legitimately assume that A

and C are less than
π

2
, for the extreme case under the elliptic hypothesis where

such is not the fact may easily be treated after the simpler case has been taken
up. We shall still have

sin
a

k
: sin

c

k
= sinA : sinC.

Let E be that point of (AC) which makes BE perpendicular to AC. Let the
measures of AE, BE, and CE be a′, b′, c′, while the measure of ]ABE is A′

and that of ]CBE is C ′.

cosA′ =
tan

b′

k

tan
c

k

, cosC ′ =
tan

b′

k

tan
a

k

,
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sinA′ =
sin

a′

k

sin
c

k

, sinC ′ =
sin

c′

k

sin
a

k

,

sinB = sin(A′ + C ′) =
tan

b′

k

sin
a

k
sin

c

k

(
cos

c

k
sin

c′

k
+ cos

a

k
sin

a′

k

)
,

cos
c

k
= cos

a′

k
cos

b′

k
, cos

a

k
= cos

c′

k
cos

b′

k
,

sinB =
sin

b′

k

sin
a

k
sin

c

k

sin
(
a′

k
+
c′

k

)
,

a′ + c′ = b; sin
b′

k
= sin

a

k
sinC = sin

c

k
sinA,

sin
a

k
sinA

=
sin

b

k
sinB

=
sin

c

k
sinC

. (8)

Once more let us suppose that no angle of our triangle is greater than a right
angle, and let D be such a point of (BC) that AD is perpendicular to BC:

cos
b

k
=

cos
MDC

k
cos

c

k

cos
MBD

k

=
cos

c

k

cos
MBD

k

[
cos

a

k
cos

MBD

k
+ sin

a

k
sin

MBD

k

]

= cos
a

k
cos

c

k
+ sin

a

k
sin

c

k
cosB.

If B >
π

2
this proof is invalid. Here, however, following our previous notation

cosB = cos(A′ + C ′) =
tan2 b

′

k
cos

a

k
cos

c

k
− sin

a′

k
sin

c′

k

sin
a

k
sin

c

k

,

cos
a

k
= cos

b′

k
cos

c′

k
, cos

c

k
= cos

b′

k
cos

a′

k
, b = a′ + c′,

cosB =
sin2 b

′

k
cos

a′

k
cos

c′

k
− sin

a′

k
sin

c′

k

sin
a

k
sin

c

k
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=
cos

b

k
− cos

a

k
cos

c

k

sin
a

k
sin

c

k

,

cos
b

k
= cos

a

k
cos

c

k
+ sin

a

k
sin

c

k
cosB. (9)

A correlative formula may be deduced as follows:21

Let
sin

a

k
sinA

=
sin

b

k
sinB

=
sin

c

k
sinC

= λ 6= 0,

cos2
b

k
+ λ4 sin2A sin2 C cos2B − 2λ2 sinA sinC cosB cos

b

k
=

= cos2
a

k
cos2

c

k
,

1− λ2 sin2B + λ4 sin2A sin2 C cos2B − 2λ2 sinA sinC cosB cos
b

k
=

= 1− λ2 sin2A− λ2 sin2 C + λ4 sin2A sin2 C,

sin2A+ sin2 C − sin2B = sin2A sin2 C sin2 b

k
+ 2 sinA sinC cosB cos

b

k
,

1− sin2A− sin2 C + sin2A sin2 C

= sin2A sin2 C cos2
b

k
− 2 sinA sinC cos

b

k
cosB + cos2B,

cosA cosC = cos
b

k
sinA sinC − cosB,

cosB = − cosA cosC + sinA sinC cos
b

k
.22 (10)

If ABCD be an isosceles birectangular quadrilateral, the right angles being
at A and B,

cos
MCD

k
= cos

MAC

k
cos

MBD

k
cos

MAB

k
+ sin

MAC

k
sin

MBD

k
. (11)

The proof of this is left to the reader, as well as the task of showing that the
formulae which we have here established are identical with those for a euclidean
sphere of radius k. Let him also show that when

1
k2

= 0, our formulae pass over
into those for the euclidean plane.

21I owe this ingenious trigonometric analysis to my former pupil Dr. Otto Dunkel.
22In finding this formula we have extracted a square root. To be sure that we have taken

the right sign, we have but to consider the limiting case A = 0, B = π − C.
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CHAPTER V

ANALYTIC FORMULAE

At the beginning of Chapter I we posited the existence of two undefined
objects, points and distances. Between the two existed the relation that the
existence of two points implied the existence of a single object, their distance.
In this relation the two points entered symmetrically.

These concepts may be further sharpened as follows. Leaving aside the trivial
case of the null distance, let us imagine that a distinction is made between the
two points, the one being called the initial and the other the terminal point.
The concept distance, where this distinction is made between the two points
shall be called a directed distance, or, more specifically, the directed distance
from the initial to the terminal point. Any not null distance will, thus, determine
two directed distances. The directed distance from A to B shall be written

−−→
AB.

The relations congruent to, greater than, and less than, when applied to directed
distances, shall mean that the corresponding distances have these relations.

Suppose that we have two congruent segments (AB) and (A′B′) of the same
line. It may be that a congruent transformation which carries the line into
itself, and transforms A and B into A′ and B′, also transforms A′ into A. In
this case the middle point of (AA′) will remain invariant, the extremities of every
segment having this middle point will be interchanged. Such a transformation
shall be called a reflection in this middle point. Conversely, we easily see that a
congruent transformation whereby A goes into A′, and one other point of (AA′)
also goes into a point of that segment, is a reflection in the middle point of the
segment.

There are, however, other congruent transformations of the line into itself
besides reflections. For if A go into A′, and any point of (AA′) go into a point
not of (AA′), then A will be the only point of (AA′) which goes into a point
thereof, there will be no invariant point on the line, and we have a different
form of congruent transformation called a translation. It is at once evident that
every congruent transformation of the line into itself is either a reflection or a
translation. The inverse of a translation is another translation; the inverse of a
reflection is the reflection itself.

Theorem 1. The product of two translations is a translation. The assemblage
of all translations is a group.

We see, to begin with, that every congruent transformation has an inverse.
This premised, suppose that we have a translation whereby A goes into A′, and
a second whereby A′ goes into A′′. We wish to show that the product of these
two is not a reflection. Suppose, in fact, that it were. A point P1 of (AA′′) close
to A must then go into another point P3 of (AA′′) close to A′′. If A′ be a point
of (AA′′), the first translation will carry P1 into P2 a point of (A′A′′), and as P3

is also a point of (A′A′′) the second transformation would be a reflection, and
not a translation. If A were a point of (A′A′′), P2 would be a point of (AA′),
and hence of (A′A′′), leading to the same fallacy. If A′′ were a point of (AA′),
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P2 would belong to the extension of (A′A′′) beyond A′, and P3 would belong to
(A′A′′) and not to (AA′′).

Let the reader show that the product of a reflection and a translation is a
reflection, and that the product of two reflections is a translation.

Definition. Two congruent directed distances of the same line shall be said
to have the same sense, if the congruent transformation which carries the initial
and terminal points of the one into the initial and terminal points of the other be
a translation. They shall be said to have opposite senses if this transformation
be a reflection. The following theorem is obvious—

Theorem 2. The two directed distances determined by a given distance have
opposite senses.

Suppose, next, that we have two non-congruent directed distances
−−→
AB,

−−→
A′C ′

upon the same line, so that A′C ′ > AB. There will then (XIII) be a single such
point B′ of (A′C ′) that AB ≡ A′B′. If then,

−−→
AB and

−−−→
A′B′ have the same

sense, we shall also say that
−−→
AB and

−−→
A′C ′ have the same sense, or like senses.

Otherwise, they shall be said to have opposite senses. The group theorem for
translations gives at once—

Theorem 3. Two directed distances which have like or opposite senses to a
third, have like senses to one another, and if two directed distances have like
senses, a sense like (opposite) to that of one is like (opposite) to that of the
other, while if they have opposite senses, a sense like (opposite) to that of one
is opposite (like) to that of the other.

Let us now make suitable conventions for the measurement of directed dis-
tances. We shall take for the absolute value of the measure of a directed distance,
the measure of the corresponding distance. Opposite directed distances of the
same line shall have measures with opposite algebraic signs. If, then, we assign
the measure for a single directed distance of a line, that of every other directed
distance thereof is uniquely determined. If, further, we choose a fixed origin D
upon a line and a fixed unit for directed distances, every point P of the line will
be completely determined by a single coordinate

x = sin
M
−−→
OP

k
.

In an entirely similar spirit we may enlarge our concepts of angle, and dihe-
dral angle, to directed angle. We choose an initial and a terminal side or face,
and define as rotations a certain one parameter, group of congruent transforma-
tion which keep the vertex or edge invariant. We thus arrive at the concept for
sense of an angle, and set up a coordinate system for half-lines or half-planes
of common bound. If in the ]ABC, |AB be taken as initial side, the resulting
directed angle shall be written ]

−−→
ABC.

We have at last elaborated all of the machinery necessary to set up a coordi-
nate system in the plane, and nearly all that is necessary to set up coordinates
in space. Let us begin with the plane, and choose two half-lines |OX, |OY
making a right angle. Their lines shall naturally be called the coordinate axes,
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while O is the origin. Let P be any point of the plane, the measure of
−−→
OP being

ρ, while those of ]
−−−→
XOP and ]

−−−→
Y OP are α and β respectively. We may then

put
ξ = k sin

ρ

k
cosα,

η = k sin
ρ

k
cosβ,

ω = cos
ρ

k
,

(1)

with the further equation

ξ2 + η2 + k2ω2 = k2.

In practice it is better to use in place of ξ, η, ω homogeneous coordinates
defined as follows:—

ω =
x0√

x0
2 + x1

2 + x2
2
,

ξ =
kx1√

x0
2 + x1

2 + x2
2
,

η =
kx2√

x0
2 + x1

2 + x2
2
.

(2)

What shall we say as to the signs to be attached to the radicals appearing
in these denominators? In the hyperbolic case ω is essentially positive, so that
the radical must have the same sign as x0. In the elliptic case it is not possible
to have two points, one with the coordinates ξ, η, ω and the other with the
coordinates −ξ, −η, −ω, for their distance would be kπ, and the opposite angle
of every triangle containing them both would be straight, i.e. they might be
connected by many straight lines. On the other hand, it is not possible that
ξ, η, ω and −ξ, −η, −ω should refer to the same point, for then that point
would determine with itself two distinct distances, which is contrary to Axiom
II. Hence, in every case, the radical must have a well-defined sign in order that
equations should give a point of our space.

In the limiting parabolic case

ξ = ρ cosα, η = ρ cosβ, ω = 1.

The formula for the distance of two points P and P ′ with coordinates (x), (x′)
is

cos
MPP ′

k
= cos

ρ

k
cos

ρ′

k
+ sin

ρ

k
sin

ρ′

k
cos (α′ − α)

= ωω′ +
ξξ′ + ηη′

k2
.

cos
MPP ′

k
=

x0x0
′ + x1x1

′ + x2x2
′

√
x0

2 + x1
2 + x2

2
√
x0

′2 + x1
′2 + x2

′2
(3)
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sin
MPP ′

k
=

√∥∥∥∥ x0 x1 x2

x0
′ x1

′ x2
′

∥∥∥∥2

√
x0

2 + x1
2 + x2

2
√
x0

′2 + x1
′2 + x2

′2
(4)

The signs of the radicals in the denominators are, as we have seen, well
determined. The sign of the radical in the numerator of (4), should be so taken
as to give a positive value to the whole. Should we seek the measures of directed
distances on the line PP ′, then, after the adjunction of the value of the sign of
a single directed distance, that of every other is completely determined. In the
euclidean case

MPP ′ =
1

x0x0
′

√
(x1x0

′ − x0x1
′)2 + (x2x0

′ − x0x1
′)2.

Returning to (4) and putting xi
′ = xi + dxi we get for the infinitesimal

element of arc

ds2

k2
=

∥∥∥∥ x0 x1 x2

dx0 dx1 dx2

∥∥∥∥2

(x0
2 + x1

2 + x2
2)2

.

Put x =
kx1

x0
, y =

kx2

x0
, x′ = x+ dx, y′ = y + dy,

ds2 =
dx2 + dy2 +

(ydx− xdy)2

k2[
1 +

x2 + y2

k2

]2 . (5)

In the limiting euclidean case
1
k2

= 0,

ds2 = dx2 + dy2.

Returning to the general case, we may improve our formula (5) as follows:—

let z =
√
k2 + x2 + y2, dz =

xdx+ ydy√
k2 + x2 + y2

.

If dx2 + dy2 − dz2 = dσ2, ds =
kdσ

z
.

Put u =
2kx
k − z

, v =
2ky
k − z

.

1 +
u2 + v2

4k2
=

−2z
k − z

,

du2 + dv2 =
4k2

(k − z)4
[(k − z)2[dx2 + dy2]

+ 2(k − z)(xdx+ ydy)dz + (x2 + y2)dz2],
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(k − z)2

4k2
(du2 + dv)2 =

[
dx2 + dy2 +

2zdz2

k − z
− k2 − z2

(k − z)2
dz2

]
= dσ2.

du2 + dv2 = ds2
4z2

(k − z)2
,

ds2 =
[
1 +

u2 + v2

4k2

]−2 (
du2 + dv2

)
. (6)

Comparing this with the usual distance formula

ds2 = Edu2 + 2Fdu dv +Gdv2,

F = 0, E = G =
[
1 +

u2 + v2

4k2

]−2

.

Now if K be the measure of curvature of the surface having this distance
formula

K = − 1
2E

(∂2 logE
∂u2

+
∂2 logE
∂v2

)
,

K =
[
1 +

u2 + v2

4k2

]2[[1 +
u2 + v2

4k2

]( 1
2k2

+
1

2k2

)
− u2

4k4
− v2

4k4[
1 +

u2 + v2

4k2

]2
]
,

K =
1
k2
.

Theorem 4. The non-euclidean plane may be developed upon a surface of

constant curvature
1
k2

in euclidean space.

We shall return to questions of this sort in Chapters XV and XIX23 of this
work.

Let us now take up coordinates in three dimensions. We must make some
preliminary remarks about the direction cosines of a half-line. Suppose, in fact,
that we have three mutually perpendicular half-lines, |OX, |OY , |OZ, and a
fourth half-line |OP . The angles ]XOP , ]Y OP , ]ZOP whose measures shall
be α, β, γ respectively, shall be called the direction angles of the half-line |OP .
These angles are not directed, but this will cause no inconvenience, as we shall
introduce them merely through the expressions cosα, cosβ. cos γ. These shall
be called the direction cosines of the half-line, O shall be the origin, and OX,
OY , OZ the coordinate axes, while the planes determined by them are the

23The idea of interpreting the non-euclidean plane as a surface of constant curvature in
euclidean space must certainly have been present to Riemann’s mind, loc. cit. The credit
for first setting the matter in a clear light is, however, due to Beltrami. See his ‘Teoria
fondamentale degli spazii di curvatura constante’, Annali di Matematica, Serie 2, vol. ii, 1868,
and ‘Saggio d’interpretazione della geometria non-euclidea’, Giornale di Matematiche,vol. vi,
1868.
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coordinate planes. Take a second half-line |OP ′, with direction cosines cosα′,
cosβ′, cos γ′. We shall imagine that OP and OP ′ are infinitesimal. Under these
circumstances, we may find A, B, C where perpendiculars to the axes through
P meet them, and A′, B′, C ′ bearing the same relation to P ′. Let Q′ be that
point of |OP ′ which makes ]PQ′O a right angle, and let ]POP ′ have a measure
θ. Now we know that geometry in the infinitesimal domain obeys the euclidean
hypothesis, hence we have

MOQ′ = MOP cos θ + ε,

the ε is infinitesimal as compared with MOP . In the same spirit

MOQ′ = MOA cosα′ + MOB cosβ′ + MOC cos γ′ + δ.

But clearly MOA = MOP cosα+ ε, &c.

Hence

MOP cos θ = MOP [cosα cosα′ + cosβ cosβ′ + cos γ cos γ′] + η,

or dividing out MOP ,

cos θ = cosα cosα′ + cosβ cosβ′ + cos γ cos γ′. (7)

In particular we shall have

1 = cos2 α+ cos2 β + cos2 γ. (8)

We now set up our coordinate system as follows:—

ω = cos
MOP

k
,

ξ = k sin
MOP

k
cosα,

η = k sin
MOP

k
cosβ,

ζ = k sin
MOP

k
cos γ,

k2 = ξ2 + η2 + ζ2 + k2ω2.

(9)

From these we pass, as before, to homogeneous coordinates x0 : x1 : x2 : x3.
But first we shall introduce a new symbol:

(xy) ≡ x0y0 + x1y1 + x2y2 + x3y3. (10)

We then write
ω =

x0√
(xx)

, η =
kx2√
(xx)

,
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ξ =
kx1√
(xx)

, ζ =
kx3√
(xx)

. (11)

Here, as in the case of the plane, there is no ambiguity arising from the
double sign of the radical. There is, however, one modification which we shall
occasionally make. We see, in fact, that in the hyperbolic case, since k2 < 0; ξ,
η, ζ, ω are real, we must have (xx) < 0, and x0 is a pure imaginary. To remedy
this let us write

kẋ0 = x0, ẋ1 = x1, ẋ2 = x2, ẋ3 = x3.

A point will now have real coordinates. This distinction between coordinates
(x) and coordinates (ẋ) shall be consistently maintained in the hyperbolic case.

The cosine of the measure of distance of two points (x) and (y) is easily
found. We see at once that we shall have

cos
MPP ′

k
=

(xy)√
(xx)

√
(yy)

. (12)

Let us now see what effect a congruent transformation will have upon our
coordinates. First take a congruent transformation keeping the origin invariant.
We see at once that the new direction cosines, and so the new coordinates (x′),
will be linear functions of the old ones; for a plane through the origin will be
characterized by a linear relation connecting the direction cosines of the half-
lines with that bound. The variables ξ, η, ζ are thus linearly transformed in
such a way that ξ2 + η2 + ζ2 has a constant value, while ω is unaltered. Hence
x0, x1, x2, x3 are linearly transformed so that (xx) is an invariant (relative),
i.e. they are subjected to an orthogonal substitution.

Let us next suppose that we have a congruent transformation which carries
the planes ξ = 0 and η = 0 into themselves, and every half-plane with this axis
as bound into itself. The assemblage of all such transformations will form a
one-parameter group, and this group may be represented by

ω′ = ω cos
d

k
+ ζ sin

d

k
,

ξ′ = ξ,

η′ = η,

ζ ′ = −ω sin
d

k
+ ζ cos

d

k
.

We see, in fact, that by this transformation every point receives just the
coordinates that it would obtain by a translation of the axis OZ into itself
through a distance d, so enlarged as to carry into itself every half-plane through
that axis. Once more we find that, in the coordinates (x), this will be an
orthogonal substitution. Now, lastly, every congruent transformation of space
may be compounded out of transformations of these two types. Hence:

Theorem 5. Every congruent transformation of space is represented by an
orthogonal substitution in the homogeneous variables x0 : xl : x2 : x3.
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In Chapter VIII we shall make a detailed study of these congruent transfor-
mations. For the present, let us begin by noticing that the coordinate planes
have linear equations, and as we may pass from one of these to any other plane
by linear transformations, so the equation of any plane may be written

(ux) ≡ u0x0 + u1x1 + u2x2 + u3x3 = 0.

We see that (xy), (ux), (uv) are concomitants of every congruent transforma-
tion, and we shall use them to find expressions for the distance from a point to
a plane and the angle between two planes. The existence of the former of these
quantities is contingent upon the existence of a point in the plane determining
with the given point a line perpendicular to the plane.

Let the plane (u) be that which connects the axis x1 = x2 = 0 with the
point (y). Its equation is y2x1 − y1x2 = 0. The cosines of the angles which this
makes with the plane v1x1 = 0 are the x2 direction cosines of the two half-lines
of OP . If then, the measure of the angle be θ, we have

cos θ =
y2√

y12 + y22
=

v1y2√
y12 + y22

√
v12

=
(uv)√

(uu)
√

(vv)
.

But both sides of this equation are absolute invariants for all congruent trans-
formations. Hence, we may write, in general:

cos θ =
(uv)√

(uu)
√

(vv)
. (13)

We find the distance from a point to a plane in the same way. Let the point
be (x) and d the distance thence to the point where a perpendicular to the plane
u1x1 = 0 meets it, this being, by definition, the distance from the point to the
plane.

sin
d

k
=
ξ

k
= ± x1√

(xx)
=

u1x1√
(xx)

√
(uu)

.

Once more we have an invariant form, so that, in general:

sin
d

k
=

(ux)√
(uu)

√
(xx)

. (14)

The sign of
√

(xx) is determined. As for that of
√

(uu), by reversing it, we
get opposite directed distances of the same line.

We have now reached the end of the first stage of our journey. Our sys-
tem of axioms has given us a large body of elementary doctrine, a system of
trigonometry, and a system of analytic geometry wherein the fundamental met-
rical invariants are easily expressed. All of these things will be of use later. At
present our task is different. We must show that the system of axioms which
has carried us safely so far, will not break down later; i.e. that these axioms
are essentially compatible. We must also grapple with a disadvantage which
has weighed heavily upon us from the start, rendering trebly difficult many a
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proof and definition. In Axiom XI we assumed that any segment might be ex-
tended beyond either extremity. Yes, but how far may it be so extended? This
question we have not attempted to answer, but have dealt with the geometry of
such a region as the inside of a sphere, not including the surface. In fact, had
we assumed that every segment might be extended a given amount, we should
have run into a difficulty, for in elliptic space no distance may have a measure
kπ under our axioms.

The matter may be otherwise stated. Every point will have a set of coordi-
nates in our system. What is the extreme limit of possibility for making points
correspond to coordinate sets, and what meaning shall we attach to coordinates
to which no point corresponds? We must also adjoin the complex domain for
coordinates, and give a new interpretation to our fundamental formulae (12),
(13), (14) covering the most general case. Then only shall we be able to continue
our subject in the broadest and most scientific spirit.
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CHAPTER VI

CONSISTENCY AND SIGNIFICANCE OF THE AXIOMS

The first fundamental question suggested at the close of the last chapter was
this. How shall we show that those assumptions which we made at the outset are,
in truth, mutually consistent? We need not here go into that elusive question
which bothers the modern student of pure logic, namely, whether any set of
assumptions can ever be shown to be consistent. All that we shall undertake to
do is to point to familiar sets of objects which do actually fulfil our fundamental
laws.

Let us begin with the geometry of the euclidean hypothesis, and take as
points any class of objects which may be put into one to one correspondence
with all triads of values of three real independent variables x, y, z. By the
distance of two points we shall mean the positive value of the expression√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2.

The sum of two distances shall be defined in the arithmetical sense. It is a
perfectly straightforward piece of algebra to show that such a system of objects
will obey all of our axioms and the euclidean hypothesis; hence the consistency
of our axioms rests upon the consistency of the number system, and that we
may take as indubitable. Be it noticed that we have another system of objects
which obey all of our axioms if we make the further assumption that

x2 + y2 + z2 < |.

The net result, so far, is this. If we take our fundamental assumptions
and the euclidean hypothesis, points and distances may be put into one to one
correspondence with expressions of the above types; and, conversely, any system
of geometry corresponding to these formulae will be of the euclidean type. The
elementary geometry of Euclid fulfils these conditions. In what immediately
follows we shall assume this geometry as known, and employ its terminology.

Let us now exhibit the existence of a system of geometry obeying the hyper-
bolic hypothesis. We shall take as our class of points the assemblage of all points
in euclidean space which lie within, but not upon, a sphere of radius unity. We
shall mean by the distance of two points one half the real logarithm of the nu-
merically larger of the two cross ratios which they make with the intersections
of their line with the sphere. The reader familiar with projective geometry will
see that the segment of two points in the non-euclidean sense will be coextensive
with their segment in the euclidean sense, and the congruent group will be the
group of collineations which carry this sphere into itself. Lastly, we see that we
must be under the hyperbolic hypothesis, for a line is infinitely long, yet there
is an infinite number of lines through a given point, coplanar with a given line,
which yet do not meet it.

The elliptic case is treated similarly. We take as points the assemblage of
all points within a euclidean sphere of small radius, and as the distance of two
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points
1
2i

times, the natural logarithm of a cross ratio which they determine
with the intersection of their line with the imaginary surface

x0
2 + x1

2 + x2
2 + x3

2 = 0.

By a proper choice of the cross ratio and logarithm, this expression may be
made positive, as before. The congruent group will be so much of the orthogonal
group as carries at least one point within our sphere into another such point.
The elliptic hypothesis will prevail, for two coplanar lines perpendicular to a
third will tend to approach one another.

We may obtain a simultaneous bird’s-eye view of our three systems in two
dimensions as follows. Let us take for our class of points the assemblage of all
points of a euclidean sphere which are south of the equatorial circle. We shall
define the distance of two points in three successive different ways:—

(a) The distance of two points shall be defined as the distance which the lines
connecting them with the north pole cut on the equatorial plane. A line will
be a circle which passes through the north pole. If we interpret the equatorial
plane as the Gauss plane, we see that the congruent group will be

z′ = αz + β, αα = 1,

or rather so much of this group as will carry at least one point of the southern
hemisphere into another such point. It is evident from the conformal nature
of the transformation from sphere to equatorial plane, that we are under the
euclidean hypothesis.

(b) The distance of two points shall be defined as one half the logarithm
of the cross ratio on the circle through them in a vertical plane which they
determine with the two intersections of this circle and the equator. A line here
will be the arc of such a circle. The congruent group will be that group of
(euclidean) collineations which carries into itself the southern hemisphere. A
line will be infinitely long, yet there will be an infinite number of others through
any chosen point failing to meet it; i.e. we are under the hyperbolic hypothesis.

(c) The distance of two points shall be defined as the length of the arc of
their great circle. Non-euclidean lines will be arcs of great circles. Congruent
transformations will be rotations of the sphere, and it is easy to see that the
sum of the angles of a triangle is greater than a straight angle; we are under the
elliptic hypothesis.

We have now shown that our system of axioms is sufficient, for we have
been able to introduce coordinates for our points, and analytic expressions for
distances and angles. The axioms are also compatible, for we have found ac-
tual systems of objects obeying them. Compared with these virtues, all other
qualities of a system of axioms are of small import. It will, however, throw
considerable light upon the significance of these our axioms, if we examine in
part, their mutual independence, by examining the nature of those geometrical
systems where first one, and then another of our assumptions is supposed not
to hold.
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Axiom XIX is popularly known as the axiom of free mobility, or rather,
it is the residue of that axiom when we are confined to a limited space. It
puts into precise shape the statement that figures may be moved about freely
without suffering an alteration either in size or form. We have defined congruent
transformations by means of the relation congruent which is itself defined in the
logical sense, but not descriptively. We might, of course, have proceeded in the
reverse order.24 The ordinary conception in the elementary textbooks seems to
be that two figures are congruent if they may be superposed; superposed means
that they may be carried from place to place without losing size or shape, and
this in turn implies that throughout the transference, each remains congruent
to itself.25

With regard to the independence of this axiom, we have but to look at any
system where the measure of distance in one plane is double that of all the rest
of space. A triangle having two vertices in this plane, and one elsewhere, could
not be congruently transformed into a triangle of a different sort.

Axiom XVIII is the axiom of continuity. We have laid special stress on it
in the course of our work, although the subject of elementary geometry may be
pushed very far without its aid.26 We are not here concerned with the question
of the wisdom of such attempts, considered from the didactic point of view.
Systems of geometry where this axiom does not hold will occur to every reader;
e.g. the Cartesian euclidean system where all points whose coordinates are non-
algebraic are omitted. It is interesting to note that whereas the omission of XIX
runs directly counter to our sense experience, no amount of observation could
tell us whether or no our geometry were continuous.27

Axiom XVII is an existence theorem, not holding where the geometry of the
plane is alone considered. It is a very curious fact that the projective geometry
of the plane is not entirely independent of that of space, for Desargues’ theorem
that copolar triangles are also coaxal cannot be proved without the aid either
of a third dimension, or of the congruent group.28

Axiom XVI gives a criterion for circumstances under which two lines must
necessarily intersect. It is evident that without some such criterion we should
have difficulty in proceeding any distance at all among the descriptive properties
of a plane. It is difficult to show the independence of this axiom. The only dense
system of geometry known to the writer where it is untrue is the following.29

Let us denote by R the class of all rational numbers whose denominators are
of the form

(a1
2 + b1

2)(a2
2 + b2

2) . . . (an
2 + bn

2)

where ai and bi are integers or one may be zero. Let us take as points the
24Cf. Pieri, loc. cit.
25Cf. Veronese, loc. cit., p. 259, note 1, and Russell, The Principles of Mathematics, vol. i,

Cambridge, 1903, p. 405.
26Cf. Halsted, loc. cit.
27Cf. R. L. Moore, loc. cit.
28Cf. Hilbert, loc. cit., p. 70; Moulton, ‘A simple non-desarguesian plane geometry,’ Trans-

actions of the American Mathematical Society, vol. iii, 1902; Vahlen, loc. cit., p. 67.
29Cf. Levy, loc. cit., p. 32.
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assemblage of all points of the euclidean plane whose Cartesian coordinates are
rational numbers of the class R. The whole field will be transported into itself
by a parallel translation from any one point to any other. Moreover, let x, y and
x′, y′ be the coordinates of two points of the class, where x2 + y2 = x′

2 + y′
2.

We may imagine in fact that

x =
p

s
, y =

q

s
, x′ =

p′

s
, y′ =

q′

s
,

p2 + q2

s2
=
p′

2 + q′
2

s2
.

Then the cosine and sine of the angle which the two points subtend at the origin
will be respectively

pp′ + qq′

p2 + q2
,

pq′ − p′q

p2 + q2
,

and these are numbers of the class R. The whole field will go into itself by a
rotation about the origin. Our system will, therefore, obey XIX. It is of course
two-dimensional and not continuous. Moreover XVI will not hold, as the reader
will see by easily devised numerical experiments.

There are, also, plenty of geometries of a finite number of points where this
axiom does not hold.30

Axiom XV is, of course, an existence theorem, untrue in the geometry of a
single line.

Axiom XIV gives the fundamental property of straight lines. As an example
of a geometry where it does not hold, let us consider the assemblage of all points
within a sphere of radius one, and define as the distance of two points the length
of an arc of a circle of radius two which connects them. The segment of two
points is thus a cigar-shaped region connecting them. We see that the extensions
of such a segment and the segment itself do not comprise the segment of two
points within the original, and the extensions of the latter. Axioms XII and
XIII are also in abeyance, and it seems possible that these three axioms are not
mutually independent. The present writer is unable to answer this question.

Axiom XI implies that space has no boundary, and will be untrue of the
geometry within and on a sphere.

The first ten axioms amount to saying that distances are magnitudes among
which subtraction is always possible, but addition only under restriction.

30Veblen, loc. cit., pp. 350-51.
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CHAPTER VII

THE GEOMETRIC AND ANALYTIC EXTENSION OF SPACE

We are now in a position to take up the second of those fundamental ques-
tions which we proposed at the close of Chapter V, namely, to determine what
degree of precision may be given to Axiom XI. This axiom tells us that, popu-
larly speaking, any segment may be extended beyond either end. How far may
it be so extended? Are we able to state that there exists a system of geometry,
consistent with our axioms, where any segment may be extended by any chosen
amount? Or, in more precise language, if AB and PQ be given, can we always
find C so that

AC ≡ AB +BC, BC ≡ PQ.

We are already able to answer this question in the euclidean case, and answer
it affirmatively. We have seen that there is no inconsistency in that system of
geometry, where points are in one to one correspondence with all triads of (real
and finite) values of three coordinates x, y, z, and where distances are given by
the positive values of expressions of the form√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2.

Here, if, as we have said, we restrict the values of x, y, z merely to be real and
finite, we have a space under the euclidean hypothesis, where any segment may
be extended beyond either extremity by any desired amount. Such a space shall
be called euclidean space.

The same result will hold in the hyperbolic case. We shall have a consistent
geometrical system if we assume that our points are in one to one correspondence
with values

ẋ0 : ẋ1 : ẋ2 : ẋ3, k2 < 0,

k2ẋ2
0 + ẋ2

1 + ẋ2
2 + ẋ2

3 < 0.

Here, also, there will exist on every line distances whose measures will be as large
as we please. The space under the hyperbolic hypothesis, where any segment
may be extended by any chosen amount shall be called hyperbolic space. To
put the matter otherwise, we shall have euclidean or hyperbolic geometry if we
replace Axiom XII by:—

Axiom XII′. If the parabolic or hyperbolic hypothesis be true, and
if AB and PQ be any two distances, then there will exist a single point
C, such that

AC ≡ AB +BC, BC ≡ PQ.

When we turn to the elliptic case, we find a decidedly different state of
affairs. Suppose, in fact, that there is a one to one correspondence between the
assemblage of all points, and all sets of real values x0 : x1 : x2 : x3. The distance
of two points will depend upon the periodic function

cos−1 (xy)√
(xx)

√
(yy)

.
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If, to avoid ambiguity, we assume that the minimum positive value should be
taken for this expression, we should easily find two not null distances, whose
sum was a null distance, which would be in disagreement with Axiom X.

The desideratum is this. To find a system of geometry where each point
belongs to a sub-class subject to Axioms I–XIX, and the elliptic hypothesis,
and where each segment may still be extended by any chosen amount, beyond
either end.

Axiom I. There exists a class of objects, containing at least two
members, called points.

Axiom II′. Every point belongs to a sub-class obeying Axioms I–
XIX.

Definition. Any such sub-class shall be called a consistent region.

Axiom III′. Any two consistent regions which have a common point,
have a common consistent region including this point and all others
determining therewith a sufficiently small, not null, distance.

Axiom IV′. If P0 and Pn+1 be any two points there may be found a
finite number n of points P1, P2, P3, . . . Pn possessing the property that
each set of three successive ones belong to a consistent region, and
Pk is within the segment (Pk−1Pk+1).

Definition. The assemblage of all points of such segments, and all possible
successive extensions thereof shall be called a line.

An important implication of the last axiom is that any two points may be
connected (conceivably in many ways) by a chain of consistent regions, where
each successive pair have a consistent sub-region in common. This shows that if
we set up a coordinate system like that of Chapter V in any consistent region,
we may, by a process of analytic extension, reach a set of coordinates for every
point in space. We may also compare any two distances. We have merely to
take as unit of measure for one, a distance so small, that a distance congruent
therewith shall exist in the first three overlapping consistent regions; a distance
congruent with this in the second three and so on to the last region, and then
compare the measures of the two distances in terms of the first unit of measure,
and the unit obtained from this by the series of congruent transformations. Let

the reader show that if once we find AB
>
≡
<
PQ the same relation will hold if

we proceed by any other string of overlapping regions. Having thus defined the
congruence of any two distances, we may state our axiom for the extension of a
segment, as follows:—

Axiom V′. If AB and PQ be any two distances, there exists a single
point C such that BC ≡ PQ, while B is within a segment whose
extremities are C and a point of (AB).

An important corollary from this axiom is that there must exist in the elliptic
case a point having any chosen set of homogeneous coordinates (x) not all zero.
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For, let (y) be the coordinates of any known point. Consider the line through
it whose points have coordinates of the form λ(y) + µ(x). As we proceed along

this line, the ratio
λ

µ
will always change in the same sense, for such will be the

case in any particular consistent region. Moreover we may, by our last axiom,
find a number of successive points such that the sum of the measures of their
distances shall be kπ. Between the first and last of these points the value of
λ

µ
will have run continuously through all values from −∞ to ∞, and hence have

passed through the value 0, giving a point with the required coordinates.
The preceding paragraph suggests two interesting questions. Is it possible

that, by varying the method of analytic extension, we might give to any point
two different sets of homogeneous coordinates in the same system? Is it possi-
ble that two different points should have the same homogeneous coordinates?
With regard to the first of these questions, it is a fact that under our hypothe-
ses a point may have several different sets of coordinates, as we shall see at
more length in Chapter XVII. For the present it is, however, wiser to limit
ourselves to the classical non-euclidean systems, where a point has a unique
set of coordinates. We reach the desired limitation by means of the following
considerations.

A sufficiently small congruent transformation of any consistent region will
effect a congruent transformation of any chosen sub-region, and so of any con-
sistent region including this latter. It thus appears that if two consistent regions
have a common sub-region, a sufficiently small congruent transformation of the
one may be enlarged to be a congruent transformation of the other. Proceeding
thus, if we take any two consistent regions of space, and connect them by a series
of overlapping consistent regions, then a small congruent transformation of the
one may be analytically extended to operate a congruent transformation in the
other. Will the original transformation give rise to the same transformation in
the second space, if the connexion be made by means of a different succession of
overlapping consistent regions? It is impossible to answer this question a priori ;
we therefore make the following explicit assumption:—

Axiom VI′. A congruent transformation of any consistent region
may be enlarged in a single way to be a congruent transformation of
every point.

Evidently, as a result of this, a congruent transformation of one consistent
region can be enlarged in only one way to be a congruent transformation of any
other. Let us next observe that it is impossible that two points of the same
consistent region should have the same coordinates in any system. Suppose,
on the contrary, that P and Q of a consistent region have the coordinates (x).
There will be no limitation involved in assuming that the coordinate axes were
set up in this consistent region, and the coordinates of P found directly as
in Chapter V, while those of Q are found by an analytic extension through
a chain of overlapping consistent regions. Now it is not possible that every
infinitesimal congruent transformation which keeps P invariant shall also keep
Q invariant, so that a transformation of this sort may be found transforming each
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overlapping consistent region infinitesimally, and carryingQ to an infinitesimally
near point Q′. But in the analytic expression of this transformation, in the form
of an orthogonal substitution (in the non-euclidean cases) the values (x) will be
invariant, so that Q′′ will also have the coordinates (x), and by the same chain
of extensions as gave these coordinates to Q. Hence, reversing the order of
extensions, when we set up a coordinate system in the last consistent region,
that which includes Q and Q′, these two points will have the same coordinates.
But this is impossible for the coordinate system explained in Chapter V, for
a consistent region gives distinct coordinates to distinct points. This proof is
independent of Axiom VI′.

Our desired uniqueness of coordinate sets will follow at once from the fore-
going. For, suppose that a point P have two sets of coordinate values (x) and
(x′), not proportional to one another. Every infinitesimal transformation which
keeps the values (x) invariant, will either keep (x′) invariant, or transform them
infinitesimally, let us say, to a set of values (x′′). But there is a point distinct
from P and close to it which has the coordinates (x′′), and this gives two points
of a consistent region with these coordinates, which we have just seen to be im-
possible. Hence, the ratios of the coordinates (x0

′) must be unaltered by every
infinitesimal orthogonal substitution which leaves (x) invariant, i.e. x0

′ = ρxi.
It is evident, conversely, that if each point have but one set of coordinates,
Axiom VI′ must surely hold.

It is time to attack the other question proposed above, by supposing that
two distinct points shall have the same homogeneous coordinates. They may
not lie in the same consistent region, and every congruent transformation which
leaves one invariant, will leave the other unmoved also. Let us call two such
points equivalent . Every line through one of these points will pass through the
other. For let a point Q on a line through one of the points have coordinates
(y). We may connect it with the other by a line, and the two lines through
(Q) lie in part in a consistent region, the coordinates of points on each being
represented in the form λyi + µxi. The two lines are identical.

Let us consider the assemblage of all points whose coordinates are linearly
dependent on those of three non-collinear points. This assemblage of points
may properly be called a plane, for those points thereof which lie in any con-
sistent region will lie in a plane as defined in Chapter II. It is clearly a connex
assemblage, and will contain every line whereof it contains two non-equivalent
points. Let (y), (z), (t) be the coordinates of three points, no two of which are
equivalent. Let us consider the point (x) whose coordinates are

(ux) = |uyzt|.

In the elliptic case, as we have seen, such a point surely exists. In the hyperbolic
or parabolic cases, there might not be any such point. It is clear, however, that
in these cases there can be no equivalent points. Suppose, in fact, P0 and Pn+1

were equivalent. Connect them by a line whereon are P1, P2 . . . Pn. Move this
line slightly so that the connecting string of points are P1

′, P2
′ . . . Pn

′ very
near to the former points. We have constructed two triangles, and (n − 1)
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quadrilaterals, and as we are under the hyperbolic or euclidean hypothesis, the
sum of the measures of the angles of all the triangles and quadrilaterals will be
less than, or equal to π + (n − 1)2π + π. But clearly the sum of the measures
of the angles at points Pi and Pi

′ is 2nπ, so that the sum of the two angles
which the two lines make at P0 and Pn+1 is null or negative; an absurd result.
Equivalent points can then occur only under the elliptic hypothesis, and there
will surely be a point P with the coordinates (x) above.

Let us next make a congruent transformation whereby P goes into an equiva-
lent point P ′, the plane of (y)(z)(t) goes into itself congruently, for it constitutes
the assemblage of all points satisfying the condition (xX) = 0, and (xX) is an
invariant under every orthogonal substitution. After P has been carried to P ′,
each point of the plane may be returned to its original position by means of a
series of congruent transformations, each too small to change P ′ to an equiv-
alent point, yet keeping the values (x) invariant, coupled, at the end, with a
reflection in a plane perpendicular to the given one, in case the determinant
of the original orthogonal substitution is negative, and this too will leave P ′

unchanged. We may therefore pass from P to any equivalent point by a trans-
formation which leaves in place every point of a plane. But there is only one
congruent transformation of space which leaves every point of a plane invariant,
besides, of course, the identical one. Hence every point in space can have but
one equivalent at most.

Our results are, then, as follows. Under the euclidean and hyperbolic hy-
potheses, there is but one point for each set of coordinates, and our new Axioms
I–VI′ will yield us nothing more than euclidean or hyperbolic space. Under the
elliptic hypothesis there are two possibilities:—

Elliptic space. This is a space obeying Axioms I–VI′, and the elliptic hy-

pothesis. If n successive segments whose measures are
kπ

n
be taken upon a line

as indicated in V′, the last extremity of the last segment will be identical with
the first extremity of the first. Two lines of the same plane will have one and
only one common point, so that no point has an equivalent. We may take as
a consistent region the assemblage of all points whose distances from a given

point are of measure less than
kπ

4
. If two points be of such a nature that the

expression for the cosine of the measure of the kth part of their distance van-

ishes, we shall say that the measure of their distance is
kπ

2
. Two points will

always have a determinate distance and a single segment, unless the measure

of their distance is
kπ

2
, in which case they determine two segments with the

same extremities. These last two segments may also, with propriety, be called
half-lines. The definition of an interior angle given in Chapter II may be re-
tained, but the concept of half-plane is illusory, for a line will not divide the
plane. It may, however, be modified much as we have modified the definition of
a half-line, and from it a definition built up for a dihedral angle. We leave the
details to the reader. An example of elliptic geometry will be furnished by any
set of points in one to one correspondence with all sets of homogeneous values
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x0 : x1 : x2 : x3 where also cos
d

k
=

(xy)√
(xx)

√
(yy)

. For instance, let us take

as points concurrent lines of a four dimensional space (euclidean, for example)
and mean by distance the measure of the angle 5

π

2
formed by two lines.

Spherical space. This is also a space obeying Axioms I–VI′ and the ellip-
tic hypothesis. Each point will have one equivalent. If n successive congruent

distances be taken upon a line whose measures are
kπ

n
, the last extremity of

the last will be equivalent to the first extremity of the first. We may take as a
consistent region the assemblage of all points the measures of whose distances

from a given point are less than
kπ

2
. The measure of the distance of two equiv-

alent points shall be defined as the number kπ. Any two nonequivalent points
will have a well-defined segment. We may find a definition for a half-line analo-
gous to that given in the elliptic case, and so for half-plane, internal angle, and
dihedral angle.

An example of spherical geometry will be furnished by the geometry of a
hypersphere in four dimensional euclidean space, meaning by the distance of
two points, the length of the shorter arc of a great circle connecting them.

A simple example of a two dimensional elliptic geometry is offered by the
euclidean hemisphere, where opposite points of the limiting great circle are
considered as identical. A two dimensional spherical geometry is clearly offered
by the euclidean sphere.

The elliptic and spherical spaces which we have thus built up are, in one
respect, more complete than euclidean or hyperbolic space, in that there is in
the first two cases always a point to correspond with every set of real values, not
all zero, that may be attached to our four homogeneous coordinates x, while in
the latter cases this is not so. We bring our euclidean and hyperbolic geometries
up to an equality with the others by extending our concept point . Let us begin
with the euclidean case where there is a point corresponding to every real set
of homogeneous values x0 : x1 : x2 : x3, provided that x0 6= 0. Now a set of
values 0 : y1 : y2 : y3 will determine at each real point (x) a line, the coordinates
of whose points are of the form λyi + µxi, and if (x) be varied off of this line,
we get a second line coplanar with the first. Our coordinates 0 : y1 : y2 : y3
will thus serve to determine a bundle of lines, and this will have exactly the
same descriptive properties as a bundle of concurrent lines. We may therefore
call the bundle an ideal point , and assign to it the coordinates (y). Two ideal
points will determine a pencil of planes having the same descriptive properties
as a pencil of planes through a common line. We shall therefore say that they
determine, or have in common, an ideal line. Two lines whose intersection is
ideal shall be said to be parallel, as also, two planes which meet in an ideal line.
These definitions of parallel are for euclidean space only. The assemblage of all
ideal points will be characterized by the equation

x0 = 0.

This we shall call the equation of the ideal plane which is supposed to consist
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of the assemblage of all ideal points. Ideal points and lines shall also be called
infinitely distant , while the ideal plane is called the plane at infinity. We shall
in future use the words point, line, and plane to cover both ideal elements
and those previously defined, which latter may be called, in distinction, actual .
Actual and ideal elements stand on exactly the same footing with regard to
purely descriptive properties. No congruent transformation can interchange
actual and ideal elements. We shall later return to the meaning of such words
as distance where ideal elements enter.

In the hyperbolic case we may apply the same principles with slight modifi-
cation. There will be a real point corresponding to each set of real homogeneous
coordinates (ẋ) for which

k2ẋ0
2 + ẋ1

2 + ẋ2
2 + ẋ3

2 < 0.

A set of real homogeneous values for (ẋ), for which this inequality does not
hold, will determine a bundle of lines, one through every actual point, any two
of which are coplanar; a bundle with the same descriptive properties as a bundle
of concurrent lines. We shall therefore say that this bundle determines an ideal
point having the coordinates (ẋ). If

k2ẋ0
2 + ẋ1

2 + ẋ2
2 + ẋ3

2 = 0,

the ideal point shall be said to be infinitely distant. If

k2ẋ0
2 + ẋ1

2 + ẋ2
2 + ẋ3

2 > 0,

the ideal point shall be said to be ultra-infinite. Two lines having an infinitely
distant point in common shall be called parallel . Through each actual point will
pass two lines parallel to a given line. An equation of the type

(u̇ẋ) = 0,
1
k2
u̇0

2 + u̇1
2 + u̇2

2 + u̇3
2 > 0,

will give a plane. If the inequality be not fulfilled, the assemblage of all ideal
points whose coordinates fulfil the equation (and there can be no actual points
which meet the requirement) shall be called an ideal plane, the coefficients (u̇)
being its coordinates. There will thus be a plane corresponding to each set of
real homogeneous coordinates (u̇) not all zero. An ideal line shall be defined
as in the euclidean case, and the distinction between actual and ideal shall be
the same as there given. No congruent transformation, as defined so far, can
interchange actual and ideal elements.

Let us take account of stock. By the introduction of ideal elements we have
made each of our spaces a real analytic continuum. In all but the spherical case
there is a one to one correspondence between points and sets of real homogeneous
values not all zero, in spherical space there is a one to one correspondence
of coordinate set and pair of equivalent points. Each of our spaces will fulfil
the fundamental postulates of projective geometry, as we shall develop them
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in Chapter XVIII, or as they have already been developed elsewhere.31 Let
us show hurriedly, how to find figures to correspond to imaginary coordinate
values. Four distinct points will determine six numbers called their cross ratios,
which have a geometrical significance quite apart from all concepts of distance
or measurement.32 An involution will arise when the points of a line are paired
in such a reciprocal manner that the cross ratios of any four are equal to the
corresponding cross ratios of their four mates. If there be no self-corresponding
points, the involution is said to be elliptic. If the points of a line be located by
means of homogeneous coordinates λ : µ, it may be shown that every involution
may be expressed in the form

Aλλ′ +B(λµ′ + λ′µ) + Cµµ′ = 0.

In particular if (y) and (z) be the coordinates of two points, there will exist an
involution on their line determined by the equations

(x) = λ(y) + µ(z), (x)′ = µ(y)− λ(z),

and by a proper choice of running coordinates any elliptic involution may be
put into this form. Did we seek the coordinates of self-corresponding points in
this involution, we should get

(x) = (y)± i(z).

Conversely, every set of homogeneous complex values (y) + i(z) will lead us
in this way to a definite elliptic involution. The involution may be taken to
represent the two sets of conjugate imaginary homogeneous values. We may
separate the conjugate values by the following device. It is not difficult to show
that if a directed distance be determined by two points, it will have the same
sense as the corresponding directed distance determined by their mates in an
elliptic involution. To an elliptic involution may thus be assigned either one of
two senses of description, and we shall define as an imaginary point an elliptic
involution to which such a sense has been attached. Had we taken the other
sense, we should have said that we had the conjugate imaginary point. An
imaginary plane may similarly be defined as an elliptic involution among the
planes of a pencil, with a particular sense of description; an imaginary line as
the intersection of two imaginary planes. It may be shown geometrically that
by introducing imaginary elements under these definitions we have a system of
points, lines, and planes, obeying the same descriptive laws of combination as
do the real points of lines and planes of projective geometry, or the assemblage
of all real homogeneous coordinate sets, which do not vanish simultaneously.33

31Cf. Pieri, ‘I principi della geometria di posizione.’ Memorie della R. Accademia delle
Scienze di Torino, vol. xlviii, 1899.

32Cf. Pasch, loc. cit., p. 164, and Chapter XVIII of the present work. The idea of assigning
to four collinear points a projectively invariant number originated with Von Staudt, Beiträge
zur Geometrie der Lage, Part 2, §§ 19–22, Erlangen, 1858–66.

33Cf. Von Staudt, loc. cit., § 7, and Lüroth, ‘Das Imaginäre in der Geometrie und das
Rechnen mit Wurfen,’ Mathematische Annalen, vol. ix.
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Introducing these imaginary expressions, and the corresponding complex values
for their homogeneous coordinates, we extend our space to be a perfect analytic
continuum.

We must now see what extension must be given to the concept distance,
in order to fit the extended space with which we are, henceforth, to deal. To
begin with, we shall from this time forth identify the two concepts distance
and measure of distance. In other words, as the concept distance comes into
our work effectively only in terms of its measure, i.e. as a number, so we shall
save circumlocution by replacing the words measure of distance by distance
throughout. The distance of two points is thus dependent upon the two points,
and on the unit. In any particular investigation, however, we assume that the
unit is well known from the start, and disregard its existence. We therefore give
as the definition of the distance of two points under the euclidean hypothesis

d =
1

x0y0

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2. (1)

This is, at worst, a two valued function. When it takes a real value, we give
the positive root as the distance, when it is imaginary we may make any one of
several simple conventions as to which root to take. If one or both of the points
considered be ideal, the expression for distance becomes infinite, unless also the
radical vanishes when no distance is determined. Under these circumstances
we shall leave the concept of distance undefined, thus getting pairs of points
disobeying Axiom II′. Notice also that whenever the radical vanishes for non-
ideal points we have points which are distinct, yet have a null distance, and
when such points are included, Axiom XIII may fail.

We shall in like manner identify the concepts angle and measure of angle in
terms of the unit which gives to a right angle the measure

π

2
.

We may proceed in a similar manner in the non-euclidean cases. If (x) and
(y) be the coordinates of two points, we shall define as their distance d, the
solution of

cos
d

k
=

(xy)√
(xx)

√
(yy)

. (2)

This equation in d has, of course, an infinite number of solutions. Before
taking up the question of which shall be called the distance of the two points,
let us approach the matter in a different, and highly interesting fashion due
to Cayley.34 This theory is of absolutely fundamental importance in all that
follows.

The assemblage of points whose coordinates satisfy the equation

(xx) = 0, (3)

shall be called the Absolute. This is a quadric surface, real in the hyperbolic
case, surrounding, so to speak, the actual domain; imaginary in the elliptic and

34Cayley, ‘A sixth memoir on Qualities,’ Philosophical Transactions of the Royal Society
of London, 1859.
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spherical cases; in the last-named, it is the locus of points which coincide with
their equivalents. Every congruent transformation is an orthogonal substitu-
tion, i.e. a linear transformation carrying the Absolute into itself. Let us, by
definition, enlarge our congruent group so that every such transformation shall
be called congruent; certainly it carries a point into a point, and leaves distances
unaltered. In the euclidean case we take as Absolute the conic

x0 = 0, x1
2 + x2

2 + x3
2 = 0, (4)

and define as congruent transformations a certain six-parameter sub-group of
the seven-parameter collineation group which carries it into itself. We shall
return to the study of the congruent group in the next chapter.

Returning to the non-euclidean cases, let us take two points P1, P2 with
coordinates (x) and (y), and let the line connecting them meet the Absolute in
two points Q1, Q2. We obtain the coordinates of these by putting λ(x) + µ(y)
into the equation of the Absolute. The ratio of the roots of this equation will
give one of the two cross ratios formed by the pair of points P1P2 and the pair
Q1Q2; interchanging the roots we get the other cross ratio of the two pairs of
points.35 The value of such a cross ratio will thus be

(xy) +
√

(xy)2 − (xx)(yy)
(xy)−

√
(xy)2 − (xx)(yy)

.

By interchanging the signs of the radicals we change this cross ratio into its
reciprocal, and this amounts to interchanging the members of one of the two

point pairs. Let us denote this expression by e
2id
k .

e

id

k =
(xy) +

√
(xx)(yy)− (xy)2√

(xx)
√

(yy)
,

cos
d

k
=

(xy)√
(xx)

√
(yy)

. (5)

If we write the cross ratios of the pair of points P1P2 and the pair Q1Q2

as (P1P2, Q1Q2), we may re-define our noneuclidean distance by the following
theorem:—

Theorem. If d be the distance of two points P1 and P2 whose line meets the
Absolute in Q1 and Q2,

d =
k

2i
loge(P1P2, Q1Q2). (6)

The great beauty of this definition is that it brings into clear relief the
connexion between distance and the congruent group, for the cross ratio in

35For the geometrical interpretation of a cross ratio when some of the elements are imaginary,
see Von Staudt, loc. cit., §28, and Lüroth, loc. cit.
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question is, of course, invariant under all linear transformation which carry the
Absolute into itself, i.e. under all congruent transformations. Let the reader
show that a corresponding projective definition may be given for an angle.

Our distances, as so far defined, are infinitely multiple valued functions.
There is no great practical utility in rendering them single valued by definition.
It is, however, perhaps worth while to carry it through in one case.

If we have two real points of the actual domain, the expression (P1P2, Q1Q2)
will have two values, real in the hyperbolic, pure imaginary in the elliptic and
spherical case, and these two are reciprocals, so that the resulting expressions
for d will differ only in sign, for each determination of the logarithm. We may
therefore take the distance as positive. Did we seek, not for a distance, but a
directed distance, then it would be necessary to distinguish once for all between
Q1 and Q2 and in each particular case between the pair P1P2, and the pair P2P1,
the directed distance will have a definite value sometimes positive, sometimes
negative.

Let us specialize by confining ourselves to the hyperbolic case. We have
defined the distance of two actual points. Still restricting ourselves to the real
domain, suppose that we have an actual and an ultra-infinite point. Let us
choose such a unit of measure that k2 = −1. Our cross ratio is here negative,
with an absolute value r let us say, so that the distance expression takes the
form 1

2 [log r ± (2m+ 1)πi]. Let us choose in particular

d = 1
2 log r +

πi

2
.

Next consider two ultra-infinite points. If the line connecting them meet the
Absolute in real points, we shall have a real cross ratio as before, and hence a
real positive distance. If, however, this real line meet the Absolute in conjugate
imaginary points, the expression for the cross ratio becomes imaginary, and the
simplest expression for their distance is pure imaginary. The absolute value of
this expression will run between 0 and

π

2
, for the roots of 1

2 logA = X differ
by πi. We may, hence, represent all of these cross ratios in the Gauss plane by
points of the axis of pure imaginaries between 0 and

π

2
.

If the line connecting two ultra-infinite points be tangent to the Absolute,
the cross ratio is unity, and we may take the distance as zero. The distance
from a point of the Absolute to a point not on its tangent will be infinite; the
distance to a point on the tangent is absolutely indeterminate, for the cross ratio
is indeterminate. We may, in fact, consider the cross ratios of three coincident
points and a fourth, as the limiting case of any cross ratio which we please.

Leaving aside the indeterminate case, we are thus able to represent the
distance of any two real points of hyperbolic space in the Gauss plane by a
point on the positive half of the axis of reals, by a point of the segment of the
origin and

π

2
i, or by a point of the horizontal half-line

∣∣∣π
2
i∞ , and as two points

move continuously in the real domain of the hyperbolic plane, the points which
represent their distance will move continuously on the lines described.
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Let us now take two points of the hyperbolic plane, real or imaginary. We see
that the roots of 1

2 logA = X differ by multiples of πi, so that we may assign to

d an imaginary part whose Absolute value 5
π

2
. Moreover, by choosing properly

between the two reciprocal values of the cross ratio, we may ensure that the real
part of d shall not be negative. If two points be conjugate imaginaries, while
their line cuts the Absolute in real points, the cross ratio is imaginary, and the
expression for distance is pure imaginary, which we may represent by a point
of the segment of the origin and −π

2
i. If both pairs of points be conjugate

imaginaries, the cross ratio is real and negative, so that the distance may be
represented in the formX−π

2
i. We shall define as the distance of two points that

value of the logarithm of a cross ratio which they form with the intersection of
their line and the Absolute, which in the Gauss plane is represented by a point
of the infinite triangle whose vertices are ∞, 0 +

π

2
i, 0 − π

2
i. The possible

ambiguities for points on the sides of this triangle have already been removed
by definition.

We have already seen that when euclidean space has been enlarged to be a
perfect analytic continuum, imaginary points and distances come in which do
not obey all of our axioms. In the hyperbolic case we shall find real, though
ultra-infinite, points which do not at all obey the principles laid down for a
consistent region.36 Let us take three points of the ultra-infinite region of the
actual hyperbolic plane x3 = 0, say (x), (y), (z). As these points are supposed
to be real we may assume that x1, x2 are real, while x0 is a pure imaginary, and
that a like state of affairs exists for (y) and (z). We shall further assume that
the lines connecting them shall intersect the Absolute in real, distinct points.
We have then

(yz)2 − (yy)(zz) > 0, (xx) > 0,

(zx)2 − (zz)(xx) > 0, (yy) > 0,

(xy)2 − (xx)(yy) > 0, (zz) > 0.

(7)

Let us, for the moment, indicate the distance from (x) to (y) by xy, and
assume

yz = zx = xy.

We shall also take
h = i, cos

d

k
= cosh d.

Under what circumstances shall we have?

yz = zx+ xy,

cosh(yz − zx) = coshxy,

36The developments which follow are taken from Study, ‘Beiträge zur nicht-euklidischen
Geometrie.’ American Journal of Mathematics, vol. xxix, 1907.
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√
(yz)2

(yy)(zz)

√
(zx)2

(zz)(xx)
−

√
(xy)2

(xx)(yy)

=

√
(yz)2 − (yy)(zz)

(yy)(zz)

√
(zx)2 − (zz)(xx)

(zz)(xx)
.

The terms on the left are essentially positive as they represent hyperbolic
cosines, those on the right are positive, being hyperbolic sines; we may therefore
square the inequality

(xx)(yy)(zz) + 2|(yz)(zx)(xy)| − (xx)(yz)2 − (yy)(zx)2 − (zz)(xy)2 5 0. (8)

We see that if
(yz)(zx)(xy) > 0, (9)

we are at liberty to drop the absolute value signs in the second term, and the
whole expression is the square of the determinant |xyz| which is zero or negative.
We see, therefore, that under these circumstances,

|yz| = |zx|+ |xy|.

To see what region of the ultra-infinite domain is determined by (9), let us sketch
the Absolute as a conic, and draw tangents thereunto from (y) and (z). X must
lie within the quadrilateral of these tangents or the vertical angle at (y) or (z).
The conic and tangents determine four quasi-triangles with two rectilinear and
one curvilinear side each. Since (yy) > 0 our inequality (9) will hold within the
quasi-triangles whose vertices are (y) and (z) and within the verticals of these
two angles.

Fig. 3

Let us now assume, on the contrary, that we are in the other quasi-triangles

(yz)(zx)(xy) < 0.
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Our original inequality (8) will still hold if

|xyz|2 − 4(yz)(zx)(xy) < 0, (10)

and, conversely, this inequality certainly holds if (7) does. If we look on (y) and
(z) as fixed, and (x) as variable, the curve

|xyz|2 − 4(yz)(zx)(xy) = 0,

in so far as it lies in the two quasi-triangles we are now considering, will play the
part of the segment of (y) and (z).37 In a region where (8) holds, a rectilinear
path is the longest from (y) to (z).

37For a complete discussion, see Study, loc. cit., pp. 103–8. Fig. 3 is taken direct.

75



CHAPTER VIII

THE GROUPS OF CONGRUENT TRANSFORMATIONS

The most significant idea introduced in the last chapter was that of the Ab-
solute, and its connexion with the concept of distance. Every collineation of
non-euclidean space which keeps the Absolute in place was defined as a con-
gruent transformation; we had already seen in Chapter V that every congruent
transformation was such a collineation. We may go one step further, and say
that every analytic transformation which carries the Absolute into itself alone
is a congruent transformation. Suppose that we have

x0
′ = f0(x0x1x2x3), x1

′ = f1(x0x1x2x3), x2
′ = f2(x0x1x2x3),

x3
′ = f3(x0x1x2x3),

(x′x′) = P (xx).

P must be a constant, for were it a function of (x) the Absolute would be carried
into itself, and into some other surface P = 0, which is contrary to hypothesis.
Replacing (x) by λ(x) + µ(y) we see that we shall also have

(x′y′) = P (xy),

whence we may easily show that the transformation is a collineation.
It is, of course, evident, that in the complex domain, the congruent groups

of elliptic and hyperbolic space are identical, as they are merely the quaternary
orthogonal group. In the real domain, however, the structure of the two is quite
different, and our present task shall be the actual formation of those groups,
pointing out besides certain interesting subgroups. We shall incidentally treat

the euclidean group as a limiting case where
1
k2

≡ 0.
The group of translations of the hyperbolic line will depend on one param-

eter, and may be written, if k2 = −1,

ẋ′0 = ẋ0 cosh d+ ẋ1 sinh d.
ẋ′1 = ẋ0 sinh d+ ẋ1 cosh d.

(1)

We get a reflection by reversing the signs in the second equation. In the elliptic
or spherical case we shall have similarly

x0
′ = x0 cos d+ x1 sin d,

x1
′ = −x0 sin d+ x1 cos d.

(2)

To pass to the euclidean case, replace x0, x0
′ by kx0, kx0

′ and d by
d

k
, divide

out k, and then put
1
k2

= 0.

x1
′

x0
′ = x′ = x− d. (3)
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The ternary domain is more interesting. Let us express the Absolute in the
hyperbolic plane in the following parametric form

ẋ0 = t1
2 + t2

2, ẋ1 = t1
2 − t2

2, ẋ2 = 2t1t2.

As the Absolute must be projectively transformed into itself, we may put

σt1
′ = α11t1 + α12t2,

σt2
′ = α21t1 + α22t2,

|αij | = ∆ 6= 0,

and this will lead to the general ternary transformation

ρẋ′0 = (α11
2 + α12

2 + α21
2 + α22

2)ẋ0 + (α11
2 + α21

2 − α12
2 − α22

2)ẋ1

+ 2(α11α12 + α21α22)ẋ2,

ρẋ′1 = (α11
2 − α21

2 + α12
2 − α22

2)ẋ0 + (α11
2 − α21

2 − α12
2 + α22

2)ẋ1

+ 2(α11α12 − α21α22)ẋ2, (4)

ρẋ′2 = 2(α11α21 + α12α22)ẋ0 + 2(α11α21 − α12α22)ẋ1

+ 2(α11α22 + α21α12)ẋ2.

If we view the matter geometrically, we see that there are three distinct
possibilities. First the two fixed points of the Absolute conic are conjugate
imaginaries. The real line connecting them is ultra-infinite, and has an actual
pole with regard to the Absolute. This will give a rotation about this point,
and we shall have

(α11 + α22)2 − 4∆ = (α11 − α22)2 + 4α12α21 < 0.

If the fixed points of the Absolute conic be real, the transformation, in the
actual domain, will appear as a sliding along a real line, if ∆ > 0, or a sliding
combined with a reflection in a perpendicular plane through this line if ∆ < 0.
In the third case the two fixed points of the Absolute conic fall together, and
the third fixed point of the plane falls there too. The transformation carries a
pencil of parallel lines into itself.

The elliptic case is treated similarly, by a judicious introduction of imagi-
naries. We may write the Absolute

x0 = i(t12 + t2
2),

x1 = t1
2 − t2

2,

x2 = 2t1t2.

Let us now take the binary substitution

σt1
′ = (α+ βi)t1 − (γ + δi)t2,

σt2
′ = (γ − δi)t1 + (α− βi)t2.
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We come thus to the general group of congruent transformations

ρx0
′ = (α2 − β2 + γ2 − δ2)x0 + 2(γδ − βα)x1 + 2(βγ + δα)x2,

ρx1
′ = 2(γδ + βα)x0 + (α2 − β2 − γ2 + δ2)x1 + 2(βδ − γα)x2,

ρx2
′ = 2(βγ − δα)x0 + 2(βδ + γα)x1 + (α2 + β2 − γ2 − δ2)x2.

∆ = (α2 + β2 + γ2 + δ2)3.

(5)

These forms remind us at once of like forms occurring in the theory of func-
tions. Suppose, in fact, that we have the euclidean sphere

X2 + Y 2 + Z2 = 1.

The geometry thereof will be exactly our spherical geometry, and we wish for
the group of congruent transformations of this sphere into itself. Let us project
the sphere stereographically from the north pole upon the equatorial plane, and,
considering this as the Gauss plane, take the linear transformation

z′ =
(α+ βi)z − (γ + δi)
(γ − δi)z + (α− βi)

, z′ =
(α− βi)z − (γ − δi)
(γ + δi)z + (α+ βi)

.

These equations are seen at once to be transformable into the others by a
simple change of variables.

To pass over to the euclidean case, put

x =
x1

x0
, y =

y1
y0
,

x′ = C1 +A1x+B1y,

y′ = C2 +A2x+B2y,

A1B2 −A2B1 = A1
2 +B1

2 = A2
2 +B2

2 = 1.

(6)

Notice that here the group

x′ = c1 + x, y′ = c2 + y,

is an invariant sub-group.
The congruent groups in three dimensions are of the same general form as

those in two, albeit the structure is a trifle more complicated. We wish for the
six-parameter groups leaving invariant respectively a real, non-ruled quadric,
an imaginary quadric of real equation, and an imaginary conic with two real
equations. The solution has of course, long been known.38

The Absolute of hyperbolic space may be interpreted as a euclidean sphere
of radius one, and the problem of finding all congruent transformations of hy-
perbolic space, is the same as that of finding all collineations carrying such a

38The literature of this subject is large. The first writer to express the general orthogonal
substitution in terms of independent parameters was Cayley, ‘Sur quelques propriétés des
déterminants gauches,’ Crelle’s Journal, vol. xxxii, 1846. The treatment here given follows
broadly Chapters VI and VII of Klein’s ‘Nicht-euklidische Geometric’, lithographed notes,
Göttingen, 1893.
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sphere into itself. Let us represent this sphere parametrically in terms of its
rectilinear generators

ẋ0 = zz̄ + 1,
ẋ1 = zz̄ − 1,
ẋ2 = z + z̄,

ẋ3 = −i(z − z̄).

Let us now take the linear transformation

z′ =
αz + β

γz + δ
, z̄′ =

ᾱz̄ + β̄

γ̄z̄ + δ̄
.

The six-parameter group of congruent transformations of positive modulus
will be

ρẋ′0 = (αᾱ+ ββ̄ + γγ̄ + δδ̄)ẋ0 + (αᾱ− ββ̄ + γγ̄ − δδ̄)ẋ1

+ (αβ̄ + ᾱβ + γδ̄ + γ̄δ)ẋ2 + i(αβ̄ − ᾱβ + γδ̄ − γ̄δ)ẋ3,

ρẋ′1 = (αᾱ+ ββ̄ + γγ̄ − δδ̄)ẋ0 + (αᾱ− ββ̄ − γγ̄ + δδ̄)ẋ1

+ (αβ̄ + ᾱβ − γδ̄ − γ̄δ)ẋ2 + i(αβ̄ − ᾱβ − γδ̄ + γ̄δ)ẋ3, (7)

ρẋ′2 = (αγ̄ + ᾱγ + βδ̄ + β̄δ)ẋ0 + (αγ̄ + ᾱγ − βδ̄ − β̄δ)ẋ1

+ (αδ̄ + ᾱδ + βγ̄ + β̄γ)ẋ2 + i(αδ̄ − ᾱδ − βγ̄ + β̄γ)ẋ3,

− ρẋ′3 = i(αγ̄ − ᾱγ + βδ̄ − β̄δ)ẋ0 + i(αγ̄ − ᾱγ − βδ̄ + β̄δ)ẋ1

+ i(αδ̄ − ᾱδ + βγ̄ − β̄γ)ẋ2 − (αδ̄ + ᾱδ − βγ̄ − β̄γ)ẋ3.

∆ = [(αδ − βγ)(ᾱδ̄ − β̄γ̄)]2.

This sub-group might properly be called the group of motions. The total
group is made up of these and the six-parameter assemblage of transformations
of negative discriminant called symmetry transformations. We reach these latter
by writing

z′ =
α′z̄ + β′

γ′z̄ + δ′
, z̄′ =

ᾱ′z + β̄′

γ̄′z + δ̄′
.

The distinction between motions and symmetry transformations stands out
in clear relief when we consider the effect upon the Absolute. The sub-group of
motions includes the identical transformation, and any motion may be reached
by a continuous change in the six essential parameters from the values which
give the identical transformation, without ever causing the modulus to vanish.
This shows that as, under the identical transformation, each generator of the
Absolute stays in place, so, under the most general motion, the generators of
each set are permuted among one another. On the contrary, the most general
symmetry transformation will arise from the combination of the most general
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motion with a reflection, and it is easy to see that a reflection will interchange
the two sets of generators.

In the elliptic case we shall have the group of all real quaternary orthogonal
substitutions. An extremely elegant way of expressing these is offered by the
calculus of quaternions.

Let us, following the Hamiltonian notation, assume three new symbols i, j,
k:

i2 = j2 = k2 = ijk = −1.

We assume that they obey the associative and commutative laws of addition,
the associative and distributive laws of multiplication. An expression of the
type

p0 + p1i+ p2j + p3k

is called a quaternion, whereof √
(pp)

is called the Tensor . It is easy to show that the tensor of the product of two
quaternions is the product of their tensors.

Let us next write

x0
′ + x1

′i+ x2
′j + x3

′k = P (x0 + x1i+ x2j + x3k)Q, (8)

where P and Q are quaternions. Multiplying out the right-hand side, and
identifying the real parts and the coefficients of i, j, k, we have x0

′x1
′x2

′x3
′

expressed as linear homogeneous functions of x0x1x2x3. The modulus of the
transformation will be different from zero, and we shall have

(x′x′) = (xx) · |P |2 · |Q|2.

These equations will give the six-parameter group of motions, the group of
symmetry transformations will arise from

x0
′ + x1

′i+ x2
′j + x3

′k = P ′(x0 − x1i− x2j − x3k)Q′,

the distinction between motions and symmetry transformations being as in the
hyperbolic case.

Our group of motions is half-simple, being made up of two invariant sub-
groups G3G3

′ obtained severally by assuming that Q or P reduces to a real
number. We obtain their geometrical significance as follows:—

The group of motions G6 can be divided into two invariant three-parameter
sub-groups g3g3′ by resolving it into the two groups which keep invariant all
generators of the one or the other set on the Absolute. Now were it possible to
divide G6 into invariant three-parameter sub-groups in two different ways, the
highest common factor of g3 or g3′ with G3, would be an invariant sub-group,
not only of G6 but of g3. This may not be, for g3 is nothing but the binary
projective group which has no invariant sub-groups. Hence the groups g3g3′ are
identical with G3G3

′, and the latter keep the one or the other set of generators
all in place.
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It is well worth our while to look more deeply into the properties of these
sub-groups. Let us distinguish the two sets of generators of the Absolute by
calling the one left, and the other right. This may be done analytically by
adjoining a number i to our domain of rationals. Two lines which cut the same
left (right) generators of the Absolute shall be called left (right) paratactic.39

As the conjugate imaginary to each generator of the Absolute belongs to the
same set as itself, we see that through each real point will pass a real left and
real right paratactic to each real line; and the same will hold for each real plane.
Of course there are possible complications in the imaginary domain, but these
need not concern us here.

Let us now look at a real congruent transformation which keeps all right
generators invariant. Two conjugate imaginary left generators will also be in-
variant, and every line meeting these two will be carried into itself, every other
line will be carried into a line right paratactic to itself. Such a transformation
shall be called a left translation, since the path curves of all points will be a
congruence of left paratactic lines. In fact this congruence will give the path
curves for a whole one-parameter family of left translations. Let the reader show
that under a translation, any two points will be transported through congruent
distances.

Before leaving the elliptic case, let us notice that in the elliptic plane a
reflection in a line is identical with a reflection in a point, or a rotation through
an angle π, in a spherical plane they are different, and a reflection in a line
is the same as a rotation through an angle π coupled with an interchange of
each point with its equivalent. In three dimensions, there is never any identity
between a rotation and a reflection, on the other hand nothing new is brought
in by interchanging each point with its equivalent, for as each plane is hereby
transformed into self, we may split up the transformation into a reflection in a
plane, a reflection in a second plane perpendicular to the first, and a rotation
through an angle π about a line perpendicular to both planes.

To pass to the limiting euclidean case

x′ = A0 +A1x+A2y +A3z,

y′ = B0 +B1x+B2y +B3z,

z′ = C0 + C1x+ C2y + C3z,

(9)

where ‖A1B2C3‖ is the matrix of a ternary orthogonal substitution.
There will be a three-parameter invariant sub-group; that of all translations

x′ = A0 + x,

y′ = B0 + y,

39The more common name for such lines is ‘Clifford parallels’. The word paratactic is
taken from Study, ‘Zur Nicht-euklidischen und Liniengeometrie,’ Jahresbericht der deutschen
Mathematikervereinigung, xi, 1902. We have already defined parallels as lines intersecting
on the Absolute, and although in the present case such lines cannot both be real, yet it is
better to be consistent in our terminology, especially since we shall find in Chapter XVI a
transformation carrying parallelism into parataxy. Clifford’s discussion is in his ‘Preliminary
Sketch of Biquaternions’, Proceedings of the London Mathematical Society, vol. iv, 1873
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z′ = C0 + z.

In like manner we may find the six-parameter assemblage of symmetry trans-
formations.
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CHAPTER IX

POINT, LINE, AND PLANE TREATED ANALYTICALLY

The object of the present chapter is to return, as promised in Chapter VI,
to the problems of elementary non-euclidean geometry, from the higher point of
view gained by extending space to be a perfect analytic continuum. We shall find
in the Absolute a Deus ex Machina to relieve us from many an embarrassment.
We shall leave aside the euclidean case, and, for the most part, handle all of our
non-euclidean cases together, leaving to the reader the simple task of making
the distinction between the elliptic and the spherical cases. Otherwise stated,
our present task is to express the fundamental metrical theorems of point, line,
and plane, in terms of the invariants of the congruent group.

Let us notice, at the outset, that the principle of duality plays a fundamental

rôle. The distance of two points is
k

2i
× logarithm of the cross ratio that they

form with the points where their line meets the Absolute, the angle of two

planes is
1
2i
× logarithm of the cross ratio which they form with two planes

through their intersection, tangent to the Absolute; the distance from a point

to a plane is
πk

2
minus its distance to the pole of that plane with regard to

the Absolute. Two intersecting lines or planes which are conjugate with regard
to the Absolute are mutually perpendicular. Two points which are conjugate
with regard to the Absolute shall be said to be mutually orthogonal . In the real
domain of hyperbolic space, if one of two such points be actual, the other must
be ideal; the converse is not necessarily true.

Let us begin in the non-euclidean plane, say x3 = 0. Let us take two points
A, B with coordinates (x) and (y) respectively, and find the two points of their
line which are at congruent distances from them. These shall be called the
centres of gravity of the two points, and are, in fact, the two points which
divide harmonically the given points, and the intersections of their line with the
Absolute. We purposely exclude the spherical case, where the centres of gravity
will be equivalent points.

The necessary and sufficient condition that the point λ(x) + µ(y) should be
at congruent distances from (x) and (y) that

λ : µ =
√

(yy) : ±
√

(xx).

The coordinates of the centres of gravity will thus be( x√
(xx)

± y√
(yy)

)
. (1)

Let the reader discover what complications may arise in the ideal domain.
Let us next take three non-collinear points A, B, C with the coordinates

(x), (y), (z). A line connecting (x) with a centre of gravity of (y) and (z) will
be √

(yy) |Xxz|+
√

(zz) |Xxy| = 0.
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It is clear that such lines are concurrent by threes, in four points which may be
called the centres of gravity of the three given points. On the other hand the
centres of gravity of our pairs of points are collinear in threes. Lastly, notice that
a dual theorem might be reached by interchanging the objects, point and line,
distance and angle; by taking, in fact, a polar reciprocation in the Absolute:—

Theorem 1. The centres of
gravity of the pairs formed from
three given points are collinear by
threes on four lines. The lines from
the given points to the centres of
gravity of their pairs are concurrent
by threes in four points.

Theorem 1′. The bisectors of the
angles formed by three coplanar but
not concurrent lines are concurrent
by threes in four points. The points
where these bisectors meet the given
lines are collinear by threes on four
lines.

The centres of gravity of the points (x), (y), (z) are easily seen to be( x√
(xx)

± y√
(yy)

± z√
(zz)

)
. (2)

Returning to the line BC we see that the coordinates of its pole with regard
to the Absolute will have the coordinates (s), where for every value of (r)

(rs) ≡ |ryz|.

The equation of the line connecting this point with A, i.e. the line through A
perpendicular to BC, will be

(Xy)(zx)− (Xz)(xy) = 0.

If we permute the letters x, y, z cyclically twice, we get two other equations of
the same type, and the sum of the three is identically zero, so that

Theorem 2. The lines through
each of three given non-collinear
points, perpendicular to the line of
the other two, are concurrent.

Theorem 2′. The points on each
of three coplanar but not concurrent
lines, orthogonal to the intersection
of the other two, are collinear.

Returning to a centre of gravity of the two points BC, we see that a line
through it perpendicular to the line BC will have the equation∣∣∣∣∣∣

(xy) (xz)
(yy)√
(yy)

+
(yz)√
(zz)

(yz)√
(yy)

+
(zz)√
(zz)

∣∣∣∣∣∣ = 0,

[ (yz)√
(yy)

√
(zz)

− 1
][ (xy)√

(yy)
− (xz)√

(zz)

]
= 0.

The first factor will vanish (in the real domain) only when (y) and (z) are
identical, the equation will then be

(xy)√
(yy)

− (xz)√
(zz)

= 0.
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We see immediately from the form of this equation, that all points of this
line are at congruent distances from (y) and (z), thus confirming II. 33.

Theorem 3. If three non-collinear
points be given, the perpendiculars
to the lines of their pairs at the
centres of gravity of these pairs are
concurrent by threes in four points,
each at congruent distances from all
three of the given points.

Theorem 3′. If three coplanar
but not concurrent lines be given,
the points orthogonal to their in-
tersections on the bisectors of the
corresponding angles are collinear
by threes on four lines, making
congruent angles with all three of
the given lines.

Let us now suppose that besides our three original points, we have three
others lying one on each of the lines of the first set as follows

A′ = (ly +mz),
B′ = (pz + qx),
C ′ = (rx+ sy).

Let us, for the moment, suppose that we are restricted to a consistent region
of the plane. Then we shall easily see from Axiom XVI that if AA′, BB′, CC ′

be concurrent

sin
−−→
BA′

k

sin
−−→
CA′

k

·
sin

−−→
CB′

k

sin
−−→
AB′

k

·
sin

−−→
AC ′

k

sin
−−→
BC ′

k

< 0.

On the other hand, if A′, B′, C ′ be collinear,

sin
−−→
BA′

k

sin
−−→
CA′

k

·
sin

−−→
CB′

k

sin
−−→
AB′

k

·
sin

−−→
AC ′

k

sin
−−→
BC ′

k

> 0.

Now, more specifically, we see that

sin2 BA
′

k
=

m2
[
(yy)(zz)− (yz)2

]
(yy) [l2(yy) + 2lm(yz) +m2(zz)]

,

whence  sin
−−→
BA′

k

sin
−−→
CA′

k

·
sin

−−→
CB′

k

sin
−−→
AB′

k

·
sin

−−→
AC ′

k

sin
−−→
BC ′

k

 =
(
mqs

lpr

)2

.

The equation of the line AA′ will be

l|Xxy|+m|Xzx| = 0.
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And the condition for concurrence for the three lines

(lpr +mqs) · |xyz|2 = 0,

and this will give
mqs

lpr
= −1.

On the other hand, we easily see that if A′, B′, C ′ be collinear

lpr −mqs = 0.

Theorem 4. If A′, B′, C ′ be three points lying respectively on the lines BC,
CA, AB, all six points being in a consistent region, then the expression

sin
−−→
BA′

k

sin
−−→
CA′

k

·
sin

−−→
CB′

k

sin
−−→
AB′

k

·
sin

−−→
BC ′

k

sin
−−→
AC ′

k

,

will be equal to −1 when, and only when, AA′, BB′, CC ′ are concurrent, while
it will be equal to 1, when, and only when, A′, B′, C ′ are collinear.

These are, of course, merely the analogs of the theorems of Menelaus and
Ceva. It is worth noticing also, that they will afford a sufficient ground for a
metrical theory of cross ratios.

Let us next suppose that A′ is a point where a bisector of an angle formed
by the lines BA, CA, meets BC. We find l and m easily in this case, by noticing
that A′ must be at congruent distances from AB and AC, thus getting

(y
√

(zz)(xx)− (xz)2 + z
√

(xx)(yy)− (xy)2),

sin
BA′

k
: sin

CA′

k
= sin

BA

k
: sin

CA

k
.

Theorem 5. If three noncollinear
points be given, each bisector of an
angle formed by the lines connecting
two of the points with the third
will meet the line of the two points
in such a point that the ratio of
the sines of the kth parts of its
distances from the two points is
equal to the corresponding ratio for
these two with the third point.

Theorem 5′. If three coplanar
but non-concurrent lines be given,
each centre of gravity of a pair
of points where two of the lines
meet a third determines with the
intersection of this pair of lines such
a line, that the ratio of the sines
of the angles which it makes with
these two lines, is equal to the
corresponding ratio for the two lines
with the third.

Theorem 6. The locus of a point
which moves in a plane, in such a
way that the ratio of the sines of
the kth parts of its distances from
two points is constant, is a curve of
the second order.

Theorem 6′. The envelope of a
line which moves in such a way in
a plane, that the ratio of the sines
of its angles with two fixed lines
is constant, is an envelope of the
second class.
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It would be quite erroneous to suppose that either of these curves would be,
in general, a circle. Let the reader show that if an angle inscribed in a semicircle
be a right angle, the euclidean hypothesis holds.

Our next investigation shall be connected with parallel lines. We suppose,
for the moment, that we are in the hyperbolic plane, and that k = i. We shall
hunt for the expression for the angle which a parallel to a given line l passing
through a point P makes with the perpendicular to l through P . This shall be
called the parallel angle of the distance from the point to the line, and if the
latter be d the parallel angle shall be written40

Π(d).

Let us give to the point P the coordinates (y), while the given line has the
coordinates (u). Let (v) be the coordinates of a parallel to (u) through (y). Let
D be the point where the perpendicular to (u) through (y) meets (u). We seek
cos Π(d).

Since (u) and (v) intersect on the Absolute

(uu)(vv)− (uv)2 = 0.

The equation of the line PD will be

|xyu| = 0.

The cosine of the angle formed by u and PD will be

cos Π(d) =
|yuv|

√
vv
√

(uu)(yy)− (yu)2

squaring, and remembering that

(vy) = 0,

cos2 Π(d) =

∣∣∣∣∣∣
(yy) (uy) 0
(uy) (uu) (uv)

0 (uv) (vv)

∣∣∣∣∣∣
(vv)[(uu)(yy)− (uy)2]

,

cos Π(d) =
i(uy)√

(uu)(yy)− (uy)2
,

cos Π(d) = tanh d. (3)

From these we easily see

sinΠ(d) = sech(d); tanΠ(d) = csch(d). (4)

40The concept parallel angle and the notation Π(d) are due to Lobatchewsky.

87



Furthermore, if ]ACB be a right angle

cos ]ABC =
cos Π(BC)
cos Π(AB)

sin]ABC =
ctnΠ(CA)
ctnΠ(AB)

. (5)

cos ]ABC =
sin]CAB
sinΠ(AC)

. (6)

sinΠ(AB) = sin Π(BC) sinΠ(CA) = tan]CAB tan]ABC. (7)

Let the reader prove the correctness of the following construction for the
parallels to P through l:

Drop a perpendicular from P on l meeting it in Q. Take S a convenient
point on the perpendicular to PQ at P , and let the perpendicular to PS at S
meet l at R. Then with P as a centre, and a radius equal to (QR), construct
an arc meeting RS in T . PT will be the parallel required.41

Be it noticed that, as we should expect,

limit
d
.
=0

cos Π(d)
d

= 1.

Let us now find the equations of the two parallels to the line (u) which pass
through the point (y). These two cannot, naturally, be rationally separated one
from the other, so that we shall find the equations of both at once. Let the
coordinates of the line which connects the other intersections of the parallels
and the Absolute be (w). The general form for an equation of a curve of the
second order through the intersections of (u) and (w) with the Absolute will be

l(ux)(wx)−m(xx)− 0,

and this will pass through (y) if

l : m = (yy) : (uy)(wy).

Since this curve is a pair of lines meeting in (y) the polar of (y) with regard
to it will be illusory, i.e. the coefficients of (x) will vanish in

(yy)(uy)(wx) + (yy)(wy)(ux)− 2(uy)(wy)(xy) = 0.

This last equation may be written

(uy)
∣∣∣∣(wx) (wy)
(yx) (yy)

∣∣∣∣+ (wy)
∣∣∣∣(ux) (uy)
(yx) (yy)

∣∣∣∣ = 0.

41The formulae given may be used as the basis for the whole trigonometric structure. Cf.
Manning, Non-euclidean Geometry, Boston, 1901. Manning’s reasoning is open to very grave
question on the score of rigour.
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Now, by the harmonic theory of a quadrangle inscribed in a curve of the
second order, w will pass through the intersection of (u) with the polar of y
with regard to the Absolute, so that we may write

wi = λui + µyi.

Substituting

[2λ(uy) + µ(yy)]
∣∣∣∣(ux) (uy)
(yx) (yy)

∣∣∣∣ = 0.

The coefficients of x0x1x2 will vanish if

λ = −(yy), µ = 2(uy).

Under these circumstances

(wx) = −(yy)(ux) + 2(uy)(xy),
(wy) = (yy)(uy).

Which leads to the required equation

(uy)2(xx) + (ux)2(yy)− 2(ux)(uy)(xy) = 0. (8)

To get the euclidean formula, replace x0 by k0x0 and divide by k. We get
the square of the usual expression

[(uy)x0 − (ux)y0]2 = 0. (9)

The principles which we have followed in studying the metrical invariants of
the plane may be extended with ease to three dimensions. We have merely to
adjoin the fourth homogeneous point or line coordinate.

Let us have four points, not in one plane, with the coordinates (x), (y), (z),
(t) respectively. We easily see that the eight points( x√

(xx)
± y√

(yy)
± z√

(zz)
± t√

(tt)

)
, (10)

will be points of concurrence, four by four, of lines from each of the given points
to the centres of gravity of the other three. These eight may, in fact, be called
the centres of gravity of the four points. The centres of gravity will form with
the given points a desmic configuration.42 The meaning of this phrase is as
follows. Let us indicate the centres of gravity by the signs prefixed to their
radicals, giving always to the first radical a positive sign. We may then divide
our twelve points into three lots as follows:—

(x) (y) (z) (t)
(+ + ++) (+ +−−) (+−+−) (+−−+)
(+ + +−) (+ +−+) (+−++) (+−−−)

(11)

42The desmic configuration was first studied by Stephanos, ‘Sur la configuration desmique
de trois tétraèdres,’ Bulletin des Sciences mathématiques, série 2, vol. iii, 1878.
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We see that a line connecting a point of one lot, with any point of a second,
will pass through a point of the third. The twelve points will thus lie by threes
on sixteen lines, four passing through each. In like manner we shall find that if
we take the twelve planes obtained by omitting in turn one point of each lot, two
planes of different lots are always coaxal with one of the third. Let the reader
who is unfamiliar with the desmic configuration, study the particular case (in
euclidean space) of the vertices of a cube, its centre, and the ideal points of
concurrence of its parallel edges.

Theorem 7. If four non-coplanar
points be given, the lines from each
to the four centres of gravity of
the other three will pass by fours
through eight points which form,
with the original ones, a desmic
configuration.

Theorem 7′. If four non-
concurrent planes be given, the
lines where each meets the planes
which severally are coaxal with each
of the three remaining planes and
a plane bisecting a dihedral angle
of the two still left, lie by fours in
eight planes which, with the original
ones, form a desmic configuration.

Let the reader show that the centres of gravity of the six pairs formed from
the given points will determine a second desmic configuration, and dually for
the planes bisecting the dihedral angles.

Let us seek for a point which is at congruent distances from our four given
points. It is easy to see that there cannot be more than eight such points. Their
coordinates are found to be (s) where, for all values of r,

(rs) ≡
√

(xx) |ryzt| ±
√

(yy) |rztx| ±
√

(zz) |rtxy| ±
√

(tt) |rxyz|. (12)

Theorem 8. If four non-coplanar
points be given, the eight points
which are severally at congruent
distances from them form, with the
original four, a desmic configuration.

Theorem 8′. If four non-
concurrent planes be given, the
eight planes which severally meet
them in congruent dihedral angles,
form, with the original four, a
desmic configuration.

As there are eight points at congruent distances from the four given points,
so there will be eight planes at congruent distances from them, we have but to
take the polars of the eight points with regard to the Absolute. In like manner,
if we consider not the points (x), (y), (z), (t) but their four planes, there will be
eight points at congruent distances from them. The coordinates of these latter
eight will be∣∣∣∣∣∣∣∣x

√√√√√
∥∥∥∥∥∥
y0 y1 y2 y3
z0 z1 z2 z3
t0 t1 t2 t3

∥∥∥∥∥∥
2

± y

√√√√√
∥∥∥∥∥∥
z0 z1 z2 z3
t0 t1 t2 t3
x0 x1 x2 x3

∥∥∥∥∥∥
2

90



± z

√√√√√
∥∥∥∥∥∥
t0 t1 t2 t3
x0 x1 x2 x3

y0 y1 y2 y3

∥∥∥∥∥∥
2

± t

√√√√√
∥∥∥∥∥∥
x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣ .

Theorem 9. If four non-coplanar
points be given, the eight points
which, severally, are at congruent
distances from the planes of the
first four, form, with the first four
points, a desmic configuration.

Theorem 9′. If four non-
concurrent planes be given, the
eight planes which, severally, are at
congruent distances from the points
of concurrence of the first four, form,
with the first four planes, a desmic
configuration.

The parallel angle of a point with regard to a plane can be defined as its
parallel angle with regard to any line of the plane through the foot of the
perpendicular. If the distance from the point to the plane be x, we shall have
for the parallel angle

cos Π(x) = k tan
x

k
. (13)

Definition. A line shall be said to be parallel to a plane, if the point common
to the two be on the Absolute. The cone of parallels to a plane (u) through a
point (y) will have the equation

(uy)2(xx) + (ux)2(yy)− 2(ux)(uy)(xy) = 0. (14)

We now pass to certain metrical invariants of non-euclidean space expressed
in line coordinates. We take as coordinates for the line joining (x) and (y) the
usual Plueckerian form

pij = xiyj − xjyi.

The coordinates of the polar of this line with regard to the Absolute, the Abso-
lute polar let us say, will be

qij = pkl.

The condition for the intersection of two lines (p) and (p′) will be, naturally

(p | p′) ≡ Σ pijp
′
kl = 0. (15)

Each will meet the Absolute of polar of the other if

Σ pijp
′
ij = 0. (16)

Notice that (p | p′) is an invariant under the general group of collineations, while
Σ pijp

′
ij is invariant under the congruent group only.

We shall mean by the distance of two lines the distance of their intersections
with a third line perpendicular to them both. It is easy to see that if two lines
be not paratactic, there will be two lines meeting both at right angles, and
these are indistinguishable in the rational domain, that is, in the general case.
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If, thus, d be taken to indicate the distance of two lines, sin2 d

k
will be a root

of an irreducible quadratic equation, whose coefficients are rational invariants
under the congruent group. Let us seek for this equation.

Let one of our lines be p given by the points (x), (y), while the other is
(p′) given by (x′) and (y′). For the sake of simplifying our calculations we shall
make the obviously legitimate assumptions

(xy) = (xy′) = (x′y) = (x′y′) = 0.

The distances which we wish to find are

sin
d1

k
=

√
(xx)(x′x′)− (xx′)2√

(xx)
√

(x′x′)
sin

d2

k
=

√
(yy)(y′y′)− (yy′)2√

(yy)
√

(y′y′)
.

We have
(xx)(yy)− (xy)2 = Σ pij

2,

and this will vanish only when (p) is tangent to the Absolute, a possibility which
we now explicitly exclude both for (p) and (p′).

(xx)(yy) = Σ pij
2, (x′x′)(y′y′) = Σ p′ij

2
,

(p | p′)2 = |xyx′y′|2

=

∣∣∣∣∣∣∣∣
(xx) 0 (xx′) 0

0 (yy) 0 (yy′)
(xx′) 0 (x′x′) 0

0 (yy′) 0 (y′y′)

∣∣∣∣∣∣∣∣
= [(xx)(x′x′)− (xx′)2][(yy)(y′y′)− (yy′)2],

sin2 d1

k
sin2 d2

k
=

[(xx)(x′x′)− (xx′)2]
(xx)(x′x′)

[(yy)(y′y′)− (yy′)2]
(yy)(y′y′)

. (17)

sin2 d1

k
sin2 d2

k
=

(p | p′)2

Σ pij
2 Σ pij

′2
. (18)

sin2 d1

k
sin2 d2

k
= 1− cos2

d1

k
− cos2

d2

k
+

(xx′)2(yy′)2

Σ pij
2 Σ pij

′2 ;

Σ pijpij
′ =

∣∣∣∣ (xx′) (xy′)
(yx′) (yy′)

∣∣∣∣ = (xx′)(yy′),

cos2
d1

k
+ cos2

d2

k
= 1 +

(Σ pijpij
′)2 − (p | p′)2

Σ pij Σ pij
′2 ,

sin2 d1

k
+ sin2 d2

k
= 1− (Σ pijpij

′)2 − (p | p′)2

Σ pij
2 Σ pij

′2 ,
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Σ pij
2 Σ pij

′2 sin4 d

k
+
[
(Σ pijpij

′)2 − (p | p′)2 − Σ pij
2 Σ pij

′2] sin2 d

k

+ (p | p′)2 = 0. (19)

Σ pij
2 Σ pij

′2 cos4
d

k
+
[
(p | p′)2 − (Σ pijpij

′)2 − Σ pij
2pij

′2] cos2
d

k

+ (Σ pijpij
′)2 = 0. (20)

The square roots of the products of the roots of these two equations are well-
known metrical invariants, and have been studied under the names of moment
and commoment of the two lines.43 We shall return to the moment presently,
attaching a particular value to the signs of the radicals in the denominator. If
two lines intersect the moment must be zero, and if each intersect the abso-
lute polar of the other, the commoment must vanish, thus bringing us back to
equations (15), (16).

To reach the limiting euclidean case we replace, as usual, x0 by kx0, divide

out k2, and put
1
k2

= 0. Then, since

lim
k
.
=∞

k sin
d

k
= d.

We have d2 =

(p | p′)2

(p01
2 + p02

2 + p03
2)(p01

′2 + p02
′2 + p03

′2)− (p01p01
′ + p02p02

′ + p03p03
′)2
,

(21)

the usual formula.
With regard to the signs of the roots in (19) we see that in the hyperbolic

case, where the two lines are actual, one of the points chosen to determine each
line will be actual and the other ideal, so that

Σ pij
2 < 0, Σ pij

′2 < 0,

(p | p′)2 < 0,

sin2 d1

k
sin2 d2

k
< 0.

The square of the moment of the two lines is negative, so that one distance will
be real and the other pure imaginary. In the elliptic case the two distances will
be real.

We shall mean by the angle of two non-intersecting lines the angles of the
plane, one through each, which contain the same common perpendicular. This

43See D’Ovidio, ‘Studio sulla geometria proiettiva,’ Annali di Matematica, vi, 1873, and
‘Le funzioni metriche fondamentali negli spazii di quantesivogliono dimensioni’, Memorie dei
Lincei, i, 1877.
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will be k times the corresponding distance of the absolute polars of the lines.
We thus get for the angles θ of the two lines (p), (p′)

Σ pij
2 Σ pij

′2 sin4 θ + [(Σ pijpij
′)2 − (p | p′)2 − Σ pij

2 Σ pij
′2] sin2 θ

+ (p | p′)2 = 0.

To get the euclidean formula we make the usual substitutions and divisions, and

put
1
k

= 0, thus getting the well-known formula

sin2 θ =
(x1

2 + x2
2 + x3

2)(x1
′2 + x2

′2 + x3
′2)− (x1x1

′ + x2x2
′ + x3x3

′)2

(x1
2 + x2

2 + x3
2)(x1

′2 + x2
′2 + x3

′2)
.

(22)
The coordinates of the line q cutting p and p′ at right angles will be given by

(p | q) = (p′ | q) = Σ pijqij = Σ pij
′qij = (q | q) = 0.

We have defined as a parallel, two lines whose intersection is on the Absolute; let
us now give the name pseudoparallel to two coplanar lines whose plane touches
the Absolute. The necessary and sufficient condition that two lines should be
either parallel or pseudoparallel is that they should intersect, and that there
should be but a single line of their pencil tangent to the Absolute. These
conditions will be expressed by the equations

(p | p′) = [Σ pij
2 Σ pij

′2 − (Σ pijpij
′)2] = 0 (23)

Let the reader notice that when we pass to the limit in the usual way for
the euclidean case, our equations (23) become

(p | p′) = sin θ = 0. (24)

Let us now look at paratactic lines, i.e. lines which meet the same two gener-
ators of one set of the Absolute. Of course it is in the elliptic case only that two
such lines can be real. It is immediately evident that two paratactic lines have
an infinite number of common perpendiculars whereon they always determine
congruent distances, we have, in fact, merely to look at the one-parameter group
of translations of space which carry these two lines into themselves. Conversely,
suppose that the distances of two lines be congruent. Besides our previous
equations connecting (x) (y) (x′) (y′), we have

(xx′)2

(xx)(x′x′)
=

(yy′)2

(yy)(y′y′)
.

The lines p, p′ meet the Absolute respectively in the points(
x
√

(yy)± iy
√

(xx)
)(

x′
√

(y′y′)± iy′
√

(x′x′)
)
.

It is clear, however, that every point of the line(
x
√

(yy) + iy
√

(xx)
)(

x′
√

(y′y′) + iy′
√

(x′x′)
)
,
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and of the line(
x
√

(yy)− iy
√

(xx)
)(

x′
√

(y′y′)− iy′
√

(x′x′)
)
,

belongs to the Absolute; the lines are paratactic. Lastly, the absolute polars of
paratactic lines are, themselves, paratactic. Hence

Theorem 10. The necessary and sufficient condition that two lines should be
paratactic is that their distances or angles should be congruent.

This condition may be expressed analytically by equating to zero the dis-
criminant of either of our equations (19), (20).

{[(p | p′) + (Σ pijpij
′)]2 − Σ pij

2 Σ pij
′2}{[(p | p′) + (Σ pijpij

′)]2

− Σ pij
2 Σ pij

′2} = 0. (25)

This puts in evidence that intersecting lines cannot be paratactic unless they
be parallel, or pseudoparallel.

In conclusion, let us return for an instant to the moment of two real lines.

sin
d1

k
sin

d2

k
=

(p | p′)√
Σ pij

2
√

Σ pij
′2
.

We shall assume that the radicals in the denominator are taken positively,
so that the sign of the moment is that of (p | p′). We now proceed to replace
our concept of a line by the sharper concept of a ray as follows. Let us, in the
hyperbolic case assume always ẋ0 > 0, and in the elliptic case x0 > 0. The
coordinates

pij′ =
∣∣∣∣yi

′ yj
′

zi
′ zj

′

∣∣∣∣ , pij =
∣∣∣∣yi yj

zi zj

∣∣∣∣ ,
shall be called the coordinates of the ray from (y) to (z), and this shall be
considered equivalent to any other ray whose coordinates differ therefrom by
a positive factor. Interchanging (y) and (z) will give a second ray, said to be
opposite to this. The relative moment of two rays is thus determined, both in
magnitude and sign. We shall later see various applications of this concept.
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CHAPTER X

THE HIGHER LINE GEOMETRY

In Chapter IX we took some first steps in non-euclidean line-geometry. The
object of the present chapter is to continue the subject in the special direction
where the fundamental element is not, in general, a line, but a pair of lines
invariantly connected.44

Let us start in the real domain of hyperbolic space and consider a linear
complex whose equation is

(ȧ | ṗ) = 0.

The dots indicate that the coordinates of a point are ẋ0, ẋ1, ẋ2, ẋ3, and choosing
such a unit of measure that k2 = −1, we have for the Absolute

−ẋ0
2 + ẋ1

2 + ẋ2
2 + ẋ3

2 = 0.

The polar of the given complex will have the coordinates

ȧ0i = rḃjk, ȧjk = −rḃ0i, i, j, k = 1, 2, 3,

and the congruence, whose equations are

(ȧ | ṗ) = Σ ȧ0iṗ0i − Σ ȧjkṗjk = 0,

will be composed of all lines of our complex and its absolute polar, or common
to all complexes of the pencil

(lȧ01 −mȧ23) . . . (lȧ23 +mȧ01).

These complexes shall be said to form a coaxal pencil , and the two mutually
absolute polar lines, which are the directrices of the congruence, shall be called
axes of the pencil. We get their plückerian coordinates by giving to l : m such
values that the complex shall be special. Let us now write

ȧ01 + iȧ23 = ρX1,

ȧ02 + iȧ31 = ρX2,

ȧ03 + iȧ12 = ρX3.

(1)

A complex coaxal with the given line will be obtained by multiplying the num-
bers (X) by (l +mi).

A pair of real lines which are mutually absolute polar, neither of which is
tangent to the Absolute, shall be called a proper cross. They will determine a
pencil of coaxal complexes. If either of the lines have the plückerian coordinates

44Practically the whole of this chapter is sketched, without proofs, by Study in his article,
‘Zur nicht-euklidischen etc.,’ loc. cit. The elliptic case is developed at length in the author’s
dissertation, ‘The dual projective geometry of elliptic and spherical space,’ Greifswald, 1904.
For the hyperbolic case, see the dissertation of Beck, ‘Die Strahlenketten im hyperbolischen
Raume,’ Hannover, 1905.
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(a), then the three numbers (X) given by equations (1) may be taken to rep-
resent the cross. These coordinates (X) are homogeneous in the complex (i.e.
imaginary) domain, for the result of multiplying them through by (l+mi) is to
replace the complex (ȧ) by a coaxal complex, and therefore to leave the axes of
the pencil unaltered.

Conversely, suppose that we have a triad of coordinates (X) which are ho-
mogeneous in the imaginary domain. The coordinates of the lines of the corre-
sponding cross will be found from (1) by assigning to ρ such a value that the
coordinates (ȧ) shall satisfy the fundamental plückerian identity. For this it is
necessary and sufficient that the imaginary part of ρ2(XX) should vanish, i.e.

σȧ0 1 =
( Xi√

(XX)
+

Xi√
(X̄X̄)

)
,

σȧj k = −i
( Xi√

(XX)
− Xi√

(X̄X̄)

)
.

(2)

To get the other line of the cross, i.e. the Absolute polar of the line (ȧ), we
merely have to reverse the sign of one of our radicals.

There is one, and only one case, where our equations (2) become illusory,
namely where

(XX) = 0.

This will arise when

(ȧ | ȧ) = Σ ȧ0i
2 − Σ ȧik

2 = 0,

i.e. when the directrices of the congruence are tangent to the Absolute. All
complexes of the pencil will here be special, and will be determined severally
by lines intersecting the various tangents to the Absolute at this point. Any
mutually polar lines of the pencil of tangents, will, conversely, serve to determine
the coaxal system. We may then represent such a pencil of tangent lines by a
set of homogeneous values (X) where (XX) = 0, and, conversely, every such
set of homogeneous values will determine a pencil of tangents to the Absolute.
We shall therefore define such a pencil of tangents as an improper cross.

Theorem 1. There exists a perfect one to one correspondence between the
assemblage of all crosses in hyperbolic space, and the assemblage of all points of
the complex plane of elliptic space. Improper crosses will correspond to points
of the elliptic Absolute.

We shall say that two crosses intersect if their lines intersect. The N. S.
condition for this in the case of two proper crosses will be

(XY )√
(XX)

√
(Y Y )

=
±(X̄Ȳ )√

(X̄X̄)
√

(Ȳ Ȳ )
.

Geometrically a line may intersect either member of a cross. This ambiguity
disappears in the case of perpendicular intersection.
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Theorem 2. Two intersecting crosses will correspond to points, the cosine of
whose distance is real, or pure imaginary; crosses intersecting orthogonally will
correspond to orthogonal points of the elliptic plane.

The assemblage of crosses which intersect a given cross orthogonally will
be given by means of a linear equation. A linear equation will be transformed
linearly into another linear equation, if the variables and coefficients be treated
contragrediently. Geometrically we shall imagine that our assemblage of crosses,
cross space let us say, is doubly overlaid, the crosses of one layer being repre-
sented by points and those of the other by lines in the complex plane, we have
then

Theorem 3. The necessary and sufficient condition that two crosses of differ-
ent layers should intersect orthogonally is that the corresponding line and point
of the complex plane should be in united position.

If a cross be improper, the assemblage of all crosses cutting it orthogonally
will be made up of all lines through the point of contact, and all lines in the
plane of contact. This assemblage, reducible in point space, is irreducible in
cross space.

The collineation group of cross space, is the general group depending on
eight complex, or sixteen real parameters

ρXi
′ =

1..3∑
j

aijXi, |aij | 6= 0. (3)

When will this indicate a transformation of point space? It is certainly
necessary that improper crosses should go into improper crosses, hence the sub-
stitution must be of the orthogonal type. Moreover, the Absolute of hyperbolic
space will be transformed into itself, so that our transformation of point space
must be a congruent one. Conversely, it is immediately evident that a con-
gruent transformation will transform cross space linearly into itself. Also, an
orthogonal substitution in cross coordinates will carry an improper cross into an
improper cross, and will carry intersecting crosses into other intersecting crosses.
The corresponding transformation in point space is not completely determined,
for a polar reciprocation in the Absolute of point space appears as the identi-
cal transformation of cross space. A transformation which carries intersecting
crosses into intersecting crosses may thus be interpreted either as a collineation,
or a correlation of point space.

Theorem 4. Every collineation or correlation of hyperbolic space which leaves
the Absolute invariant will be equivalent to an orthogonal substitution in cross
space, and every such orthogonal substitution may be interpreted either as a
congruent transformation of hyperbolic space, or a congruent transformation
coupled with a polar reciprocation in the Absolute.

Let us now inquire as to what are the simplest figures of cross space. The
simplest one dimensional figure is the chain composed of all crosses whose co-
ordinates are linearly dependent, by means of real coefficients, on those of two
given crosses,

ρXi = aYi + bZi, i = 1, 2, 3. (4)
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Interpreting these equations in the complex plane we see that we have ∞1

points of a line so related that the cross ratio of any four is real. If this line
be represented in the Gauss plane, the chain will be represented by a circle. If
the line be imaginary, the real lines, one through each point of the chain, will
generate a linear pencil or a regulus.45

The crosses of the chain will cut orthogonally another cross (of the other
layer) called the axis of the chain. The axis being proper, the chain will contain
two improper crosses, namely, the pencils of tangents to the Absolute where it
meets the actual line of the chain.

There is a theorem of very great generality connected with chains, which we
shall now give. Suppose that we have a congruence of lines of such a nature
that the corresponding cross coordinates (U) are analytic functions of two real
parameters u, v. The cross of common perpendiculars to the cross (U) and the
adjacent cross (U + dU) will be given by

Xi =

∣∣∣∣∣∣
Uj Uk

∂Uj

∂u

∂Uk

∂u

∣∣∣∣∣∣ du+

∣∣∣∣∣∣
Uj Uk

∂Uj

∂v

∂Uk

∂v

∣∣∣∣∣∣ dv. (5)

There are two sharply distinct sub-cases, (a)∣∣∣∣U ∂U∂u ∂U∂v
∣∣∣∣ ≡ 0. (6)

Here there is but one common perpendicular to (U) and all adjacent crosses.
Such a congruence shall be called synectic. Let us exclude this case for the
moment and pass to the other, where, (b)∣∣∣∣U ∂U∂u ∂U∂v

∣∣∣∣ 6≡ 0. (7)

We shall mean by the general position of a line in such a congruence, one where
this determinant does not vanish. We have then the theorem:46

Theorem 5. The common perpendiculars to a line, in the general position,
of a non-synectic congruence, and each adjacent line will generate a chain.

Let us find, in point coordinates, the equation of the surface obtained by
splitting off from a chain its improper crosses. We easily see that there will be
two crosses of the chain which intersect orthogonally; taking these and the axes
to determine the coordinate system, we may express our chain in the simple
form

X1 = a(p+ qi), X2 = b(r + si), X3 = 0.

45The concept ‘chain of imaginary points’ is due to Von Staudt. See his ‘Beiträge’, loc. cit.,
pp. 137–42. For an extension, see Segre, ‘Su un nuovo campo di ricerche geometriche,’ Atti
della R. Accademia delle Scienze di Torino, vol. xxv, 1890.

46The analogous theorem for euclidean space is due to Hamilton, see his paper on ‘Systems
of Rays’, Transactions of the Royal Irish Academy, vol. xv, 1829.
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Eliminating a/b we get

(pȧ31 + qȧ02)(rȧ10 − sȧ23) = (pȧ02 − qȧ31)(rȧ23 + sȧ01).

This gives the equation of the chain surface in point coordinates

(ps− qr)(−ẋ0
2 + ẋ3

2)ẋ1ẋ2 + (pr + qs)(ẋ1
2 + ẋ2

2)ẋ0ẋ3 = 0. (8)

If (ps− qr) = 0 or (pr + qs) = 0,

we have two real and two imaginary linear pencils; the conditions for this in
cross coordinates will be invariant under the orthogonal, but not under the
general group. The general form of our surface is a ruled quartic, having a
strong similarity to the euclidean cylindroid.

The simplest two dimensional system of crosses is the chain congruence. This
is made up of all crosses which have coordinates linearly dependent with real
coefficients on those of three given crosses which do not cut a fourth orthogonally

Xi = aYi + bZi + cT0,

|XY Z| 6= 0, i = 1, 2, 3. (9)

Theorem 6. The crosses which correspond to the assemblage of all points of
the real domain of a plane will generate a chain congruence.

Theorem 7. The common perpendiculars to pairs of crosses of a chain con-
gruence will generate a second chain congruence in the other layer. Each con-
gruence is the locus of the axes of the ∞2 chains of the other; the two are said
to be reciprocal to one another.

The reciprocal to the chain congruence (9) will have equations

Ui = p

∣∣∣∣ Yi Yk

Zj Zk

∣∣∣∣+ q

∣∣∣∣ Zj Zk

Tj Tk

∣∣∣∣+ r

∣∣∣∣ Tj Tk

Yi Yk

∣∣∣∣ . (10)

Let the reader show that the chain congruence may be reduced to the canon-
ical form

X1 = a(p+ qi), X2 = b(r + si), X3 = c(t+ ri),

where a, b, c are real homogeneous variables.
There are various sub-cases under the congruent group. If

(ps− qr) = 0,

the congruence will be transformed into itself by a one-parameter group of
rotations.

Again, let
(ps− qr) = 0, (pr − qt) = 0.

Here we see that
(XX ′)√

(XX)
√

(X ′X ′)
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is real for any two crosses of the congruence, i.e. the congruence consists in all
crosses through the point (1, 0, 0, 0).

Leaving aside the special cases the following theorems may be proved for the
general case.

Theorem 8. The chain congruence, considered as an assemblage of lines in
point space, is of the third order and class. It is generated by common perpen-
diculars to the pairs of lines of a regulus. Those lines of the congruence which
meet a line of the reciprocal congruence, orthogonally generate a quartic sur-
face, those which meet such a line obliquely generate a regulus whose conjugate
belongs to the reciprocal congruence. The two congruences have the same focal
surface of order and class eight.

Another simple two-parameter system of crosses is the following

ρXi = aYi + bZi + cTi,

pYi + qZi + sTi 6= 0, |Y ZT | = 0, (a b c p q r) real.

All these crosses cut orthogonally the cross

Ui =
∣∣∣∣ Yj Yk

Zj Zk

∣∣∣∣ .
Conversely, let us show that every cross orthogonally intersecting (U) may

be expressed in this form. As such a form as this is invariant for all linear
transformations, we may suppose

Y3 = Z3 = T3 = 0.

We have then the equations

aY1 + bZ1 + cT1 = (r + ir′)X1,

aY2 + bZ2 + cT2 = (r + ir′)X2,

which amount to four linear homogeneous equations in five unknowns a, b, c, r,
r′ and these may always be solved. There will be found to be one singular case
where the same cross has ∞1 determinations.

The assemblage of crosses cutting a cross orthogonally is but a special case
of what we have already defined as a synectic congruence. If

X = X(uv),
∣∣∣∣X∂X

∂u

∂X

∂v

∣∣∣∣ ≡ 0,

there will be but one common perpendicular to a cross and its adjacent crosses.
This corresponds to the fact that there will exist an equation

f(X1, X2, X3) = 0,

so that our congruence is represented by a curve, the tangent at any point
representing the common perpendicular just mentioned (in the other layer),

101



and, conversely, every curve will be represented by a synectic congruence. The
points and tangents will be represented by two synectic congruences so related
that each cross of one is a cross of striction of a cross of the other, and all
its adjacent crosses. We may reach a still clearer idea of these congruences by
anticipating some of the results of differential geometry to be proved in later
chapters. For, if we look upon the congruence of lines generated by our crosses,
we see that the two focal points on each are orthogonal and the two focal planes
mutually perpendicular. From this we shall conclude that our line-congruence
is one of normals, and the characteristics of the developable surfaces of the
congruence will be geodesics of the focal surface, to which the lines of the other
congruence are binormals. We shall, moreover, show in a later chapter that if
r1 and r2 be the radii of curvature of normal sections of a surface in planes of
curvature, then the Gaussian expression for the curvature of the surface at that
point will be

1

k tan
r1
k

· 1

k tan
r2
k

+
1
k2
.

In the present instance as the two focal points are orthogonal

r2
k

=
π

2
+
r1
k
,

1

k tan
r1
k

· 1

k tan
r2
k

+
1
k2

= 0.

Our congruence is made up of normals to surfaces of Gaussian curvature zero,
i.e. to surfaces whose distance element may be written

ds2 = du2 + dv2.

Theorem 9.47 A synectic congruence will represent the points of a curve of
the complex plane. It will be made up of crosses whose lines are normals to a
series of surfaces of Gaussian curvature zero. The characteristics of the devel-
opable surfaces are geodesics of the focal surfaces. Their orthogonal trajectories
are a second set of geodesics whose tangents will generate a like congruence.

In conclusion, let us emphasize the distinction between these congruences
and the non-synectic ones, where the common perpendiculars to a cross and its
adjacent ones generate a chain.

Did we wish to represent the imaginary as well as the real members of a
synectic or non-synectic congruence, we should be obliged to introduce into our
representing plane, points with hypercomplex coordinates. We shall not enter
into this extension, for, after all, the real point of interest of the subject lies
merely in this, namely, to give a real interpretation for the geometry of the
complex plane.

As we identify the geometry of the cross in hyperbolic space with that of a
point of the complex plane, so we may relate a cross of elliptic (or spherical)
space to a pair of real points of two plane. The modus operandi is as follows:—

We start, as before, with a pencil of coaxal linear complexes defined by
47Cf. Study, ‘Zur nicht-euklidischen etc.,’ cit., p. 328.
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a01 + a23 = ρ lX1, a01 − a23 = σ rX1,

a02 + a31 = ρ lX2, a02 − a31 = σ rX2, (11)
a03 + a12 = ρ lX3, a03 − a12 = σ rX3,

If we replace our complex by another coaxal therewith, we shall merely
multiply (lX)(rX) by two different constants. Conversely, when we wish to
move back from the independently homogeneous sets of coordinates (lX)(rX)
to the degenerate complexes of the pencil, i.e. to the lines of the cross defined
thereby, we have to take for ρ and σ such values that the fundamental plückerian
identity is satisfied,

τa0i = lXi

√
(rXrX) + rXi

√
(lXlX),

τajk = lXi

√
(rXrX)− rXi

√
(lXlX).

(12)

The two separately homogeneous coordinate triads (lX)(rX) may be taken
to represent this proper cross, and, conversely, as all quantities involved so far
are supposed to be real, every real pair of triads will correspond to a single
cross.

Theorem 10. The assemblage of all real crosses of elliptic or spherical space
may be put into one to one correspondence with the assemblage of all pairs of
points one in each of two real planes.

Our doubly homogeneous coordinates have a second interpretation which is
of the highest interest. Let us write the coordinates of a point of the Absolute
in terms of two independent parameters, i.e. of the parameters determining the
one and the other set of linear generators

x0 : ix1 : x2 : ix3 = (λ1µ1−λ2µ2) : (λ1µ1+λ2µ2) : (λ1µ2+λ2µ1) : (λ1µ2−λ2µ1).

The plückerian coordinates of a generator of the left or right system will
thus be

p01 = p23 = 2λ1λ2, q01 = −q23 = 2µ1µ2,

p02 = p31 = i(λ1
2 + λ2

2), q02 = −q31 = i(µ1
2 + µ2

2),

p03 = p12 = (λ1
2 − λ2

2), q03 = −q12 = −(µ1
2 + µ2

2).

The parameter (λ) of a left generator which meets a given line (a) will satisfy

2λ1λ2(a01 + a23) + i(λ1
2 + λ2

2)(a02 + a31) + (λ1
2 − λ2

2)(a03 + a12) = 0.

Similarly, for a right generator we have

2µ1µ2(a01 − a23) + i(µ1
2 + µ2

2)(a02 − a31)− (µ1
2 − µ2

2)(a03 − a12) = 0.
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We thus get as a necessary and sufficient condition that two lines should
be right (left) paratactic, that the differences (sums) of complementary pairs
of plückerian coordinates in the one shall be proportional to the corresponding
differences (sums) in the other. If the lines be (p) and (p′), the first of these
conditions will be

[(p | p′) + Σpijpij
′]2 − Σpij

2Σpij
′2 = 0,

while the second is

[(p | p′)− Σpijpij
′]2 − Σpij

2Σpij
′2 = 0.

If these equations be multiplied together, we get (25) of Chapter IX.
If a line pass through the point (1, 0, 0, 0) its last three plückerian coordinates

will vanish, while the first three are proportional to those of its intersections with
x0 = 0. It thus appears that in (11) the coordinates (lX) and (rX) are nothing
more nor less than the coordinates of the points, where the plane x0 = 0 is met
respectively by the left and the right paratactic through the point (1, 0, 0, 0) to
the two lines of the cross, for a line paratactic to the one is also paratactic to
the other. It will, however, be more convenient to consider (lX) and (rX) as
standing for points in two different planes, called, respectively, the left and right
representing planes. We shall speak of two crosses as being paratactic, when
their lines are so, and the necessary and sufficient condition therefore, invariant
under the group of cross space, is that they should be represented by identical
points in the one or the other plane.48

As in the hyperbolic case, so here, we shall look upon cross space as doubly
overlaid, and assign a cross to the upper layer if it be determined by two points
in the representing planes, while it shall be assigned to the lower layer if it be
determined by two lines. Under these circumstances we may say:—

Theorem 11. In order that two crosses of different layers should intersect
orthogonally, it is necessary and sufficient that they should be represented by
line elements in the two planes.

We may go still further in this same direction. We shall mean by the right
and left Clifford angles of two crosses, the angles of right and left paratactics
to them through any chosen point. Let the reader show that the magnitude of
these angles is independent of the choice of the last-named point. If, thus, we
choose the point (1, 0, 0, 0), the cosines of the Clifford angles will be

(lXlY )√
(lXlX)

√
(lYlY )

,
(rXrY )√

(rXrX)
√

(rYrY )
.

Now, from equations (19) and (20) of Chapter IX, we see that

sin
d

k
sin

d′

k
= sin θ sin θ′ =

(p | p′)√
Σ pij

2
√

Σ pij
′2
,

48The whole question of left and right is considered most carefully in Study’s ‘Beiträge’,
cit., pp. 126, 156.
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cos
d

k
cos

d′

k
= cos θ cos θ′ =

Σ pijpij
′√

Σ pij
2
√

Σ pij
′2

;

hence, we easily find

(1) cos
(d
k

+
d′

k

)
=

(rXrY )√
(rXrX)

√
(rYrY )

,

cos
(d
k
− d′

k

)
=

(lXlY )√
(lXlX)

√
(lYlY )

, (13)

or else

(2) cos
(d
k
− d′

k

)
=

(rXrY )√
(rXrX)

√
(rYrY )

,

cos
(d
k

+
d′

k

)
=

(lXlY )√
(lXlX)

√
(lYlY )

.

The ambiguity can be removed by establishing certain conventions with re-
gard to the signs of the radicals, into which we shall not enter.49 We may,
however, state the following theorem:—

Theorem 12. The Clifford angles of two lines have the same measures as
the sums and differences of the kth parts of their distances, or the sums and
differences of their angles. The necessary and sufficient condition that two lines
should intersect is that their Clifford angles should be equal or supplementary.

When we adjoin the imaginary domain to the real one, serious complications
will arise which can only be removed by careful definition. Without going into
a complete discussion, we merely give the facts.50

If (lXlX) = 0, (rXrX) 6= 0, we shall say that we have a left improper cross,
and denote thereby a left generator of the Absolute, conjoined to a non-parabolic
involution among the right generators. There will be ∞3 such improper crosses,
and ∞3 right improper crosses, whose definition is obvious. Left and right
improper crosses together will constitute what shall be called improper crosses
of the first sort. Improper crosses of the second sort shall be defined, as in
hyperbolic space, as pencils of tangents to the Absolute, corresponding to sets
of values for which (lXlX) = (rXrX) = 0. The definitions of parataxy and
orthogonal intersection may be extended to all cases, their analytic expression
being as in the real domain.

The general group of linear transformations of cross space will depend upon
sixteen essential parameters. It will be made up of the sixteen-parameter sub-
group G16 of all transformations of the type

ρ lXi
′ =

∑
j

aij lXj , σ rXi
′ =

∑
j

bij rXj , |aij | × |bij | 6= 0, (14)

49For an elaborate discussion, see Study, ‘Beiträge,’ cit., especially p. 130.
50Cf. the author’s ‘Dual projective Geometry’, loc. cit., § 3.
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and the sixteen-parameter assemblage H16 of all transformations of the type

ρ lXi
′ =

∑
j

aij rXj , σ rXi
′ =

∑
j

bij lXj , |aij | × |bij | 6= 0. (15)

Notice that under G16 left and right parataxy of crosses of the same layer are
invariant, while under H16 the two sorts of parataxy are interchanged.

The group G16 will contain, as a sub-group, the group of all motions, while
H16 includes the assemblage of all symmetry transformations. Let the reader
show that there can be no collineations of point space under G16, except congru-
ent transformations, and that the necessary and sufficient condition that (14)
should represent a motion of point space is that the transformations of the two
representing planes should be of the orthogonal type.

The group G16 is half-simple, being composed entirely of two invariant sub-
groups lG8, rG8, of which the former is made up of the general linear transfor-
mation for (lX) with the identical transformation for (rX), while in the latter,
the rôles of (lX) and (rX) are interchanged. The highest common factors of
the group of motions with lG8 and rG8 respectively, will be the groups of left
and right translations (cf. Chapter IX).

The simplest assemblages of crosses in elliptic space bear a close analogy to
those of hyperbolic space, although possessing more variety in the real domain.
Let

lXi = a lYi + b lZi, rXi = a rYi + b rZi,

|lX lY lS| × |rX rY rT | 6≡ 0.

The assemblage of crosses so defined shall be called a chain. The properties
of these chains are entirely analogous to those in the hyperbolic case. For
instance, take a congruence of crosses whose coordinates are analytic functions
of two essential parameters (u), (v). Let us further assume that (lY ) (rY ) being
crosses of the system∣∣∣∣lY ∂

∂u
lY

∂

∂v
lY

∣∣∣∣× ∣∣∣∣rY ∂

∂u
rY

∂

∂v
rY

∣∣∣∣ 6≡ 0.

The meaning of this restriction is that neither (lY ) nor (rY ) can be expressed as
functions of a single parameter, so that the crosses of the congruence cannot be
assembled into the generators of ∞1 surfaces, those of each surface being parat-
actic. Let the reader then show that for every such congruence, the common
perpendiculars to a line in the general position, and its immediate neighbours,
will generate a chain.

The chains of elliptic cross space will have the same subclassifications under
the congruent group, as in the hyperbolic plane. Let the reader show that the
general chain may be represented by means of a homographic relation between
the points of two linear ranges in the representing planes, and that the special
chain, composed of two pencils, arises, when the relation is a congruent one.

Suppose, next, that we have

ρ lXi = a lYi + b lZi, σ rXi = a rYi + b rZi,
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lYi = r lZi, |rY rZrT | 6≡ 0.

This is a new one-parameter family of crosses called a strip, or, more exactly, a
left strip. The common perpendiculars to pairs of crosses of the left strip will
generate a right strip (whereof the definition is obvious), and each strip shall
be said to be reciprocal to the other. A left strip of the upper layer will be
represented by a point of the left plane, and a linear range of the right plane.
The reciprocal strip in the lower layer will be represented by the pencil through
the point in the left plane, and the line of the range in the right.

In point space, the lines of a strip are generators of a quadric, whose other
generators belong to the reciprocal strip. Owing to the parataxy of the gener-
ators of such a quadric, it will intersect the Absolute in two generators of each
set. We shall call our quadric a Clifford surface, when we wish to refer to it as
a figure of point space. We shall show in Chapter XV, that these surfaces have
Gaussian curvature zero, since they are generated by paratactic lines, and are
minimal surfaces, since their asymptotic lines form an orthogonal system.51

The simplest two dimensional system of crosses will be, as before, the chain
congruence

lXi = a lYi + b lZi + c lTi, rXi = a lXi + b lYi + c lZi

|lY lZlT | × |rY rZrT | 6= 0.

We may solve the first three equations for a, b, c, and substitute in the last

rXi =
∑

j

aij lXj , |aij | 6= 0.

This, again, may easily be reduced to the canonical form

rXi = ai lXi (16)

The reciprocal congruence will be given by

lUi = ai rUi.

There are various sub-classes under the congruent group. If the squares of
no two of our quantities ai in (16) be equal, we have the general congruence,
if we have one such equality, the congruence will be transformed into itself by
a one-parameter group of rotations. If all three squares be equal, we have a
bundle of crosses through a point. The general congruence will have all of the
properties mentioned in (8).

A different sort of congruence will arise in the case where

|lY lZlT | = 0, |rY rZrT | 6= 0. (17)

This congruence will contain∞1 strips, whose reciprocals generate the reciprocal
congruence. The common perpendiculars to all non-paratactic crosses of the

51Cf. Klein, ‘Zur nicht-euklidischen Geometrie,’ Mathematische Annalen, vol. xxxvii, 1890.
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congruence will generate a bundle, those to paratactic crosses, the reciprocal
congruence. Such a congruence will be generated by the common perpendiculars
to the paratactic lines of two pencils which have different centres and planes,
but a common line and paratactic axes. In point space the line congruence will
be of order and class two. The canonical form will be52

lX1 = a1 rX1,

lX2 = a2 rX2,

lX3 = 0.

If, in addition to (17), we require the first minors of |lY lZ lT | all to vanish,
we shall have a bundle of paratactic crosses. If, on the other hand, we have

|lY lZlT | = |rY rZrT | = 0,

without the vanishing of the first minors of either determinant, we have ∞2

crosses cutting a given cross orthogonally. The equations of the congruence
may be reduced to the canonical form

ρ lX1 = a, σ rX1 = b,

ρ lX2 = b, σ rX2 = c, (18)
ρ lX3 = 0, σ rX3 = 0.

The cross (1, 0, 0) (0, 1, 0) will be singular, having ∞1 determinations.
In general, if we have

F (lX1 lX2 lX3) = 0, φ(rX1 rX2 rX3) = 0,

the line-congruence can be assembled into∞1 surfaces with left, and∞1 surfaces
with right paratactic generators. Such surfaces will have Gaussian curvature
zero. We shall show also in Chapter XVI that the lines of such a congruence
are normals to a series of surfaces of Gaussian curvature zero.

52Apparently nothing has ever been published concerning this type of congruence. The
theorems here given are taken from an unpublished section of the author’s dissertation, cit.
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CHAPTER XI

THE CIRCLE AND THE SPHERE

The simplest curvilinear figures in non-euclidean geometry are circles, and
it is now time to study their properties.53

Definition. The locus of all points of a plane at a constant distance from a
given point which is not on the Absolute is called a circle. The given point shall
be called the centre of the circle, its absolute polar, which will also turn out to
be its polar with regard to the circle, shall be called the axis of the circle. A line
through the centre of the circle shall be called a diameter. Let the reader show
that all points of a circle are at constant distances from the axis, a distance
whose measure becomes infinite in the limiting euclidean case.

To get the equation of the circle whose centre is (a) and whose radius is r,
i.e. this shall be the measure of the distance of all points from the centre, we
have

(ax)√
(aa)

√
(xx)

= cos
r

k
,

cos2
r

k
(aa)(xx)− (ax)2 = 0. (1)

It is evident that when cos2
r

k
6= 0, this curve has double contact with the

Absolute, the secant of contact being the axis, and, conversely, every such curve
of the second order will be a circle. The absolute polar of a circle will, hence,
be another circle, so that the circle is self-dual:—

Theorem 1. Definition. The
locus of all points of a plane at a
constant distance from a given point
thereof is a circle whose centre is
the given point.

Theorem 1′. The envelope of
all lines of a plane which make a
constant angle with a given line is a
circle having the given line as axis.

Note that a circle of radius
πk

2
is a line, and that circle of radius 0 is two

lines.
Restricting ourselves, for the moment, to the real domain of the hyperbolic

plane, we see that if the centre be ideal, the axis will be actual, and the curve will
appear in the actual domain as the locus of points at a constant distance from
the axis, an actual line. In this case the circle is sometimes called an equidistant
curve. If the centre be actual we shall have what may be more properly called a
proper circle. Notice that to a dweller in a small region of the hyperbolic space,
a proper circle would appear much as does a euclidean circle to a euclidean
dweller, while an equidistant curve would appear like two parallel lines. These

53For a very simple treatment of this subject by means of pure Geometry, see Riccordi, ‘I
cercoli nella geometria non-euclidea,’ Giornale di Matematica, xviii, 1880. Riccordi’s results
had previously been reached analytically by Battaglini, ‘Sul rapporto anarmonico sezionale e
tangenziale delle coniche,’ ibid., xii, 1874.

109



distinctions will, naturally, disappear in the elliptic case; in the spherical, the
circle will have two centres, which are equivalent points.

If the point (a) tend to approach the Absolute (analytically speaking) the
equation (1) will tend to approach an indeterminate form. The limiting form
for the curve will be a conic having four-point contact with the Absolute. Such
a curve shall be called a horocycle, the point of contact being called the centre,
and the common tangent the axis. If (u) be the coordinates of the axis, we have

(uu) = 0,

and the equation of the horocycle takes the form

(u1
2 + u2

2)(xx) + C(ux)2 = 0.

Theorem 2. A tangent to a circle
is perpendicular to the diameter
through the point of contact.

Theorem 2′. A point on a circle
is orthogonal to the point where the
tangent thereat meets the axis.

These simple theorems may be proved in a variety of ways. For instance
every circle will be transformed into itself by a reflection in any diameter, hence
the tangent where the diameter meets the curve must be perpendicular to the
diameter. Or, again, if AB ≡ AC, a line from A to one centre of gravity of
B, C will be perpendicular to BC; then let B and C close up on this centre of
gravity. Or, lastly, the equation of the tangent to the circle (1) at a point (y)
will be

(xy)(aa)−N(ax)(ay) = 0.

The diameter through (y) will have the equation

|xya| = 0.

If we indicate these two lines by (u) and (v), then

(uv) = (aa) |yay| −N(ay) |aya|.

Let the reader show that these theorems hold also in the case of the horocycle.

Theorem 3. The locus of the
centres of gravity of pairs of points of
a circle whose lines are concurrent on
the axis, is the point of concurrence,
and the diameter perpendicular to
these lines.

Theorem 3′. The envelope of the
bisectors of the angles of tangents to
a circle from points of a diameter,
is this diameter, and its absolute
pole.

Theorem 4. If two tangents to a
circle (horocycle) make a constant
angle, the locus of their point of
intersection is a concentric circle
(horocycle).

Theorem 4′. If two points of a
circle (horocycle) are at a constant
distance, the envelope of their line
is a coaxal circle (horocycle).
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The element of arc of a circle of radius (r) will be, by Chapter IV (5),

ds = k sin
r

k
dθ.

The circumference of the circle is thus

k sin
r

k

∫ 2π

0

dθ = 2πk sin
r

k
.

Let the tangents at P and P ′ meet at Q, the centre of the circle being A. Let
∆φ be the angle between the tangents, and let P ′′ be the point on the tangent
at P whose distance from P equals PP ′, or, in the infinitesimal, equals ds. The
∆PAP ′ and ∆P ′PP ′′ are isosceles, hence

∆φ = 2]P ′PP ′′,

tan
P ′P ′′

2k
= sin

PP ′

k
tan

∆φ
4

limit
∆φ
ds

= limit
4 tan

P ′P ′′

2k

PP ′ sin
PP ′

k

= limit
2P ′P ′′

PP ′2
.

But tan
PQ

k
= sin

r

k
tan 1

2dθ =
ds

2k
,

tan
PQ

k
= tan

AQ

k
cos 1

2 (π −∆φ) by IV (6),

limit tan
PQ

k
= 1

2 tan
r

k
∆φ.

Hence limit
∆φ
ds

= limit
2P ′P ′′

PP ′2
=

1

k tan
r

k

. (2)

We shall subsequently define this expression as the curvature of the circle at
the point (P ). We see that, as we should expect, it is constant.

We shall next take up simple systems of circles. We leave to the reader the
task of making the slight modifications in what follows necessary to adapt it to
the case of spherical geometry. In the general case two circles, neither of which
is a line, will intersect in four points, real, or imaginary, in pairs. If two circles lie
completely without one another they will have four real common tangents, the
absolute polars of such circles will intersect in four real points. The difficulty
of visualization disappears in the hyperbolic case where we take one at least
of the circles as an equidistant curve. If we identify the euclidean hemisphere,
where opposite points of the equator are considered identical, with the elliptic
plane, we see how two circles there also can intersect in four real points. In the
spherical case, by Chapter VIII, the Absolute is the locus of all points which
are identical with their equivalents. A point will have one absolute polar, a line
two equivalent absolute poles. The absolute polar of a circle is two equivalent
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circles, which are also the absolute polars of the equivalent circle. Two real
circles cannot intersect in more than two real points.

Two circles which intersect in four points will have three pairs of common
secants. The problem of finding the common secants of two conics will, in
general, lead to an irreducible equation of the third degree. When, however,
the two conics have double contact with a third, the equation is reducible, and
one pair of secants appears which intersect on the chords of contact, and are
harmonically separated by them.54 In the case of two circles these secants shall
be called the radical axes.

Theorem 5. If two circles in-
tersect in four points, two common
secants called radical axes are con-
current with the axes of the circles
and harmonically separated by them,
They are perpendicular to one an-
other and to the line of centres. The
centres of gravity of the intersections
of the circles with a radical axis
are the intersections with the other
radical axis and with the line of
centres.

Theorem 5′. If two circles
have four common tangents, two
intersections of these, called centres
of similitude, lie on the line of
centres, are harmonically separated
by the centres and are mutually
orthogonal. The bisectors of angles
of the tangents at a centre of
similitude are the line of centres
and the line to the other centre of
similitude.

If the equations of the two circles be

cos2
r1
k

(aa)(xx)− (ax)2 = 0, cos2
r2
k

(bb)(xx)− (bx)2 = 0,

the equations of the radical axes will be(
cos

r2
k

√
(bb)(ax) + cos

r1
k

√
(aa)(bx)

)
(
cos

r2
k

√
(bb)(ax)− cos

r1
k

√
(aa)(bx)

)
= 0. (3)

The last factor equated to zero will give

(ax)√
(aa)

√
(xx)

cos
r1
k

=

(bx)√
(bb)

√
(xx)

cos
r2
k

,

and the two sides of this equation will, by Ch. IV (4), be the cosines of the kth
parts of the distances from (x) to the points of contact of tangents, thence to
the two circles.

54This theorem is, of course, well known. Cf. Salmon, Conic Sections, sixth edition. London,
1879, p. 242.
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Theorem 6. If a set of circles
through two points have the line of
these points as a radical axis, the
points of contact of tangents to all
of them from a point of the line
lie on a circle whose centre is this
point.

Theorem 6′. If a set of circles
tangent to two given lines have the
intersection of the lines as a centre of
similitude, the envelope of tangents
to them at the points where they
meet a line through this centre of
similitude will be a circle with this
line as axis.

Consider the assemblage of all circles through two given points. If the line
connecting the two points be a radical axis for two of these circles it will be
perpendicular to their line of centres at one centre of gravity of the two points,
and in every case a perpendicular from the centre of a circle on a secant will
meet it at a centre of gravity of the two points of the circle on that line. We
thus see—

Theorem 7. The assemblage
of all circles through two common
points will fall into two families
according as the perpendicular from
the centre on the line of these points
passes through the one or the other
of their centres of gravity. Two
circles of the same family, and they
only, will have the line as a radical
axis.

Theorem 7′. The assemblage
of all circles tangent to two lines
will fall into two families according
as the centres lie on the one or
the other bisector of the angles of
the lines. Two circles of the same
family, and they only, will have the
intersection of the lines as a centre
of similitude.

Let us now take a third point, and consider the circles that pass through all
three.

Theorem 8. Four circles will pass
through three given points. Each
line connecting two of the given
points will be a radical axis for two
pairs of circles.

Theorem 8′. Four circles will
touch three given lines. Each
intersection of two lines will be a
centre of similitude for two pairs of
circles.

Theorem 9. The radical axes of
three circles pass by threes through
four points.

Theorem 9′. The centres of
similitude of three circles lie by
threes on four lines.

Of course when two circles touch one another, their common tangent replaces
one radical axis, and the point of contact one centre of similitude. Two circles
will have double contact when, and only when, they are concentric. We get at
once from (6) and (9)
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Theorem 10. Four circles may
be constructed to cut each of three
circles at right angles twice.

Theorem 10′. Four circles may
be constructed so that the points
of contact of tangents common to
them and to each of three given
circles form two pairs of orthogonal
points.

It is here assumed that no two of the given circles are concentric. There
is no reason to expect that because two circles intersect at right angles in two
points they will in the other two. Let the circles be

cos2
r1
k

(aa)(xx)− (ax)2 = 0, cos2
r2
k

(bb)(xx)− (bx)2 = 0.

Let (y) be a point of intersection; the lines thence to the centres are

|xya| = 0, |xyb| = 0.

The cosine of the angle formed by them will be

cos θ =

∣∣∣∣(yy) (ay)
(by) (ab)

∣∣∣∣√
(yy)(aa)− (ay)2

√
(yy)(bb)− (by)2

=
(ab)− cos

r1
k

cos
r2
k

√
(aa)

√
(bb)

sin
r1
k

sin
r2
k

√
(aa)

√
(bb)

.

(4)

This gives two values for the angle which will be equal when, and only when

(ab) = 0.

The condition of contact will be

cos θ = ±1, cos
(r1
k
± r2
k

)
=

(ab)√
(aa)

√
(bb)

; (5)

and of orthogonal intersection

cos
r1
k

cos
r2
k

=
(ab)√

(aa)
√

(bb)
, (6)

these last two facts being, also, geometrically evident. We see that two circles
cannot have four rectangular intersections, for if

(ab) = 0, cos
r2
k

= 0, (7)

the circle is a line.
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Theorem 11. The necessary and
sufficient condition that two circles
should cut at the same angle at all
points is that their centres should
be mutually orthogonal.

Theorem 11′. The necessary and
sufficient condition that two circles
should determine by their points of
contact, congruent distances on all
four common tangents, is that their
axes should be mutually perpendic-
ular.

Notice that these two conditions are really identical.
We shall define as a sphere that surface which is the locus of all points of

space at congruent distances from a point not on the Absolute.

Theorem 12. A sphere is the
locus of all points at a constant
distance from a given point not on
the Absolute. It is, when not a
plane, a quadric with conical contact
with the Absolute.

Theorem 12′. A sphere is the
envelope of planes meeting at a
constant angle a plane which is not
tangent to the Absolute. It is, when
not a point, a quadric with conical
contact with the Absolute.

Note that a plane and point are special cases of the sphere.
The fixed point shall be called the centre, the plane of conical contact the

axial plane of the sphere. A line connecting any point with the centre of a sphere
is perpendicular to the polar plane of the point, a tangent plane is perpendicular
to the line from the point of contact to the centre, to the diameter through the
point of contact let us say.

Theorem 13. Two spheres will
intersect in two circles whose planes
are perpendicular to the line of
centres and to one another, and are
harmonically separated by the axial
planes.

Theorem 13′. The common tan-
gent planes to two spheres envelop
two cones of revolution whose ver-
tices are mutually orthogonal and
harmonically separated by the cen-
tres.

Theorem 14. Three spheres not
containing a common circle will meet
in three pairs of circles whose planes
are collinear by threes in four lines.

Theorem 14′. Three spheres not
tangent to a cone of revolution have
three such pairs of common tangent
cones whose vertices are collinear in
threes on four lines.

Theorem 15. Four spheres whose
centres are not coplanar intersect
in twelve circles whose planes pass
by sixes through eight points which,
with the centres of the spheres, form
a desmic configuration.

Theorem 15′. Four spheres whose
axial planes are not concurrent are
enveloped in pairs by twelve cones
of revolution whose vertices lie by
sixes in eight planes which, with
the axial planes, determine a desmic
configuration.
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Theorem 16. The necessary and
sufficient condition that two spheres
should cut at the same angle along
their two circles is that their centres
should be mutually orthogonal.

Theorem 16′. The necessary
and sufficient condition that two
spheres should, by their contact,
determine congruent distances on the
generators of the two circumscribed
cones, is that their axial planes
should be mutually perpendicular.

We shall terminate this chapter by giving an unusually elegant transforma-
tion from euclidean to non-euclidean space.55 Let us assume that we have a
euclidean space where a point has the homogeneous coordinates x, y, z, t and
a hyperbolic space for which k2 = −1, a point being given by our usual (ẋ)
coordinates. Let us then write

ρx = ẋ1, ρy = ẋ2, ρz =
√
ẋ0

2 − ẋ1
2 − ẋ2

2 − ẋ3
2, ρt = ẋ0 − ẋ3. (8)

To each point of hyperbolic space will correspond two points of euclidean
space. Let us choose that for which the real part of

√
ẋ0

2 − ẋ1
2 − ẋ2

2 − ẋ3
2

is greater than zero. When the real part vanishes, we may, by adjoining to
our domain of rationality a square root of minus one, distinguish between the
imaginary roots, and so choose one in particular. We may thus say that to
every point of hyperbolic space, not on the Absolute, will correspond a point of
euclidean space above the plane z = 0, and to each points of the Absolute will
correspond points of this plane. The transformation is real, so that real and
actual points will correspond to real ones. Conversely, we get from (8)

σẋ0 = x2 + y2 + z2 + t2, σẋ1 = 2xt, σẋ2 = 2yt,

σẋ3 = x2 + y2 + z2 − t2, (9)

and to each point of euclidean space, above, or on the z plane, will correspond
a point of hyperbolic space, not on, or on the Absolute.

Suppose that we have a euclidean sphere of centre (a, b, c, d) and radius r.
If we write for short

(a2 + b2 + c2 − d2r2) = p2,

the equation of this sphere may be written

(dx− at)2 + (dy − bt)2 + (dz − ct)2 = d2r2t2,

d2(x2 + y2 + z2)− 2dt(ax+ by + cz) + p2t2 = 0. (10)

Transforming we get, after splitting off a factor ẋ3 − ẋ0 which corresponds
to the euclidean plane at infinity,

d2(ẋ0 + ẋ3)− 2d(aẋ1 + bẋ2 + c
√
ẋ0

2 − ẋ1
2 − ẋ2

2 − ẋ3
2) + p2(ẋ0 − ẋ3) = 0,

55This transformation seems to have been first given in the second edition of Wissenschaft
und Hypothese, by Poincaré, translated by F. and L. Lindemann, Leipzig, 1906, p. 258. This
is fruitfully used in the dissertation of Münich, ‘Nicht-euklidische Cykliden,’ Munich, 1906.
We have adapted the notation to conform to our own usage.
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[(d2 + p2)ẋ0 − 2adẋ1 − 2bdẋ2 + (d2 − p2)ẋ3]2

= 4c2d2(ẋ0
2 − ẋ1

2 − ẋ2
2 − ẋ3

2). (11)

This is a sphere of hyperbolic space whose centre is

(d2 + p2, 2ad, 2bd, p2 − d2),

and whose radius r1 is given by

cosh r1 =
c√

p2 − a2 − b2
.

Conversely, if we have the hyperbolic sphere

(ȧ0ẋ0 − ȧ1ẋ1 − ȧ2ẋ2 − ȧ3ẋ3)2

= cosh2 r1(ȧ0
2 − ȧ1

2 − ȧ2
2 − ȧ3

2)(ẋ0
2 − ẋ1

2 − ẋ2
2 − ẋ3

2), (12)

we get from (9)

[(ȧ0 − ȧ3)(x2 + y2 + z2)− 2ȧ1xt− 2ȧ2yt+ (ȧ0 + ȧ3)t2]

= ±2 cosh r1
√
ȧ0

2 − ȧ1
2 − ȧ2

2 − ȧ3
2zt. (13)

We have here two spheres which differ merely in the z coordinate of their
centre, i.e. two spheres which are reflections of one another in the z plane. If
the hyperbolic sphere were real and actual, one of the euclidean spheres would
lie wholly above the z plane, and the other wholly below it. We may say that
(leaving aside special cases) a hyperbolic sphere will correspond to so much of
a euclidean sphere as is above or in the z plane, and to the reflection in the z
plane of so much of the sphere as is below it.

A euclidean sphere for which c = 0, that is, one whose centre is in the z
plane will correspond to a plane in hyperbolic space, a hyperbolic sphere for
which

ȧ0 − ȧ3 = 0,

that is, one whose centre is in the plane which corresponds to the euclidean
plane at infinity, will correspond to a plane in euclidean space. A euclidean circle
perpendicular to the z plane will correspond to a hyperbolic line, a hyperbolic
circle which is perpendicular to the plane ȧ0 − ȧ3 = 0, will correspond to a
euclidean line.

We may go a step further in this direction. Suppose that we have two
euclidean spheres given by an equation of the type (13), and the condition that
they shall be mutually orthogonal is that

− ȧ0ȧ0
′ + ȧ1ȧ1

′ + ȧ2ȧ2
′

± cosh r1 cosh r1′
√
ȧ0

2 − ȧ1
2 − ȧ2

2 − ȧ3
2
√
ȧ0

′2 − ȧ1
′2 − ȧ2

′2 − ȧ3
′2

+ ȧ3ȧ
′
3 = 0,
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cosh r1 cosh r1′ = ± −ȧ0ȧ0
′ + ȧ1ȧ1

′ + ȧ2ȧ2
′ + ȧ3ȧ

′
3√

−ȧ0
2 + ȧ1

2 + ȧ2
2 + ȧ3

2
√
−ȧ0

′2 + ȧ1
′2 + ȧ2

′2 + ȧ3
′2
.

But this gives immediately that the corresponding hyperbolic spheres are
also mutually orthogonal, and conversely. We thus have a correspondence of
orthogonal spheres to orthogonal spheres. We see next that the lines of curvature
of any surface will go into any lines of curvature of the corresponding surface, and
hence the Darboux-Dupin theorem must hold in hyperbolic space, namely, in
any triply orthogonal system of surfaces, the intersections are lines of curvature.

Were we willing to sacrifice the real domain, we might in a similar manner
establish a correspondence between spheres of euclidean and of elliptic space.
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CHAPTER XII

CONIC SECTIONS

The study of the metrical properties of conics in the non-euclidean plane,
is, in the last analysis, nothing more nor less than a study of the invariants
and covariants of two conics. We shall not, however, go into general questions
of invariant theory here, but rather try to pick out those metrical properties
of non-euclidean conics which bear the closest analogy to the corresponding
euclidean properties.56

First of all, let us classify our conics under the real congruent group; that is,
in relation to their intersections with the Absolute. This may be done analyti-
cally by means of Weierstrass’s elementary divisors, but the geometric question
is so easy that we give the results merely. We shall begin with the real conics
in the actual domain of hyperbolic space.

(1) Convex hyperbolas. Four real absolute points, no real absolute tangents.
(2) Concave hyperbolas. Four real absolute points, four real absolute tan-

gents.
(3) Semi-hyperbolas. Two real and two imaginary absolute points and tan-

gents.
(4) Ellipses. Four imaginary absolute points and tangents.
(5) Concave hyperbolic parabolas. Two coincident, and two real and distinct

absolute points and tangents.
(6) Convex hyperbolic parabolas. Two coincident, and two real and dis-

tinct absolute points. Two coincident, and two conjugate imaginary absolute
tangents.

(7) Elliptic parabolas. Two coincident, and two conjugate imaginary abso-
lute points and tangents.

(8) Osculating parabolas. Three real coincident, and one real distinct abso-
lute point, and the same for absolute tangents.

(9) Equidistant curves.
(10) Proper circles.
(11) Horocycles.
In the real elliptic, or spherical, plane, we shall have merely—
(1) Ellipses;
(2) Circles.
In what follows we shall limit ourselves to central conics, i.e. to those which

cut the Absolute in four distinct points. A real central conic in the actual
domain of the hyperbolic plane will have a common self-conjugate triangle with

56The treatment of conics in the present chapter is in close accord with three articles by
D’Ovidio, ‘Le proprietà focali delle coniche,’ ‘Sulle coniche confocali,’ and ‘Teoremi sulle
coniche’, all in the Atti della R. Accademia delle Scienze di Torino, vol. xxvi, 1891. These
articles suffer from the curious blemish, not uncommon in Italian mathematical publications,
that the theorems are not given in distinctive type. See also Story, ‘On the non-euclidean
Properties of Conics,’ American Journal of Mathematics, vol. v, 1882; Killing, ‘Die nicht-
euklidische Geometrie in analytischer Behandlung,’ Leipzig, 1885, and Liebmann, ‘Nicht-
euklidische Geometrie,’ in the Sammlung Schubert, xlix, Leipzig, 1904.
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the Absolute which is real, except in the case of the semi-hyperbola. In the
elliptic case it will surely be real. Taking this as the coordinate triangle we may
write the equation of the Absolute in typical form, while that of the conic is

0..2∑
i

cixi
2 = 0. (1)

We assume that no two of our c’s are equal, and that none of them are equal
to zero.

Our plane being x3 = 0, we shall use the letters h, k, l as a circular permuta-
tion of the numbers 0, 1, 2, and define the vertices of the common self-conjugate
triangles as centres of the conic, while its sides are called the axes. Be it noticed
that in speaking of triangle in this sense we are using the terminology of projec-
tive geometry where a triangle is a figure of three coplanar, but not concurrent
lines, and not the exact definition of Chapter I, which is meaningless except in
a restricted domain. There will, however, arise no confusion from this.

Theorem 1. Each centre of a
central conic is a centre of gravity
for every pair of points of the conic
collinear therewith.

Theorem 1′. Each axis of a
central conic is a bisector of an
angle of each pair of tangents to
the conic concurrent thereon.

The three pairs of lines which connect the pairs of intersections of a central
conic with the Absolute shall be called its pairs of focal lines. The three pairs
of intersections of its absolute tangents shall be called its pairs of foci.

Theorem 2. Conjugate points of
a focal line of a conic are mutually
orthogonal.

Theorem 2′. Conjugate lines
through a focus of a conic are
mutually perpendicular.

Theorem 3. Two focal lines of
a central conic pass through each
vertex, and are perpendicular to the
opposite axis.

Theorem 3′. Two foci of a
central quadric lie on each axis,
and are orthogonal to the opposite
centre.

The coordinates of the focal lines fh, fh
′, through the centre uh = 0, will be

uh : uk : ul = 0 :
√
ch − ck : ±

√
cl − ch. (2)

The coordinates of the foci Fh, Fh
′ on the opposite axis will be

xh : xk : xl = 0 :
√
cl(ch − ck) : ±

√
ck(cl − ch). (3)

The polars of the foci with regard to the conic shall be called directrices, the
poles of the focal lines its director points. A directrix dh perpendicular to the
axis xh will have the equation√

ck(ch − ck)xk +
√
cl(cl − ch)xl = 0. (4)

120



Let (x) be a point of the conic. Eliminating xh by means of (1) we get

(xx) =
(ch − ck)

ch
xk

2 − (cl − ch)
ch

xl
2.

We then have

cos
PFh

k
=

√
cl(ch − ck)xk +

√
ck(cl − ch)xl√

(ch − ck)xk
2 − (cl − ch)xl

2
√

(cl − ck)
. (5)

sin
PFh

k
=

√
ck(ch − ck)xk +

√
cl(cl − ch)xl√

(ch − ck)xk
2 − (cl − ch)xl

2
√

(ck − cl)
. (6)

If dh be the corresponding directrix

sin
Pdh

k
=

√
ck(ch − ck)xk +

√
cl(cl − ch)xl√

(ch − ck)xk
2 − (cl − ch)xl

2

√
ck
ch

(ch − ck) +
cl
ch

(cl − ch)
, (7)

the signs of the radicals in the numerators of the two expressions being the same

sin
PFh

k

sin
Pdh

k

=

√
ck(ch − ck) + cl(cl − ch)√

ch(ck − cl)

=

√
ch − (ck + cl)

ck
. (8)

Theorem 4. The ratio of the
sines of the kth parts of the distances
from a point of a central conic to
a focus and to the corresponding
directrix is constant.

Theorem 4′. The ratio of the
sines of the angles which a tangent
to a central conic makes with a
focal line and the absolute polar of
the corresponding director point is
constant.

cos
FhFh

′

k
=
cl(ch − ck)− ck(cl − ch)
cl(ch − ck) + ck(cl − ch)

, tan2 1
2

FhFh
′

k
=
ck(cl − ch)
cl(ch − ck)

,

tan2 1
2

FhFh
′

k
tan2 1

2

FkFk
′

k
tan2 1

2

FlFl
′

k

= tan2 1
2]fhfh

′ tan2 1
2]fkfk

′ tan2 1
2]flfl

′ = 1. (9)

sin
PFh

k
sin

PFh
′

k
=

ck(ch − ck)xk
2 − cl(cl − ch)xl

2[
(cl − ch)xl

2 − (ch − ck)xk
2
]
(ck − cl)
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=
Σ ch2xh

2

ch(ck − cl)(xx)
,

sin
PFh

k
sin

PFh
′

k
: sin

PFk

k
sin

PFk
′

k
: sin

PFl

k
sin

PFl
′

k

=
1

ch(ck − cl)
:

1
ck(cl − ch)

:
1

cl(ch − ck)
. (10)

csc
PFh

k
csc

PFh
′

k
+ csc

PFk

k
csc

PFk
′

k
+ csc

PFl

k
csc

PFl
′

k
= 0. (11)

cos
PFh

k
cos

PFh
′

k
=

cl(ch − ck)xk
2 − ck(cl − ch)xl

2[
(ch − ck)xk

2 − (cl − ch)xl
2
]
(cl − ck)

,

cos
[PFh

k
± PFh

′

k

]
=
ck + cl
ck − cl

. (12)

tan 1
2

[PFh

k
± PFh

′

k

]
tan 1

2

[PFk

k
± PFk

′

k

]
tan 1

2

[PFl

k
± PFl

′

k

]
= ±1. (13)

With regard to the ambiguity of signs: the upper sign in (12) will go with the
upper sign throughout in (13), and so for the lower sign. It is also geometrically
evident that in the case of an ellipse we must take the upper, and in the case of
a hyperbola the lower sign (when in the real domain).

Theorem 5. The sum of the
distances from real points of an
ellipse and the difference of the
distances from real points of a
hyperbola or semi-hyperbola to two
real foci on the same axis is constant.

Theorem 5′. The sum of the
angles which the real tangents to an
ellipse or convex hyperbola, or the
difference of the angles which the
real tangents to a concave hyperbola
or a semi-hyperbola make with two
real focal lines through a centre is
constant.

Reverting to our point (x) we see

sin
Pfh

k
=

√
ch − ckxk +

√
cl − chxl√

(cl − ch)xl
2 − (ch − ck)xk

2

√
−(ck − cl)

ch

,

sin
Pfh

k
sin

Pfh
′

k
= ± ch

ck − cl
.

Theorem 6. The product of
the sines of the kth parts of the
distances from a point of a central
conic to two focal lines through the
same centre is constant.

Theorem 6′. The product of
the sines of the kth parts of the
distances to a tangent from two foci
of a central conic on the same axis
is constant.

Let us now recall Desargues’ theorem, whereby a transversal meets the conics
of a pencil in pairs of points of an involution. This will apply to a central conic,
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the Absolute, and the pairs of focal lines. A dual theorem will of course hold
for a central conic, the Absolute, and the pairs of foci.

Theorem 7. The intersections
of a line with a central conic, and
with its pairs of corresponding focal
lines, all have the same centres of
gravity.

Theorem 7′. The tangents from
a point to a central conic, and the
pairs of lines thence to its pairs of
corresponding foci, form angles with
the same two bisectors.

Theorem 8. The polar of a point
with regard to a central conic passes
through one centre of gravity of the
intersections of each focal line with
the tangents from the point to the
conic.

Theorem 8′. The pole of a line
with regard to a central conic lies on
one bisector of the angle determined
at each focus by the lines thence to
the intersections of the given line
with the conic.

A variable point of a conic will determine projective pencils at any two fixed
points thereof, and these will meet any line in projective ranges, hence

Theorem 9. If a variable point
of a central conic be connected with
two fixed points thereof, the distance
which these lines cut on any focal
line is constant.

Theorem 9′. If a variable tangent
to a central conic be brought to
intersect two fixed tangents thereof,
the angle of the lines from a chosen
focus to the two intersections is
constant.

Recalling the properties of the eleven-point conic of two given conics and a
line:

Theorem 10. If a line and
a central conic be given, the two
mutually conjugate and orthogonal
points of the line, the points of
the focal lines orthogonal to their
intersections with the line, and the
three centres lie on a conic.

Theorem 10′. If a point and a
central conic be given, the two lines
through the point which are mutually
conjugate and perpendicular, the
perpendiculars on the line from the
foci, and the three axes all touch a
conic.

It is a well-known theorem that the locus of points, whence tangents to two
conics form a harmonic set, is a conic passing through the points of contact with
the common tangents.

Theorem 11. The locus of points
whence tangents to a central conic
are mutually perpendicular is a conic
meeting the given conic where it
meets its directrices.

Theorem 11′. The envelope of
lines which meet a central conic in
pairs of mutually orthogonal points
is a conic touching the tangents to
the given circle from its director
points.

It is clear that neither of these conics will, in general, be a circle, as in the
euclidean case. If the mutually perpendicular tangents from the point (y) be
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(ux) = 0, (vx) = 0.
0..2∑

i

ui
2

ci
=

0..2∑
i

vi
2

ci
=

0..2∑
i

uivi = 0,

0..2∑
i

ui
2

ci
(vv) +

0..2∑
i

vi
2

ci
(uu)− 2

0..2∑
i

uivi

ci
(uv) = 0,

0..2∑
h

ch(ck + cl)yi
2 = 0. (14)

Let the reader show that the equation of the other conic will be

0..2∑
h

(ck + cl)ui
2 = 0.

We may extend the usual euclidean proof to the first of the following theorems—

Theorem 12. The locus of the
reflection of a real focus of an ellipse
in a variable tangent, is a circle
whose centre is the corresponding
focus.

Theorem 12′. The envelope of
the reflection in a variable point of
an ellipse, of a real focal line, is a
circle whose axis is the corresponding
focal line.

Let (y) be the coordinates of a point P of our conic. The equation of a line
through the centre Oh conjugate to the line OhP will be

ckykxk + clylxl = 0.

This will meet the conic in two points P ′ having the coordinates

xh : xk : xl = ±
√
ckclyh : clyl : −ckyk,

tan2 OP

k
+ tan2 OP

′

k
=
−ch(ck + cl)

ckcl
(15)

Theorem 13. The sum of the
squares of the tangents of the kth
parts of the distances from a centre
of a central conic to any pair
of intersections with two conjugate
lines through this centre is constant.

Theorem 13′. The sum of the
squares of the tangents of the angles
which an axis of a central conic
makes with a pair of tangents to
the curve from two conjugate points
of this axis is constant.

We shall call two such diameters as OhP , OhP
′ conjugate diameters.

sin]POhP
′ =

(ckyk
2 + clyl

2)√
yk

2 + yl
2
√
ck2yk

2 + cl2yl
2
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=
−chyh

2√
yk

2 + yl
2
√
ck2yk

2 + cl2yl
2
;

tan
OhP

k
tan

OhP ′

k
sin]POhP

′ = ± ch√
ckcl

.

Theorem 14. The product of the
tangents of the kth parts of the
distances from a centre of a central
conic to two intersections with a
pair of conjugate diameters through
that centre, multiplied by the sine
of the angle of these diameters is
constant.

Theorem 14′. The product of
the tangents of the angles which
an axis of a central conic makes
with two tangents to it from a pair
of conjugate points of this axis,
multiplied by the sine of the kth
part of the distance of these points
is constant.

The equation of a line through the centre Oh perpendicular to OhP will be

ykxk + ylxl = 0.

This will meet the conic in points P ′′ having coordinates

xh : xk : xl = ±

√
−(clyk

2 + ckyl
2)

ch
: yl : −yk,

cos
OP ′′

k
=

√
−(clyk

2 + ckyl
2)√

(ch − cl)yk
2 + (ch − ck)yl

2
,

ctn2 OP
′′

k
=
−(clyk

2 + ckyl
2)

ch(yk
2 + yl

2)
,

ctn2OP

k
+ ctn2 OP

′′

k
= −ck + cl

ch
. (16)

Theorem 15. The sum of the
squares of the cotangents of the kth
parts of the distances from a centre
of a central conic to two intersec-
tions of the curve with mutually
perpendicular diameters through this
centre is constant.

Theorem 15′. The sum of the
squares of the cotangents of the
angles which an axis of a central
conic makes with two tangents from
a pair of orthogonal points of this
axis is constant.

The equation of the tangent t′ at the point P ′ is

chyhxh +
√
ckcl(xkyl − xlyk) = 0.

From this we get

sin2 Oht′

k
=

ch
2yh

2

(cl − ch)ckyk
2 + (ck − ch)clyl

2
,
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tan
OhP

k
tan

Oht′

k
=

ch√
ckcl

. (17)

Theorem 16. The product of the
tangents of the kth parts of the
distances from a centre of a central
conic to a point of the curve and to
the tangent where the curve meets
a diameter conjugate to that from
the centre to the point of the curve,
is constant.

Theorem 16′. The product of
the tangents of the angles which an
axis of a central conic makes with a
tangent and with the absolute polar
of a point of contact with a tangent
from a point of this axis conjugate
to the intersection with the given
tangent, is constant.

The equations of two conjugate diameters through Oh have already been
written

ylxk − ykxl = 0, ckykxk + clylxl = 0.

The product of the tangents of the angles which they make with the xk axis
is

ykclyl

ylckyk
=
cl
ck
.

Theorem 17. The product of
the tangents of the angles which
two conjugate diameters through a
centre make with either axis through
this centre is constant.

Theorem 17′. The product of
the tangents of the kth parts of the
distances of two conjugate points of
an axis from either centre on this
axis is constant.

Let Ph, P ′h be the intersections of the xh axis with the conic

cos
PhP ′h
k

=
ch + cl
ck − cl

,

tan2 1
2

PhP ′h
k

· tan2 1
2

PkP ′k
k

· tan2 1
2

PlP ′l
k

= −1. (18)

Theorem 18. The product of the
squares of the tangents of the 2kth
parts of the distances determined
by a central conic on the axes is
equal to −1.

Theorem 18′. The product of
the squares of the tangents of the
half-angles of the pairs of tangents
to a central conic from its centres
is constant.

If a circle have double contact with a conic, we have, with the Absolute, the
figure of two conics having double contact with a third, already studied in the
last chapter.

Theorem 19. If a circle have
double contact with a conic, its
axis and the lines connecting the
points of contact are harmonically
separated by a pair of focal lines.

Theorem 19′. If a circle have
double contact with a conic, its
centre and the intersections of the
common tangents are harmonically
separated by a pair of foci.
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Of course we mean by foci and focal lines of any conic what we mean in the
special case of the central conic.

A circle which has double contact with a central conic where the latter meets
an axis is called an auxiliary circle. There will clearly be six such circles, their
centres being the centres of the conic. Consider the circle having its centre at
Ok while it has double contact with our central conic at the intersections with
xh = 0.

p
0..2∑

i

cixi
2 + qxh

2 ≡ r(xx) + sxk
2 = 0,

0..2∑
i

cixi
2 + (cl − ch)xh

2 = chxh
2 + ckxk

2 + clxl
2 = 0.

This will meet the line (u) through Oh in points Q, Q′, having coordinates

xh : xk : xl =

√
−
(cluk

2

cl
+
ckul

2

cl

)
: ul : −uk.

The same line will meet the conic in points P , P ′, having coordinates

xh : xk : xl =

√
−cluk

2 + ckul
2

ch
: ul : −uk,

tan2 OhQ

k
=
−cl(uk

2 + ul
2)

cluk
2 + ckul

2
, tan2 OhP

k
=
−ch(uk

2 + ul
2)

cluk
2 + ckul

2
,

tan
OhQ

k
: tan

OhP

k
=
√
cl :

√
ch. (19)

Let us remark, finally, that the tangent of the kth part of the distance from
a point to a line, is the cotangent of the kth part of its distance to the pole of
the line, and that if the tangents of two distances bear a constant ratio, so do
their cotangents:

Theorem 20. If the tangents of
the kth parts of the distances from
the points of a circle to any diameter
be altered in a constant ratio, the
locus of the resulting points will be
a conic having the given circle as
an auxiliary.

Theorem 20′. If the tangents
of the angles which the tangents
to a circle make with a diameter
be altered in a constant ratio, the
envelope of the resulting lines will
be a conic having the given circle
as an auxiliary circle.

The normal at any point of a conic is the line connecting it with the absolute
pole of its tangent. This line is also perpendicular to the absolute polar of
the given point, so that the conic and its absolute polar conic are geodesically
parallel curves. The equation of the normal to our conic (1) will be

0..2∑
i

ck − cl
yh

xh = 0. (20)
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The tangents to a central conic from a centre shall be called asymptotes.
The equation of the pair of asymptotes through the centre (Oh) will evidently
be

ckxk
2 + clxl

2 = 0. (21)

The tangent at the point P with coordinates (y) will meet them in two points
R, R′, whose coordinates are

xh : xk : xl =
√
−ckcl(

√
−clyl ±

√
ckyk) : ∓chyh

√
−cl : −chyh

√
ck,

tan
OhR

k
tan

OhR′

k
=

(cl − ck)ch2yh
2

ckcl(ckyk
2 + clyl

2)
=
ch(ck − cl)

ckcl
. (22)

Theorem 21. The product of the
tangents of the kth parts of the
distances from a centre of a central
conic to the intersection with the
asymptotes through that centre of
a tangent is constant.

Theorem 21′. The product of
the tangents of the angles which an
axis of a central conic makes with
the lines from a point of the curve
to the intersections of the curve
with this axis is constant.

A set of conics which meet the Absolute in the same four points shall be
said to be homothetic. If they have the same four absolute tangents they shall
be called confocal. We get at once from Desargues’ involution theorem:—

Theorem 22. One conic homo-
thetic to a given conic will pass
through every point of space, and
two will touch every line, not through
a point common to all the conics,
in the centres of gravity of all pairs
of intersections of the homothetic
conics with this line.

Theorem 22′. One conic confocal
with a given conic will touch every
line, and two will pass through every
point not on the common tangents
to all. The tangents to these two
will bisect the angles of the pairs
of tangents from that point to all
of the confocal conics.

Concentric circles are a special case both of homothetic and of confocal
conics. The general form for the equations of conics homothetic and confocal
respectively to our conic (1) will be

0..2∑
i

(ci +m)x0
2 = 0. (23);

0..2∑
i

ci
l + ci

xi = 0. (24)

It is sometimes useful to modify the second of these equations, in order to
introduce the elliptic coordinates of a point, i.e. the two parameters giving the

conics of the confocal system which pass through it. Let us write
1
ci

in place of
ci.

xi√
(xx)

= Xi.
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Our confocal conics have, then, the general equation

0..2∑
i

Xi

ci − λ
= 0. (25)

If λ1 and λ2 be the parameter values of the conic through (X) we have

Xh =

√√√√√ (ck − cl)(ch − λ1)(ch − λ2)
0..2∑
h

ch2(ch − cl)
. (26)

ds2 =
0..2∑

i

dXi
2 =

1
4

 (λ1 − λ2)dλ1
2

0..2∏
i

(ci − λ1)
+

(λ2 − λ1)dλ2
2

0..2∏
i

(ci − λ2)

 . (27)

With the aid of these coordinates, we may easily prove for the non-euclidean
case Graves’ theorem, namely, if a loop of thread be cast about an extremely
thin elliptic disk, and pulled taut at a point, that point will trace a confocal
ellipse. We shall not give the details here, however, for in the next chapter
we shall work at length the more interesting corresponding problem in three
dimensions, and the calculations are too fatiguing to make it advisable to carry
them through twice.
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CHAPTER XIII

QUADRIC SURFACES

The discussion of non-euclidean quadric surfaces may be carried on in the
same spirit as that of conic sections in the preceding chapter. There is not,
however, the same wealth of easy and interesting theorems, owing to the greater
complication in the formation of the simultaneous covariants of two quadrics.

Let us begin by classifying non-euclidean quadrics under the group of real
congruent transformations.57 We begin in the actual domain of hyperbolic
space, giving only those surfaces which have a real part in that domain and
a non-vanishing discriminant. The names adopted are intended to give a cer-
tain idea of the shape of the surface. We shall mean by curve, the curve of
intersection of the surface and Absolute, while developable is the developable of
common tangent planes.

A. Central Quadrics.
(1) Ellipsoid. Imaginary quartic curve and developable.
(2) Concave, non-ruled hyperboloid. Real quartic curve and developable.
(3) Convex non-ruled hyperboloid. Real quartic curve, imaginary devel-

opable.
(4) Two-sheeted ruled hyperboloid. Real quartic curve and developable.
(5) One-sheeted ruled hyperboloid. Real quartic curve, imaginary devel-

opable.
(6) Non-ruled semi-hyperboloid. Real quartic curve and developable.
(7) Ruled semi-hyperboloid. Real quartic curve and developable.
The last two surfaces differ from the preceding ones in that here two vertices

of the common self-conjugate tetrahedron (in the sense of projective geometry)
of the surface and Absolute are conjugate imaginaries, while in the first five
cases all four are real.

B.
(8) Elliptic paraboloid. Imaginary quartic curve with real acnode, imaginary

developable.
(9) Tubular non-ruled hyperbolic paraboloid. Real quartic with acnode, real

developable.
(10) Cup-shaped non-ruled hyperbolic paraboloid. Real quartic with acnode,

imaginary developable.
(11) Open ruled hyperbolic paraboloid. Real acnodal quartic, real devel-

opable.
57The classification here given is that which appears in the author’s article ‘Quadric Surfaces

in Hyperbolic Space’, Transactions of the American Mathematical Society, vol. iv, 1903.
This classification was simplified and put into better shape by Bromwich, ‘The Classification
of Quadratic Loci,’ ibid., vol. vi, 1905. The latter, however, makes use of Weierstrassian
Elementary Divisors, and it seemed wiser to avoid the introduction of these into the present
work. Both Professor Bromwich and the author wrote in ignorance of the fact that they had
been preceded by rather a crude article by Barbarin, ‘Étude de géométrie non-euclidienne,’
Mémoires couronnés par l’Académie de Belgique, vol. vi, 1900.
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(12) Gathered ruled hyperbolic paraboloid. Real crunodal quartic, imagi-
nary developable.

(13) Cuspidal non-ruled hyperbolic paraboloid. Real cuspidal quartic curve,
real developable.

(14) Cuspidal ruled hyperbolic paraboloid. Real cuspidal quartic curve, real
developable.

(15) Horocyclic non-ruled hyperbolic paraboloid. The curve is two mutually
tangent conics, developable real.

(16) Horocyclic elliptic paraboloid. Curve is two mutually tangent imaginary
conics, developable imaginary.

(17) Horocyclic ruled hyperbolic paraboloid. Curve is two real mutually
tangent conics, developable imaginary.

(18) Non-ruled osculating semi-hyperbolic paraboloid. The curve is a real
conic and two conjugate imaginary generators meeting on it. The developable
is a real cone, and two imaginary lines.

C. Surfaces of Revolution.
(19) Prolate spheroid. Curve is two imaginary conics in real ultra-infinite

planes, imaginary developable.
(20) Oblate spheroid. Curve is two imaginary conics in conjugate imaginary

planes meeting in an ultra-infinite line, imaginary developable.
(21) Concave non-ruled hyperboloid of revolution. Curve is two real conics

whose planes meet in an ideal line, real developable.
(22) Convex non-ruled hyperboloid of revolution. Absolute curve two real

conics whose planes meet in an ideal line, imaginary developable.
(23) Ruled hyperboloid of revolution. Curve two real conics whose planes

meet in an ideal line, imaginary developable.
(24) Semi-hyperboloid of revolution. The curve is a real conic, and an imag-

inary one in a real plane, the developable is a real cone and an imaginary one.
(25) Elliptic paraboloid of revolution. The absolute curve is an imaginary

conic in an ultra-infinite plane, and two imaginary generators not intersecting on
the conic. The developable is an imaginary cone, and the same two generators.

(26) Tubular semi-hyperbolic paraboloid of revolution. The curve is a real
conic and two imaginary generators not intersecting on it; the developable is
the same two lines and a real cone.

(27) Cup-shaped semi-hyperbolic paraboloid of revolution. Real conic and
two imaginary lines not meeting on it. Developable same two lines and imagi-
nary cone.

(28) Clifford surface. Curve and developable two generators of each set.

D. Canal Surfaces.58

(29) Elliptic canal surface. Curve is two imaginary conics whose planes meet
in an actual line, developable imaginary.

(30) Non-ruled hyperbolic canal surface. Two real conics whose planes meet
in an actual line, developable two real cones.

58Called Surfaces of Translation in the author’s article ‘Quadric Surfaces’, loc. cit.
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(31) Ruled hyperbolic canal surface. Curve two real conics whose planes
meet in an actual line, imaginary developable.

E. Spheres.
(32) Proper sphere. Curve is two coincident imaginary conics, developable

imaginary.
(33) Equidistant surface. Curve two real coincident conics, developable two

real coincident cones.
(34) Horocyclic surface. Curve and developable two conjugate imaginary

intersecting generators, each counted twice.

In elliptic or spherical space the number of real varieties will, of course, be
much smaller. We have

(1) Non-ruled ellipsoid.
(2) Ruled ellipsoid.
(3) Prolate spheroid.
(4) Oblate spheroid.
(5) Ruled ellipsoid of revolution.
(6) Clifford surface.
(7) Sphere.
It is worth mentioning that the Clifford surface of elliptic space has real

linear generators, while that in hyperbolic space has not.
Let us next turn our attention to that class of quadrics which we have termed

central, and which are distinguished by the existence of a non-degenerate tetra-
hedron (in the projective sense) self-conjugate with regard both to the surface
and the Absolute. The vertices of this tetrahedron shall be called the centres of
the surface, and its planes the axial planes. When this tetrahedron is chosen as
the basis of the coordinate system, the Absolute may be written in the typical
form while the equation of the surface involves none but squared terms.

Theorem 1. A centre of a
central quadric is equidistant from
the intersections with the surface of
every line through this centre.

Theorem 1′. An axial plane of
a central quadric bisects a dihedral
angle of every two tangent planes
to the surface which meet in a line
of this axial plane.

We obtain a good deal of information about our central quadrics by enu-
merating the Cayleyan characteristics of their curves of intersection with the
Absolute, and the corresponding developables. The curve is a twisted quartic
of deficiency one. Its osculating developable is of order eight and class twelve.
It has sixteen stationary tangent planes, thirty-eight lines in every plane lie in
two osculating planes, two secants, i.e. two lines meeting the curve twice, pass
every point not on the curve, sixteen points in every plane are the intersection
of two tangents, eight double tangent planes pass through every point. The
developable will, of course, possess the dual characteristics.
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Theorem 2. Through an arbitrary
point in space will pass twelve
planes cutting a central quadric in
osculating parabolas, eight planes of
parabolic section will pass through
an arbitrary line. An arbitrary
point will be the centre of one
section. Sixteen planes cut the
surface in horocycles, sixteen points
in an arbitrary plane are the centres
of circular sections, eight planes
of circular section pass through an
arbitrary point.

Theorem 2′. In an arbitrary
plane there will be twelve points,
vertices of cones circumscribed to
a central quadric which have sta-
tionary contact with the cone of
tangents to the Absolute, eight
points on an arbitrary line are ver-
tices of circumscribed cones which
touch the Absolute. An arbitrary
plane will be a plane of symmetry
for one circumscribed cone. Sixteen
points are vertices of circumscribed
cones which have four-plane contact
with the Absolute. Sixteen planes
through an arbitrary point are per-
pendicular to the axes of revolution
of circumscribed cones of revolution.

The planes of circular section are those which touch the cones whose vertices
are the centres of the quadric, and which pass through the Absolute curve. It
may be shown that not more than six real planes of circular section will pass
through an actual point, and that only two of these will cut the surface in proper
circles.59

Let us write as the equation of a typical quadric

0..3∑
i

cixi
2 = 0. (1)

No two of the c’s shall be equal, and none shall equal zero.
The cones whose vertices are the centres and which pass through the Ab-

solute curves shall be called the focal cones. In like manner there will be four
focal conics in the axial planes. The equation of the focal cone whose vertex is
Oh will be

0..3∑
i

(ci − ch)xi
2 = 0. (2)

The focal conic in the corresponding axial plane will be

xh = 0,
0..3∑

i

ch − ci
chci

wi
2 = 0. (3)

Let the reader show that each of these conics passes through two foci of each
other one.

We next seek the locus of points whence three mutually tangent planes may
be drawn to the surface. Let these be the planes (v), (w), (ω), and let the

59See the author’s ‘Quadric Surfaces’, loc. cit., p. 164.
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equation of the surface and the Absolute in plane coordinates be, in the Clebsch-
Aronhold notation

uγ
2 = 0, uα

2 ≡ uα
′2 = 0,

vγ
2 = wγ

2 = ωγ
2 = 0,

vαwα = wαωα = ωαvα = 0,∣∣∣∣∣∣
vγ wγ ωγ

vα wα ωα

vα
′ wα

′ ωα
′

∣∣∣∣∣∣
2

= |γαα′x|2 = 0,

where (x) is the point of concurrence of the planes (v), (w), (ω). Returning to
actual coefficients, the coefficients of xixj will vanish, for they involve γiγj or
αkαl which are zero. We shall find eventually

0..3∑
h

ch(ckcl + clcm + cmck)xh
2 = 0. (4)

This quadric is also the locus of points whence triads of tangents to the
Absolute are conjugate with regard to the given quadric, hence interchanging
γ and α, we get the locus of points whence triads of mutually perpendicular
tangents may be drawn to the quadric (1)

0..3∑
h

ch(ck + cl + cm)xh
2 = 0. (5)

If the quadric be ruled, the former of these loci will intersect it along a curve
where generators of different sets intersect at right angles.

Theorem 3. A line will meet a
central quadric and its focal cones
in five pairs of points with the same
centres of gravity.

Theorem 3′. The tangent planes
to a central quadric and its focal
conics through a line form five sets
of dihedral angles with the same
bisectors.

The proof of these two theorems is immediate.
If we mean by a diameter of a quadric, a line through a centre, we see that

we may pass from any set of three concurrent conjugate diameters to any other
such set through that same centre by changing two diameters at a time, and
keeping the third one fixed. We may thus continually apply Theorem 14, of
Chapter XII. In the same way we may pass from any set of three mutually
perpendicular diameters to any other such set, and apply Theorem 15 of the
same chapter.

Theorem 4. The sum of the
squares of the tangents of the
kth parts of the distances from a
centre of a central quadric to three
intersections of the surface with
three conjugate diameters through
that centre is constant.

Theorem 4′. The sum of the
squares of the tangents of the angles
which an axial plane of a central
quadric makes with three tangent
planes through three conjugate lines
in that axial plane is constant.
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Theorem 5. The sum of the
squares of the cotangents of the
kth parts of the distances from a
centre of a central quadric to three
intersections with the surface of
three mutually perpendicular lines
through that centre is constant.

Theorem 5′. The sum of the
squares of the cotangents of the
angles which an axial plane of a
central quadric makes with three
tangent planes through three mutu-
ally perpendicular lines in that axial
plane is constant.

To find the values of the constants referred to in Theorems 4 and 5, we have
but to choose a particular set of diameters, say the intersections of the axial
planes through Oh. We thus get

tan2 OhP

k
+ tan2 OhP ′

k
+ tan2 OhP ′′

k
= −ch

(
1
ck

+
1
cl

+
1
cm

)
. (6)

ctn2 OhQ

k
+ ctn2 OhQ′

k
+ ctn2 OhQ′′

k
= − (ck + cl + cm)

ch
. (7)

A set of quadrics having the same absolute focal curve, and, hence, the same
focal cones, shall be called homothetic. A set inscribed in the same absolute
developable, and possessing, in consequence the same focal conics shall be called
confocal .

Theorem 6. An arbitrary line
will meet a set of confocal quadrics
in pairs of points with the same
centres of gravity.

Theorem 6′. The tangent planes
to a set of confocal quadrics through
an arbitrary line, form dihedral
angles with the same bisectors.

Theorem 7. Three homothetic
quadrics will touch an arbitrary
plane in three mutually orthogonal
points.

Theorem 7′. Three confocal
quadrics will pass through an arbi-
trary point, and intersect orthogo-
nally.

Let us now set up our system of elliptic coordinates as we did in the plane

Xi =
xi√
(xx)

, (XX) = 1. (8)

These coordinates (X) are inapplicable to points of the Absolute; we imagine
that all such points are excluded from consideration. The general equation for
the system of quadrics confocal with that given by (1) will be,60 if we replace

60The residue of the present chapter is closely analogous to the treatment of the correspond-
ing euclidean problem given by Klein in his ‘Einleitung in die höhere Geometrie’, lithographed
notes, Göttingen, 1893, pp. 38–73, and Staude, ‘Fadenconstruktion des Ellipsoids,’ Mathema-
tische Annalen, vol. xx, 1882. Staude returns to the subject in his Die Fokaleigenschaften der
Flächen zweiter Ordnung, Leipzig, 1896. This book is intended as a supplement to the usual
textbooks on analytic geometry, and is somewhat prolix in its attempts at simplicity.
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ci by
1
ci

,
0..3∑

i

Xi
2

ci − λ
= 0. (9)

If the roots be λ1, λ2, λ3, we have

Xh =

√
(ch − λ1)(ch − λ2)(ch − λ3)
(ch − ck)(ch − cl)(ch − cm)

. (10)

For the differential of distance we have

ds2

k2
=

(xx)(dx dx)− (x dx)2

(xx)2
= (dX dX). (11)

We wish to express this in terms of our elliptic coordinates. It will be found
that the coefficients of dλp dλq will vanish, and, indeed, this is a priori evident
if we have in mind that our coordinate system is a triply orthogonal one, and
the general formulae for orthogonal curves, as will be shown in Chapter XV, are
the same for euclidean as for non-euclidean We thus get

ds2

k2
=

1
4

0..3∑
h

1..3∑
p

(ch − λq)(ch − λr)dλp
2

(ch − ck)(ch − cl)(ch − cm)(ch − λp)
.

If we give to ch each of its four values, divide the terms into partial fractions
and recombine, we get

ds2

k2
=

1
4

1..3∑
p

(λp − λq)(λp − λr)dλp
2

0..3∏
i

(ci − λp)
. (12)

The analogy to the corresponding formula in euclidean space is striking.
The cones whose vertices are all at an arbitrary point, and which are cir-

cumscribed to a set of confocal quadrics, will themselves be confocal, i.e. they
will have four common tangent planes which touch the Absolute. Any two of
these cones will intersect orthogonally. This shows that the congruence of lines
tangent to two confocal quadrics will be a normal one, the edges of regression
of their developable surfaces being geodesics of the quadrics. These facts, well
known in the euclidean case, will be proved for the noneuclidean one in Chapter
XVI. Notice that we get the system of geodesics of a quadric by means of its
∞3 common tangents with confocal quadrics. The difficulties which arise for
special positions, as umbilical points, need not concern us here.

The equation of the cone whose vertex is (Y ) and which circumscribes the
quadric (1) will be

0..3∑
i

Yi
2

ci − λ

0..3∑
i

Xi
2

ci − λ
−
[0..3∑

i

YiXi

ci − λ

]2
= 0.
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0..3∑
i

0..3∑
j

(XiYj −XjYi)2

(ci − λ)(cj − λ)
= 0.

Putting X = Y + dY we get the differential form

0..3∑
i

0..3∑
j

(YidYj − YjdYi)2

(ci − λ)(cj − λ)
= 0.

Let us change this also to the elliptic form. We notice that the coefficients
of the expressions dλp dλq will be 0, for the axial planes of the cones will be
given by tangents to

λp = 0, λq = 0, λr = 0.

The ∞1 confocal cones form a one-parameter family all touching the same
tangent planes to the cone ds2 = 0. The equation of one cone of the family may
be thrown into the form

1..3∑
p

(λp − λq)(λp − λr)[0..3∏
i

(ci − λp)
]
Lp

dλp
2 = 0,

where Lp is a function of λ. Hence the general form will be

1..3∑
p

(λp − λq)(λp − λr)[0..3∏
i

(ci − λp)
]
(Lp − µ)

dλp
2 = 0.

It remains to find the value of Lp − µ. It is clearly a polynomial in powers of
λ, which vanishes only when λ = λp, for then only shall we have dλp

2 = 0. We
thus get

Lp − µ = Ap(λp − λ)m,

where Ap is a constant. Again, as two of these confocal quadrics contain ev-
ery line through the vertex, we must have m = 1. Lastly, our expression is
symmetrical in p, q, r, hence

Ap = Aq = Ar.

We finally get for our cone

1..3∑
p

(λp − λq)(λp − λr)dλp
2[0..3∏

i

(ci − λp)
]
(λp − λ)

= 0. (13)

For progress along an arc of a geodesic of λr = const., we have

dλp

√√√√√ λp − λr

(λp − λ)
0..3∏

i

(ci − λp)
± dλq

√√√√√ λq − λr

(λq − λ)
0..3∏

i

(ci − λq)
= 0.
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so that the problem of finding the geodesics of a quadric depends merely upon
elliptic integrals. If we take λr = λ, we have double tangents to the surface, i.e.
rectilinear generators,

dλp√
0..3∏

i

(ci − λp)

± dλq√
0..3∏

i

(ci − λq)

= 0.

The general differential of arc on a surface λr = const. is

ds2

k2
=

1
4

 (λp − λq)(λp − λr)
0..3∏

i

(ci − λp)
dλp

2 +
(λq − λp)(λq − λr)

0..3∏
i

(ci − λq)
dλq

2

 ,
we have, then, for a distance along a generator

s =
k

2

∫
(λp − λq)dλp√

0..3∏
i

(ci − λp)

.

This expression is independent of λr, whence

Theorem 8. If from a set of
confocal central quadrics a one-
parameter set of linear generators
be so chosen that all intersect the
same ∞1 lines of curvature of ∞1

confocal quadrics of the system, then
any two of these lines of curvature
will cut congruent distances on all
of these linear generators.

Theorem 8′. If from a set of
homothetic central quadrics a one-
parameter set of linear generators
be so chosen that all touch ∞1

developables circumscribed to pairs
of quadrics of the homothetic sys-
tem, then the tangent planes to
any two of these developables will
determine congruent dihedral angles
whose edges are the given linear
generators.

Theorem 8 may also be easily proved by showing that the generators of a set
of confocal quadrics form an isotropic congruence, whereof much more later.61

We now seek for the expression for the element of distance upon a common
tangent to two confocal quadrics λ, λ′.

1..3∑
p

(λq − λp)(λr − λp)dλp
2[0..3∏

i

(ci − λp)
]
(λ− λp)

= 0,

61The general theorem concerning isotropic congruences upon which this depends will be
proved in Chapter XVI, where also will be found a bibliography of the subject.
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1..3∑
p

(λq − λp)(λr − λp)dλp
2[0..3∏

i

(ci − λp)
]
[λ′ − λp]

= 0.

(λp − λq)dλq√[0..3∏
i

(ci − λq)
]
(λ− λq)(λ′ − λq)

= ± (λp − λr)dλr√[0..3∏
i

(ci − λr)
]
(λ− λr)(λ′ − λr)

.

(14)
(λq − λp)dλp√[0..3∏

i

(ci − λp)
]
(λ− λp)(λ′ − λp)

= ± (λq − λr)dλr√[0..3∏
i

(ci − λr)
]
(λ− λr)(λ′ − λr)

.

ds

k
= ± dλp

2

√[0..3∏
i

(ci − λp)
] ×

√
(λq − λp)(λr − λp)√
(λ− λp)(λ′ − λp)

×

√√√√√
∣∣∣∣∣∣
λp

2 λq
2 λr

2

λp λq λr

1 1 1

∣∣∣∣∣∣√
λq − λr

(λq − λr)
ds

k
=

dλp

2

√
0..3∏

i

(ci − λp)

× (λp − λq)(λq − λr)(λr − λp)√
(λ− λp)(λ′ − λp)

.

Multiplying through by (λ− λp), (λ′ − λp), and summing for p = 1, 2, 3

ds

k
=

1
2

√√√√√ (λ− λ1)(λ′ − λ1)
0..3∏

i

(ci − λ1)
dλ1

+
1
2

√√√√√ (λ− λ2)(λ′ − λ2)
0..3∏

i

(ci − λ2)
dλ2

+
1
2

√√√√√ (λ− λ3)(λ′ − λ3)
0..3∏

i

(ci − λ3)
dλ3. (15)

For a geodesic on λ = λ1 whose tangent touches λ′ we have

ds

k
=

1
2

√√√√√ (λ− λ2)(λ′ − λ2)
0..3∏

i

(ci − λ2)
dλ2 +

1
2

√√√√√ (λ− λ3)(λ′ − λ3)
0..3∏

i

(ci − λ3)
dλ3. (16)

For a line of curvature common to λ = λ1, λ′ = λ2
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ds

k
=

1
2

√√√√√ (λ1 − λ3)(λ2 − λ3)
0..3∏

i

(ci − λ3)
dλ3. (17)

It is now necessary to look more closely into the signs of the radicals in (15).
We know that, at least in a restricted domain, three confocal quadrics will pass
through each point. In elliptic space one of these will be ruled, and the other
two not ruled; assuming, of course, that we are dealing with the case of central
quadrics. In hyperbolic space, two possible cases can arise in the actual domain.
If the developable be real, two ruled, and one non-ruled hyperboloid will pass
through each point. If it be imaginary we shall have an ellipsoid, a ruled, and a
not-ruled hyperboloid.62 Let us confine ourselves to this case, taking λ3 as the
parameter of the non-ruled hyperboloid, λ2 as that of the ruled one, while λ1

gives the ellipsoid. The elliptic case will follow immediately if we suppress the
word hyperboloid substituting ellipsoid. In (15) let us assume that λ refers to an
ellipsoid, and λ′ to a ruled hyperboloid. In two of the three actual axial planes
we shall have real focal conics. There will be a real focal ellipse which, looked
upon as an envelope, constitutes the transition between the ellipsoid and the
ruled hyperboloid. It will be surrounded by all ellipsoids, and surround all ruled
hyperboloids. If we take a point in this axial plane, without the focal ellipse, the
ellipsoid and non-ruled hyperboloid will subsist, the ruled hyperboloid, looked
upon as a point locus, will shrink into the plane counted doubly. The other real
focal conic will be a hyperbola, and will serve as a transition between the two
sorts of hyperboloids, looked upon as envelopes. It will surround the non-ruled
hyperboloids, but be surrounded by the ruled ones. The plane counted doubly,
will replace a non-ruled hyperboloid for each point without the hyperbola. If
a point be taken in the remaining axial plane, this plane, counted doubly, will
replace a non-ruled hyperboloid for each of its points. Similar considerations
will hold in the elliptic case.

Once more, let us look at the signs of the terms in (15). dλi will change sign
as a point passes through an axial plane that counts doubly in the λi family, or
when passing along a tangent to one of these surfaces, the point of contact is
traversed. On the other hand we see from (14) that when dλi changes sign, the
radical associated with it in (15) changes sign also, and vice versa. The radical
associated with dλ3 will change sign as we pass through a point of the axial
plane with an imaginary focal conic (which we shall call π3), and for a point of
the axial plane π2 of the focal hyperbola, which is without this hyperbola. The
radical with dλ2 will change sign for points of π1, the plane of the focal ellipse
without this curve, or points of π2 within the focal hyperbola. The radical with
dλ1 will change sign for points of π1 within the focal ellipse.

We next suppose that a loop of inextensible thread is slung about an ellipsoid
λ, and a confocal, ruled, one-sheeted hyperboloid λ′, and pulled taut at a point
P . The loop is supposed to surround the ellipsoid, so that it winds partly

62See the Author’s ‘Quadric Surfaces’, p. 165.
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on each of the portions of the hyperboloid, which, in a restricted domain, are
separated by the ellipsoid. The form for the element of length throughout the
whole string will be that given by (15). For when we pass from the ellipsoid to
the hyperboloid we pass along a geodesic whose tangent touches both surfaces,
and this will be true throughout the continuation of that geodesic, for a geodesic
is traced by a line rolling on a quadric, and touching a confocal one. The same
form of distance element will hold for the rectilinear parts of the loop. We see,
moreover, that two, and only two surfaces, of a confocal system will touch any
line; hence λ and λ′ are the only two which will touch the rectilinear parts of the
loop. Lastly, let us limit ourselves to those regions of the plane where the various
portions of the loop may be named in order: straight, hyperboloidal, ellipsoidal,
hyperboloidal, ellipsoidal, straight. The constant length of the thread may be
written

C =
∫ λ1

λ1

F1dλ1 +
∫ λ2

λ2

F2dλ2 +
∫ λ3

λ3

F3dλ3.

We see that F3 can never vanish, for λ and λ′ are the parameters of an
ellipsoid and ruled hyperboloid respectively, while λ3 refers to a non-ruled hy-
perboloid. It will become infinite four times, twice when the loop passes π2 the
plane of the focal hyperbola, and twice when it passes π3. We may, however,
integrate right up to these limits, and, as we have seen, dλ3 changes sign with
the radical. We thus have∫ λ3

λ3

F3dλ3 =
∫ c3

λ3

F3dλ3 −
∫ c2

c3

F3dλ3 +
∫ c3

c2

F3dλ3 −
∫ c2

c3

F3dλ3 +
∫ λ3

c2

F3dλ3

= 4
∫ c3

c2

F3dλ3 = const.

We may approach the second integral in the same spirit. F2 will become
infinite twice when the loop passes the plane of the focal ellipse π1. It will vanish
throughout those two portions of the loop that lie on the ruled hyperboloid
λ2 = λ′, and these two are separated by an intersection with π1 We have then∫ λ2

λ2

F2dλ2 =
∫ λ′

λ2

F2dλ2 −
∫ c1

λ′
F2dλ2 +

∫ λ′

c1

F2dλ2 −
∫ c1

λ′
F2dλ2 +

∫ λ2

c1

F2dλ2

= 4
∫ λ′

c1

F2dλ2 = const.

We must, in conclusion, consider the first integral. It will never become
infinite, but will vanish along those two portions of the loop which lie on the
ellipsoid λ = λ1. We have therefore:∫ λ1

λ1

F1dλ1 =
∫ λ

λ1

F1dλ1 −
∫ λ1

λ

F1dλ1 = 2
∫ λ

λ1

F1dλ1 = φ(λ1).

We have therefore, since the first two integrals and the sum are constant,

φ(λ1) = const.,
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and the locus of the moving point is an ellipsoid. Lastly, let the ellipsoid and
hyperboloid shrink down to the focal ellipse and focal hyperbola respectively,
we have in the limiting case:

Theorem 9. If an ellipse and hyperbola in mutually perpendicular planes
pass each through two foci of the other, and if a loop of inextensible thread be
slung around the ellipse and pulled taut at a point P in such a way that it meets
the two curves alternately, then the locus of P will be an ellipsoid confocal with
the given ellipse and hyperbola.
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CHAPTER XIV

AREAS AND VOLUMES

The subjects area and volume offer some of the most striking points of dispar-
ity between euclidean and non-euclidean geometry.63 A first notable difference
arises from the fact that, in the non-euclidean cases, two different functions of
a triangle appear to play the rôle of the euclidean area. The first is present
in the analoga of those formulae which give the area in terms of the sides and
angles; the second appears when the area is defined as the limit of a sum, i.e.
as a definite integral. We shall reserve the name area for the second of these,
giving to the first the name amplitude.64

Let us, as in elementary geometry, use the letters A, B, C to indicate, either
the vertices of a triangle, or the measures of its angles. We assume that these
points are real, and, in the hyperbolic case, situated in the actual domain. We
shall define triangle as in Chapter II. We might carry through the same sort of
work for any three points, but, as we saw in the closing pages of Chapter VII,
we should thereby be compelled, in the hyperbolic case at least, to introduce
certain very delicate considerations as to algebraic; sign, not only in our analytic
expressions, but even in the trigonometric formulae first introduced in Chapter
IV.

We begin by rewriting IV. 9

− sin
b

k
sin

c

k
cosA = cos

b

k
cos

c

k
− cos

a

k
.

This formula, established for one region, is seen at once to hold for all the
others.

sin
b

k
sin

c

k
sinA

=
[
sin2 b

k
sin2 c

k
− cos2

b

k
cos2

c

k
+ 2 cos

a

k
cos

b

k
cos

c

k
− cos2

a

k

] 1
2

=
[
1− cos2

a

k
− cos2

b

k
− cos2

c

k
+ 2 cos

a

k
cos

b

k
cos

c

k

] 1
2
.

The right-hand side is symmetrical in the three letters a, b, c, so that we
may write

sin
b

k
sin

c

k
sinA = sin

c

k
sin

a

k
sinB = sin

a

k
sin

b

k
sinC

63For a bibliographical account of the subject-matter of the present chapter see the disserta-
tion of Dannmeyer, Die Oberflächen- und Volumenberechnung für Lobatschefskijsche Räume,
Göttingen, 1904.

64The concept amplitude of a triangle, and the various trigonometric identities connected
with it, are taken directly from an admirable paper by D’Ovidio, ‘Su varie questioni di metrica
proiettiva,’ Atti della R. Accademia delle Scienze di Torino, vol. xxviii, 1893. Unfortunately
the author gives, p. 20, an incorrect formula for the volume of a tetrahedron.
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=

∣∣∣∣∣∣∣∣∣∣∣

1 cos
c

k
cos

b

k

cos
c

k
1 cos

a

k

cos
b

k
cos

a

k
1

∣∣∣∣∣∣∣∣∣∣∣

1
2

. (1)

In the real domain, if the measures of sides and angles be taken positively,
the left side is essentially negative in the hyperbolic case, and positive in the
elliptic, so that the radical on the right must be chosen accordingly. It will
vanish only when the three points are collinear (under the restrictions made
at the outset of this chapter), and shall be called the Sine Amplitude of the
triangle, written sin(ABC).

Let the reader show that if the coordinates of A, B, C be (x), (y), (z)
respectively

sin(ABC) =

∣∣∣∣∣∣
(xx) (xy) (xz)
(yx) (yy) (yz)
(zx) (zy) (zz)

∣∣∣∣∣∣
1
2

√
(xx)

√
(yy)

√
(zz)

=
|xyz|√

(xx)
√

(yy)
√

(zz)
. (2)

We may rewrite (1) in the form

sinA

sin
a

k

=
sinB

sin
b

k

=
sinC

sin
c

k

≡ sin(ABC)

sin
a

k
sin

b

k
sin

c

k

. (3)

If A′, B′, C ′ be the points where the sides of the triangle meet the perpen-
diculars from the vertices, we have

sin
a

k
sin

AA′

k
= sin

b

k
sin

BB′

k
= sin

c

k
sin

CC ′

k
= sin(ABC). (4)

We see at once the close analogy of the sine amplitude of a non-euclidean triangle
to double area of a euclidean triangle. Let the reader show that

Lim.
1
k2

= 0, k2 sin(ABC) = 2 Area 4ABC.

A function correlative to the sine amplitude may be obtained from the cor-
relative formula

sinB sinC cos
a

k
= cosB cosC + cosA.

sinB sinC sin
a

k
= sinC sinA sin

b

k
= sinA sinB sin

c

k

=

∣∣∣∣∣∣
1 cosC cosB

cosC 1 cosA
cosB cosA 1

∣∣∣∣∣∣
1
2
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= sin(abc). (5)

This > 0 in the elliptic case, pure imaginary in the hyperbolic

sin
a

k
sinA

=
sin

b

k
sinB

=
sin

c

k
sinC

=
sin(abc)

sinA sinB sinC
. (6)

sinA sin
AA′

k
= sinB sin

BB′

k
= sinC sin

CC ′

k
= sin(abc). (7)

sin
a

k
sinA

=
sin

b

k
sinB

=
sin

c

k
sinC

=
sin(ABC)
sin(abc)

. (8)

sin(abc) =
sin2(ABC)

sin
a

k
sin

b

k
sin

c

k

, sin(ABC) =
sin2(abc)

sinA sinB sinC
. (9)

If a+ b+ c = 2s,

cosA =
cos

a

k
− cos

b

k
cos

c

k

sin
b

k
sin

c

k

,

sin 1
2A =

 sin
s− b

k
sin

s− c

k

sin
b

k
sin

c

k


1
2

,

cos 1
2A =

 sin
s

k
sin

s− a

k

sin
b

k
sin

c

k


1
2

,

ctn 1
2A =

 sin
s

k
sin

s− a

k

sin
s− b

k
sin

s− c

k


1
2

,

sin(ABC) = 2

√
sin

s

k
sin

s− a

k
sin

s− b

k
sin

s− c

k
. (10)

In like manner, let us put

A+B + C = 2σ.

sin 1
2

a

k
=
[
− cosσ cos(σ −A)

sinB sinC

] 1
2

,
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cos 1
2

a

k
=
[
cos(σ −B) cos(σ − C)

sinB sinC

] 1
2

,

ctn 1
2

a

k
=
[
cos(σ −B) cos(σ − c)
− cosσ cos(σ − a)

] 1
2

,

sin(abc) = 2
√
− cosσ cos(σ −A) cos(σ −B) cos(σ − C). (11)

sin 1
2A sin 1

2B sin 1
2C =

(
sin

s− a

k
sin

s− b

k
sin

s− c

k

)
sin

a

k
sin

b

k
sin

c

k

,

sin
s

k
=

sin(abc)
4 sin 1

2A sin 1
2B sin 1

2C
. (12)

− cosσ =
sin(ABC)

4 cos 1
2

a

k
cos 1

2

b

k
cos 1

2

c

k

. (13)

It should be noticed that the denominator on the right of equation (13) is
essentially positive. The numerator is negative in the hyperbolic case, as we
have already seen, but here also σ <

π

2
and cosσ > 0. In the elliptic case the

numerator is positive but σ >
π

2
, cosσ < 0.

In Chapter III we defined as the discrepancy of a triangle, the absolute value
of the difference between the sum of the measures of the angles and π. Let us
now define as the excess of our triangle the expression

e = A+B + C − π.

This will have the same sign as
1
k2

the measure of curvature of space. We
have

sin
e

2
= − cosσ =

sin(ABC)

4 cos 1
2

a

k
cos 1

2

b

k
cos 1

2

c

k

. (14)

Passing to the limiting case where the triangle becomes infinitesimal, we
have

Lim.
sin(ABC)

sin
e

2

= 4 lim.
(

cos 1
2

a

k
cos 1

2

b

k
cos 1

2

c

k

)
= 4

lim. e = 1
2 lim. (ABC)

=
1

2k2
lim. bc sinA

=
1

2k2
lim. aAA′.

146



Theorem 1. In an infinitesimal triangle the limit of the ratio of the excess
to the product of the euclidean area and the measure of curvature of space is
unity.

Let us next examine the infinitesimal quadrilateral, whose vertices are A,
B, C, D. AB and CD shall intersect in H (actual or ideal) while AC and BD
intersect in K; the latter two points remaining at a finite distance from A, B,
C, D.

sin
AB

k

sin
BK

k

=
sinK
sinA

,
sin

CD

k

sin
DK

k

=
sinK
sinC

,

lim.
sinA
sinC

= 1, lim.
AB

CD
= 1. (Ch. III. 2.)

lim.
sin(CAB)
sin(DAB)

= lim.
sin

AB

k
sin

AC

k
sinA

sin
DB

k
sin

DC

k
sinD

= lim.
AB .AC . sinA
DB .DC . sinD

= 1.

We shall define as the area of an infinitesimal triangle the common value of
k2 times its excess, its half-amplitude, and the euclidean expression for its area.

Theorem 2. If the opposite sides of an infinitesimal quadrilateral do not
intersect in points infinitesimally near the vertices, the limit of the ratio of the
areas of the triangles into which it is divided by a diagonal is unity.

The sum of these two infinitesimal areas shall be called the area of the
infinitesimal quadrilateral; it will be equal (always neglecting infinitesimals of
higher order) to the product of two adjacent sides multiplied into the sine of the
included angle.

Suppose now that we have a region of the plane, connex right up to the
boundary, which is limited by one or more closed curves, and let this be covered
by a network of infinitesimal quadrilaterals of the sort just described. Let the
area of each of these be multiplied by the value for a point therein of a continuous
function of the coordinates of the point. The limit of this sum as the individual
areas tend uniformly toward zero shall be called the surface integral of the
given function for the given area. The proof of the existence of such a limit,
and its independence of network employed will be identical with that used in
the corresponding euclidean case, and need not detain us here.65

Definition. When the surface integral of the function 1 exists over a region
of the plane, that integral shall be defined as the area of the region.

65Conf. e.g. Picard, Traité d’Analyse, first ed., Paris, 1891, vol. i, pp. 83–102.
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Theorem 3. The area of a region of a plane is the sum of the areas of any two
regions into which it may be divided provided that these two have no common
area.

This follows immediately from the definition given above. As an application
of these principles let us determine the area of a triangle. It is the limit of the
sum of the areas of a network of infinitesimal triangles, or by (1) the limit of
the sum of k2 times their excesses. Now it is perfectly clear that if a triangle
be divided in two by a segment whose extremities are a vertex and a point of
the opposite side, the excess of the original triangle is the sum of the excesses
of the parts, and we may establish our network by a repetition of this process
of division, hence66

Theorem 4. The area of a triangle is the quotient of the excess divided by
the measure of curvature of space.

Let us give a second demonstration of this fundamental theorem with the
aid of integration. It will be sufficient to do so in the case of a right triangle,
and we shall take a right triangle with one angle at C the intersection of x1 = 0,
x2 = 0, the right angle being at B a point of the axis x2 = 0. We may introduce
polar coordinates

x1

x0
= k tan

r

k
cosφ,

x2

x0
= k tan

r

k
sinφ,

the elements of arc along φ = const. and r = const. will be dr and k sin
r

k
dφ

respectively. The element of area will be

df = k sin
r

k
dr dφ. (15)

k

∫ R

0

sin
r

k
dr = k2

(
1− cos

R

k

)
,

tan
R

k
= tan

BC

k
secφ. (Ch. IV. (6).)

cos
R

k
=

cosφ√
cos2 φ+ tan2 BC

k

.

Remembering that the limits for φ are 0 and C

Area = k2

∫ C

0

dφ− k2

∫ C

0

cosφdφ√
cos2 φ+ tan2 BC

k

.

66It is surprising to see how unsatisfactory are the proofs usually given for this, the best-
known theorem of non-euclidean geometry. In Frischauf, Elemente der absoluten Geometrie,
Leipzig, 1876, will be found a geometrical proof applicable to the hyperbolic case but not, so
far as I can see, to the elliptic, and the same remark will apply to the book of Liebmann, cit.
Manning, loc. cit., makes an attempt at a general proof, but the use of intuition is scarcely
disguised. In Clebsch-Lendemann, Vorlesungen über Geometrie, Leipzig, 1891, vol. ii, p. 49,
is a proof by integration, but the analysis is unnecessarily complicated owing to the fact that,
apparently, the author overlooked the consideration that it is sufficient to prove the theorem
for a right triangle.
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The first integral is k2C. If, further, we put sinφ = x,∫
dx√

sec2
BC

k
− x2

= sin−1
[
x cos

BC

k

]
+ const.

Hence our second integral will be

−k2

{
sin−1

[
sinφ cos

BC

k

]}C

0

.

This vanishes at the lower limit. On the other hand by Chapter IV. (7)

cosA = sinC cos
BC

k
,

our second integral becomes

−k2
[π
2
−A

]
= k2 [A+B − π] ,

Area = k2(A+B + C − π). (16)

Two regions with the same area may, naturally, have very different shapes.
There are, however, three simple cases where the equivalence of area is immedi-
ately evident. First, where the two figures are congruent; second, when they are
composed of the same number of non-overlapping sub-regions (i.e. sub-regions
no two of which have in common a region which has an area) congruent in pairs;
third, where by the adjunction of pairs of mutually congruent non-overlapping
sub-regions to them, they may be transformed into congruent regions. In this
latter case they may be said to be equivalent by completion.67

Definition. Given n successive coplanar segments (A1A2), (AkAk+1), (An−1

A1) so situated that no line other than one through a point Ai can contain
points of more than two of the segments; the assemblage of all points of all
segments whose extremities are points of the given segments shall be called a
convex polygon or, more simply, a polygon. The definition of sides, vertices, and
angles is immediate. If one vertex, say A1 be connected with all the others, the
polygon will be divided into n − 2 triangles, no two of which have in common
any area. The area of the polygon will thus be the sum of the areas of these
triangles. We may convince ourselves of the compatibility of these statements
as follows. A triangle is certainly a polygon, and if a polygon of n − 1 sides
exist, we may easily enlarge it to have n sides by taking an additional vertex
near one side. On the other hand, if a polygon of n− 1 sides may be divided up
in the manner suggested, it is immediately evident that one of n sides may be
so divided also.

67The term equivalent by completion is borrowed from Halsted, loc. cit., p. 109. The
distinction between equivalent and equivalent by completion is, I believe, due to Hilbert,
loc. cit., p. 40. For an admirable discussion of the question of area see Amaldi, in the fifth
article in Enriques, Questioni riguardanti la geometria elementare, Bologna, 1900.
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Theorem 5. The area of a convex polygon is the quotient of the excess of the
sum of its angles over (n− 2)π divided by the measure of curvature of Space.

Let the reader show that the area of a proper circle is

2πk2
(
1− cos

r

k

)
. (17)

The total areas of the elliptic and the spherical planes will be respectively

2πk2, 4πk2.

In the hyperbolic plane regions may be found having any desired area.
Our next undertaking shall be to see how far the methods which we have

established for studying areas are applicable in three dimensions. We shall
begin, as before, with amplitudes, following, however, an analytical rather than
a trigonometric method.

Let the vertices of a tetrahedron, as defined in Chapter II, be A, B, C, D
with the coordinates (x), (y), (z), (t) respectively. The opposite faces shall be
α, β, γ, δ with coordinates (u), (v), (w), (ω), so that, e.g.

r(ωX) ≡ (X xyz).

We shall define as sine amplitude of the tetrahedron

sin(ABCD) =
∣∣∣∣cos

AA

k
cos

BB

k
cos

CC

k
cos

DD

k

∣∣∣∣
1
2

=
|(xx)(yy)(zz)(tt)| 12√

(xx)
√

(yy)
√

(zz)
√

(tt)

=
|xyzt|√

(xx)
√

(yy)
√

(zz)
√

(tt)
. (18)

We shall give to the radicals involved such signs that k sine amplitude shall
have the sign of k2. Recalling the concept of the moment of two lines introduced
in Chapter IX, we get

sin
AB

k
sin

CD

k
(MomentAB,CD) = sin(ABCD). (19)

sin(ABC) =
|(xx)(yy)(zz)| 12√
(xx)

√
(yy)

√
(zz)

.

Let A′, B′, C ′, D′ be the points where perpendiculars from the vertices of a
tetrahedron meet the opposite faces. Then

sin
DD′

k
=

|xyzt|√
(tt) |(xx)(yy)(zz)| 12

,

sin(BCD) sin
AA′

k
=sin(CDA) sin

BB′

k
= sin(DBA) sin

CC ′

k
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=sin(ABC) sin
DD′

k
= sin(ABCD). (20)

If we mean by ]αβ the dihedral angle of these two faces

cos ]αβ =
(uv)√

(uu)
√

(vv)

=

∣∣∣∣∣∣
(xy) (xz) (xt)
(zy) (zz) (zt)
(ty) (tz) (tt)

∣∣∣∣∣∣√
∂|(xx)(yy)(zz)(tt)|

∂(xx)

√
∂|(xx)(yy)(zz)(tt)|

∂(yy)

,

sin]αβ =
sin(ABCD) sin

AB

k
sin(BCD) sin(ACD)

,

sin(BCD) sin(ACD)
sin]αβ

sin
AB

k

= sin(ABCD). (21)

The geometry of lines through a point is an example of the geometry of the
elliptic plane, where k2 = 1. We may thus speak of the sine amplitude of a
trihedral angle

sin(AB,AC,AD) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣(tt) (tx)
(xt) (xx)

∣∣∣∣ ∣∣∣∣(tt) (ty)
(xt) (xy)

∣∣∣∣ ∣∣∣∣(tt) (tz)
(xt) (xz)

∣∣∣∣∣∣∣∣(tt) (ty)
(xt) (xy)

∣∣∣∣ ∣∣∣∣(tt) (ty)
(yt) (yy)

∣∣∣∣ ∣∣∣∣(tt) (tz)
(yt) (yz)

∣∣∣∣∣∣∣∣(tt) (tx)
(zt) (zx)

∣∣∣∣ ∣∣∣∣(tt) (ty)
(zt) (zy)

∣∣∣∣ ∣∣∣∣(tt) (tz)
(zt) (zz)

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

√∣∣∣∣(tt) (tx)
(xt) (xx)

∣∣∣∣
√∣∣∣∣(tt) (ty)

(yt) (yy)

∣∣∣∣
√∣∣∣∣(tt) (tz)

(zt) (zz)

∣∣∣∣
=

(tt) |xyzt|√∣∣∣∣(tt) (tx)
(xt) (xx)

∣∣∣∣
√∣∣∣∣(tt) (ty)

(yt) (yy)

∣∣∣∣
√∣∣∣∣(tt) (tz)

(zt) (zz)

∣∣∣∣
.

sin
DA

k
sin

DB

k
sin

DC

k
sin(AB,AC,AD) = sin(ABCD). (22)

The reader will not fail to notice in formulae (19), (20), and (22) the striking
analogy between the sine amplitude and six times the euclidean volume. There
will be a function correlative to sin(ABCD) which we shall call sin(αβγδ).

sin]αβ sin](γδ)(MomentAB,CD) = sin(αβγδ). (23)
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sin(αβγ) sin
DD′

k
= sin(αβγδ). (24)

sin(αγδ) sin(βγδ)
sin

AB

k
sin]αβ

= sin(αβγδ). (25)

sin]αδ sin]βδ sin]γδ sin(αδ, βδ, γδ) = sin(αβγδ). (26)

sin(BCD)
sin(βγδ)

=
sin(CDA)
sin(γδα)

=
sin(DBA)
sin(δβα)

=
sin(ABC)
sin(αβγ)

=
sin(ABCD)
sin(αβγδ)

. (27)

Our two tetrahedral functions are connected by the relations

sin(αβγδ) =
sin3(ABCD)

sin(BCD) sin(CDA) sin(DBA) sin(ABC)
,

sin(ABCD) =
sin3(αβγδ)

sin(βγδ) sin(γδα) sin(δβα) sin(αβγ)
.

The analogy between the sine amplitude and the sextuple of the euclidean
expression for the volume appears even more distinctly in the infinitesimal do-
main.

Lim. sin(ABC) =
1
k2
AB .AC . sin]BAC

=
2
k2

Area4ABC.

Lim. sin(ABCD) = lim. (ABCD)

=
6
k3

Vol. tetrahedronABCD. (28)

Following our previous analogy, suppose that we have six planes, no three
coaxal, passing by fours through four actual or ideal, but not collinear points.
Let the remaining intersections be at a finite distance from the three chosen
points, but infinitesimally near one another. An infinitesimal region will thus
be formed, on the analogy of a euclidean parallelepiped, which may be divided
into six tetrahedra of such sort that the limit of the ratio of the sine amplitudes,
or of the euclidean volumes, of any two is unity. Six times the euclidean volume
of any one of these tetrahedra may be defined as the euclidean volume of the
region.

So far the analogy between two and three dimensions has been sufficiently
good. Each time we have had a function called sine amplitude corresponding
in many particulars to a simple multiple of the euclidean area or volume, and
approaching a multiple of the area or volume as a limit, when the figure becomes
infinitesimal. In the plane there appeared, besides half the sine amplitude and
the euclidean area, a third expression, namely, the discrepancy or excess. In
three dimensions this function is, sad to relate, entirely lacking; that is to say,
there is no simple function of the measures of a tetrahedron which possesses
the property that when one tetrahedron is the logical sum of two others, the

152



function of the sum is the sum of the functions. It is the lack of this function
that renders the problem of non-euclidean volumes difficult.68

Suppose, in general, that we have a three dimensional region connex up to
the boundary, and that we divide it into a number of extremely tiny tetrahedra.
The limit of the sum of the euclidean volume of each, multiplied by the value for
a point therein of a continuous function of the coordinates of that point, as all
the volumes approach zero uniformly, shall be called the volume integral for that
region of that function. The proofs for the existence of that volume integral, and
its independence of the method of subdivision, are analogous to those already
referred to for the surface integral. In particular, the volume integral of the
function unity shall be called the volume of the region. Two regions will have
the same volume if they be congruent, made up of the same number of parts,
mutually congruent in pairs, or if by the adjunction of such pairs they may be
completed to be congruent.

If the limiting surface of a region be made up of a series of plane surfaces,
and if no line, not lying in a plane of the surface, can contain more than two
points of the surface, then it is easy to show that the region may be divided
up into a number of tetrahedra, and the problem of finding the volume of any
such region reduces to the problem of finding the volume of a tetrahedron. This
problem may, in turn, be reduced to that of finding the volume of a tetrahedron
of particularly simple structure. To begin with, we may assume that there is
one face which makes with the three others dihedral angles whose measures are
less than

π

2
, for the bisectors of the dihedral angles of the original tetrahedron

will always divide it into smaller tetrahedra possessing this property. The per-
pendicular on the plane of this face, from the opposite vertex, will, then, pass
through a point within the face, and, with the help of this perpendicular, we
may subdivide into three smaller tetrahedra, for each of which the line of one
edge is perpendicular to the plane of one face.

Consider, next, a tetrahedron where the line of one edge is indeed perpen-
dicular to the plane of a face. There are two possibilities. First, in the plane of
this face neither of the face angles whose vertex is not at the foot of the per-
pendicular is obtuse; secondly, one of these angles is obtuse. (The case where
both were obtuse could not occur in a small region.) In the first case we might
draw a line from the foot of the perpendicular to a point of the opposite edge in
this particular face, perpendicular to the line of that edge, and thus, by a famil-
iar theorem in elementary geometry, which holds equally in the non-euclidean
case, divide the tetrahedron into two others, each of which possesses the prop-
erty that the lines of two opposite edges are perpendicular to two of the faces.
These we shall for the moment call simplest type. In the second case, from the
vertex of the obtuse angle mentioned, draw a line perpendicular to the line of
the opposite edge in this particular face (and passing through a point within
this edge), and connect the intersection with the vertex opposite this face. The

68It is highly interesting that in four dimensions a function playing the role of the discrepancy
appears once more. See Dehn, ‘Die eulersche Formel in Zusammenhang mit dem Inhalt in der
nicht-euklidischen Geometrie,’ Mathematische Annalen, vol. lxi, 1906.
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tetrahedron will be divided up into a tetrahedron of the simplest type, and one
of the sort considered in case 1. We have, then, merely to consider the volume
of a tetrahedron of the simplest type.

Let the vertices of the tetrahedron be A, B, C, D, where AB is perpendicular
to BCD and DC perpendicular to ABC. Let a plane perpendicular to AB
contain a point B1 of (AB) whose distance from A shall have the measure x;
while this plane meets (AC) and (AD) in C1 and D1 respectively. The volume
of the region bounded by this plane, and an adjacent one of the same type and
the three faces through A, will be dx, multiplied by the surface integral over
the 4B1C1D1 of the cosine of the kth part of the distance of a point from B1

(Cf. Ch. IV. (2).) This integral takes a striking form.69

Let the distance from B1 to a variable point P of the triangle be r, while φ
is the measure of ]C1B1P . We wish to find

k
x

sin
r

k
cos

r

k
dr dφ.

Let B1P meet (C1D1) in E1. The limits of integration for r are 0 and B1E1;
hence we have merely to find

k2

2

∫ ]C1B1D1

0

sin2 B1E1

k
dφ.

Now C1D1 is perpendicular to B1C1, hence

tanφ sin
B1C1

k
= tan

E1C1

k
,

cos
B1E1

k
= cos

B1C1

k
cos

E1C1

k
tan

B1E1

k
= tan

B1C1

k
secφ.

(Ch. IV. (5), (6).)

sin2 B1E1

k
dφ =

1
k

sin
B1C1

k
dE1C1.

Our required integral is then

k

2

∫
sin

B1C1

k
dE1C1 =

k

2
sin

B1C1

k
· C1D1

Let the reader note the astonishing feature of this result, namely, that it
involves one side of a triangle directly, and another trigonometrically.

69The integration which follows is a very special case of a much more general one for n
dimensions given by Schläfli, Theorie der vielfachen Kontinuität, Zurich, 1901, p. 646. This
paper of Schläfli’s is posthumous; it was originally written in 1855, when the science of non-
euclidean geometry had not reached its present recognition. It is very general, extremely
difficult reading, and hampered by a fearful and wonderful terminology, e.g. our tetrahedron
of the simplest type is a special case of an Artiothoscheme. It is, however, a striking piece
of geometrical work. Schläfli gives a shorter account of his work in his ‘Réduction d’une
intégrale multiple qui comprend l’arc d’un cercle et l’aire d’un triangle sphérique comme cas
partieuliers’, Lionville’s Journal, vol. xxii, 1855.
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Let the measure of the dihedral angle whose edge is (C1D1) be θ, this will
also be the measure of ]AC1B1 which is the plane angle of the dihedral one.

cos θ = cos
AB1

k
sin]BAC,

sin θdθ =
1
k

sin
AB1

k
sin]BACdx

=
1
k

sin
AB1

k
·
sin

B1C1

k

sin
AC1

k

dx

=
1
k

sin θ sin
B1C1

k
dx.

We thus get for our volume the strange formula70

Vol. =
k2

2

∫
C1D1dθ. (29)

We can easily express this integral in terms of θ,

tan
C1D1

k
= sin

AC1

k
tan]DAC = a sin

AC1

k
,

cos
AC1

k
= ctn]BAC ctn θ = b ctn θ.

Vol. =
k3

2

∫
tan−1[a

√
1− b2 ctn2 θ]dθ. (30)

This formula apparently represents about as close an approach as can be
made towards finding the volume of this tetrahedron, for, in the general case,71 it
does not seem possible to effect the quadrature in terms of elementary functions.

If a right triangle be rotated completely about one of the sides adjacent to
the right angle, the figure so generated shall be called a cone of revolution. The
volume within the surface may be found as follows. Let the vertex of the cone
be A and the centre of the base O, while P is a point within the cone. Let Q
be the intersection of (AO) with a perpendicular from P , while the base circle
meets the plane AOP in B. (AB) shall meet PQ in R. Let us also write

AB =s, AR = r, AO = h, ]OAB = θ.

Vol. = k

∫ QR

0

∫ h

0

∫ 2π

0

sin
QP

k
cos

QP

k
dAQdQP dθ

70See Schläfli, Réduction, p. 381, where it is stated that this integral cannot be evaluated by
integration by parts. This same integral was discovered, apparently independently, by Rich-
mond, ‘The Volume of a Tetrahedron in Elliptic Space,’ Quarterly Journal of Mathematics,
vol. xxxiv, 1902, p. 175.

71Schläfli, Vielfache Kontinuität, p. 95, gives a formula for the special case where the sum
of the squares of the cosines of the dihedral angles is equal to unity. The proof is highly
intricate, and not suitable to reproduce here.
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= 2πk
∫ h

0

∫ QR

0

sin
QP

k
cos

QP

k
dAQ. dQP

= πk2

∫ h

0

sin2 QR

k
dAQ.

tan
AQ

k
= tan

r

k
cos θ. (Ch. V. (6).)

dAQ =
cos θ sec2 r

k
dr

1 + cos2 θ tan2 r

k

.

sin
QR

k
= sin

r

k
sin θ.

Vol. = πk2 sin2 θ cos θ
∫ h

0

tan2 r

k

1 + cos2 θ tan2 r

k

dr.

Put tan
r

k
= x.

Vol. = πk3 cos θ sin2 θ

∫ tan h
k

0

x2dx

(1 + x2)(1 + x2 cos2 θ)

= πk3 cos θ
[∫ tan h

k

0

dx

1 + x2 cos θ
−
∫ tan h

k

0

dx

1 + x2

]
= πk3 cos θ

[ 1
cos θ

tan−1(x cos θ)− tan−1 x
]tan h

k

0

= πk2[h− s cos θ].72 (31)

To find the volume within a proper sphere, where the distance from the
centre to every point of the surface has the constant value R,

Vol. = k2

∫ R

0

∫ π

0

∫ 2π

0

sin2 2
k

sin θ dr dθ dφ

= 4πk2

∫ R

0

sin2 r

k
dr

= πk3

(
2R
k
− sin

2R
k

)
. (32)

Let the reader show that the total volumes of elliptic and of spherical space,
where k = 1 will be, respectively,

π2, 2π2.

72This formula is given without sufficiently detailed proof by Frischauf, loc. cit., p. 99. A
tedious demonstration was subsequently worked out by Von Frank, ‘Der Körperinhalt des
senkrechten Cylinders und Kegels in der absoluten Geometrie,’ Grunerts Archiven, vol. lix,
1876.
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CHAPTER XV

INTRODUCTION TO DIFFERENTIAL GEOMETRY

The task which we shall undertake in the present chapter is to develop
the differential geometry of curves and surfaces in non-euclidean space.73 We
shall introduce a notable simplification in our work by abandoning homogeneous
coordinates, and assuming that

(xx) = k2. (1)

In the elliptic case we shall take x0 = 0; in the hyperbolic, ẋ0 =
1
k
x0 = 0 for all

real points.
Of course in exceptional cases, where we wish to include points of the Ab-

solute or beyond, this proceeding is not legitimate; we shall therefore assume,
unless we specifically state the contrary, that we are limiting ourselves to a real
region, where no absolute or ultra infinite points are included in the hyperbolic
case. We shall, further, have for the distance of two points (x), (x′).

cos
d

k
=

(xx′)
k2

, sin2 d

k
=

∥∥∥∥x0 x1 x2 x3

x0
′ x1

′ x2
′ x3

′

∥∥∥∥2

k4
. (2)

When xi
′ = xi + dxi we have for the square of the differential of distance

k2 ds
2

k2
= ds2 =

(xx)(dx dx)− (x dx)2

k2
.

(x+ dx, x+ dx) = k2, (x dx) = − 1
2 (dx dx),

ds2 = (dx dx). (3)

We shall mean by an analytic curve, such a curve that the coordinates of
its points are analytic functions of a single variable. The formulae developed
in this chapter will hold equally well under the supposition that the functions
and their first three partial derivatives exist and are finite in our region, but the
gain in generality is of little interest to the geometer, and we shall assume from
here on that when we speak of curve we mean analytic curve.

Let us imagine that at a chosen point of a curve, say P , a tangent is drawn.
We shall take two near points P ′ and P ′′ on the curve and tangent respectively,
so situated near P and on the same side of the normal plane that PP ′ = PP ′′.
Then we shall define74

lim.
2P ′P ′′

PP ′2
,

73The developments of this chapter follow the general scheme worked out for the euclidean
case in Bianchi-Lukat, Vorlesungen über Differentialgeometrie, Leipzig, 1899, Chapters I, III,
IV, and VI. In Chapters XXI and XXII of the same work will be found a different development
of the non-euclidean case. It is, however, so general, yet so concise, as to be scarcely suitable
to serve as an introduction to the subject.

74This definition is taken from Bianchi, loc. cit., p. 603. It is there ascribed to Voss.
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as the curvature of the given curve at that point. If we compare with Chapter
XI. (2), and define as the osculating circle to a curve at a point, the limit of the
circle through that and two adjacent points, we shall have

Theorem 1. The curvature of a curve at any point is equal to that of its
osculating circle, and is equal to the absolute value of the product of the square
root of the curvature of space and the cotangent of the kth part of the distance
of each point of the circle from its centre.

Let us now suppose that the equations of our curve are written in the form

xi = xi(t0) + (t− t0)xi
′(t0) +

(t− t0)2

2
xi
′′(t0) + . . .

xi
(n) =

dn

dtn
xi(t).

Then for a point on the tangent we shall have coordinates

Xi = λ[xi(t0) + (t− t0)xi
′(t0)].

To get the value of λ.

(XX) = xx = k2, (xx′) = 0,

Xi =
xi(t0) + (t− t0)xi

′(t0)√
1 +

(t− t0)2

k2
(xi

′xi
′)

.

Developing by the binomial theorem, and rejecting powers of (t− t0) above
the second

Xi = xi(t0) + (t− t0)xi
′(t0)−

(t− t0)2

2k2
(x′x′)xi(t0).

Subtracting from the series development of xi we get for our curvature
1
ρ
.

1
ρ2

=

[
(x′′x′′) +

2
k2

(xx′′)(x′x′) +
1
k4

(x′x′)2(xx)
]

(x′x′)2
,

1
ρ2

=
(x′′x′′)
(x′x′)2

− 1
k2
. (4)

Theorem 2. The square of the curvature of a curve is the square of its
curvature treated as a curve in a four-dimensional euclidean space, minus the
measure of curvature of the non-euclidean space.

It will be convenient to consider, besides our point (x), three other points
allied to it. (t) shall be orthogonal to (x) and on the tangent, (z) orthogonal to
(x) on the principal normal, and (ξ) orthogonal to (x) on the binormal. These
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three will replace the direction cosines of tangent, principal normal, and binor-
mal, which figure so prominently in the euclidean theory. In hyperbolic space
these points lie without the actual domain to which we suppose (x) confined.

(xt) = (xz) = (xξ) = (tz) = (tξ) = (zξ) = 0.

If a point trace an infinitesimal arc ds, the angle of the corresponding abso-

lute polar planes is

∣∣∣∣∣
√
ds2

k2

∣∣∣∣∣.
We shall, hereafter, take as our parameter on the given curve s, the length

of arc, so that

xi
′ =

dxi

ds
, (x′x′) = 1.

As (t) lies on the tangent, its coordinates will be of the form

ti = lxi +mxi
′,

(tt) = (xx) = k2, (tx) = 0, (xx′) = 0,

ti = kxi
′. (5)

For the point (z) we shall have

zi = λxi + µxi
′ + νxi

′′,

(zx) = (zx′) = (xx′) = (x′x′) + (xx′′) = 0,

(zz) = (xx) = k2, (x′x′) = 1.

zi =
xi + k2xi

′′√
k2(x′′x′′)− 1

,

zi =
ρ

k
(xi + k2xi

′′). (6)

To determine ξ we shall have the conditions

(ξx) = (ξz) = (ξt) = 0, (ξξ) = k2,

ξi = ρ
∂

∂yi
|yxx′x′′|. (7)

We shall define the torsion of our curve as the limit of the ratio of the angle
of two successive osculating planes to the differential of arc. We thus get

1
T

=
1
k

√
(dξ dξ)
ds

. (8)

Reverting to our formulae (5) and (6)

dti
ds

=
zi

ρ
− xi

k
. (9)
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(xξ) = (x′ξ) = (x′′ξ) = (xξ′) = (x′ξ′) = (ξξ′) = 0.

Hence
dξi
ds

= lzi,

or, more specifically
dξi
ds

=
zi

T
. (10)

We have also (xz) = (xz′) =(x′z) = (zz′) = 0,
zi
′ = λti + µξi,

dzi

ds
= − ti

ρ
− ξi
T
. (11)

The reader will see at once that (9), (10), (11) are the analoga of Frenet’s
formulae for euclidean curves.

We have, so far, overlooked the question of the sign of the torsion, but that
is well determined from the above formulae, and it is important now to find the
geometric difference between the case where the torsion is negative, and that
where it is positive. We shall carry through the work for the elliptic case only,
the hyperbolic may be treated in the same way, but it is wiser there to replace
the coordinates (x) by (ẋ).

As before we shall choose s as the independent variable, so that

(xx) = k2, (xx′) = (x′x′′) = 0, (x′x′) = −(xx′′) = 1.

The sign of ti (which may be ideal) will be found from (5), that of zi from
(6), and that of ξi from (7), while the sign of T will be given by (10).

The equation of the plane of the tangent and binormal will be

|Xxtξ| = (Xx) + k2(Xx′′) = 0.

Putting in the coordinates of a near-by point of the curve,

xi + xi
′∆s+ xi

′′ (∆s)
2

2
,

k2 − (∆s)2

2
− k2 + k2(x′′x′′)

∆s2

2
=
k2

ρ2

(∆s)2

2
,

and this is essentially positive, so that, in general, the curve will not cross this
plane here. Again, we see by (6) that we may give to a point on the principal
normal close to (x) the coordinates

xi + εxi
′′.

Substituting in the equation of the plane we get

k2

ρ2
ε,

so that this will lie on the same side as the curve if ε > 0.
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Let us call positive that part of the curve near our point for which ∆s > 0.
The positive part of the tangent shall be that which lies on the same side of the
normal plane as the positive part of the curve, while that part of the principal
normal shall be called positive which lies on the same side of the plane of tangent
and binormal as does the curve. Let us find the Plueckerian coordinates of a ray
from xi + xi

′∆s on the positive part of the tangent to xi + εxi
′′ on the positive

part of the principal normal. We get

pij = ε

∣∣∣∣ xi xj

xi
′′ x′′j

∣∣∣∣+ ∆s
∣∣∣∣ xi

′ x′j
xi xj

∣∣∣∣+ ε∆s
∣∣∣∣ xi

′ x′j
xi
′′ x′′j

∣∣∣∣ .
In like manner for a ray from (x) to a point on the positive part of the curve

xi + xi
′∆1s+ xi

′′ (∆1s)2

2
+ xi

′′′ (∆1s)3

3!
,

we get

qkl = ∆1s

∣∣∣∣ xk xl

xk
′ xl

′

∣∣∣∣+ (∆1s)2

2

∣∣∣∣ xk xl

xk
′′ xl

′′

∣∣∣∣+ (∆1s)3

3!

∣∣∣∣ xk xl

xk
′′′ xl

′′′

∣∣∣∣ .
The relative moment of these two rays, as defined at the close of Chapter IX,
will be

Σ pijqkl ≡ ε
∆s(∆1s)3

6
|xx′x′′x′′′|.

The factors outside of the determinant are all, by hypothesis, positive, so
that the sign depends merely upon that of the determinant, and this by (7) is

equal to
ρ(ξx′′′)
k

.
Now

(ξx′′) = 0, (ξx′′′) = −(ξ′x′′).

Hence the relative moment will have the sign of

−ρ
kT

(zx′′) =
−ρ2

k2T
[(xx′′) + k2(x′′x′′)] = − 1

T
.

Theorem 3. The torsion at a general point of a curve is positive when the
relative moment of a ray thence to a point on the positive part of the curve,
and a ray from a point on the positive part of the tangent to one on the positive
part of the principal normal is negative; when the latter product is positive, the
torsion is negative.

Intuitively stated this means that the torsion is positive when the curve
resembles a left-hand screw, otherwise negative.

We shall next take up the evolutes of a curve. Let (x) be a point of an
evolute. Then

xi = cos
s

k
xi − sin

s

k
ti,
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dxi

ds
= − sin

s

k

zi

ρ
.

Remembering that
dxi

ds
= kti, while zi is on the principal normal of the evolute.

Theorem 4. A tangent to an analytic curve at a general point will be in the
osculating plane at the corresponding point of any evolute.

Since (x) lies in the normal plane at (x), we may write

wxi = xi + uξi + vzi,

w
dxi

ds
= − 1

w
(xi + uξi + vzi)

dw

ds
+
ti
k

+ u
zi

T
− v

(
ti
ρ

+
ξi
T

)
+ ξi

du

ds
+ zi

dx

ds
.

Now
dxi

ds
is linearly dependent on (x) and (x),(

t
dx

ds

)
= 0, v =

ρ

k
,

and, for the same reason, the assemblage of all terms in (ξ) and (z) must be a
linear combination of (x) and (x), and so proportional to wxi − xi = uξi + vzi[du

ds
− ρ

kT

]
ξi +

[ u
T

+
dρ

kds

]
zi = λ

[
uξi +

ρ

k
zi

]
,

du

ds
− ρ

kT
u

T
+

1
k

dρ

ds

=
u
ρ

k

,

tan−1

 u
ρ

k

 =
∫
ds

T
+ C = (σ + C).

To get (w) we have
(xx) = k2,

w =
√

1 + u2 + v2 =

√
1 +

ρ2

k2
sec2(σ + C).

xi =

(
xi + zi

ρ

k

)
cos(σ + C) +

ρ

k
ξi sin(σ + C)√

ρ2

k2
+ cos2(σ + C)

. (12)

The coordinates of the point of the line (x)(x) orthogonal to (x) will be

λxi + µxi,

λk2 +
µk2 cos(σ + C)√
ρ2

k2
+ cos2(σ + C)

= 0,
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(λ2 + µ2)k2 +
2λµk2 cos(σ + C)√
ρ2

k2
+ cos(σ + C)

= k2,

µ =
−
√
ρ2

k2
+ cos(σ + C)
ρ

k

, λ =
cos(σ + C)

ρ

k

.

The point in question will therefore have the coordinates

ξi sin(σ + C) + zi cos(σ + C).

This gives us the significance of σ, namely (σ + C) is the kth part of the
distance from this point to (z), i.e. (σ + C) represents the angle which this
normal makes with the principal normal. If, then, we take two evolutes of our
curve the angle between their corresponding tangents, i.e. those which meet on
the involute, is

(σ + C1)− (σ + C2) = C1 − C2.

Theorem 5. Corresponding tangents to two evolutes of a curve meet at a
constant angle.

Theorem 6. If the generators of a developable surface be turned through a
constant angle about the tangents to one of their orthogonal trajectories, the
resulting surface is developable.

Theorem 7. The tangents to an evolute of a plane curve make a constant
angle with the plane of the curve.

The foregoing theorems and formulae exhibit sufficiently the close analogy
between the differential theory of curves in euclidean and in non-euclidean space.
It is our next task to take up the theory of surfaces, and we shall find a no less
striking analogy there. We shall mean by an analytic surface the locus of a
point whose coordinates are analytic functions of two independent parameters.
We shall exclude from consideration all singular points of such surfaces. If the
parameters be (u) and (v), we shall have for the squared distance element

ds2 = E du2 + 2F du dv +Gdv2,

E =
(
∂x

∂u

∂x

∂u

)
, F =

(
∂x

∂u

∂x

∂v

)
, G =

(
∂x

∂v

∂x

∂v

)
,

EG− F 2 =

∥∥∥∥∥∥∥
∂x0

∂u

∂x1

∂u

∂x2

∂u

∂x3

∂u
∂x0

∂v

∂x1

∂v

∂x2

∂v

∂x3

∂v

∥∥∥∥∥∥∥
2

. (13)

This is a positive definite form in the elliptic case, and in the actual domain
of hyperbolic space, to which we shall restrict ourselves. The discriminant,
under this same restriction, will always be greater than zero, for it will vanish
only when the tangent plane to the surface is also tangent to the Absolute.
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The equation of the tangent plane at (x) will be∣∣∣∣Xx∂x∂u ∂x∂v
∣∣∣∣ = 0.

The Absolute pole of this plane will be

yi =

∂

ri

∣∣∣∣rx∂x∂u ∂x∂v
∣∣∣∣

√
EG− F 2

. (14)

We shall consistently use the letter (y) throughout the present chapter to
indicate this point. The equation of the plane through the normal, and the
point (x+ dx), will be∣∣∣∣∣∣∣∣∣∣∣∣

(Xx) (xx)
(
x
∂x

∂u

)
(
X
∂x

∂u

) (
x
∂x

∂u

)
E(

X
∂x

∂v

) (
x
∂x

∂v

)
F

∣∣∣∣∣∣∣∣∣∣∣∣
du+

∣∣∣∣∣∣∣∣∣∣∣∣

(Xx) (xx)
(
x
∂x

∂u

)
(
X
∂x

∂u

) (
x
∂x

∂u

)
F(

X
∂x

∂v

) (
x
∂x

∂v

)
G

∣∣∣∣∣∣∣∣∣∣∣∣
dv = 0.

0..3∑
i

[(
F
∂xi

∂u
− E

∂xi

∂v

)
du+

(
G
∂xi

∂u
− F

∂xi

∂v

)
dv

]
Xi = 0.

The cosine of the angle which this plane makes with that through the normal
and the point (x + δx), or the cosine of the angle of the two arcs from (x) to
(x+ dx) and (x+ δx), will be

E du δu+ F (du δv + δu dv) +Gdv δv

ds δs
. (15)

The two will be mutually perpendicular if

E du δu+ F (du δv + δu dv) +Gdv δv = 0.

The condition for perpendicularity between the parameter curves will be

F = 0. (16)

The equation of the tangent plane at (x+ dx) is∣∣∣∣X(x+
∂x

∂u
du+

∂x

∂v
dv
)(∂x

∂u
+
∂2x

∂u2
du+

∂2x

∂u ∂v
dv
)

(∂x
∂v

+
∂2x

∂u ∂v
du+

∂2x

∂v2
dv
)∣∣∣∣ = 0.

Neglecting differentials of higher order than the first, we have
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∣∣∣∣Xx∂x∂u ∂x∂v
∣∣∣∣+ [∣∣∣∣Xx∂2x

∂u2

∂x

∂v

∣∣∣∣+ ∣∣∣∣Xx∂x∂u ∂2x

∂u ∂v

∣∣∣∣] du
+
[∣∣∣∣Xx ∂2x

∂u ∂v

∂x

∂v

∣∣∣∣+ ∣∣∣∣Xx∂x∂u ∂2x

∂v2

∣∣∣∣] dv = 0.

The line of intersection with the tangent plane at (x) will be found by equating
to zero separately the first and the last four terms. This line will contain the
point (x+ δx) if

Ddu δu+D′(du δv + dv δu) +D′′dv δv = 0.

D =

∣∣∣∣x∂x∂u ∂x∂v ∂2x

∂u2

∣∣∣∣
√
EG− F 2

, D′ =

∣∣∣∣x∂x∂u ∂x∂v ∂2x

∂u ∂v

∣∣∣∣
√
EG− F 2

, D′′ =

∣∣∣∣x∂x∂u ∂x∂v ∂2x

∂v2

∣∣∣∣
√
EG− F 2

. (17)

The signs of D, D′, D′′ to be determined presently.
These are the equations for tangents to conjugate systems of curves, or,

briefly put, the equations determining differentials in conjugate directions. The
parameter curves will be mutually conjugate if

D′ = 0. (18)

The differential equation for self-conjugate, or asymptotic lines, will be

Ddu2 + 2D′ du dv +D′′ dv2 = 0. (19)

Returning to the point (y), the pole of the tangent plane, we have(
y
∂2x

∂u2

)
= D,

(
y
∂2x

∂u ∂v

)
= D′,

(
y
∂2x

∂v2

)
= D′′;

(xy) = (y dx) = (x dy) = 0,(∂x
∂u

∂y

∂u

)
= −

(
y
∂2x

∂u2

) (∂x
∂u

∂y

∂v

)
=
(∂x
∂v

∂y

∂u

)
= −

(
y
∂2x

∂u ∂v

)
(∂x
∂v

∂y

∂v

)
= −

(
y
∂2x

∂v2

)
,

−(dy dx) = Ddu2 + 2D′ du dv +D′′ dv2. (20)

These equations will determine the signs of D, D′, D′′.
Under what circumstances will the normals at two adjacent points intersect,

i.e. when will their minimum distance be an infinitesimal of higher order than
the element of arc? Geometrically we see that the characteristic of the two
adjacent tangent planes must be perpendicular to its conjugate. Conversely,
when we do progress along such an infinitesimal arc, the tangent plane may
be said to rotate about a line perpendicular to the element of progression, and
adjacent normals are coplanar. At any general point of the surface, except
at an umbilical point where the involution of conjugate tangents is made up
of mutually perpendicular tangents, there will be just two tangents which are
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mutually conjugate and mutually perpendicular, and these give the elements
desired.

This fairly plausible geometrical reasoning may easily be put on a sound
analytical basis. The necessary and sufficient condition that the four points (x),
(y), (x+ dx), (y + dy) should be coplanar is

|yx dx dy| = 0,∣∣∣∣∣∣∣∣∣
(xx) (x dx) (x dy)(
x
∂x

∂u

) (∂x
∂u
dx
) (∂x

∂u
dy
)

(
x
∂x

∂v

) (∂x
∂v
dx
) (∂x

∂v
dy
)
∣∣∣∣∣∣∣∣∣ = 0. by (14)

Edu+ Fdv Ddu+D′dv
Fdu+Gdv D′du+D′′dv

= 0. (21)

This is the Jacobian of the binary homogeneous forms (13) and (20), and
gives the two tangents which are both mutually perpendicular and mutually
conjugate; the indetermination mentioned above occurs in the case where

E : F : G = D : D′ : D′′.

Theorem 8. The normals to a surface may be assembled into two families
of developable surfaces. Each normal, with the exception of those at umbilical
points, lies in one surface of each family.

The integral curves of the differential equation (20) are called lines of cur-
vature. We see at once that

Theorem 9. If two surfaces intersect along a line which is a line of curvature
for each, they intersect at a constant angle, and if two surfaces intersect at a
constant angle along a curve which is a line of curvature for one it is a line of
curvature for the other.

This is the theorem of Joachimsthal, well known in the euclidean case. No
less celebrated is the beautiful theorem of Dupin.

Theorem 10. In any triply orthogonal system of surfaces, the curves of
intersection are lines of curvature.

Let the three families of surfaces be given by the equations

xi = fi(uv), xi = φi(vw), xi = ψi(wu),

(xx) = k2,
(
x
∂x

∂u

)
=
(
x
∂x

∂v

)
=
(
x
∂x

∂w

)
= 0.

As the parameter lines are, in every case, mutually perpendicular(∂x
∂v

∂x

∂w

)
=
( ∂x
∂w

∂x

∂u

)
=
(∂x
∂u

∂x

∂v

)
= 0,
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(∂x
∂u

∂2x

∂v ∂w

)
+
( ∂x
∂w

∂2x

∂u ∂v

)
=
(∂x
∂u

∂2x

∂v ∂w

)
+
(∂x
∂v

∂2x

∂w ∂u

)
=
(∂x
∂v

∂2x

∂w ∂u

)
+
( ∂x
∂w

∂2x

∂u ∂v

)
= 0,

(
x
∂x

∂w

)
=
(∂x
∂u

∂x

∂w

)
=
(∂x
∂v

∂x

∂w

)
=
( ∂2x

∂u ∂v

∂x

∂w

)
= 0,∣∣∣∣x∂x∂u ∂x∂v ∂2x

∂u ∂v

∣∣∣∣ = D′
√
EG− F 2 = 0,

D′ = 0.

The vanishing of D′ and F proves our theorem. Our statement in Chapter
XIII that confocal quadrics intersect in lines of curvature is hereby justified.

A surface all of whose curves are lines of curvature must be a sphere. The
normal at any point P will determine, with any other point Q of the surface, a
plane. The normals to the surface along this curve, will, by hypothesis, generate
an evolute, and hence, by (7) make a fixed angle with the plane; and this angle
must be null, since, by hypothesis, one normal lies in the plane. Hence the
normals at P and Q intersect, or all normals must pass through one point.
Evidently the orthogonal surface to a bundle of concurrent lines is a sphere.

Let us suppose that we have a conformal transformation of space. It will
carry a triply orthogonal system of surfaces into another such system, hence a
line of curvature into a line of curvature. It will, therefore, carry any surface all
of whose curves are lines of curvature into another such surface, hence

Theorem 11. Every conformal transformation of space carries a sphere into
a sphere.

Of course a plane is here regarded as a special case of a sphere.
Let us now examine the normals along a line of curvature. Let r be the

distance from the point (x) to the intersection of the normal there with the
adjacent normal, a point whose coordinates shall be called (x̄).

x̄i = xi cos
r

k
− yi sin

r

k
,

dx̄i

ds
=
dxi

ds
cos

r

k
− dyi

ds
sin

r

k
−
[
xi sin

r

k
− yi cos

r

k

] dr
ds
.

Now, by hypothesis,
(
dx̄

ds

)
is linearly dependent on (x) and (y).

dxi cos
r

k
− dyi sin

r

k
= λ(xi + µyi).

But (x dx) = (x dy) = (y dx) = (y dy) = (xy) = 0,

λ = µ = 0,

dxi ≡ dyi tan
r

k
,
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∂xi

∂u
du+

∂xi

∂v
dv = tan

r

k

[∂yi

∂u
du+

∂yi

∂v
dv
]
.

In particular, let us take as parameter lines the lines of curvature

∂xi

∂u
= tan

r1
k

∂yi

∂u
,

∂xi

∂v
= tan

r2
k

∂yi

∂v
,

(dx dy) =
E

tan
r1
k

du2 +
G

tan
r2
k

dv2,

(dy dy) =
E

tan2 r1
k

du2 +
G

tan2 r2
k

dv2. (22)

In the general case,

Edu+ Fdv = − tan
r

k
[Ddu+D′dv],

Fdu+Gdv = − tan
r

k
[D′du+D′′dv].

Eliminating tan
r

k
we get our previous differential equation for the lines of

curvature. On the other hand, if we eliminate du, dv we get

(DD′′ −D′2) tan2 r

k
+ [ED′′ +GD − 2FD′] tan

r

k
+ (EG− F 2) = 0. (23)

1

k tan
r1
k

+
1

k tan
r2
k

= −ED
′′ +GD − 2FD′

k[EG− F 2]
;

1

k2 tan
r1
k

tan
r2
k

=
DD′′ −D′2

k2(EG− F 2)
. (24)

These last two expressions shall be called the mean relative curvature and
the total relative curvature, respectively. They are, by XI. (2), the sum and the
product of the curvatures of normal sections through the tangents to the lines
of curvature. Notice that they are absolute simultaneous invariants of the two
binary forms (13), (20).

Let us now look at the more general question of the curvature of a curve on
our surface. As, by (4), this does not involve derivatives of higher order than
the second, the curvature at any point of a curve of the surface is identical with
that of the curve of intersection of the osculating plane with the surface. Along
our curve u and v will be functions of s the parameter of length of arc, so that,
using our previous notation,

ti = k
[∂xi

∂u

du

ds
+
∂xi

∂v

dv

ds

]
.
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The cosine of the angle which the principal normal to this curve makes with
the normal to the surface may be written

cosσ = ± (yz)
k2

,

zi

ρ
=
dti
ds

+
xi

k
,

cosσ
ρ

= ±

y dtds
k2

 ,

dti
ds

= k

[
∂2xi

∂u2

(du
ds

)2

+ 2
∂2xi

∂u ∂v

du

ds

dv

ds
+
∂2xi

∂v2

(dv
ds

)2
]

+ k
[∂xi

∂u

d2u

ds2
+
∂xi

∂v

d2v

ds2

]
,

cosσ
ρ

= ±Ddu
2 + 2D′du dv +D′′dv2

k[Edu2 + 2Fdu dv +Gdv2]
.

The indetermination of sign may be used to make the curvature essentially
positive.

Theorem 12. Meunier’s. The curvature of a curve on a surface at any point
is equal to the curvature of the normal section with the same tangent divided
by the cosine of the angle which the principal normal makes with the normal to
the surface.

Reverting to our previous expressions r1, r2 and taking the lines of curvature
as parameter lines, the curvature of the normal sections through the tangents
to the lines of curvature are

1

k tan
r1
k

,
1

k tan
r2
k

,

dxi = tan
r1
k
dyi, δxi = tan

r2
k
δyi,

E = tan
r1
k
D, G = tan

r2
k
D′′,

1
ρ

= ±

[
E

k tan
r1
k

(du
ds

)2

+
G

k tan
r2
k

(dv
ds

)2
]
;

or, if θ be the angle which the chosen tangent makes with that to v = cons.

1
ρ

=
cos2 θ

k tan
r1
k

+
sin2 θ

k tan
r2
k

.

Theorem 13. The normal sections of a surface at any point having the
greatest and the least curvature are those determined by the tangents to the
lines of curvature.
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Theorem 14. If on each tangent to a surface at a point a distance be laid
off equal to the square root of the reciprocal of the measure of curvature of the
normal section with that tangent, the locus of the points so formed will be a
central conic.

We leave to the reader the task of filling in the details of the proof of the last
theorem, they will come very easily from considering the equation of a central
conic as given in Chapter XII. Of course the theorem is untrue at a point where
the tangents to the two lines of curvature coincide. This central conic is called
Dupin’s Indicatrix in the euclidean case, and we may well use the same name
in the non-euclidean case also.

The curvature of a surface bears a close relation to the element of arc of the
point (y).

−(dx dy) = Ddu2 + 2D′du dv +D′′dv2,

(dy dy) = e du2 + 2f du dv + g dv2,(
y
∂y

∂u

)
=
(
x
∂y

∂u

)
= D′

(∂x
∂u

∂y

∂u

)
−D

(∂x
∂v

∂y

∂u

)
= 0,

λ
∂yi

∂u
= D′ ∂

∂si

∣∣∣∣sxy ∂x∂u
∣∣∣∣−D

∂

∂si

∣∣∣∣sxy ∂x∂v
∣∣∣∣ ,

λ
(∂x
∂u

∂y

∂u

)
= −λD = −D

√
EG− F 2,(∂y

∂u

∂y

∂u

)
=
D′2E +D2G− 2DD′F

EG− F 2
,(∂y

∂u

∂y

∂v

)
=
D′D′′E − (DD′′ +D′2)F +DD′G

EG− F 2
,(∂y

∂v

∂y

∂v

)
=
D′′2E − 2D′D′′F +D′2G

EG− F 2
,

−(e du2 + 2f du dv + g dv2)

=
1

tan
r1
k

tan
r2
k

(Edu2 + 2Fdu dv +Gdv2)+

+

 1

tan
r1
k

+
1

tan
r2
k

 (Ddu2 + 2D′du dv +D′′dv2). (25)

An asymptotic curve has the property that as a point moves along it, the
tangent plane to the surface tends to rotate about the tangent to this curve, i.e.
the tangent plane to the surface is the osculating plane to the curve, and the
normal to the surface is the binormal to the curve. In dealing with such a curve
the point (y) on the normal will replace the point we previously called (ξ). The
torsion of any asymptotic line will be, by (8),
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1
T

=

√
(dy dy)
kds

.

But, in the case of an asymptotic curve, the second part of the right-hand
side of (25) will be zero, while the parenthesis in the first part is equal to ds2,
hence, for an asymptotic line

(dy dy)
k2ds2

=
1
T 2

=
−1

k2 tan
r1
k

tan
r2
k

.

It is not difficult to see that the two asymptotic lines at a point, when real,
have torsion with opposite signs, we have but to look at the special case of a
ruled quadric, hence:

Theorem 15. The two asymptotic lines at a point, when real, have torsions
equal to the two square roots of the negative of the total relative curvature of
the surface.

Theorem 16. In any surface of constant total relative curvature, the torsion of
every asymptotic line is constant and equal to a square root of the total relative
curvature, and the necessary and sufficient condition that a surface should have
constant total relative curvature is that the asymptotic lines of one set should
have constant torsion. Under these circumstances the asymptotic lines of the
other set will have a constant torsion equal to the negative of that already given,
and the square of either torsion will be the total relative curvature.

In speaking of the total curvature of a surface we have used the word relative.
It is now time to explain why that adjective is chosen. Let us try to express our
total relative curvature in terms of E, F , G and their derivatives. We have

1

k2 tan
r1
k

tan
r2
k

=
DD′′ −D′2

k2(EG− F 2)
. (24)

For the sake of simplicity we shall take as parameter lines u, v the isotropic
curves of the surface, i.e. those whose tangents also touch the Absolute. We
assume that our surface is not a developable circumscribed to the Absolute,
and that in the region considered no tangent plane to the surface touches the
Absolute. The isotropic curves at every point will therefore be distinct. We
shall have

E = G = 0, (xx) = k2,

(
x
∂x

∂u

)
=
(
x
∂x

∂v

)
=
(
x
∂2x

∂u2

)
=
(
x
∂2x

∂v2

)
= 0,

2Fdu dv = ds2,

(∂2x

∂u2

∂x

∂v

)
=
∂F

∂u
,
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(∂x
∂u

∂2x

∂v2

)
=
∂F

∂v
,

(∂2x

∂u2

∂2x

∂v2

)
−
( ∂2x

∂u ∂v

∂2x

∂u ∂v

)
=

∂2F

∂u ∂v
;

D′2 =
−1
F 2

∣∣∣∣∣∣∣∣∣
k2 0 0 −F
0 0 F 0
0 F 0 0

−F 0 0
( ∂2x

∂u ∂v

∂2x

∂u ∂v

)
∣∣∣∣∣∣∣∣∣ ,

DD′′ =
−1
F 2

∣∣∣∣∣∣∣∣∣∣∣

k2 0 0 0

0 0 F
∂F

∂v
0 F 0 0

0 0
∂F

∂u

(∂2x

∂u2

∂2x

∂v2

)

∣∣∣∣∣∣∣∣∣∣∣
,

DD′′ −D′2

k2(EG− F 2)
=

1
F 2

[ 1
F

∂F

∂u

∂F

∂v
− ∂2F

∂u ∂v

]
− 1
k2
. (26)

The first expression on the right is the Gaussian curvature of a two-dimens-
ional manifold whose squared distance element is 2Fdu dv75.

Theorem 1776. The total relative curvature of a surface is equal to the
difference between its total Gaussian curvature and the measure of curvature of
space.

The Gaussian curvature may also be called the total absolute curvature.
Notice that this theorem remains true in euclidean space where the measure of
curvature is 0.

The problem of finding all surfaces of total relative curvature zero is quickly
solved. Let us assume that

tan
r2
k

= ∞.

Then, by an equation just preceding (22), as

∂xi

∂v
6= 0,

∂yi

∂v
= 0,

and there will be the same tangent plane all along u = const.
Theorem 18. A surface of total relative curvature zero is a developable.
Clearly every developable has total relative curvature zero.
Much more interest attaches to the surfaces of total Gaussian curvature zero,

i.e. those which are developable upon the euclidean plane. The total relative
75Cf. Bianchi, loc. cit., p. 68.
76Cf. Bianchi, loc. cit., p. 609.
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curvature will be − 1
k2

. There is an advantage in considering the hyperbolic and
elliptic cases separately.

In the hyperbolic case let (y) be the centre of a sphere, the constant distance
thence to points of the surface being r

cos
r

k
=

(xy)
k2

, k2 tan2 r

k
= k2

[
(xx)(yy)− (xy)2

(xy)2

]
.

If the surface is to be actual (xx) = k2. If the sphere be a proper one

(yy) = k2, the total relative curvature will be >
−1
k2

. In the case of a horocyclic

surface we may not assume (yy) = k2, but must treat (y) as homogeneous
coordinates where (yy) = 0. We get then

1

k2 tan2 r

k

= − 1
k2
.

Theorem 19.77 The horocyclic surface of hyperbolic space is developable on
the euclidean plane.

In elliptic space there is a peculiarly notable class of surfaces of Gaussian
curvature zero, ruled surfaces. We have already seen one example, the Clifford
Surface of Chapter X. This quadric, be it remembered, cuts the Absolute in two
generators of each set, and its own generators form an orthogonal system. Now
Dupin’s indicatrix shows that the normal sections of greatest and of least curva-
ture will be determined by tangents bisecting the angles of the two generators,
and the planes of these normal sections will cut the surface in two circles whose
axes are the axes of revolution of the surface, and whose centres lie on these
axes. The centres are thus mutually orthogonal points, hence the total relative

curvature is − 1
k2
, and the Gaussian curvature is zero. This statement was given

without proof in Chapter X. We notice also that the generators of either set are
paratactic, and the question arises, will not this fact alone constitute a sufficient
condition that a surface should have Gaussian curvature zero?

Let us imagine that we have a surface generated by ∞1 paratactic lines.78

The parameter v shall give the actual distance measured on each line from an
orthogonal trajectory v = const. We have for our distance element

ds2 = Edu2 + dv2.

We know, moreover, by Chapter IX that if two lines be paratactic they
have an infinite number of common perpendiculars on which they determine
congruent distances. Hence E is a function of u alone, and we may choose u so

77Cf. Manning, loc. cit., p. 52; Killing, Die Grundlagen der Geometrie, Paderborn, 1898,
p. 33.

78For an interesting treatment of these surfaces see Bianchi, ‘Le superficie a curvatura nulla
nella geometria ellitica,’ Annali di Matematica, Serie 2, Tomo 24, 1896.
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that it shall be equal to unity

ds2 = du2 + dv2, (27)

and the Gaussian curvature is zero.
Conversely, suppose that we have a ruled surface of Gaussian curvature zero.

The square of the element of arc may be written

ds2 = Edu2 + dv2.

Since the Gaussian curvature is zero

∂2
√
E

∂v2
= 0,

√
E = θ(u)v + ψ(u).

On the other hand we may write our surface parametrically in the form

xi = fi(u) cos
vi

k
+ φi(u) sin

v

k
,

with the additional conditions

(ff) = (φφ) = k2, (ff ′) = (φφ′) = (fφ) = (fφ′) + (φf ′) = 0;

E = (f ′f ′) cos2
v

k
+ (φ′φ′) sin2 v

k
+ 2(f ′φ′) sin

v

k
cos

v

k
,

kF = (φf ′) cos2
v

k
− (fφ′) sin2 v

k
= 0, (fφ′) = (φf ′) = 0.

These are identical with previous

E = [θ(u)]2v2 + 2θ(u)ψ(u)v + [ψ(u)]2,

only when
θ(u) ≡ 0.

We may, then, take

E = 1, ds2 = du2 + dv2;

and this shows that two adjacent generators determine equal distances on all
their orthogonal trajectories, and so are paratactic.

Theorem 20. The necessary and sufficient condition that a ruled surface in
elliptic space should have Gaussian curvature zero is that its generators should
be paratactic.

Another highly interesting criterion for a surface of constant Gaussian cur-
vature zero is obtained as follows:

E = G = 1, F = 0;(∂x
∂u

∂2x

∂u ∂v

)
=
(∂2x

∂u2

∂x

∂v

)
=
(∂x
∂u

∂2x

∂v2

)
= 0,

(
x
∂2x

∂u2

)
= −1.

174



The coordinates of the absolute pole of the tangent plane are

yi =
∂

∂si

∣∣∣∣sx∂x∂u ∂x∂v
∣∣∣∣ .

The coordinates of the absolute pole of the osculating plane to the orthogonal
trajectory of the generators, i.e. to a curve v = const, are

λξi =
∂

∂ri

∣∣∣∣rx∂x∂u ∂2x

∂u2

∣∣∣∣ ,
(yξ) = 0.

This shows that the generators are binormals to their orthogonal trajectories.
Our given surface may be written in the form

xi = xi(u) cos
v

k
+ ξi(u) sin

v

k
,

ds2 = dv2 +
[
cos2

v

k
+
k2

T 2
sin2 v

k

]
du2.

This reduces to
du2 + dv2,

when, and only when
1
T 2

=
1
k2
.

Theorem 21. The necessary and sufficient condition that a ruled surface
should have Gaussian curvature zero is that it should be generated by the bi-
normals to a curve whose squared torsion is equal to the measure of curvature
of space.

The proof given holds equally in hyperbolic space; the surface is, however,
in that case imaginary. If we compare theorems 16 and 21, we get

Theorem 22. The necessary and sufficient condition that it should be pos-
sible to assemble the normals to a surface into one parameter families of left
(right) paratactics, is that the given surface should have Gaussian curvature
zero. It will, then, be possible to assemble the normals into families of right
(left) paratactics also. The intersections of the given surface with the various
families of paratactics will be the asymptotic lines of the former.

We shall, as in euclidean space, define as the geodesic curvature at any point
of a curve on our surface, the curvature of its orthogonal projection on the

tangent plane at that point. Let us denote this by
1
ρg

, while σ is the angle

which the osculating plane makes with the tangent plane to the surface. Then,
applying Meunier’s theorem to the projecting cone

1
ρg

=
cosσ
ρ

. (28)
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As a first exercise, assuming F = 0, let us find the geodesic curvature of one
of our parameter lines

dsv =
√
Gdv,

ti =
k√
G

∂xi

∂v
,

zi

ρ
=
dti
ds

+
xi

k
=

k√
G

[
∂

∂v

( 1√
G

∂xi

∂v

)]
+
xi

k
.

To find cosσ must determine the distance of (z) from the point orthogonal

to (x) on the curve v = const., i.e. to the point
k√
E

(∂x
∂u

)
.

cos
σ

ρ
=

1√
EG

(∂x
∂u

∂

∂v

( 1√
G

∂x

∂v

))
,

1
ρg

=
−1√
EG

∂
√
G

∂u
. (29)

For the other parameter line

1
ρg

=
−1√
EG

∂
√
E

∂v
.

Let us now, more generally, find the geodesic curvature of the curve

v · = v · (u).

Once more we shall make use of the isotropic parameters, so that

E = G = 0,

ds =
√

2Fv′du, v′ =
dv

du
,

ti =
k√

2Fv′

[∂xi

∂u
+ v′

∂xi

∂v

]
,

zi

ρ
=

k

2Fv′
[∂2xi

∂u2
+ 2

∂2xi

∂u ∂v
v′ +

∂2xi

∂v2
v′2 +

∂xi

∂v
v′′
]
+

+
k√

2Fv′

[∂xi

∂u
+
∂xi

∂v
v′
] d
du

1√
2Fv′

+
xi

k
.

For an orthogonal trajectory to this curve

δv

δu
= −dv

du
= −v′,

δs = δu
√
−2Fv′,
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t̄i =
−k√
−2Fv′

[
∂xi

∂u
− v′

∂xi

∂v

]
,

cos
σ

ρ
=

1
ρk2

(zt̄),

1
ρg

=
−1√
−2Fv′

 ∂F∂v v′ − ∂F

∂u
2F

+
v′′

2v′


=

1√
−F 2

[ d
du

√
F√
2v′

− ∂

∂v

√
2Fv′

]
. (30)

What will be the nature of those curves whose geodesic curvature vanishes,
i.e. those curves whose osculating planes pass through the normal? These shall
be called geodesic lines, and, evidently, we shall have

dv

du

√
F√
2v′

=
∂

∂v

√
2Fv′.

This merely tells us that our given curve is an extremal, i.e. the first variation
of the length between two fixed points is zero. If we assume that two sufficiently
near points can always be connected by a curve of minimum length79 we shall
get

Theorem 23. The curve of shortest length between two points of a surface
is a geodesic line.

Remembering 21, we have further
Theorem 24. The orthogonal trajectories of a family of paratactic lines are

geodesics of the surface generated by these lines.
If we consider the two planes through the normal to a surface and the two

tangents to the lines of curvature, we see that they are mutually perpendicular,
and that each touches the focal surface of the congruence of normals at the
point of intersection of the two adjacent normals in the other plane.80

Theorem 25. In any congruence of normals, the edges of regression of the
developable surfaces are geodesics of the focal surfaces of the congruence.

The osculating plane to any straight line is indeterminate; the line is, there-
fore, a geodesic for all space; a result also evident from Chapter II. 30. It is also
clear that as the expressions for the geodesic curvature of a parameter line in
terms of E, F , G and their derivatives are the same in euclidean and in non-
euclidean space, and the formula for the distance element is written in the same
shape, so will the formula for the geodesic curvature of any curve be the same.
We might, for instance, have given this formula in terms of the Beltrami invari-
ants. We have, however, purposely avoided the introduction of these into the

79For a proof of the existence of this curve, see Bolza, Lectures on the Calculus of Variations,
Chicago, 1904, Ch. VIII.

80For a simple proof of this general theorem see Picard, loc. cit., vol. i, pp 307, 308.
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present work, and will therefore merely refer the reader to the current textbooks
in differential geometry,81

As a last problem in the differential geometry of surfaces let us take up
that of minimal surfaces. To begin with, what will be the element of area? It
is perfectly clear that the expression for this will be the same as that in the
euclidean case. The sine of the angle formed by the parameter lines will be, by
(15) √

EG− F 2

√
EG

,

and the area of the elementary quadrilateral√
EG− F 2du dv.

Let us, in particular, take the lines of curvature as parameter lines. The
formula for the area enclosed by a given curve will be

x √
EGdudv.

Let us compare this with the area enclosed by this curve upon a surface
reached by laying off on each normal an extremely small distance w(uv).

xi = xi cos
w

k
+ yi sin

w

k
,

dxi = dxi cos
w

k
+ dyi sin

w

k
− 1
k

[
xi cos

w

k
− yi sin

w

k

]
dw.

The squared element of arc for this surface will be by (22)

ds2 = E

cos
w

k
+

sin
w

k

tan
r1
k

2

du2 +G

cos
w

k
+

sin
w

k

tan
r2
k

 dv2 +
dw2

k2
.

This becomes, when we neglect powers of w above the first,

ds2 = E

1 +
2
w

k

tan
r1
k

 du2 +G

1 +
2
w

k

tan
r2
k

 dv2.

For the surface element we have

√
EG

1 + 2
w

k

 tan
r1
k

+ tan
r2
k

tan
r1
k

tan
r2
k

+ 4

w2

k2

tan
r1
k

tan
r2
k


1
2

du dv.

81e.g. Bianchi, Differentialgeometrie, cit. p. 258.
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Developing by the binomial theorem, and neglecting higher powers of w we
have

x √
EG

1 +
w

k

 tan
r1
k

+ tan
r2
k

tan
r1
k

tan
r2
k

 du dv.
If we define as a minimal surface one where the first variation of the area is

zero, certainly a necessary condition, we have
Theorem 26. The necessary and sufficient condition that a surface should

be minimal is that the mean relative curvature should be zero.
We see from (23) that the numerator of the expression for the relative mean

curvature is the simultaneous invariant of (13) and (20), and vanishes when,
and only when, the tangents to the asymptotic lines are harmonically separated
by those to the isotropic ones, hence

Theorem 27. The necessary and sufficient condition that a surface should
be minimal is that the asymptotic lines should form an orthogonal system.

This theorem justifies our statement in Chapter X that a Clifford surface is
a minimal surface. It is very interesting that in non-euclidean space we should
have an algebraic minimal surface (other than the plane) whose order is as low
as two.

We may go one long step further towards the solution of the problem of
minimal surfaces, namely, exhibit the differential equations on which they de-
pend.82

We shall once more take as parameter lines the isotropic ones. These will
form a conjugate system, since they are harmonically separated by the asymp-
totic lines, hence

E = G = D′ = 0,

∂2xi

∂u ∂v
= Axi +B

∂xi

∂u
+ C

∂xi

∂v
,

BF =
1
2
∂G

∂u
= 0, CF =

1
2
∂E

∂u
= 0, F = −Ak2,

∂2xi

∂u ∂v
+

1
k2
Fxi = 0. (31)

It is merely necessary to find F and take for (x) four solutions of (3) subject
to the restriction (xx) = k2. Let us put

∂2xi

∂u2
= P

∂xi

∂u
+Q

∂xi

∂v
+Rxi + Syi,

which is certainly possible, since∣∣∣∣xy∂xi

∂u

∂x

∂v

∣∣∣∣ 6≡ 0.

82Cf. Darboux, Leçons sur la théorie générale des surfaces, vol. iii, ch. xiv, Paris, 1894.
The reader is strongly urged to read this interesting chapter in connection with the present
work.
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We easily find

R = Q = 0, FP =
∂F

∂u
,

∂2xi

∂u2
=

1
F

∂F

∂w

∂xi

∂u
+ Syi.

Now

∂

∂v

(∂2x

∂u2

∂2x

∂u2

)
= 2
(∂2x

∂u2

∂3x

∂u2 ∂v

)
= −2

(∂2x

∂u2

∂

∂u
(Fx)

)
= 0, by (31).

Hence
(∂2x

∂u2

∂2x

∂u2

)
= φ(u).

If φ(u) ≡ 0, D = 0.

The total relative curvature is zero, and the surface is developable. In a
developable surface the asymptotic lines fall together, by (24); hence a minimal
developable must be circumscribed to the Absolute, and cannot be real in the
actual domain. Conversely it is clear that every developable circumscribed to
the Absolute is a minimal surface in that its asymptotic lines are mutually
perpendicular, even though it lie in a region of our space where the concept
area has not been defined.

In the second case let us suppose φ(u) 6≡ 0.

Let us replace u by ū(u) so that
(∂2x

∂ū

∂2x

∂ū

)
=

1
k2

. Then replace the letter
ū by the letter u once more.

Then S =
1
k2
,

∂2xi

∂u2
=

1
F

∂F

∂u

∂xi

∂u
+
yi

k2
.

In like manner
∂2xi

∂v2
=

1
F

∂F

∂v

∂xi

∂v
+
yi

k2
.

Multiplying through by
∂2xi

∂u2
and adding

(∂2x

∂u2

∂2x

∂v2

)
=

1
k2

+
1
F

∂F

∂u

∂F

∂v
.

On the other hand

∂2F

∂u ∂v
=
(∂2x

∂u2

∂2x

∂v2

)
+
(∂x
∂u

∂3x

∂u ∂v2

)
,

=
(∂2x

∂u2

∂2x

∂v2

)
− 1
k2

(∂x
∂u

∂

∂v
(xF )

)
,
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=
(∂2x

∂u2

∂2x

∂v2

)
− 1
k2
F 2,

∂2F

∂u ∂v
=

1− F 2

k2
+

1
F

∂F

∂u

∂F

∂v
,

k2 ∂
2 logF
∂u ∂v

=
1
F
− F. (32)

Lastly, let us put F = e2iw,

k2 ∂2w

∂u∂v
+ sin 2w = 0. (33)

When F has been found we may, as already noted, find (x) from (31).
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CHAPTER XVI

DIFFERENTIAL LINE-GEOMETRY

In Chapter IX we gave the foundations of the Plückerian line-geometry,
and the fundamental invariants of a metrical character; in Chapter X we saw
what advantages arose from taking the cross instead of the line as element,
and introducing suitable coordinates. Chapter XV was given to the differential
geometry of curves and surfaces. It is the object of the present chapter to draw
all of these threads together into a theory of differential line-geometry, and, in
particular, a theory of two-parameter line systems or congruences.83

We shall define as an analytic line-congruence a system whose Plückerian
coordinates are analytic functions of two independent parameters, say u and
v. This is equivalent to supposing that our lines are determined by two points,
which we may assume mutually orthogonal, whose coordinates are analytic func-
tions of the two independent parameters in question.

xi = xi(uv), yi = yi(uv), (xx) = (yy) = k2, (xy) = 0. (1)

Following Kummer’s classical method, we shall write the following funda-
mental quadratic expression:

k2(dx dx)− (y dx)2 =
∥∥∥∥ y0 y1 y2 y3
dx0 dx1 dx2 dx3

∥∥∥∥2

= Edu2 + 2Fdu dv +Gdv2,

k2(dy dy)− (x dy)2 =
∥∥∥∥ x0 x1 x2 x3

dy0 dy1 dy2 dy3

∥∥∥∥2

= E′du2 + 2F ′du dv +G′dv2. (2)

k2(dx dy) = e du2 + (f + f ′)du dv + g dv2,

k2
(∂x
∂u

∂x

∂u

)
−
(
y
∂x

∂u

)2

= E,

k2
(∂x
∂u

∂x

∂v

)
−
(
y
∂x

∂u

)(
y
∂x

∂v

)
= F,

k2
(∂x
∂v

∂x

∂v

)
−
(
y
∂x

∂v

)2

= G. (3)

k2
(∂y
∂u

∂y

∂u

)
−
(
x
∂y

∂u

)2

= E′,

k2
(∂y
∂u

∂y

∂v

)
−
(
x
∂y

∂u

)(
x
∂y

∂v

)
= F ′,

k2
(∂y
∂v

∂y

∂v

)
−
(
x
∂y

∂v

)2

= G′. (4)

83The first part of the present chapter follows, with slight modifications, a rather inaccessible
memoir by Fibbi, ‘I sistemi doppiamente infiniti di raggi negli spazii di curvatura costante,’
Annali della R. Scuola Normale Superiore, Pisa, 1891.

182



k2
(∂x
∂u

∂y

∂u

)
= e, k2

(∂x
∂v

∂y

∂u

)
= f,

k2
(∂x
∂u

∂y

∂v

)
= f ′, k2

(∂y
∂v

∂y

∂v

)
= g. (5)

EG− F 2 =
∣∣∣∣yx∂x∂u ∂x∂v

∣∣∣∣2 ≡ ∆2, E′G′ − F ′2 =
∣∣∣∣xy ∂y∂u ∂y∂v

∣∣∣∣2 ≡ ∆′2. (6)

The following relations will subsist between these various expressions:

∆xi = k2 ∂∆
∂xi

, ∆′yi = k2 ∂∆′

∂yi
,

since (xy) =
(
x
∂x

∂u

)
=
(
x
∂x

∂v

)
=
(
y
∂y

∂u

)
=
(
y
∂y

∂v

)
= 0,

E′ = k2
(∂y
∂u

∂y

∂u

)
− k4

∆2

∣∣∣∣y ∂y∂u ∂x∂u ∂x∂v
∣∣∣∣2 ,

E′ =
1

∆2
[Ge2 − 2Fef + Ef2],

F ′ =
1

∆2
[Gef ′ − F (eg + ff ′) + Efg]. (7)

G′ =
1

∆2
[Gf ′2 − 2F (f ′g) + Eg2],

E =
1

∆′2 [G′e2 − 2F ′ef ′ + E′f ′2]. (8)

F =
1

∆′2 [G′ef − F ′(eg + ff ′) + E′f ′g],

G =
1

∆′2 [G′f2 − 2F ′(fg) + E′g2],

∆∆′ = (eg − ff ′). (9)

Notice that ∆ and ∆′ being square roots of positive definite forms cannot
vanish in the real domain.

We remember from Chapter IX, that two lines which are not paratactic
have two common perpendiculars meeting them in pairs of mutually orthogonal
points. Let us, as a first problem, find where the common perpendicular to a line
of our congruence and an adjacent line meets the given line. The coordinates
of an arbitrary point of our line may be written

(
x cos

r

k
+ y sin

r

k

)
while an

arbitrary point of an adjacent line will be λ(x+ dx) + µ(y + dy).
Let us begin by writing that the second of these points is orthogonal to(

x sin
r

k
− y cos

r

k

)
the point of the first line orthogonal to the first point, while,

on the other hand, the first point lies in the absolute polar plane of µ(x+ dx)−
λ(y+dy). There will result two linear homogeneous equations in λ and µ whose
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determinant must be equated to zero. When this is simplified in view of the
identities

(x dx) = − 1
2 (dx dx), (y dy) = − 1

2 (dy dy),

(x dy) + (y dx) = −(dx dy),

we shall have∣∣∣∣∣∣
[k2 − 1

2 (dx dx)] sin
r

k
− (y dx) cos

r

k

−[k2 − 1
2 (dy dy)] sin

r

k
− (x dy) cos

r

k

(x dy) sin
r

k
−[k2 − 1

2 (dy dy)] cos
r

k

(y dx) sin
r

k
+[k2 − 1

2 (dx dx)] cos
r

k

∣∣∣∣∣∣ = 0. (10)

Casting aside infinitesimals above the second order

k2(dx dy)
(
cos2

r

k
− sin2 r

k

)
−
[
k2(dx dx)− (y dx)2 − k2(dy dy) + (x dy)2

]
sin

r

k
cos

r

k
= 0,

(e du2 + (f + f ′)du dv + g dv2)
(
cos2

r

k
− sin2 r

k

)
+
[
(E − E′)du2 + 2(F − F ′)du dv + (G−G′)dv2

]
sin

r

k
cos

r

k
= 0. (11)

This will give ∞1 determinations for r in the general case where

e :
(
f + f ′

2

)
: g 6≡ (E − E′) : (F − F ′) : (G−G′), (12)

and, as we saw in Chapter X, Theorem 5, with the corresponding elliptic case,
these common perpendiculars will generate a surface of the fourth order, anal-
ogous to the euclidean cylindroid. We shall call a congruence where inequality
(12) holds a ‘general’ congruence.

Let us now ask what are the maximum and minimum values for r in (11).
Equating to zero the partial derivatives to du and dv we get[

e du+
f + f ′

2
dv
] (

tan2 r

k
− 1
)

+ [(E − E′)du+ (F − F ′)dv] tan
r

k
= 0,

[ (f + f ′)
2

du+ g dv
] (

tan2 r

k
− 1
)

+ [(F − F ′)du+ (G−G′)dv] tan
r

k
= 0.

Eliminating r we have[
e(F − F ′)− (f + f ′)

2
(E − E′)

]
du2

+ [e(G−G′)− g(E − E′)]du dv

184



+
[ (f + f ′)

2
(G−G′)− g(E − E′)

]
dv2 = 0. (13)

Each root of this will give two values to tan
r

k
corresponding to two mutually

orthogonal points. On the other hand, if we eliminate du : dv we get

(
eg − 1

4 (f + f ′)2
) (

tan2 r

k
− 1
)2

+ [e(G−G′)

− (F − F ′)(f + f ′) + g(E − E′)]
(
tan2 r

k
− 1
)

tan
r

k

+ [(E − E′)(G−G′)− (F − F ′)2] tan2 r

k
= 0. (14)

The left-hand side of this equation is the discriminant of (11) looked upon as
an equation in du : dv. It gives, therefore, those points of the given line where
the two perpendiculars coalesce. Such points shall be called ‘limiting points’.
They will determine two regions (when real) point by point mutually orthogonal,
which contain the intersections of the line with the real common perpendiculars.
In the same way we might find limiting planes through the line determining two
dihedral angles whose faces are, in pairs, mutually perpendicular, and which
when real, with their verticals, determine all planes wherein lie all real common
perpendiculars to the given line and its immediate neighbours.

Theorem 1. A line of a general
analytic congruence contains four
limiting points, mutually orthogonal
in pairs, and these, when real,
determine two real regions of the
line where it meets the real common
perpendiculars with adjacent lines of
the congruence. They are also the
points where the two perpendiculars
coincide.

Theorem 1′. Through a line of
a general analytic congruence will
pass four limiting planes, mutually
perpendicular in pairs, and these,
when real, determine two real regions
of the axial pencil through the line
which contain all planes wherein
are real common perpendiculars to
the line and adjacent lines of the
congruence. They are also the planes
in which the two perpendiculars
coincide.

We shall now look more closely into the question of the reality of limiting
points and places. We may so choose our coordinate system that the equations
of the line in question shall be x1 = x2 = 0. Reverting to equation (8) of
Chapter X the equation of the ruled quartic surface will be, in the hyperbolic
case

a(−ẋ0
2 + ẋ3

2)ẋ1ẋ2 + b(ẋ1
2 + ẋ2

2)x0x3 = 0. (15)

Let the reader show84 that in the elliptic case we shall have

(a1 − a2)(x0
2 + x3

2)x1x2 + (a1 + a2)(x1
2 + x2

2)x0x3 = 0. (15′)

84See the author’s Dual Projective Geometry, cit., p. 26.
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To find the limiting points on the line x1 = x2 = 0, equate to zero the
discriminant of this looked upon as an equation in

ẋ1 : ẋ2 or x1 : x2.

a2(−ẋ0
2 + ẋ3

2)− 4b2ẋ0
2ẋ3

2 = 0. (16)

(a1 − a2)2(x0
2 + x3

2)2 − 4(a1 + a2)2x0
2x3

2 = 0. (16′)

In like manner for the limiting planes we shall have

b2(ẋ1
2 + ẋ2

2)2 + 4a2ẋ1
2ẋ2

2 = 0. (17)

(a1 + a2)2(x1
2 + x2

2)− 4(a1 − a2)2x1
2x2

2 = 0. (17′)

Notice that the centres of gravity of the limiting points are (1, 0, 0, 0) (0, 0,
0, 1); while the bisectors of the dihedral angles of the limiting planes are (0, 1,
0, 0) (0, 0, 1, 0).

If we look more closely into the roots of the last four equations we see that
the roots of (16) are all real, those of (17) all imaginary. As for the two equations
(16′) and (17′) the one will have real roots, the other imaginary ones, whence

Theorem 2. In hyperbolic space the limiting points of an actual line are
real, and the limiting planes imaginary. In elliptic space this may occur, or the
planes may be all real and the points all imaginary.

Giving to x0 : x3 one of the values from (16′) we see that

x0
2 + x3

2

x0x3
= ±2(a1 + a2)

a1 − a2
.

Substituting in (15′) we have

x1 + x2 = 0 or x1 − x2 = 0

The four limiting points will yield but these two planes, hence

Theorem 3. The perpendicu-
lars at the limiting points line in
two planes called ‘principal planes’
whose dihedral angles have the same
bisectors as pairs of limiting planes.

Theorem 3′. The perpendiculars
in the limiting planes meet the line
in two points called ‘principal points’
whose centres of gravity are those
of two pairs of limiting points.

Reverting to (16′) we see that we may also write

x0 : x3 = ±(
√
a1 ±

√
a2) : (

√
a1 ∓

√
a2).

Let us pick out a pair of limiting points which are not mutually orthogonal,
say

(
√
a1 +

√
a2, 0, 0,

√
a1 −

√
a2) (−(

√
a1 +

√
a2), 0, 0,

√
a1 −

√
a2).
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The perpendicular from the point (x) to the line x1 = x2 = 0 meets it in
the point (x0, 0, 0, x3). Calling d1, d2 the distances thence to the limiting points
just chosen we have

tan
d1

k
=

(
√
a1 −

√
a2)x0 − (

√
a1 +

√
a2)x3

(
√
a1 +

√
a2)x0 + (

√
a1 −

√
a2)x3

,

tan
d2

k
=

(
√
a1 −

√
a2)x0 + (

√
a1 +

√
a2)x3

−(
√
a1 +

√
a2)x0 + (

√
a1 −

√
a2)x3

.

Further, let (ω) be the angle which the plane through x1 = x2 = 0 and (x)
makes with the principal plane

x1 + x2 = 0.

cos2 ω =
(x1 − x2)2

2(x1
2 + x2

2)
, sin2 ω =

(x1 + x2)2

2(x1
2 + x2

2)
,

tan
d1

k
cos2 ω + tan

d2

k
sin2 ω = 0. (18)

This is, of course, the direct analog of Hamilton’s well-known formula for
the cylindroid.85

Returning to the notations wherewith we opened the present chapter, let us
find the focal points of our line, i.e. the points where it intersects adjacent lines
of the congruence, or rather, the points where the distance becomes infinitesimal
to a higher order. Here, if the focal point be(

x cos
r

k
+ y sin

r

k

)
,

we shall have

xi cos
r

k
+ yi sin

r

k
= (xi + dxi) cos

r + dr

k
+ (yi + dyi) sin

r + dr

k

dxi cos
r

k
+ dyi sin

r

k
− 1
k

(
xi cos

r

k
− yi sin

r

k

)
dr = 0.

k dr = (x dy),

[
k2
(∂xi

∂u
cos

r

k
+
∂yi

∂u
sin

r

k

)
−
(
xi cos

r

k
− yi sin

r

k

)(
x
∂y

∂u

)]
du+

+
[
k2
(∂xi

∂v
cos

r

k
+
∂yi

∂v
sin

r

k

)
−
(
xi cos

r

k
− yi sin

r

k

)(
x
∂y

∂v

)]
dv = 0.

85For the Hamiltonian equation see Bianchi, Differentialgeometrie, cit., p. 261. For the
non-euclidean form here given, cf. Fibbi, loc. cit., p. 57. Fibbi’s work is burdened with many
long formulae; one cannot help admiring his skill in handling such cumbersome expressions at
all.
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Multiplying through by
∂yi

∂u
and adding, then multiplying through by

∂yi

∂v
and adding again

[e du+ f dv] cos
r

k
+ [E′du+ F ′dv] sin

r

k
= 0,

[f ′du+ g dv] cos
r

k
+ [F ′du+G′dv] sin

r

k
= 0.

Replacing (y dx) by (−x dy) we have, similarly

[e du+ f ′dv] sin
r

k
+ [Edu+ Fdv] cos

r

k
= 0,

[f du+ g dv] sin
r

k
+ [Fdu+Gdv] cos

r

k
= 0.

(19)

Eliminating r

(E′f ′ − F ′e)du2 + [E′g − F ′(f − f ′)−G′e]du dv + (F ′g −G′f)dv2 = 0,

(Ef − Fe)du2 + [Eg − F (f ′ − f)−Ge]du dv + (Fg −Gf)dv2 = 0.
(20)

Eliminating du : dv

(E′G′ − F ′)2 tan2 r

k
+ [E′g − F ′(f + f ′) +G′e] tan

r

k
+ (eg − ff ′) = 0,

(eg − ff ′) tan2 r

k
+ [Eg − F (f + f ′) +Ge] tan

r

k
+ (EG− F 2) = 0.

(21)

Subtracting one of these equations from the other

[(eg − ff ′)− (E′G′ − F ′2)] tan2 r

k
+ [(E − E′)g − (F − F ′)(f + f ′)

+ (G−G′)e] tan
r

k
+ [(EG− F 2)− (eg − ff ′)] = 0. (22)

We see at once that the middle coefficients are identical in (14) and (22),
and these will vanish when, and only when, we are measuring from a centre of
gravity of the roots.

Theorem 4. The centres of
gravity of the focal points are
identical with those of two pairs of
limiting points.

Theorem 4′. The bisectors of the
dihedral angles of two focal planes
are identical with those of two pairs
of limiting planes.

The focal properties of a congruence of normals are especially interesting.
Here we may suppose that (y) is the Absolute pole of the tangent plane to the
surface described by (x). We have then(

y
∂x

∂u

)
=
(
y
∂x

∂v

)
=
(
x
∂y

∂u

)
=
(
x
∂y

∂v

)
= 0,

−
(
x
∂2y

∂u ∂v

)
= f = f ′.
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Suppose, conversely, that
f = f ′.

Let us put x̄i = xi cos
r

k
+ yi sin

r

k
and show that we may find r so that

our line is normal to the surface traced by (x̄). For this it is necessary and
sufficient that the point of the line orthogonal to (x̄) should be orthogonal to
every displacement of (x̄). This point being

(
x sin

r

k
− y cos

r

k

)
, we must have

sin
r

k
(x dx̄)− cos

r

k
(y dx̄) = 0,

(y dx) = −k dr,

and (y dx) must be an exact differential, i.e.

∂

∂u

(
y
∂x

∂v

)
=

∂

∂v

(
y
∂x

∂u

)
, f = f ′. (23)

This condition can be put into a more geometrical form. Let us, in fact, find
the necessary and sufficient condition that the focal planes should be mutually
perpendicular. Writing their equations in the form

|Xxy dx| = 0, |Xxy δx| = 0,

the numerator of the expression for the cosine of their angle will be∣∣∣∣∣∣∣
k2 0 (y δx)
0 k2 − 1

2 (δx δx)
(y dx) − 1

2 (dx dx) (dx δx)

∣∣∣∣∣∣∣ = k2[k2(dx δx)− (y dx)(y δx)].

For perpendicularity,

Edu δu+ F (du δv + δu dv) +Gdv δv = 0.

Now, by (20),

du δu

dv δv
=
Fg −Gf ′

Ef − Fe
,
[du
dv

+
δu

δv

]
=
Ge+ F (f ′ − f)− Eg

Ef − Fe
.

Hence
(EG− F 2)(f − f ′) = 0.

Let us give the name pseudo-normal to the absolute polar of a normal con-
gruence. We thus get

Theorem 5. The necessary and
sufficient condition that a congruence
should be normal is that the focal
planes through each line should be
mutually perpendicular.

Theorem 5′. The necessary and
sufficient condition that a congruence
should be pseudo-normal is that the
focal points on each line should be
mutually orthogonal.
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If we subtract one of the equivalent equations (20) from the other, we get
an equation which reduces to (13) when, and only when

f = f ′.

Theorem 6. The necessary and sufficient condition that a general congruence
should be composed of normals is that the focal points should coincide with a
pair of limiting points.

In a normal congruence let us suppose that (x) traces a surface to which the
given lines are normal so that

(y dx) = −(x dy) = 0.

Let us then put

xi = xi cos
r

k
+ yi sin

r

k
, yi = xi cos

r

k
− yi sin

r

k
,

where y is constant. We see at once that

(y dx) = −(x dy) = 0.

Theorem 7. If a constant distance be laid off on each normal to a surface
from the foot, in such a way that the points on adjacent normals are on the
same side of the tangent plane corresponding to either, the locus of the points
so found is a surface with the same normals as the original one.

Let us suppose that we have a normal congruence determined by mutually
orthogonal points (x) and (y), where xi = xi(uv) traces a surface, not one of the
orthogonal trajectories of the congruence. We shall choose as parameter lines
in this surface the isotropic curves, so that(∂x

∂u

∂x

∂u

)
=
(∂x
∂v

∂x

∂v

)
= 0.

The sine of the angle which our given line makes with the normal to this
surface is

sin θ =

√√√√√√2
(
y
∂x

∂u

)(
y
∂x

∂v

)
k2
(∂x
∂u

∂x

∂v

)
Let all the lines of our congruence be reflected or refracted in this surface in

such a way that
sin θ = n sin θ.

We must replace y by y where

yi = nyi + λ
∂

∂ti

∣∣∣∣tx∂x∂u ∂x∂v
∣∣∣∣ .
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It is easily seen that for the new congruence also

f = f ′.

Theorem 8. If a normal congruence be subjected to any finite number of
reflections or refractions, the resulting congruence is normal.

We shall now abandon the general congruence and assume that, contrary to
(12)

e :
f + f ′

2
: g ≡ (E − E′) : (F − F ′) : (G−G′). (24)

There are two sharply distinct sub-cases which must not be confused:

(a) f ≡ f ′, (b) f 6≡ f ′.

In either case, as we readily see, (11) is illusory, and there is no ruled quartic
determined by the common perpendiculars to a line and its neighbours; these
perpendiculars will either all meet the given line at one of two mutually or-
thogonal points, or two adjacent lines will be paratactic, and have ∞1 common
perpendiculars.

Our condition for focal points expressed in (23) was independent of (12), and
this shows that our two sub-cases just mentioned differ in this, that the first is
a normal congruence, while the second is not. Let (x) be a point where our line
meets a set of perpendiculars, (y) being thus the other such point. Then under
our first hypothesis, we shall have

e = f = f ′ = g = 0.

We see that the focal points will fall into (x) and (y) likewise. These are
mutually orthogonal, and so by equation (26) of the last Chapter, that the total

relative curvature of the surface will be − 1
k2

or the Gaussian curvature zero.

We see also by theorem (22) of that chapter that it is possible to assemble the
lines of our congruence into families of left or right paratactics according as we
assemble them by means of the one or the other set of asymptotic lines of the
given surface. Conversely, if we have given a congruence of normals to a surface
of Gaussian curvature zero, two normals adjacent to a given one are paratactic
thereunto. There must be, then, two values of du : dv for which (11), looked
upon as an equation in r, becomes entirely illusory. Hence (24) must hold, and
as we have normal congruence (23) is also true.

We now make the second assumption

f 6≡ f ′.

We shall still take (x) as a point where the line meets the various common
perpendiculars, so that we may put

e =
f + f ′

2
= g = 0.
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We may take as coordinates of a focal plane

ui =
∂

∂ti
|t xy dx|,

(uu) = k2[Edu2 + 2Fdu dv +Gdv2].

But by (20) this expression vanishes. Hence the focal planes all touch the
Absolute, and the focal surface must be a developable circumscribed thereunto.
It is clear that the lines of such a congruence cannot be assembled into paratactic
families.

This type of congruence shall be called ‘isotropic’.86

Let us take an isotropic congruence, or congruence of normals to a surface
of Gaussian curvature zero, and choose (x) and (y) so that

e = 1
2 (f + f ′) = g = 0,

xi = x cos
r

k
+ y sin

r

k
,

(dx dx) = cos2
r

k
(dx dx) + sin2 r

k
(dy dy).

This expression will be unaltered if we change r into −r. Conversely, when
such is the case, we must have (dx dy) = 0, and the congruence will be either
isotropic, or composed of normals to a surface of Gaussian curvature zero.

Theorem 9. The necessary and sufficient condition that a congruence should
be either isotropic, or composed of normals to a surface of Gaussian curvature
zero, is that it should consist of lines connecting corresponding points of two
mutually applicable surfaces, which pairs of points determine always the same
distance. The centres of gravity of these pairs of points will be the points
where the various lines meet the common perpendiculars to themselves and the
adjacent lines.

In elliptic (or spherical) space, there is advantage in studying our last two
types of congruence from a different point of view, suggested by the develop-
ments of Chapter X.

Let us rewrite the equations (11) there given.

(x0yi − xiy0) + (xjyk − xkyj) = lXi,

(x0yi − xiy0)− (xjyk − xkyj) = rXi. (25)

86The earliest discussion of these interesting congruences in non-euclidean space will be
found in the author’s article ‘Les congruences isotropes qui servent à représenter les fonctions
d’une variable complexe’, Atti della R. Accademia delle Scienze di Torino, xxxix, 1903, and
xl, 1904. In the same number of the same journal as the first of these will be found an
article by Bianchi, ‘Sulla rappresentazione di Clifford delle congruenze rettilinee nello spazio
ellitico.’ Professor Bianchi uses the word ‘isotropic’ to cover both what we have here defined as
isotropic congruences, and also congruences of normals to surfaces of Gaussian curvature zero,
distinguishing the latter by the name of ‘normal’. The author, on the other hand, included in
his definition of isotropic congruences those which, later, we shall define as ‘pseudo-isotropic’.
A discussion of these definitions will be found in a note at the beginning of the second of the
author’s articles.
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These equations were originally written under the supposition that (x) and
(y) were homogeneous. At present if we so choose the unit of measure that
k = 1 we have

(lX lX) = (rX rX) = 1. (26)

These coordinates (lX), (rX) were formerly looked upon as giving the lines
through the origin (1, 0, 0, 0) respectively left and right paratactic to the given
line. They may now be looked upon as coordinates of two points of two unit
spheres of euclidean space, called, respectively, the left and right representing
spheres87 The representation is not, however, unique. On the one hand the two
lines of a cross will be represented by the same points, on the other, we get the
same line if we replace either representing point by its diametrical opposite. We
shall avoid ambiguity by assuming that each line is doubly overlaid with two
opposite ‘rays’, meaning thereby a line with a sense or sequence attached to its
points, as indicated in the beginning of Chapter V or end of Chapter IX. We
shall assume that by reversing the signs in one triad of coordinates we replace
our ray by a ray on the absolute polar of its line, while by reversing both sets
of signs, we replace the ray by its opposite.

Theorem 10. There is a perfect one to one correspondence between the
assemblage of all real rays of elliptic or spherical space, and that of pairs of
real points of two euclidean spheres. Opposite rays of the same line will be
represented by diametrically opposite pairs of points, rays on mutually absolute
polar lines by identical points on one sphere and opposite points of the other.
Rays on left (right) paratactic lines will be represented by identical or opposite
points of the left (right) sphere.

Two rays shall be said to be paratactic when their lines are. Reverting to
Theorem 12 of Chapter X.

Theorem 11. The perpendicular distances of the lines of two rays or the
angles of these rays are half the difference and half the sum of the pairs of
spherical distances of their representing points.

Theorem 12. The necessary and sufficient condition that the lines of two
rays should intersect is that the spherical distances of the pairs of representing
points should be equal; each will intersect the absolute polar of the other if these
spherical distances be supplementary.

Theorem 13. Each ray of a common perpendicular to the lines of two rays
will be represented by a pair of poles of two great circles which connect the pairs
of representing points.

It is clear that an analytic congruence may be represented in the form

lXi = lXi(uv), rXi = rXi(uv),

or else, in general,
lXi = lXi(rX1 rX2 rX3).

87This representation was first published independently by Study, ‘Zur nichteuklidischen
etc.,’ and Fubini, ‘Il parallelismo di Clifford negli spazii ellitici,’ Annali della R. Scuola Nor-
male di Pisa, Vol. ix, 1900. The latter writer does not, however, distinguish with sufficient
clearness between rays and lines.
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Two adjacent rays will intersect, or intersect one another’s polars if

(dlX dlX) = (drX drX).

The common perpendicular to two adjacent rays will have coordinates

λlYi =
∂

∂lZi
|lZ lX dlX| , µrXi =

∂

∂rZi
|rZ rX drX| .

The condition that a congruence should be either normal or pseudo-normal
is

(dlXdlX) = (drXdrX),

(δlXδlX) = (δrXδrX),∣∣∣∣∣ (lX lX)(lX δ lX)
(lX d lX)(d lX δ lX)

∣∣∣∣∣ = ±

∣∣∣∣∣ (rX rX)(rX δ rX)
(rX d rX)(d rX δ rX)

∣∣∣∣∣ ,
from these

(d lX δ lX) = ±(d rX δ rX). (27)

Let us determine the significance of the double sign. If, in particular, we
take the congruence of normals to a sphere whose centre is (1, 0, 0, 0) we shall
get the equations

lXi = rXi,

and this transformation keeps areas invariant in value and sign. On the other
hand, the congruence of rays in the absolute polar of this plane will be

lXi = −rXi,

a transformation which changes the signs of all areas. Lastly, we may pass from
one normal congruence to another by a continuous change, wherein the sign in
equation (27) will not be changed, hence88

Theorem 14. A normal congru-
ence will be represented by a relation
between the two spheres which keeps
areas invariant in actual value and
sign, and every such relation will
give a normal congruence.

Theorem 14′. A pseudo-normal
congruence will be represented by
a relation between the two spheres
where the sum of corresponding areas
on the two is zero, and every such
relation will give a pseudo-normal
congruence.

Let us next take an isotropic congruence. Here two common perpendiculars
to two adjacent lines necessarily intersect, or each intersects the absolute polar of
the other. The same will hold for the absolute polar of an isotropic congruence,
a ‘pseudo-isotropic’ congruence, let us say. Such a congruence will not have
a focal surface at all, but a focal curve, which lies on the Absolute. On the
representing spheres, in the case of either of these congruences, two intersecting

88Cf. Study, loc. cit., p. 321; Fubini, p. 46.
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arcs of one will make the same angle, in absolute value, as the corresponding
arcs on the other. In the particular case of the isotropic congruence of all lines
through the point (1, 0, 0, 0) the relation between the two representing spheres
is a directly conformal one, while in the case of the pseudo-isotropic congruence
of all lines in the plane (1, 0, 0, 0) we have an inversely conformal relation. We
may now repeat the reasoning by continuity used in the case of the normal
congruence, and get89

Theorem 15. The necessary and
sufficient condition that a congru-
ence should be isotropic is that
the corresponding relation between
the representing spheres should be
directly conformal.

Theorem 15′. The necessary and
sufficient condition that a congruence
should be pseudo-isotropic is that
the corresponding relation between
the representing spheres should be
inversely conformal.

Let us take up the isotropic case more fully. Any directly conformal rela-
tion between the real domains of two euclidean spheres of radius unity may be
represented by an analytic function of the complex variable. Let us give the
coordinates of points of our representing spheres in the following parametric
form:

lX1 =
u1u2 − 1
u1u2 + 1

, rX1 =
z1z2 − 1
z1z2 + 1

,

lX2 =
i(u1 − u2)
u1u2 + 1

, rX2 =
i(z1 − z2)
z1z2 + 1

, (28)

lX3 =
u1 + u2

u1u2 + 1
, rX3 =

z1 + z2
z1z2 + 1

.

We shall get a real ray when

u2 = ū1, z2 = z̄1.

In order to have a real directly conformal relation between the two spheres,
our transformation must be such as to carry a rectilinear generator into another
generator, i.e.

u1 = u1(z1), u2 = ū1(z2). (29)

For an inversely conformal transformation

u1 = u1(z2), u2 = ū1(z1). (30)

All will thus depend on the single analytic function u1(z).
The opposite of the ray (u) (z) will be

u1
′ = − 1

u2
, z1

′ = − 1
z2
,

u2
′ = − 1

u1
, z2

′ = − 1
z1
.

89First given in the Author’s first article on isotropic congruences, recently cited.

195



Let us now inquire under what circumstances the following equation will
hold:

ū1

(
− 1
z1

)
=

−1
u1(z1)

. (31)

If this hold identically, the opposite of every ray of the congruence will belong
thereto. If not, there will still be certain rays of the congruence for which it is
true. To begin with it will be satisfied by all rays of the congruence for which

u1u2 + 1 = 0, z1z2 + 1 = 0.

This amounts to putting

(lX lX) = (rX rX) = 0.

We saw in Chapter X that, interpreted in cross coordinates, these are the
equations which characterize an improper cross of the second sort, which is
made up of a pencil of tangents to the Absolute. Such a pencil we may also call
an improper ray of the second sort. Let us see under what circumstances such
a ray (uz) will intersect a proper ray (u′z′) orthogonally. Geometrically, we see
that either the proper ray must pass through the vertex of the pencil, or lie in
the plane thereof, and analytically we shall have

(u1 − u1
′)(u2 − u2

′) = (z1 − z1
′)(z2 − z2

′) = 0,

u1u2 + 1 = z1z2 + 1 = 0.

There are four solutions to these equations. By considering a special case
we are able to pick out those two where the ray lies in the plane of the pencil

u1 = u1
′, z1 = z1

′,

u2 = − 1
u1
′ , z2 = − 1

z1′
,

or else
u1 = − 1

u2
′ , z1 = − 1

z2′
,

u2 = u2
′, z2 = z2

′,

The proper ray (u′)(z′) was supposed to belong to our congruence. The
condition that the improper one (u)(z) shall also belong thereto will be

ū1

(
− 1
z1′

)
= − 1

u1(z1′)
.

Theorem 16.90 The necessary and sufficient condition that the opposite of a
real ray of an isotropic congruence should also belong thereunto is that the ray
should be coplanar with an improper ray of the second sort belonging to the

90See the Author’s second note on isotropic congruences, p. 13.
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congruence. When the latter are present in infinite number in an irreducible
congruence, the congruence contains the opposite of each of its rays.

The two cases here given may be still more sharply distinguished by geo-
metrical considerations. The focal surface of an isotropic congruence is a de-
velopable circumscribed to the Absolute, and will have a real equation when
the congruence is real. There are two distinct possibilities; first, the equation
of this surface is reducible in the rational domain; second, it is not. In the first
case the surface is made up of two conjugate imaginary portions; in the second
there is one portion which is its own conjugate imaginary. In the first case there
will be a finite number of planes which touch the Absolute and also each of
the two portions of the focal surface at the same point, namely, those which
touch the Absolute at the points of intersection of the two curves of contact
with the two portions of the focal surface. In these planes only shall we have
improper rays of the second sort belonging to the congruence. If, on the other
hand, the focal surface be irreducible, every point of the curve of contact may
be looked upon as being in the intersection of two adjacent planes tangent to
the Absolute, and the focal surface which is its own conjugate imaginary. The
tangents at each of these points will be improper rays of the second sort of the
congruence. Theorem 17 may now be given in a better form.

Theorem 17. The necessary and sufficient condition that an isotropic con-
gruence should contain the opposite of each of its rays is that the focal surface
should be irreducible.

It is very easy to observe the distinction between the two cases in the case
of the linear function

u1 =
αz1 + β

γz1 + δ
.

If β = −γ̄, δ = ᾱ, (29) is identically satisfied. But here it will be seen that
if we write

α = a+ bi, γ = −c+ di,

our congruence is nought else than the assemblage of all rays through the point
(a, b, c, d). The focal surface is the cone of tangents thence to the Absolute,
clearly its own conjugate imaginary. On the other hand, when α, β, γ, δ are
not connected by these relations, we shall have a line congruence of the fourth
order, and second class, as is easily verified. It is well known91 that a congruence
of the second order and fourth class has no focal surface, but a focal curve
composed of two conics, so our present congruence has as focal surface two
conjugate imaginary quadric cones which are circumscribed to the Absolute.
When their conjugate imaginary centres fall together in a real point, we revert
to the previous case.

When (u) and (z) are connected by the vanishing of a polynomial of order m
in u1 and order n in z1, in the general case where (31) does not hold identically,
we shall have a line-congruence of order (m + n)2. When, however, (31) does
hold, we must subtract from this the order of the curve of contact of the focal

91Cf. Sturm, Gebilde erster und zweiter Ordnung der Liniengeometrie, Leipzig, 1892-96,
Vol. ii, p. 320.
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surface and Absolute, and then divide by 2 to allow for the fact that there are
two opposite rays on each line.

If u1 be a function of z1 that possesses an essential singularity corresponding
to a certain value of z1 we see that as u1 takes all possible values (except at
most two) in the immediate neighbourhood, there will be a whole bundle of
right paratactic lines in the congruence. If u1 be periodic, there will be an
infinite number of lines of the congruence left paratactic to each line thereof. If
u1 be one of the functions of the regular bodies, we have a congruence which is
transformed into itself by a group of orthogonal substitutions in (rX), i.e. by a
group of left translations.

We have still to consider the congruence of normals to a surface of Gaussian
curvature zero in ray coordinates. Here there will be ∞1 paratactics of each
sort to each line. We may therefore express (lX) and (rX) each as functions of
one independent variable, or merely write

φ(lX1 lX2 lX3) = ψ(rX1 rX2 rX3) = 0. (32)

All our work here developed for the elliptic case may be brought into immedi-
ate relation with the hyperbolic case, and in so doing we shall get to the inmost
kernel of the whole matter. The parameters u1u2 will determine generators of
the left representing sphere. They have, however, a more direct significance. For
if u2 remain constant while u1 varies, the left paratactics to the ray in question
passing through the point (1, 0, 0, 0) will trace a pencil, and this pencil will lie
in a plane tangent to the Absolute, for there is only one value for u1, namely,

− 1
u2

, which will make the moving ray tangent to the Absolute. When, there-

fore, u2 is fixed, one of the left generators of the Absolute met by the ray in
question is fixed, and this shows that u1u2 are the parameters determining the
left generators which the ray intersects, while z1z2 in like manner determine the
right generators.

If two rays meet the same two generators of one set they are paratactic,
i.e. their lines are. If they meet the same two generators of different sets, they
are either parallel or pseudoparallel. The conditions for parallelism or pseudo-
parallelism will be that two rays shall have the same value for one (u) and for
one (z). Let us, in fact, assume that the subscripts are assigned to the letters
u1u2, z1z2 in such a way that a direct conformal transformation, or isotropic
congruence, is given by equations (29). Such a congruence will contain ∞1

rays pseudo-parallel to a given ray, but only a finite number parallel to it. The
conditions for pseudo-parallelism will thus be

u1
′ = u1, z1

′ = z1, or u2
′ = u2, z2

′ = z2. (33)

On the other hand a pseudo-isotropic congruence will be given by (30), and
the conditions for parallelism will be

u1
′ = u1, z2

′ = z2, or u2
′ = u2, z1

′ = z1. (34)
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To pass to the hyperbolic case, let us now assume that (lX)(rX) are two
points of the hyperbolic Absolute, and that, taken in order, they give a ray from
(lX) to (rX). Two rays will be parallel if

(lX) = (lX
′) or (rX) = (rX

′).

Equations (33) will give the conditions for parataxy, while (34) give those
for pseudo-parallelism. We might push the matter still further by distinguishing
between syntaxy and anti-taxy, synparallelism and anti-parallelism, but we shall
not enter into such questions here. Equations (29) will give a congruence whose
rays can be assembled into surfaces with paratactic generators, i.e. a congruence
of normals to a surface of Gaussian curvature zero; (30) will give an isotropic
congruence, while (32) will give a pseudo-isotropic congruence. We may tabulate
our results as follows.92

Hyperbolic Space. Elliptic Space.

Ray. Ray.

Real ray in actual domain or
pencil of tangents to Absolute.

Real Ray

Real parallelism. Real parataxy.

Imaginary pseudo-parallelism. Imaginary parallelism.

Imaginary parataxy. Imaginary pseudo-parallelism.

Real congruence of normals to
surface of Gaussian curvature zero.

Real isotropic congruence.

Real isotropic congruence. Real pseudo-isotropic congruence.

Real pseudo-isotropic congruence. Real congruence of normals to a
surface of Gaussian curvature zero.

92The Author’s attention was first called to this remarkable correspondence by Professor
Study in a letter in the summer of 1905. It is developed, without proof, but in detail, in his
second memoir, ‘Ueber nichteuklidische und Liniengeometrie,’ Jahresbericht der deutschen
Mathematikervereinigung, xv, 1906.
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CHAPTER XVII

MULTIPLY CONNECTED SPACES

In Chapters I and II we laid down a system of axioms for our fundamental
objects points and distances, and showed how, thereby, we might build up the
geometry of a restricted region. We also saw that with the addition of an
assumption concerning the sum of the angles of a single triangle, we were in a
position to develop fully the elliptic, hyperbolic, or euclidean geometry of the
restricted region in question. Our spaces so defined were not, however, perfect
analytic continua, even in the real domain. To reach such continua it was
necessary to assume that any chosen segment might be extended beyond either
extremity by a chosen amount. We saw in the beginning of Chapter VII that
this assumption, though allowable in the euclidean and hyperbolic cases, will
involve a contradiction when added to the assumptions already made for elliptic
space. The difficulty was overcome by assuming the existence of a space which
contained as sub-regions (called consistent regions) spaces where our previous
axioms held good. For this new type of space we set up our Axioms I′–VI′.

Our next task was to show that under Axioms I′–V′ each point will surely
have one set of homogeneous coordinates (x), and conversely, to each set of real
coordinates subject to the restriction that in hyperbolic space

k2ẋ0
2 + ẋ1

2+ẋ2
2 + ẋ3

2 < 0,
in elliptic space (xx) > 0,
and in euclidean space x0 6= 0,

there will surely correspond one real point. Under the euclidean or hyperbolic
hypotheses each set of real coordinates can correspond to one real point, at
most; under the elliptic hypothesis, on the contrary, we found it necessary to
distinguish between elliptic space where but one point goes with each coordinate
set, and the spherical case where two equivalent points necessarily have the same
coordinates.

One further point was established in connexion with these developments; to
each point there will correspond but a single set of homogeneous coordinates (x).
The proof of this depended upon Axiom VI′, which required that a congruent
transformation of one consistent region should produce one definite transfor-
mation of space as a whole. Of course such an assumption, when applied to
our space of experience, can neither be proved nor disproved empirically. In
the present chapter we shall set ourselves the task of examining whether, under
Axioms I′–V′ of Chapter VII, it be possible to have a space where each point
shall correspond to several sets of coordinate values.93 For simplicity we shall
assume that no two different points can have the same coordinates.

93The present chapter is in close accord with Killing, Die Grundlagen der Geometrie, Pader-
born, 1893, Part iv. Another account will be found in Woods’ ‘Forms of Non-Euclidean-Space’,
published in Lectures on Mathematics, Woods, Van Vleck, and White, New York, 1905.
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What will be the meaning of the statement that under our set of axioms two
sets of coordinate values (x), (x′) belong to the same point? Let a coordinate
system be set up, as in Chapter V, in some consistent region; let this region be
connected with the given point by two different sets of overlapping consistent
regions; then (x) and (x′) shall be two different sets of coordinate values for
this point, obtained by two different sets of analytic extension of the original
coordinate system.

Let us first assume that there is a consistent region which is reached by each
chain of overlapping consistent regions, a statement which will always hold true
when there is a single point so reached. We may set up a coordinate system
in this region, and then make successive analytic extensions for the change of
axes from one to another of the overlapping consistent regions, until we have
run through the whole circuit, and come back to the region in which we started.
If, then, one point of the region have different values for its coordinates from
what it had at the start, the same will be true of all, or all but a finite number
of points of the region, and the new coordinate values will be obtained from the
old ones (in the non-euclidean cases) by means of an orthogonal substitution.
If (x) and (x′) be two sets of coordinates for one point we shall have

xi
′ =

0..3∑
j

aijxj , |aij | 6= 0. (1)

Conversely, if these equations hold for any point, they will represent an
identical transformation of the region, and give two sets of coordinate values for
every point of the region. We see also by analytic extension that these equations
will give two sets of coordinate values for every point in space.

There is one possible variation in our axioms which should be mentioned
at this point. It is entirely possible to build up a geometrical system where
IV′ holds in general only, and there are special points, called singular points,
which can lie in two consistent regions which have no sub-region in common.
In two dimensions we have a simple example in the case of the geometry of the
euclidean cone with a singular line. We shall, however, exclude this possibility
by sticking closely to our axioms.

Let us suppose that we have two overlapping systems of consistent regions
going from the one wherein our coordinate axes were set up to a chosen point
P . We may connect P with a chosen point A of the original region by two
continuous curves, thus making, in all, a continuous loop. If now, P1 be a point
which will have two different sets of coordinate values, according as we arrive
at it by the one or the other set of extensions, we see that our loop is of a
sort which cannot be reduced in size beyond a definite amount without losing
its characteristic property. This shows that, in the sense of analysis situs, our
space is multiply connected. In speaking of spaces which obey Axioms I′–V′,
but where each point can have several sets of coordinate values, we shall use the
term multiply connected spaces.

Suppose that we have a third set of coordinate values for a point of our
consistent region. These will be connected with the second set by a relation
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xi
′′ =

0..3∑
j

bijxj
′, |bij | 6= 0.

We see that (x′′) and (x) are also connected by a relation of this type, hence
Theorem 1. The assemblage of all coordinate transformations which repre-

sent the identical transformation of a multiply connected space form a group.
If (x) and (x′) be two sets of coordinates for the same point the expression∣∣∣∣∣cos−1 (xx′)√

(xx)
√

(x′x′)

∣∣∣∣∣
cannot sink below a definite minimum value greater than zero, for then we
should have two different points of the same consistent region with the same
coordinate values, which we have seen is impossible (Chapter VII).

For the sake of clearness in our subsequent work let us introduce, besides our
multiply connected space S, a space Σ, having the same value for the constant k
as our space S. and giving to each point one set of coordinate values only. The
group of identical transformations of S will appear in Σ as a group of congruent
transformations, a group which has the property that none of its transformations
can leave a real point of the actual domain invariant, nor produce an infinitesimal
transformation of that domain. We lay stress upon the actual domain of Σ, for
in S we are interested in actual points only. Let us further define as fundamental
such a region of Σ, that every point of Σ has an equivalent in this region under
the congruent sub-group which we are now considering, yet no two points of a
fundamental region are equivalent to one another. The points of S may be put
into one to one correspondence with those of a fundamental region of this sort
or of a portion thereof, and, conversely, such a fundamental region will furnish
an example of a multiply connected space obeying Axioms I′–V′.

Theorem 2. Every real group of congruent transformations of euclidean, hy-
perbolic, or elliptic space, which carries the actual domain into itself, and none
of whose members leave an actual point invariant, nor transport such a point
an infinitesimal amount, may be taken as the group of identical transformations
of a multiply connected space whose points may be put into one to one corre-
spondence with the points of a portion of any fundamental domain of the given
space for that group.

Our interest will, from now on, centre in the space Σ. We shall also find it
advisable to treat the euclidean and the two non-euclidean cases separately.

We shall begin by asking what groups of congruent transformations of the
euclidean plane fulfil the requirements of Theorem 2. Every congruent trans-
formation of the euclidean plane is either a translation or a rotation, but the
latter type is inadmissible for our present purpose. What then are the groups
of translations of the euclidean plane? The simplest is evidently composed of
the repetitions of a single translation. If the amplitude of the translation be l,
while n is an integer, positive or negative, this group may be expressed in the
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form
x′ = x+ nl, y′ = y.

The fundamental regions will be strips bounded by lines parallel to the y axis,
each strip including one of the bounding lines. A corresponding space S will be
furnished by a euclidean cylinder of circumference l.

What translation groups can be compounded from two given translations?
It is clear that the lines of motion of the two should not be parallel. For if, in
that case, their amplitudes were commensurable, we should fall back upon the
preceding system; but if the amplitudes were incommensurable, the group would
contain infinitesimal transformations; and these we must exclude. On the other
hand, the group compounded from repetitions of two non-parallel translations
will suit our purpose very well. If the amplitudes of the two be l and λ, while
m and n are integers, we may write our group in the form

x′ = x+ nl, y′ = y +mλ.

The fundamental regions are parallelograms, each including two adjacent
sides, excepting two extremities. The Clifford surface discussed in Chapters X
and XV offers an excellent example of a multiply connected surface of this type.

It is interesting to notice that with these two examples we exhaust the pos-
sibilities of the euclidean plane. Suppose, in fact, that P is any point of this
plane, that is to say, any point in the finite domain. The points equivalent to it
under the congruent group in question may not cluster anywhere, hence there
is one equivalent, or a finite number of such, nearer to it than any other. If
these nearest equivalents do not all lie on a line with P , we may pick out two of
them, non-collinear with P , thus determining one-half of a fundamental paral-
lelogram. If the nearest equivalents are collinear with P (and, hence, two only
in number), we may pick out one of them and one of the next nearest (which
will be off that line, unless we are under our previous first case), and thus con-
struct a parallelogram within which there is no equivalent to P , for every point
within such a parallelogram is nearer to one vertex than any two vertices are
to one another. This parallelogram, including two adjacent sides, except the
vertices which are not common, will constitute a fundamental region, and we
are back on the second previous case. Let the reader notice an exactly similar
line of reasoning will show that there cannot exist any single valued continuous
function of the complex variable which possesses more than two independent
periods.

In a three-dimensional euclidean space we shall find suitable groups com-
pounded of one, two, or three independent translations. The fundamental re-
gions will be respectively layers between parallel planes, four-faced prismatic
spaces, and parallelepipeds. It is easy to determine how much of the bounding
surface should be included in each case. It is also evident that there can be no
other groups composed of translations only, which fulfil the requirements.

Let us glance for a moment at the various forms of straight line which will
exist in a multiply connected euclidean space S, which corresponds to a eu-
clidean parallelepiped in Σ. The corresponding lines in Σ shall all pass through
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one vertex of the fundamental parallelepiped. If the line in Σ be one edge of
the parallelepiped, the line in S will be a simple loop of length equal to one
period. If the line in Σ connect the vertex with any other equivalent point, the
line in S will still be a loop, but of greater length. If, lastly, the line in Σ do
not contain any other point equivalent to the vertex, the line in S will be open,
but, if followed sufficiently far, will pass again as close as desired to the chosen
point.

There are other groups of motions of euclidean space, besides translations
which give rise to multiply connected spaces. An obvious example is furnished
by the repetitions of a single screw motion. This may be expressed, n being an
integer, in the form

x′ = x cosnθ − y sinnθ, y′ = x sinnθ + y cosnθ, z′ = z + nd.

The fundamental regions in Σ will be layers bounded by parallel planes. In S
we shall have various types of straight lines. The Z axis will be a simple closed
loop of length d. Will there be any other closed lines in S? The corresponding
lines in Σ must be parallel to the axis, there being an infinite number of points
of each at the same distance from that axis. When θ and 2π are commensurable,
we see that every parallel to the Z axis will go into a closed line of the type
required, when θ and 2π are incommensurable, the Z axis is the only closed
line.

Let us now take two points of Σ separated by a distance r

ξ = x+ r cosα,
η = y + r cosβ,
ζ = z + r cos γ.

The necessary and sufficient condition that they should be equivalent is

x cosnθ − y sinnθ = x+ r cosα,
x sinnθ + y cosnθ = y + r cosβ,

nd = r cos γ.

The last of these equations shows that a line in Σ perpendicular to the Z
axis (i.e. parallel to a line meeting it perpendicularly) cannot return to itself.
On the other hand, if

cosα = cosβ = 0 : nθ = 2mπ,

and we have a closed loop of the type just discussed. If α, β, γ, n be given, r
may be determined by the last equation, and x, y from the two preceding, since
the determinant of the coefficients will not, in general, vanish. We thus see that
in S the lines with direction angles α, β, γ, and possessing double points, will
form an infinite discontinuous assemblage. If, on the other hand, x, y, z, n be
given, α, β, γ, r may be determined from the given equations, coupled with
the fact that the sum of the squares of the direction cosines is unity; through
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each point in S, not on the Z axis, will pass an infinite number of straight lines,
having this as a double point.

The planes in S will be of three sorts. Those which are perpendicular to the
Z axis will contain open lines only, those whose equations lack the Z term will
contain all sorts of lines. Other planes will contain no lines which are simple
loops.

Another type of multiply connected space will be determined by

x′ = (−1)lx+ma,

y′ = (−1)ly + nb,

z′ = z + lc.

l, m, n being integers.
The fundamental regions in Σ will be triangular right prisms. Lines in Σ

parallel to the Z axis will appear in S as simple closed loops of length 2c. To
find lines which cross themselves, let us write

x+ r cosα = (−1)lx+ma,

y + r cosβ = (−1)ly + nb,

z + r cos γ = z + lc.

For each even integral value of l, and each integral value of m and n, we get
a bundle of loop lines in S with direction cosines

cosα =
ma√

m2a2 + n2b2 + l2c2
, &c.

When l is odd, we shall have through each point an infinite number of lines
which have a double point there, the direction cosines being

cosα =
−2x+ma√

(−2x+ma)2 + (−2y + nb)2 + l2c2
, &c.

Such lines will, in general, be open. We see, however, that whereas the length

of a loop perpendicular to the x, y plane is 2c, if the point
ma

2
,
nb

2
happen to

be on such a loop, this point is reached again after a distance C. This loop has
therefore, the general form of a lemniscate.94

When we turn from the euclidean to the hyperbolic hypothesis, we find a less
satisfactory state of affairs. The real congruent group of the hyperbolic plane
was shown in Chapter VIII to depend upon the real binary group

σt1
′ = α11t1 + α12t2,

σt2
′ = α21t1 + α12t2,

94These and the preceding example are taken from Killing, Grundlagen, loc. cit. The last
is not, however, worked out.
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the homogeneous coordinates (t) being supposed to define a point of the absolute
conic. The two fixed points must be real, in order that the line joining them
shall be actual, and its pole, the fixed point, ideal. In other words, we wish for
groups of binary linear substitutions which contain members of the hyperbolic
type exclusively. Apparently such groups have not, as yet, been found. It might
seem, at first, that parabolic transformations where the two fixed points of the
conic fall together, would also answer, but such is not the case. We may show,
in fact, that in such a substitution there will be points of the plane which are
transformed by as small a distance as we please. The path curves are horocycles
touching the absolute conic at the fixed point: having in fact, four-point contact
with it. It is merely necessary to show that a horocycle of the family may be
found which cuts two lines through the fixed point in two points as near together
as we please. Let this fixed point be (0, 0, 1) while the absolute conic has an
equation of the form

x0
2 + x1x2 = 0.

The general type for the equation of a horocycle tangent at (0, 0, 1) will be

(x0
2 + x1x2) + px1

2 = 0.

This will intersect the two lines

x0 − lx1 = 0, x0 −mx1 = 0,

in the points (l, 1,−(l2 + p)) (m, 1,−(m2 + p)). The cosine of the kth part of
their distance will be

(l −m)2 + 2p
2p

,

an expression which will approach unity as a limit, as
1
p

approaches zero.

The group of hyperbolic motions in three dimensions will, as we saw in
Chapter VIII, depend upon the linear function of the complex variable

z′ =
αz + β

γz + δ
.

The group which we require must not contain rotations about a line tangent
to the Absolute, for the reason which we have just seen, hence the complex sub-
stitution must not be parabolic. Again, we may not have rotations about actual
lines, hence the path curves on the Absolute may not be conics in planes through
an ideal line (the absolute polar of the axis of rotation); the substitutions may
not be elliptic. The only allowable motions of hyperbolic space are rotations
about ideal lines, which give hyperbolic substitutions, and screw motions, which
give loxodromic ones. There does not seem to be any general theory of groups of
linear transformations of the complex variable, which include merely hyperbolic
and loxodromic members only.95

95For the general theory of discontinuous groups of linear substitutions, see Fricke-Klein,
Vorlesungen über die Theorie der automorphen Funktionen, vol. i, Leipzig, 1897.
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The group of repetitions of a single rotation about an ideal line may be put
into the form (k2 = −1),

ẋ0
′ = ẋ0 coshnθ − ẋ3 sinnθ,

ẋ1
′ = ẋ1,

ẋ2
′ = ẋ2,

ẋ3
′ = ẋ0 sinh θ + ẋ3 cosh θ.

The fundamental regions in Σ will be bounded by pairs of planes through
the line

x0 = x3 = 0.

The orthogonal trajectories of planes through this line will be equidistant
curves whose centres lie thereon. A line in Σ connecting two points which are
equivalent under the group will appear in S as a line crossing itself once.

We may, in like manner, write the group of repetitions of a single screw
motion

ẋ0
′ = ẋ0 coshnθ − ẋ3 sinhnθ,

ẋ1
′ = ẋ1 cosnφ− ẋ2 sinnφ,

ẋ2
′ = ẋ1 sinnφ+ ẋ2 cosnφ,

ẋ3
′ = ẋ0 sinhnθ + ẋ3 coshnθ.

In elliptic space we obtain rather more satisfactory results. Every congruent
transformation of the real elliptic plane is a rotation about an actual point, there
being no ideal points. Hence, there are no two-dimensional multiply connected
elliptic spaces. In three dimensions the case is different. Let us assume that
k = 1, and consider the group of repetitions of a single screw motion. The
angle of rotation about one axis is equal to the distance of translation along

the other, and the two distances or angles of rotation must be of the form
λπ

ν
,

µπ

ν′
in order that there shall be no infinitesimal transformations in the group.

Moreover, these two fractions must have the same denominator, for otherwise
the group would contain rotations. We may therefore write the general equations

x0
′ = x0 cosn

λπ

ν
− x1 sinn

λπ

ν
,

x1
′ = x0 sinn

λπ

ν
+ x1 cosn

λπ

ν
,

x2
′ = x2 cosn

µπ

ν
− x3 sinn

µπ

ν
,

x3
′ = x2 sinn

µπ

ν
+ x3 cosn

µπ

ν
,

where λ, µ, ν are constant integers, and n a variable integer. It will be found
that the cosine of the distance of the points (x), (x′) will be equal to unity only
when n is divisible by ν, i.e. we have the identical transformation, so that there
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are no real fixed points nor points moved an infinitesimal distance. If λ = µ we
have a translation (cf. Chapter VIII), for our transformation may be written in
the quaternion form:96

(x0
′ + x1

′i+ x2
′j + x3

′k) = (cosn
λπ

ν
+ sinn

λπ

ν
i)(x0 + x1i+ x2j + x3k).

The path-curves in Σ will be lines paratactic to either axis of rotation, and
they will appear in S as simple closed loops of length

π

ν
. Notice the close analogy

of this case to the simplest case in euclidean space.
There is another translation group of elliptic space giving rise to a multiply

connected space of a simple and interesting description. Let λ1 : λ2 be homo-
geneous parameters, locating the generators of one set on the Absolute. Each
linear transformation of these will determine a translation. In particular, if we
put

x0 + ix1 = λ1, x2 − ix3 = λ2,

then the translation

(x0
′ + x1

′i+ x2
′j + x3

′k) = (a+ bi+ cj + dk)(x0 + x1i+ x2j + x3k),

may also be written

λ1
′ = (a+ bi)λ1 − (c+ di)λ2,

λ2
′ = (c− di)λ1 + (a− bi)λ2.

Now this is precisely the formula for the rotation of the euclidean sphere.
The cosine of the distance traversed by the point (x) will be

a√
a2 + b2 + c2 + d2

,

which becomes equal to unity only when b = c = d = 0, i.e. when we have
the identical transformation. The groups of elliptic translations which contain
no infinitesimal transformations, are therefore identical with those of euclidean
rotations about a fixed point which contain no infinitesimal members, whence

Theorem 3.97 If a multiply connected elliptic space be transformed identi-
cally by a group of translations, that group is isomorphic with one of the groups
of the regular solids. Conversely each group of the regular solids gives rise to a
group of right or left elliptic translations, suitable to define a multiply connected
space of elliptic type.

Of course the inner reason for this identity is that a real line meets the elliptic
Absolute in conjugate imaginary points, corresponding to diametral imaginary

96Killing, Grundlagen, cit. p. 342, erroneously states that these translations are the only
motions along one fixed line yielding a group of the desired type. The mistake is corrected by
Woods, loc. cit., p. 68.

97Cf. Woods, loc. cit., p. 68.
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values of the parameter for either set of generators, and a real point of a eu-
clidean sphere is given by the value of its coordinate as a point of the Gauss
sphere, while diametrically opposite points will be given by diametral values of
the complex variable. The problem of finding elliptic translations, or euclidean
rotations, depend therefore, merely on the problem of finding linear transforma-
tions of the complex variable which transport diametral values into diametral
values.
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CHAPTER XVIII

THE PROJECTIVE BASIS OF NON-EUCLIDEAN GEOMETRY

Our non-euclidean system of metrics, as developed in Chapter VII and sub-
sequently, rests in the last analysis, upon a projective concept, namely, the cross
ratio. The group of congruent transformations appeared in Chapter VII as a
six-parameter collineation group, which left invariant a certain quadric called
the Absolute. An exception must be made in the euclidean case where the
congruent group was a six-parameter sub-group of the seven-parameter group
which left a conic in place. We thus come naturally to the idea that a basis for
our whole edifice may be found in projective geometry, and that non-euclidean
metrical geometry may be built up by positing the Absolute, and defining dis-
tance as in Chapter VII. It is the object of the present chapter to show precisely
how this may be done, starting once more at the very beginning.98

Axiom I. There exists a class of objects, containing at least two
distinct members, called points.

Axiom II. Each pair of distinct points belongs to a single sub-class
called a line.

The points shall also be said to be on the line, the line to pass through the
points. A point common to two lines shall be called their intersection. It is
evident from Axiom II that two lines with two common points are identical. We
have thus ruled out the possibility of building up spherical geometry upon the
present basis.

Axiom III. Two distinct points determine among the remaining
points of their line two mutually exclusive sub-classes, neither of
which is empty.

If the given points be A and B, two points belonging to different classes
according to Axiom III shall be said to be separated by them, two belonging to
the same class not separated.99 We shall call such classes separation classes.

Axiom IV. If P and Q be separated by A and B, then Q and P are
separated by A and B.

Axiom V. If P and Q be separated by A and B, then A and B are
separated by P and Q.

We shall write this relation PQ
w
AB or AB

w
PQ. If PQ be not separated

by A and B, though on a line, or collinear, with them, we shall write PQ�
w
AB.

98The first writer to set up a suitable set of axioms for projective geometry was Pieri, in his
Principii della geometria di posizione, cit. He has had many successors, as Enriques, Lezioni
di geometria proiettiva, Bologna, 1898, or Vahlen, Abstrakte Geometric, cit., Parts II and
III. Veblen and Young, ‘A system of axioms for projective geometry,’ American Journal of
Mathematics, Vol. xxx, 1908.

99The axioms of separation were first given by Vailati, ‘Sulle proprietà caratteristiche delle
varietà a una dimensione,’ Rivista di Matematica, v, 1895.
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Axiom VI. If four distinct collinear points be given there is a single
way in which they may be divided into two mutually separating pairs.

Theorem 1. AB
w
CD and AE

w
CD, then EB �

w
CD.

For C and D determine but two separation classes on the line, and both B
and E belong to that class which does not include A.

Theorem 2. If five collinear points be given, a chosen pair of them will either
separate two of the pairs formed by the other three or none of them.

Let the five points be A, B, C, D, E. Let AC
w
DE. Then, if BC

w
DE,

AB�
w
DE, and if AB

w
DE, BC�

w
DE. But if we had BC�

w
DE and AB�

w
DE,

ABC would belong to the same separation class with regard to DE, and hence
AC �

w
DE.

Theorem 3. If AC
w
BD and AE

w
CD, then AE

w
BD.

To begin with BC �
w
AD, EC �

w
AD; hence BE �

w
AD. Again, if we had

AB
w
ED, we should have AB

w
EC, i.e. AE �

w
BC. But we have AE

w
CD,

hence AE
w
BD a contradiction with AB

w
ED. As a result, since BE �

w
AD and

AB �
w
ED, we must have AE

w
BD.

It will be clear that this theorem includes as a special case Theorem 3 of
Chapter I. We have but to take A at a great distance.

Theorem 4. If PA
w
CD, PB

w
CD, PQ

w
AB, then PQ

w
CD. The proof is

left to the reader.
It will follow from the fact that neither of our separation classes is empty

that the assemblage of all points of a line is infinite and dense. We have but to
choose one point of the line, and say that a point is between two others when
it be separated thereby from the chosen point.

Axiom VII. If all points of either separation class determined by
two points A, B, be so divided into two sub-classes that no point of
the first is separated from A by B and a point of the second, there
will exist a single point C of this separation class of such a nature
that no point of the first sub-class is separated from A by B and C,
and none of the second is separated from B by A and C.

It is clear that C may be reckoned as belonging to either sub-class, but that
no other point enjoys this property. This axiom is one of continuity, let the
reader make a careful comparison with XVIII of Chapter II.

Axiom VIII. All points do not belong to one line.
Definition. The assemblage of all points of all lines determined by a given

point and all points of a line not containing the first shall be called a plane.
Points or lines in the same plane shall be called coplanar.

Axiom IX. A line intersecting in distinct points two of the three
lines determined by three non-collinear points, intersects the third
line.
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Let the reader compare this with the weaker Axiom XVI of Chapter I.
Theorem 5. A plane will contain completely every line whereof it contains

two points.
Let the plane be determined by the point A and the line BC. If the two

given points of the given line belong to BC or be A and a point of BC, the
theorem is immediate. If not, let the line contain the points B′ and C ′ of AB
and AC respectively. Let P be any other point of the given line. Then BP will
intersect AC, hence AP will intersect BC or will lie in the given plane.

Theorem 6. If A, B, C be three non-collinear points, then the planes deter-
mined by A and BC, by B and CA, and by C and AB are identical.

We have but to notice that the lines generating each plane lie wholly in each
of the others.

Theorem 7. If A′, B′, C ′ be three non-collinear points of the plane deter-
mined by ABC, then the planes determined by A′B′C ′ and ABC are identical.

This will come immediately from the two preceding.
Theorem 8. Two lines in the same plane always intersect.
Let B and C be two points of the one line, and A a point of the other, If A

be also a point of BC the theorem is proved. If not, we may use the point A
and the line BC to determine the plane, and our second line must be identical
with a line through A meeting BC.

Axiom X. All points do not lie in one plane.

Definition. The assemblage of all points of all lines which arc determined by
a chosen point, and all points of a plane not containing the first point shall be
called a space.

We leave to the reader the proofs of the following very simple theorems.
Theorem 9. A space contains completely every line whereof it contains two

points.
Theorem 10. A space contains completely every plane whereof it contains

three non-collinear points.
Theorem 11. The space determined by a point A and the plane BCD is

identical with that determined by B and the plane CDA.
Theorem 12. If A′, B′, C ′, D′ be four non-coplanar points of the space

determined by A, B, C, D, then the two spaces determined by the two sets of
four points are identical.

With regard to the last theorem it is clear that all points of the space deter-
mined by A′, B′, C ′, D′ lie in that determined by A, B, C, D. Let us assume
that B′, C ′, D′ are points of AB, AC, AD respectively. The planes BCD and
B′C ′D′ have a common line l, which naturally belongs to both spaces. Let us
first assume that AA′ does not intersect this line. Let A′′ be the intersection of
AA′ with BCD. Then A′′B meets both A′B′ and l, hence, has two points in
each space, or lies in each. Then the plane BCD lies in both spaces, as do the
line A′A′′ and the point A; the two spaces are identical. If, on the other hand,
AA′ meet l in A′′, then A lies in both spaces. Furthermore A′B will meet A′′B′
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in a point of both spaces, so that B will lie in both, and, by similar reasoning,
C and D lie in both.

Theorem 13. Two planes in the same space have a common line.
Theorem 14. Three planes in the same space have a common line or a

common point.
Practical limitation. All points, lines, and planes hereinafter considered are

supposed to belong to one space.
Theorem 15. If three lines AA′, BB′, CC ′ be concurrent, then the inter-

sections of AB and A′B′, of BC and B′C ′, of CA and C ′A′ are collinear, and
conversely.

This is Desargues’ theorem of two triangles. The following is the usual proof.
To begin with, let us suppose that the planes ABC and A′B′C are distinct. The
lines AA′, BB′, and CC ′ will be concurrent in O outside of both planes. Then
as AB and A′B′ are coplanar, they intersect in a point which must lie on the
line l of intersection of the two planes ABC and A′B′C ′, and a similar remark
applies to the intersections of BC and B′C ′, of CA and C ′A′. Conversely, when
these last-named three pairs of lines intersect, the intersections must be on l.
Considering the lines AA′, BB′, and CC ′, we see that each two are coplanar, and
must intersect, but all three are not coplanar. Hence the three are concurrent.
The second case occurs where A′B′C ′ are three non-collinear points of the plane
determined by ABC. Let V and V ′ be two points without this plane collinear
with O the point of concurrence of AA′, BB′, CC ′. Then V A will meet V ′A′ in
A′′, V B will meet V ′B′ in B′′, and V C will meet V ′C ′ in C ′′. The planes ABC
and A′′B′′C ′′ will meet in a line l, and B′′C ′′ will meet both BC and B′C ′ in a
point of l. In the same way CA will meet C ′A′ on l, and AB will meet A′B′ on
l. Conversely, if the last-named three pairs of lines meet in points of a line l in
their plane, we may find A′′B′′C ′′ non-collinear points in another plane through
l, so that B′′C ′′ meets BC and B′C ′ in a point of l, and similarly for C ′′A′′,
CA, C ′A′ and for A′′B′′, AB, A′B′. Then by the converse of the first part of
our theorem AA′′, BB′′, CC ′′ will be concurrent in V , and A′A′′, B′B′′, C ′C ′′

concurrent in V ′. Lastly, the three coaxal planes V V ′A′′, V V ′B′′, V V ′C ′′ will
meet the plane ABC in three concurrent lines AA′, BB′, CC ′.

We have already remarked in Chapter VI on the dependence of this theorem
for the plane either on the assumption of the existence of a third dimension, or
of a congruent group.

Definition. If four coplanar points, no three of which are collinear, be given,
the figure formed by the three pairs of lines determined by them is called a
complete quadrangle. The original points are called the vertices, the pairs of
lines the sides. Two sides which do not contain a common vertex shall be
said to be opposite. The intersections of pairs of opposite sides shall be called
diagonal points.

Theorem 16. If two complete quadrangles be so situated that five sides of
one meet five sides of the other in points of a line, the sixth side of the first
meets the sixth side of the second in a point of that line.
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The figure formed by four coplanar lines, no three of which are concurrent,
shall be called a complete quadrilateral . Their six intersections shall be called
the vertices; two vertices being said to be opposite when they are not on the
same side. The three lines which connect opposite pairs of vertices shall be
called diagonals.

Definition. If A and C be two opposite vertices of a complete quadrilateral,
while the diagonal which connects them meets the other two in B and D, then
A and B shall be said to be harmonically separated by C and D.

Theorem 17. If A and C be harmonically separated by B and D, then B
and D are harmonically separated by A and C.

The proof will come immediately from 15, after drawing two or three lines;
we leave the details to the reader.

Definition. If A and C be harmonically separated by B and D, each is said
to be the harmonic conjugate of the other with regard to these two points; the
four points may also be said to form a harmonic set .

Theorem 18. A given point has a unique harmonic conjugate with regard to
any two points collinear with it.

This is an immediate result of 16.
Theorem 19. If a point O be connected with four points A, B, C, D not

collinear with it by lines OA, OB, OC, OD, and if these lines meet another line
in A′, B′. C ′, D′ respectively, and, lastly, if A and C be harmonic conjugates
with regard to B and D, then A′ and C ′ are harmonic conjugates with regard
to B′ and D′.

We may legitimately assume that the quadrilateral construction which yield-
ed A, B, C, D was in a plane which did not contain O, for this construction
may be effected in any plane which contains AD. Then radiating lines through
O will transfer this quadrilateral construction into another giving A′, B′, C ′,
D′.

Definition. If a, b, c, d be four concurrent lines which pass through A, B, C,
D respectively, and if A and C be harmonically separated by B and D, then a
and c may properly be said to be harmonically separated by b and d, and b and
d harmonically separated by a and c. We may also speak of a and c as harmonic
conjugates with regard to b and d, or say that the four lines form a harmonic
set.

Theorem 20. If four planes α, β, γ, δ determined by a line l and four points
A, B, C, D meet another line in four points A′, B′, C ′, D′ respectively, and if A
and C be harmonically separated by B and D, then A′ and C ′ are harmonically
separated by B′ and D′.

It is sufficient to draw the line AD′ and apply 19.
Definition. If four coaxal planes α, β, γ, δ pass respectively through four

points A, B, C, D where A and C are harmonically separated by B and D;
then we may speak of α and γ as harmonically separated by β and δ, or β and
δ as harmonically separated by α and γ. We shall also say that α and γ are
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harmonic conjugates with regard to β and δ, or that the four planes form a
harmonic set.

We shall understand by projection the transformation (recently used) where-
by coplanar points and lines are carried, by means of concurrent lines, into other
coplanar points and lines. With this in mind, we have the theorem.

Theorem 21. Any finite number of projections and intersections will carry a
harmonic set into a harmonic set.

Axiom XI. If four coaxal planes meet two lines respectively in A, B,
C, D and A′, B′, C ′, D′ distinct points, and if AC

w
BD then A′C ′

w
B′D′.

Definition. If AC
w
BD and l be any line not intersecting AD, we shall say

that the planes lA and lC separate the planes lB and lD.
Definition. If the planes α and γ separate the planes β and δ, and if a fifth

plane meet the four in a, b, c, d respectively, then we shall say that a and c
separate b and d. A complete justification for this terminology will be found in
Axiom XI and in the two theorems which now follow.

Theorem 22. The laws of separation laid down for points in Axioms III–VII
hold equally for coplanar concurrent lines, and coaxal planes.

We have merely to bring the four lines or planes to intersect another line in
distinct points, and apply XI.

Theorem 23. The relation of separation is unaltered by any finite number of
projections and intersections.

Theorem 24. If A, B, C, D be four collinear points, and A and C be
harmonically separated by B and D, then AC

w
BD.

We have merely to observe that our quadrilateral construction for harmonic
separation permits us to pass by two projections from A, B, C, D to C, B, A,
D respectively, so that if we had AB

w
CD we should also have CB

w
AD, and

vice versa. Hence our theorem.
Before proceeding further, let us glance for a moment at the question of the

independence of our axioms.
The author is not familiar with any system of projective geometry where

XI is lacking. X naturally fails in plane geometry. Here IX must be suitably
modified, and Desargues’ theorem, our 15, must be assumed as an axiom. IX is
lacking in the projective euclidean geometry where the ideal plane is excluded.
VIII fails in the geometry of the single line, while VII is untrue in the system
of all points with rational Cartesian coordinates. III, IV, V, VI may be shown
to be serially independent.100 II is lacking in the geometry of four points.

Besides being independent, our axioms possess the far more important char-
acteristic of being consistent. They will be satisfied by any class of objects in
one to one correspondence with all sets of real homogeneous coordinate values
x0 : x1 : x2 : x3 not all simultaneously zero. A line may be defined as the
assemblage of all objects whose coordinates are linearly dependent on those of
100Vailati, loc. cit., note quoting Padoa.
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two. If A and C have the coordinates (x) and (y) respectively, while B and D
have the coordinates λ(x) + µ(y) and λ′(x) + µ′(y), then A and C shall be said
to be separated by B and D if

λµ′

λ′µ
< 0.

When this is not the case, they shall be said to be not separated by B and D.
As a next step in our development of the science of projective geometry,

let us take up the concept of cross ratio. Suppose that we have three distinct
collinear points P∞, P0, P1. Construct the harmonic conjugate of P0 with
regard to P1 and P∞, and call it P2, that of P1 with regard to P2 and P∞,
and call it P3, that of P1 with regard to P0 and P∞, and call it P−1, and so,
in general, construct Pn+1 and Pn−1 harmonic conjugates with regard to Pn

and P∞. The construction is very rapidly performed as follows. Take O and
V collinear with P∞, while our given points lie on the line l0. Let l1 be the
line from the intersection of OP1 and V P0 to P∞. Then OPn+1 and V Pn will
always intersect on l1, the generic name for such a point being Qn+1.101

Theorem 25. P0Pn+1

w
PnP∞ if n > 0.

The theorem certainly holds when n = 1. Suppose that P0Pn

w
Pn−1P∞. We

also know that Pn−1Pn+1

w
PnP∞. Hence, clearly P0Pn+1

w
PnP∞. We notice

also that P0Pn+2

w
PnP∞, and, in general P0Pn+k

w
PnP∞. A similar proof may

be found for the case where negative subscripts are involved.

Theorem 26. If P be any point which satisfies the condition P0P
w
P1P∞,

then such a positive integer n may be found that P0P
w
PnP∞, P0Pn+1

w
PP∞.

Let us divide all points of the separation class determined by P0P∞ which
include P1 and P the positive separation class let us say, into two sub-classes
as follows. A point A shall be assigned to the first class if we may find such
a positive integer n that P0Pn+1

w
AP∞, otherwise it shall be assigned to the

second class, i.e. for every point of the second class and every positive integral
value of n, P0B

w
Pn+1P∞. Then, by 3, as long as A and B are distinct we shall

have P0B
w
AP∞, giving a dichotomy of the sort demanded by Axiom VII, and

a point of division D. Let us further assume that OD meets l1 in D, and V D

meets l0 in C. We know that DQ1 �
w
Q0Q∞. Hence lines from P0 to V and D

are not separated by those to O and P∞. Hence lines from D to P0 and V ,
are not separated by those to O and P∞, so that P0C �

w
DP∞ or C is a point

of the first sub-class. We may, then, find n so great that P0Pn

w
CP∞, hence

Q1Qn+1

w
DP∞ and P1Pn+1

w
DP∞. But P0P1 �

w
DP∞; hence P0Pn+1

w
DP∞.

101See Fig. 4 on page following.
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Fig. 4

This, however, is absurd, for a point separated from P0 by D and Pn+1 would
have to belong to both classes. Our theorem results from this contradiction.

We might treat the case where P0P
w
P−1P∞ in exactly the same way. Our

net result is that if P be any point of the line l0, it is either a point of the system
we have constructed, or else we may find two such successive integers (calling 0

an integer) n, n+ 1 that PnPn+1

w
PP∞.

Our next care shall be to find points of the line to which we may properly
assign fractional subscripts. Let lk be the line from P∞, to the intersection of
OPk with V P0. Then I say that V Pm and OPm+k meet on lk. This is certainly
true when k = 1 Let us assume it to be true in the case of lk−1 so that V P1

and OPk meet on lk−1. Then lk is constructed with regard to lk−1 as was l1
with regard to l0, for we take a point of lk−1, connect it with O and find where
that line meets V P0. In like manner V P2 meets OPk+1 on lk−1 and OPk+2 on
lk and so on; V Pm meets OPm+k on lk, which was to be proved.

As an application of this we observe that ln meets V Pn on the line OP2n,
hence we easily see that Pn and P∞ are harmonically separated by P0 and P2n.
Secondly, find the points into which the points Ph, Pk, Pl are projected from
O on the line V Pm. These points lie on the lines lh−m, lk−m, ll−m. Find the
intersections of the latter with V Pn and project back from O on l0; we get
the points Pn+h−m, Pn+k−m, Pn+l−m. A particular result of this will be that
PkPk+nPk+2nP∞ form a harmonic set.

Let us now draw a line from P1 to the intersection of V P0 and ln, and let this
meet P∞V in V 1

n
Then if P0, Pk, Pl, P∞ be projected from O upon P0V and

then projected back from V 1
n

upon l0, we get points which we may call P0, P k
n
,

P l
n
, P∞ where Pn

n
= P1. Connect P∞ with the intersection of V P0 and OP 1

n
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by a line l 1
n
. We may use this line to find P k

n
as formerly we used l1 to find Pk.

We shall thus find that P0 and P 2n
n

are harmonically separated by Pn
n

and P∞,
or P 2n

n
is identical with P2, and similarly P rn

n
is identical with Pr. Subdividing

still further we shall find that P r
rn

is identical with P 1
n

or P rm
rn

identical with
Pm

n
. We have thus found a single definite point to correspond to each positive

rational subscript. Negative rational subscripts might be treated in the same
way, and eventually we shall find a single point whose subscript is any chosen
rational number. We shall also find by reducing to a common denominator, that
if

q > p > 0, P0Pq

w
PpP∞,

with a similar rule for negative numbers.
It remains to take up the irrational case. Let P be any point of the positive

separation class determined by P0 and P∞. Then either it is a point with a
rational subscript, according to our scheme, or else, however great soever n
may be, we may find m so that P0P

w
Pm

n
P∞, P0Pm+1

n

w
PP∞. We thus have

a dichotomy of the positive rational number system of such a nature that a
number of the lower class will correspond to a point separated from P∞ by P0

and P while one of the upper class will correspond to a point separated from
P0 by P and P∞. There will be no largest number in the lower class. We know,
in fact, that wherever R may be in the positive separation class of P0P∞ we
may find n′ so great that P0Pn′

w
RP∞. We may express this by saying that

Pn′ approaches P∞ as a limit as n′ increases. Hence, as separation is invariant
under projection, ln′ approaches P∞O as a limit and P 1

n′
approaches P0 as a

limit, or Pm
n + 1

n′
approaches Pm

n
as a limit. We can thus find n′ so large that

Pm
n + 1

n′
is also a number of the first class, and surely

m

n
+

1
n′

>
m

n
. In the

same way we show that there can be no smallest number in the upper class.
Finally each number of the upper is greater than each of the lower. Hence
a perfect dichotomy is effected in the system of positive rationals defining a
precise irrational number, and this may be assigned as a subscript to P . A
similar proceeding will assign a definite subscript to each point of the other
negative separation class of P0P∞.

Conversely, suppose that we have given a positive irrational number. This
will be given by a dichotomy in the system of positive rationals, and correspond-
ing thereto we may establish a classification among the points of the positive
separation class of P0P∞ according to the requirement of Axiom VII. We shall,
in fact, assign a point A of this separation class to the lower sub-class if we may
find such a number in the lower number class that the point with the corre-
sponding subscript is separated from P0 by P∞ and A; otherwise a point shall
be assigned to the upper sub-class. If thus A and B be any two points of the
lower and upper sub-classes respectively, we can find

m

n
in the lower number

class so that P0Pm
n

w
AP∞ whereas P0B

w
Pm

n
P∞, and, hence, by 3, P0B

w
AP∞.

This shows that all of the requirements of Axiom VII are fulfilled, we may
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assign as subscript to the resulting point of division the irrational in question.
In the same way we may assign a definite point to any negative irrational. The
one to one correspondence between points of a line and the real number system
including ∞ is thus complete.

Definition. If A, B, C, D be four collinear points, whereof the first three
are necessarily distinct, the subscript which should be attached to D, when A,
B, C are made to play respectively the rôles of P∞, P0, P1 in the preceding
discussion, shall be called a cross ratio of the four given points, and indicated
by the symbol (AB,CD). Four points which are distinct would thus seem to
have twenty-four different cross ratios, as a matter of fact they have but six.

We know that the harmonic relation is unaltered by any finite number of
projections and intersections. We may therefore define the cross ratios of four
concurrent coplanar lines, or four coaxal planes, by the corresponding cross
ratios of the points where they meet any other line.

Theorem 27. Cross ratios are unaltered by any finite number of projections
and intersections.

Definition. The range of all collinear points, the pencil of all concurrent
coplanar lines, and the pencil of coaxal planes shall be called fundamental one-
dimensional forms.

Definition. Two fundamental one-dimensional forms shall be said to be pro-
jective if they may be put into such a one to one correspondence that corre-
sponding cross ratios are equal.

Theorem 28. If in two projective one-dimensional forms three elements of
one lie in the corresponding elements of the other, then every element of the
first lies in the corresponding element of the second.

For we may use these three elements in each case as ∞, 0, 1, and then, re-
membering the definition of cross ratio, make use of the fact that the construc-
tion of the harmonic conjugate of a point with regard to two others is unique.
This theorem is known as the fundamental one of projective geometry.102

Theorem 29. If two fundamental one-dimensional forms be connected by a
finite number of projections and intersections they are projective.

This comes immediately from 27.
Theorem 30. If two fundamental one-dimensional forms be projective, they

may be connected by a finite number of projections and intersections.
It is, in fact, easy to connect them with two other projective forms whereof

one contains three, and hence all corresponding members of the other.
Let us now turn back for a moment to our cross ratio scale. We have already

seen that in the case of integers, and, hence, by reducing to least common
denominator, in the case of all rational numbers k, l, m, n.

(P∞Pm, PlPn) = (P∞Pm+k, Pl+kPn+k).

By letting k, l, m, n become irrational, one at a time, and applying a limiting
process, we see that this equation is always true.
102For an interesting historical note concerning this theorem, see Vahlen, loc. cit., p. 161.
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In like manner we see that P0, Pq, P2q, P∞ form a harmonic set, as do Pk,
Pq+k, P2q+k, P∞. In general, therefore,

(P∞P0, P1Pν) = (P∞P0, PnPnν)
= (P∞Pα, Pn+αPnν+α)
= ν.

Putting n+ α = β, nν + α = γ,

(P∞Pα, PβPγ) =
γ − α

β − α
.

We next remark that the cross ratio of four points is that of their harmonic
conjugates with regard to two fixed points. Reverting to our previous construc-
tion for P 1

n
we see that it is collinear with V 1

n
and Q1. V Q0P−1 are also on

a line. If, then, we compare the triads of points V P0Q0, V 1
n
P1Q1, since lines

connecting corresponding points are concurrent in P∞, the intersections of cor-
responding lines are collinear. But the line from O to the intersection of V 1

n
P1

with V P0 (or V Q1) is, by construction, the line OPn. Hence V P−1, which is
identical with V Q0, meets V 1

n
P 1

n
on OPn. Furthermore O and Q1 are harmoni-

cally separated by the intersections of their line with V P−1 and V 1
n
P1; i.e. by P1

and the intersection with V Q0. Project these four upon l0 from the intersection
of OPn and V P−1. We shall find Pn and P 1

n
are harmonic conjugates with

regard to P1 and P−1. Let the reader show that this last relation holds equally
when n is a rational fraction, and, hence, when it takes any real value.

The preceding considerations will enable us to find the cross ratio of four
points which do not include P∞ in their number. To begin with

(P0Pβ , PγPδ) = (P∞P 1
β
, P 1

γ
P 1

δ
)

=
γ

β
× β − δ

β − γ
.

Let us project our four points from V upon lα, then back upon l0 from O.
This will add α to each subscript. Then replace γ + α by γ, &c.

(PαBβ , PγPδ) =
α− γ

α− δ
× β − δ

β − γ
. (1)

Theorem 31. Four elements of a fundamental one-dimensional form deter-
mine six cross ratios which bear to one another the relations of the six numbers

λ,
1
λ
, 1− λ,

1
1− λ

,
λ− 1
λ

,
λ

λ− 1
.

The proof is perfectly straightforward, and is left to the reader.
If three points be taken as fundamental upon a straight line, any other point

thereon may be located by a pair of homogeneous coordinates whose ratio is a
definite cross ratio of the four points. We shall assign to the fundamental points

220



the coordinates (1, 0), (0, 1), (1, 1). A cross ratio of four points (x), (y), (z), (t)
will then be ∣∣∣∣x0 z0

x1 z1

∣∣∣∣ � ∣∣∣∣y0 t0
y1 t1

∣∣∣∣∣∣∣∣y0 z0
y1 z1

∣∣∣∣ � ∣∣∣∣x0 t0
x1 t1

∣∣∣∣ . (2)

Any projective transformation of the line into itself, i.e. any point to point
transformation which leaves cross ratios unaltered, will thus take the form

Px0
′ = a00x0 + a01x1,

Px2
′ = a10x0 + a11x1,

|aij | 6= 0. (3)

To demonstrate this we have merely to point out that surely this transforma-
tion is a projective one, and that we may so dispose of our arbitrary constants
as to carry any three distinct points into any other three, the maximum amount
of freedom for any projective transformation of a fundamental one-dimensional
form. Let the reader show that the necessary and sufficient condition that there
should be two real self-corresponding points which separate each pair of corre-
sponding points is

|aij | < 0.

Two projective sets on the same fundamental one-dimensional form whose
elements correspond interchangeably, are said to form an involution. By this
is meant that each element of the form has the same corresponding element
whether it be assigned to the first or to the second set. It will be found that
the necessary and sufficient condition for an involution in the case of equation
(3) will be

a01 = a10. (4)

When the determinant |aij | > 0, there will be no self-corresponding points,
and the involution is said to be elliptic. Let the reader show that under these
circumstances each pair of the involution separates each other pair.

Our next task shall be to set up a suitable coordinate system for the plane
and for space. Let us take in the plane four points A, B, C, D, no three being
collinear. We shall assign to these respectively the coordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 1). Let AD meet BC in A1, BD meet CA in B1, and CD meet
AB in C1. The intersections of AB, A1B1, of BC, B1C1, and of CA, C1A1,
are, by 15, on a line d. Now let P be any other point in the plane

(ABAC,ADAP ) = (PC1PC,PDPA) = (PC PC1, PAPD)
(BC BA,BDBP ) = (PC PC1, PD PB)

(CACB,CDCP ) = (PC1PC,PAPB) =
1

(PC PC1, PAPB)
.

From this it is clear that the product of the three is equal to unity, and
we may represent them by three numbers of the type

x1

x0
,
x2

x1
,
x0

x2
. We may
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therefore take x0 : x1 : x2 as three homogeneous coordinates for the point P .
One coordinate will vanish for a point lying on one of the lines AB, BC, CA.
Let the reader convince himself that the usual cartesian system is but a special
case of this homogeneous coordinate system where two of the four given points
are ideal, and

x1

x0
= x,

x2

x0
= y.

The equations of the lines connecting two of the points A, B, C are of the
form

xi = 0.

Those which connect each of these with the point D are similarly

xi − xj = 0.

If (y) and (z) be two points, not collinear with A, B, or C, while P is a
variable point with coordinates λ(y) + µ(z), the lines connecting it with A and
B will meet BC and (CA) respectively in the points

(0, λy1 + µz1, λy2 + µz2) (λy0 + µz0, 0, λy2 + µz2).

It is easy to see that the expressions for corresponding cross ratios in these
two ranges are identical, hence the ranges are projective. The pencils which
they determine at A and B are therefore projective, and have the line AB
self-corresponding, for this will correspond to the parameter value

λ : µ = z2 : −y2.

But it will follow immediately from 28, that if two pencils be coplanar and
projective, with a self-corresponding line, the locus of the intersection of their
corresponding members is also a line. Hence the locus of the point P with the
coordinates λ(y) + µ(z) is the line connecting (y) and (z). Conversely, it is
evident that every point of the line from (y) to (z) will have coordinates linearly
dependent on those of (y) and (z). If, then, we put

xi = λyi + µzi,

and eliminate λ : µ, we have as equation of the line

|xyz| = (ux) = 0.

Conversely, it is evident that such an equation will always represent a line,
except, of course, in the trivial case where the u’s are all zero. Let the reader
show that the coefficients ui have a geometrical interpretation dual to that of
the coordinates xi; for this purpose the line which we have above called d will
be found useful.

Our system of homogeneous coordinates may be extended with great ease
to space. Suppose that we have given five points A, B, C, D, O no four being
coplanar. Let P be any other point in space. We may write
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(ABC ABD,ABOABP ) =
x3

x2
, (ACDACB,ACOACP ) =

x1

x3
,

(ADBADC,ADOADP ) =
x2

x1
.

We shall then be able to write also

(CDACDB,CDOCDP ) =
x1

x0
, (DBADBC,DBODBP ) =

x2

x0
,

(BCDBCA,BCOBCP ) =
x0

x3
.

In other words, we may give to a point four homogeneous coordinates x0 :
x1 : x2 : x3. Two points collinear with A, B, C, or D will differ (or may be made
to differ) in one coordinate only. An equation of the first degree in three coordi-
nates will represent a plane through one of these four points. Every line will be
the intersection of two such planes, and will be represented by the combination
of two linear equations one of which lacks xi while the other lacks xj . The coor-
dinates of all points of a line may therefore be expressed as a linear combination
of the coordinates of any two points thereof. A plane may be represented as the
assemblage of all points whose coordinates are linearly dependent on those of
three non-collinear points. Eliminating the variable parameters from the four
equations for the coordinates of a point in a plane, we see that a plane may also
be given by an equation of the type

(ux) = 0. (5)

Conversely, the assemblage of all points whose coordinates satisfy an equa-
tion such as (5) will be of such a nature that it will contain all points of a line
whereof it contains two distinct points, yet will meet a chosen line, not in it,
but once. Let the reader show that such an assemblage must be a plane. The
homogeneous parameters (u) which, naturally, may not all vanish together, may
be called the coordinates of the plane. They will have a significance dual to that
of the coordinates of a point.103

If we have four collinear points

(y), (z), λ(y) + µ(z), λ′(y) + µ′(z),

one cross ratio will be
λµ′

λ′µ
.

103The treatment of cross ratios in the present chapter is based on that of Pasch, loc. cit.
The development of the coordinate system is also taken from the same source, though it has
been possible to introduce notable simplification, especially in three dimensions. This method
of procedure seemed to the author more direct and natural than the more modern method of
‘Streckenrechnung’ of Hilbert or Vahlen, loc. cit.
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The proof will consist in finding the points where four coaxal planes through
these four points meet the line

x2 = x3 = 0

and then applying (2).
Suppose that we have a transformation of the type

ρxi
′ =

0..3∑
j

aijxj . (6)

This shall be called a collineation. We shall restrict ourselves to those
collineations for which

|aij | 6= 0.

The transformation is, clearly, one to one, with no exceptional points. It
will carry a plane into a plane, a line into a line, a complete quadrilateral into a
complete quadrilateral, and a harmonic set into a harmonic set. It will therefore
leave cross ratios invariant. Moreover, every point to point and plane to plane
transformation will be a collineation. For every such transformation will enjoy
all of the properties which we have mentioned with regard to a collineation, and
will, therefore, be completely determined when once we know the fate of five
points, no four of which are coplanar. But we easily see that we may dispose of
the arbitrary constants in (6), to carry any such five points into any other five.

It is worth while to pause for a moment at this point in order to see what
geometrical meaning may be attached to coordinate sets which have imaginary
values. This question has already been discussed in Chapter VII. Every set of
complex coordinates

(y) + i(z),

may be taken to define the elliptic involution

(x) = λ(y) + µ(z), x′ = λ′(y) + µ′(z), λλ′ + µµ′ = 0. (7)

To verify this statement we have merely to notice that an involution will,
by definition, be carried into an involution by any number of projections and
intersections, and that equations such as (7) will go into other such equations.
But in the case of the line

x2 = x3 = 0,

these equations will give an involution, for the relation between (x) and (x′)
may readily be reduced to the type of (3) and (4). Did we seek the analytic
expression for the coordinates of a self-corresponding point in (7) we should get
the values

(y) + i(z).

Conversely, it is easy to show that any elliptic involution may be reduced
to the type of (7). There is, therefore, a one to one correspondence between
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the assemblage of all elliptic point involutions, and all sets of pairs of conjugate
imaginary coordinate values.

The correspondence between coordinate sets and elliptic involutions may be
made more precise in the following fashion. Two triads of collinear points ABC,
A′B′C ′ shall be said to have the same sense when the projective transforma-
tion which carries the one set, taken in order, into the other, has a positive
determinant; when the determinant is negative they shall be said to have op-
posite senses. In this latter case alone, as we have already seen, will there be
two real self-corresponding points which separate each distinct pair of corre-
sponding points. Two triads which have like or opposite senses to a third, have
like senses to one another, for the determinant of the product of two projective
transformations of the line into itself is the product of the determinants. We
shall also find that the triads ABC, BCA, CAB have like senses, while each has
the sense opposite to that of either of the triads ACB, CBA, BAC. We may
thus say that three points given in order will determine a sense of description
for the whole range of points on the line, in that the cyclic order of any other
three points which are to have the same sense as the first three is completely
determined. It is immediately evident that any triad of points and their mates
in an elliptic involution have the same sense. We may therefore attach to such
an elliptic involution either the one or the other sense of description for the
whole range of points.

Definition. An elliptic involution of points to which is attached a particular
sense of description of the line on which they are situated shall be defined as an
imaginary point . The same involution considered in connexion with the other
sense shall be called the conjugate imaginary point.

Starting with this, we may define an imaginary plane as an elliptic involution
in an axial pencil, in connexion with a sense of description for the pencil; when
the other sense is taken in connexion with this involution we shall say that we
have the conjugate imaginary plane. An imaginary point shall be said to be
in an imaginary plane if the pairs of the involution which determine the point
lie in pairs of planes of the involution determining the plane, and if the sense
of description of the line associated with the point engenders among the planes
the same sense as is associated with the imaginary plane. Analytically let us
assume that besides the involution of points given by (7) we have the following
involution of planes.

(u) = l(v) +m(w), (u′) = l′(v) +m′(w), ll′ +mm′ = 0,

(vy) = (wz) = 0. (8)

The plane (u) will contain the point l(vz)(y) −m(wy)(z) while its mate in
the involution contains the point

m(vz)(y) + l(wy)(z).

These points will be mates in the point involution, if

[(vz) + (wy)] [(vz)− (wy)] = 0,
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and these equations tell us that the imaginary plane (v) + i(w) will contain
either the point (y) + i(z), or the point (y) − i(z). An imaginary line may
be defined as the assemblage of all points common to two imaginary planes.
Imaginary points, lines, and planes obey the same laws of connexion as do real
ones. A geometric proof may be found based upon the definitions given, but it
is immediately evident analytically.104

Theorem 32. If a fundamental one-dimensional form be projectively trans-
formed into itself there will be two distinct or coincident self-corresponding
elements.

We have merely to put (ρx) for (x′) in (3), and solve the quadratic equation
in ρ obtained by equating to zero the determinant of the two linear homogeneous
equations in x0, x1.

The assemblage of all points whose coordinates satisfy an equation of the
type

Σ aijxixj = 0, |aij | 6= 0,

shall be called a quadric. We should find no difficulty in proving all of the well-
known theorems of a descriptive sort connected with quadrics in terms of our
present coordinates.

We have now, at length, reached the point where we may profitably introduce
metrical concepts. Let us recall that the group of congruent transformations
which we considered in Chapter II, and, more fully, in Chapter VIII, is a group
of collineations which leaves invariant either a quadric or a conic, and depends
upon six parameters. We also saw in Chapter II, that the congruent group may
be characterized as follows (cf. p. 38):—

(a) Any real point of a certain domain may be carried into any other such
point.

(b) Any chosen real point may be left invariant, and any chosen real line
through it carried into any other such line.

(c) Any real point and line through it may be left invariant, and any real
plane through this line may be carried into any other such plane.

(d) If a real point, a line through it, and a plane through the line be invariant,
no further infinitesimal congruent transformations are possible.

It shall be our present task to show that these assumptions, or rather the
last three, joined to the ones already made in the present chapter, will serve to
define hyperbolic elliptic and euclidean geometry.

It is assumed that there exists an assemblage of transformations, called con-
gruent transformations, obeying the following laws:—

Axiom XII. The assemblage of all congruent transformations is a
group of collineations, including the inverse of each member.105

104See von Staudt, loc. cit., and Lüroth, loc. cit. It is to be noted that in these works the
idea of sense of description is taken intuitively, and not given by precise definitions.
105It is highly remarkable that this axiom is superfluous. Cf. Lie-Engel, Theorie der Transfor-

mationsgruppen, Leipzig, 1888–93, vol. iii, Ch. XXII, § 98. The assumption that our congruent
transformations are collineations, does, however, save an incredible amount of labour, and,
for that reason, is included here.
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Axiom XIII. The group of congruent transformations may be ex-
pressed by means of analytic relations among the parameters of the
general collineation group.

Definition. The assemblage of all real points whose coordinates satisfy three
inequalities of the type

ξi <
xi

x0
< Xi, i = 1, 2, 3,

shall be called a restricted region.

Axiom XIV. A congruent transformation may be found leaving
invariant any point of a restricted region, and transforming any real
line through that point into any other such line.

Axiom XV. A congruent transformation may be found leaving in-
variant any point of a restricted region, and any real line through that
point; yet carrying any real plane through that line into any other
such plane.

Axiom XVI. There exists no continuous assemblage of congruent
transformations which leave invariant a point of a restricted region,
a real line through that point, and a real plane through that line.

Theorem 33. The congruent group is transitive for a sufficiently small re-
stricted region.

This comes at once by reductio ad absurdum. For the tangents to all possible
paths which a chosen point might follow would, if 33 were untrue, generate a
surface or set of surfaces, or a line or set of lines, and this assemblage of surfaces
or lines would be carried into itself by every congruent transformation which left
this point invariant. The tangent planes to the surfaces, or the lines in question,
could not, then, be freely interchanged with other planes or lines through the
point.

Theorem 34. The congruent group depends on six essential parameters.
The number of parameters is certainly finite since the congruent group arises

from analytic relations among the fifteen essential parameters of the general
collineation group. The transference from a point to a point imposes three re-
strictions, necessarily distinct, as three independent parameters are needed to
determine a point. A fixed point being chosen, two more independent restric-
tions are imposed by determining the fate of any chosen real line through it.
When a point and line through it are chosen, one more restriction is imposed by
determining what shall become of any assigned plane through the line. When,
however, a real plane, a real line therein, and a real point in the line are fixed,
there can be no independent parameter remaining, as no further infinitesimal
transformations are possible.

Let us now look more closely at the one-parameter family of projective trans-
formations of the axial pencil through a fixed line of the chosen restricted re-
gion.106 Let us determine any plane through this line by two homogeneous
106Cf. Lie-Scheffers, Vorlesungen über continuierliche Gruppen. Leipzig, 1893, p. 125.
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parameters λ1 : λ2, and take an infinitesimal transformation of the group

∆
( λ1

λ2

)
= f

( λ1

λ2

)
dt.

The product of two such infinitesimal transformations will belong to our
group, hence also, as none but analytic functions are involved, the limit of the
product of an infinite number of such transformations as dt approaches zero;
that is to say, the transformation obtained by integrating this equation belongs
to the group. Now this integral will involve one arbitrary constant, which may be
used to make the transformation transitive, and for all transformations obtained
by this integration, that pair of planes will be invariant which was invariant for
the infinitesimal transformation. Our one-parameter group has thus a transitive
one-parameter sub-group with a single pair of planes invariant. These planes are
surely conjugate imaginary, for otherwise there would be infinitesimal congruent
transformations which left a point, line, and real plane invariant; contrary to
our last axiom. The question of whether our whole one-parameter group is
generated by this integration or not, need not detain us here. What is essential
is that this pair of planes will be invariant for the whole group. For suppose that
Si indicate a generic transformation of the sub-group which leaves invariant the
two planes α, α′, and the transformation T carries the two planes α, α′ into two
planes β, β′. Then all transformations of the type

TSiT
−1

will belong to our group, and leave the planes β, β′ invariant, and combining
these with the transformations Si we have a two-parameter sub-group of our
one-parameter group; an absurd result.

Let us next consider the three-parameter congruent group composed of all
transformations which have a fixed point. If a real line l be carried into a real
line l′, then the two planes which were invariant with l will go into those which
are invariant with l′. To prove this we have but to repeat the reasoning which
lately showed that the two planes which were invariant for a sub-group, are
invariant for the total one-parameter group. The envelope of all these invariant
planes which pass through a point will thus depend upon one parameter, for if
it depended on two it would include real planes, and this is not the case. It is
well known that this system of planes must envelope lines or a quadric cone.107

The first case is surely excluded for such lines would have to appear in conjugate
imaginary pairs, giving rise to invariant real planes through this point, and there
are no such in the three-parameter group. The envelope is therefore a cone with
no real tangent planes. Each pair of conjugate imaginary tangent planes must
touch it along two conjugate imaginary lines; the plane connecting these is real,
and invariant for the one-parameter congruent group associated with the line of
intersection of the two imaginary planes. Let us fix our attention upon one such
one-parameter group and choose our coordinate system in such a way that the
107Cf. Lie-Scheffers, loc. cit., p. 289.
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non-homogeneous coordinates u, v, 1 of our three fixed planes are proportional
respectively to

(0, 0, 1), (1, i, 0), (1, −i, 0).

The general linear transformation keeping these three invariant is

u′ = r cos θu− r sin θv, v′ = r sin θu+ r cos θv.

Here r must be a constant, as otherwise we should have congruent transfor-
mations of the type

u′ = ru, v′ = rv,

which kept a point, a line, and all planes through that line invariant, yet de-
pended on an arbitrary parameter. In order to see what sort of cones are carried
into themselves by this group, the cone we are seeking for being necessarily of
the number, let us take an infinitesimal transformation

∆u =− vdθ, ∆v = udθ.

Integrating u2 + v2 = C.

The cone we seek is therefore a quadric cone.
We see by a repetition of the sort of reasoning given above that if we take

a congruent transformation that carries a point P into a point P ′, it will carry
the invariant quadric cone whose vertex is P into that whose vertex is P ′. The
envelope of these quadric cones is, thus, invariant under the whole congruent
group. The envelope of these cones must be a quadric or conic. This theorem
is simpler when put into the dual form, i.e. a surface which meets every plane
in a conic is a quadric or quadric cone. For it has just the same points in every
plane as the quadric or cone through two of its conics and one other of its points.
In our present case our quadric must have a real equation, since it touches the
conjugate to each imaginary plane tangent thereto. There are, hence, three
possibilities:

(a) The quadric is real, but the restricted region in question is within it.
(b) The quadric is imaginary.
(c) The quadric is an imaginary conic in a real plane.
Theorem 35. The congruent group is a six-parameter collineation group

which leaves invariant a quadric or a conic.
It remains for us to find the expression for distance. We make the following

assumptions.

Axiom XVII. The distance of two points of a restricted region is a
real value of an analytic function of their coordinates.

Axiom XVIII. If ABC be three collinear real points, and if B be
separated by A and C from a point of their line not belonging to this
restricted region; then the distance from A to C is the sum of the
distance from A to B and the distance from B to C.

Let the reader show that this definition is legitimate as all points separated
from A by B and C, or from C by A and B will belong to the restricted region.
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Let us first take cases (a) and (b) together. The distance must be a contin-
uous function of each cross ratio determined by the two points and the intersec-
tions of their line with the quadric. If we call a distance d, and the corresponding
cross ratio of this type c, we must have

c = f(d).

Moreover, from equation (1) and Axiom XIII,

f(d)× f(d′) = f(d+ d′).

Now this functional equation is well known, and the only continuous solution
is108

c = e2i d
k .

d

k
=

1
2i

loge c.

If, in particular, the two points be P1P2 while their line meets the quadric
in Q1Q2, we shall have for our distance, equation (5) of Chapter VII

d

k
=

1
2i

loge(P1P2, Q1Q2).

From this we may easily work back to the familiar expressions for the cosine
of the kth part of the distance.

The case of an invariant conic is handled somewhat differently. Let the
equations of the invariant conic be

x0 = 0, x1
2 + x2

2 + x3
2 = 0.

These are unaltered by a seven-parameter group

x0
′ = a00x0,

x1
′ = a10x0 + a11x1 + a12x2 + a13x3,

x2
′ = a20x0 + a21x1 + a22x2 + a23x3,

x3
′ = a30x0 + a31x1 + a32x2 + a33x3,

where ‖ a11 a22 a33 ‖ is the matrix of a ternary orthogonal substitution. For
our congruent group we must have the six-parameter sub-group where the de-
terminant of this orthogonal substitution has the value a00

3, for then only will
there be no further infinitesimal transformations possible when a point, a line
through it, and a plane through the line are fixed. We shall find that, under the
present circumstances the expression

D =

∣∣∣∣∣
√(x1

x0
− y1
y0

)2

+
(x2

x0
− y2
y0

)2

+
(x3

x0
− y3
y0

)2
∣∣∣∣∣

108Cf. e.g. Tannery, Théorie des fonctions d’une variable, second edition, Paris, 1904, p. 275.

230



is an absolute invariant. If the distance of two points (x), (y) be d, we shall
have

d = f(D).

This function is continuous and real, and satisfies the functional equation

f(D) + f(D′) = f(D +D′).

The solution of this equation is easily thrown back upon the preceding one.
Let us put

f(x) = log φ(x),
φ(x)φ(y) = φ(x+ y),

φ(x) = erx.

We thus get finally

d = r

∣∣∣∣∣
√(x1

x0
− y1
y0

)2

+
(x2

x0
− y2
y0

)2

+
(x3

x0
− y3
y0

)2
∣∣∣∣∣ .

Theorem 36. Axioms I–XVIII are compatible with the hyperbolic, elliptic,
or euclidean hypotheses, and with these only.
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CHAPTER XIX

THE DIFFERENTIAL BASIS FOR EUCLIDEAN AND
NON-EUCLIDEAN GEOMETRY

We saw in Chapter XV, Theorem 17, that the Gaussian curvature of a surface
is equal to the sum of the total relative curvature, and the measure of curvature
of space. A noneuclidean plane is thus a surface of Gaussian curvature equal

to
1
k2

. This fact was also brought out in Chapter V, Theorem 3, and we there
promised to return in the present chapter to a more extensive examination of
this aspect of our noneuclidean geometry.

In Chapter II, Theorem 30, we saw that the sum of the distances from a
point to any other two, not collinear with it, when such a sum exists, is greater
than the distance of these latter. We thus come naturally to look upon a straight
line as a geodesic, or curve of minimum length between two points. A plane
may be generated by a pencil of geodesics through a point; the geometrical
simplicity of the plane may be said to arise from the fact that it is capable
of ∞2 such generations. The task which we now undertake is as follows:—to
determine the nature of a three-dimensional point-manifold which possesses the
property that every surface generated by a pencil of geodesics has constant
Gaussian curvature. We must begin, as in previous chapters, with a sufficient
set of axioms.109

Definition. Any set of objects which may be put into one to one correspon-
dence with sets of real values of three independent coordinates z1, z2, z3 shall
be called points.

Definition. An assemblage of points shall be said to form a restricted region,
when their coordinates are limited merely by inequalities of the type

ζi < zi < Zi, i = 1, 2, 3.

Axiom I. There exists a restricted region.

Axiom II. There exist nine functions aij , i, j = 1, 2, 3 of z1, z2, z3 real
and analytic throughout the restricted region, and possessing the
following properties

aij = aji, |aij | 6≡ 0.
1,2,3∑

ij

aijdzidzj

is a positive definite form for all real values of dz1, dz2, dz3 and all
values of z1, z2, z3 corresponding to points of the given restricted
region.
109The first writer to approach the subject from this point of view was Riemann, loc. cit.

The best presentation of the problem in its general form, and in a space of n-dimensions,
will be found in Schur, ‘Ueber den Zusammenhang der Räume constanten Riemannschen
Krümmungsmasses mit den projectiven Räumen,’ Mathematische Annalen, vol. 27, 1886.
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Limitation. We shall restrict ourselves to such a portion of the original
restricted region that for no point thereof shall the discriminant of our quadratic
form be zero. This amounts to confining ourselves to the original region, or to
a smaller restricted region within the original one.

Definition. The expression

ds = +

√√√√1,2,3∑
i,j

aijdzidzj

shall be called the distance element.
Definition. The assemblage of all points whose coordinates are analytic func-

tions of a single parameter shall be called an analytic curve, or, more simply,
a curve. As we have defined only those points whose coordinates are real, it is
evident that the functions involved in the definition of a curve must be real also.
The definite integral of the distance element between two chosen points along a
curve shall be called the length of the corresponding portion or arc of the curve.
If the curve pass many times through the chosen points, the expression length
must be applied to that portion along which the integration was performed.

Definition. An arc of a curve between two fixed points which possesses the
property that the first variation of its length is zero, shall be called geodesic arc.
The curve whereon this arc lies shall be called a geodesic connecting the two
points.

Let us begin by setting up the differential equations for a geodesic. Let us
write

ds =

√√√√1,2,3∑
ij

aij
dzi

dt

dzj

dt
dt.

It is clear that s is an analytic function of t with no singularities in our
region, hence t is an analytic function of s. We may, then, by taking our
restricted region sufficiently small, express aij as functions of s, and write

1,2,3∑
i,j

aij
dzi

ds

dzj

ds
= 1. (1)

Replacing
dzi

ds
temporarily by zi

′, we have

s =
∫ s

0

√√√√1,2,3∑
i,j

aijzi
′zj

′ds.

We have now a simple problem in the calculus of variations.

2δs =
∫ s

0

1,2,3∑
i,j

1,2,3∑
k

(∂aij

∂zk
zi
′zj

′δzk + 2aijzi
′δzj

′
)
ds.
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d

ds

1,2,3∑
i,j

aijzi
′δzj =

1,2,3∑
ij

d(aijzi
′)

ds
δzj +

1,2,3∑
ij

aijzi
′δzj

′,

hence, since δzj vanishes at the extremities of the interval

2δs =
∫ s

0

1,2,3∑
j

[
1,2,3∑

ik

∂aik

∂zj
zi
′zk

′ − 2
∑

i

d

ds
(aijzi

′)

]
δzjds,

the increments δzj are arbitrary, hence the coefficients of each must vanish, or

d

ds

1,2,3∑
i

aij
dzi

ds
=

1
2

1,2,3∑
ik

∂aik

∂zj

∂zi

∂s

∂zk

∂s
. (2)

These three equations are of the second order. There will exist a single set
of solutions corresponding to a single set of initial values for (z) and (z′).110

Let these be (z0) and (ζ) respectively. Any point of such a geodesic will be
determined by ζ1ζ2ζ3 and r the length of the arc connecting it with (z0). We
have thus

zi = zi
0 + rζi + r2

1,2,3∑
j,k

αjkζjζk. (3)

Now the expression
D(z1z2z3)

D(rζ1 rζ2 rζ3)
has the value unity when r = 0. We may

therefore revert our series, and write

rζi = zi − zi
0 +

1,2,3∑
jk

βjk(zj − zj
0)(zk − zk

0) + . . . . (4)

We shall take our restricted region so small that (4) shall be uniformly
convergent therein, for all values for (z) and (z0) in the region. Hence two
points of the region may be connected by a single geodesic arc lying entirely
therein.111

Theorem 1. Two points of a restricted region whose coordinates differ by a
sufficiently small amount may be connected by a single geodesic arc lying wholly
in a sufficiently small restricted region which includes the two points.

We shall from now on, suppose that we have limited ourselves to such a small
restricted region that any two points may be so connected by a single geodesic
arc.

Definition. A real analytic transformation of a restricted region which leaves
the distance element absolutely invariant shall be called a congruent transfor-
mation.
110Cf. e.g. Jordan, Cours d’Analyse, Paris, 1893-6, vol. iii, p. 88.
111Cf. Darboux, loc. cit., vol. ii, p. 408.
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Definition. Given a geodesic through a point (z0). The three expressions

dzi

ds zi=zi
0

= ζi, i = 1, 2, 3

shall be called the direction cosines of the geodesic at that point. Notice that

1−
1,2,3∑
i,j

aijζiζ̇j =
1,2,3∑
i,j

aijζiζj

1,2,3∑
ij

aij ζ̇iζ̇j −

(
1,2,3∑
i,j

aijζiζ̇j

)2

=
1,2,3∑

ij

(aiiajj − aij
2)(ζiζ̇j − ζj ζ̇i)2.

This is a positive definite form, for the coefficients are the minors of a positive
definite form. Hence

1,2,3∑
i,j

aijζiζ̇j 5 1.

This expression shall be defined as the cosine of the angle formed by the
two geodesics. When it vanishes, the geodesics shall be said to be mutually
perpendicular or to cut at right angles.

Theorem 2. The angle of two intersecting geodesics is an absolute invariant
for all congruent transformations.

This comes at once from the fact that

1,2,3∑
ij

aijdziδzj

dsδs

is obviously an absolute invariant for all congruent transformations.
Definition. A set of geodesics through a chosen point whose direction cosines

there, are linearly dependent upon those of two of their number, shall be said to
form a pencil. The surface which they trace shall be called a geodesic surface.
We shall later show that the choice of the name geodesic surface is entirely
justified, for each surface of this sort may be generated in ∞2 ways by means
of pencils of geodesics.

Axiom III. There exists a congruent transformation which carries
two sufficiently small arcs of two intersecting geodesics whose lengths
are measured from the common point, into two arcs of equal length
on any two intersecting geodesics whose angle is equal to the angle
of the original two.112

112Our Axioms I–III, are, with slight verbal alterations, those used by Woods, loc. cit. His
article, though vitiated by a certain haziness of definition, leaves nothing to be desired from
the point of view of simplicity. In the present chapter we shall use a different coordinate
system from his, in order to avoid too close plagiarism. It is also noteworthy that he uses k

where we conformably to our previous practice use
1

k
.
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It is clear that a congruent transformation will carry an arc whose variation
is zero into another such, hence a geodesic into a geodesic. It will also transform
a geodesic surface into a geodesic surface, for it is immediately evident that we
might have defined a geodesic surface as generated by those geodesics through
a point which are perpendicular to a chosen geodesic through that point.

It is now necessary to choose a particular coordinate system, and we shall
make use of one which will turn out to be identical with the polar coordinate
system of elementary geometry. Let us choose a fixed point (z0), and a fixed
geodesic through it with direction cosines (ζ0). Finally, we choose a geodesic
surface determined by our given geodesic, and another through (z0). Let φ be
the angle which a geodesic through (z0) makes with the geodesic (ζ0), while
θ is the angle which a geodesic perpendicular to the last chosen geodesic and
to (ζ0) makes with a geodesic perpendicular to the given geodesic surface, i.e.
perpendicular to the geodesics of the generating pencil. Let r be the length of
the geodesic arc of (ζ) from (z0) to a chosen point. We may take φ, θ, r as
coordinates of this point. The square of the distance element will take the form

ds2 = dr2 + Edθ2 + 2Fdθ dφ+Gdφ2. (5)

We see, in fact, that there will be no term in dr dφ or dr dθ. For if we take
θ = const. we have a geodesic surface, and the geodesic lines of space radiating
from (z0) and lying in this surface will be geodesics of the surface. The curves
r = const. will be orthogonal to these radiating geodesics.113 The surfaces φ =
const. are not geodesic surfaces, but the curves θ = const. and r = const. form
an orthogonal system for the same reason as before. The coefficients E, F , G
are independent of θ, for, by Axiom III, we may transform congruently from
one surface θ = const. into another such. The coefficient G is independent of φ
also, for in any surface θ = const. we may transform congruently from any two
geodesics through (z0) into any other two making the same angle. We may, in
fact, write

E = G(r)E′(φ), F = G(r)F ′(φ),

for the square of any distance element can be put into the form

ds2 = dr2 +Gdφ1
2,

where φ1 is a function of φ and θ.
Let us at this point rewrite our differential equations (2) in terms of our

present coordinates

d

ds

[dr
ds

]
=

1
2

[∂E
∂r

(dθ
ds

)2

+ 2
∂F

∂r

(dθ
ds

)(dφ
ds

)
+
∂G

∂r

(dφ
ds

)2]
,

d

ds

[
E
dθ

ds
+ F

dφ

ds

]
= 0, (6)

d

ds

[
F
dθ

ds
+G

dφ

ds

]
=

1
2

[∂E
∂φ

(dθ
ds

)2

+ 2
∂F

∂φ

(dθ
ds

)(dφ
ds

)]
.

113Bianchi, Differentialgeometrie, cit., p. 160.
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Consider the geodesic surface φ =
π

2
which may, indeed, be taken to stand

for any geodesic surface. Here we must have

E = cG,

where c is constant. The differential equations for a geodesic curve on this
surface will be114

d

ds

[dr
ds

]
=

1
2

[∂E
∂r

(dθ
ds

)2]
,

d

ds

[
G
dθ

ds

]
= 0.

These are exactly equivalent to the combination of (6) and φ =const. Lastly,
if we remember that two near points of a surface can be connected by a single
geodesic arc lying therein.

Theorem 2. The geodesic connecting two near points of a geodesic surface
lies wholly in that surface, and is identical with the geodesic of the surface which
connects those two points.

Theorem 3. There is a group of ∞3 congruent transformations which carry
a geodesic surface transitively into itself.

Theorem 4. All geodesic surfaces have the same constant Gaussian curvature.
These theorems enable us to solve completely our differential equations (6).

The Gaussian curvature of each geodesic surface is an invariant of space which

we may call its measure of curvature. We shall denote this constant by
1
k2

, and
distinguish with care the two following cases

1
k2

6= 0,
1
k2

= 0.

The determination of our coefficients E, F , G is now an easy task. The
square of the distance element for a geodesic surface θ = const., will be

ds2 = dr2 +G(r)dφ2.

Writing that this shall have Gaussian curvature
1
k2

, we get

−1√
G

∂2
√
G

∂r2
=

1
k2
,

√
G = A sin

r

k
+B cos

r

k
.

The determination of the constants A, B requires a little care. It is clear to
begin with that when

r = 0, G = 0.
114Bianchi, ibid., p. 153.
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Hence B = 0.

Again G =
1,2,3∑
i,j

aij
∂zi

∂φ

∂zj

∂φ
= r2

1,2,3∑
ij

aij
∂ζi
∂φ

∂ζj
∂φ

+ r3R(rφ),

(∂√G
∂r

)
r=0

=

√√√√1,2,3∑
i,j

aij
∂ζi
∂φ

∂ζj
∂φ

.

But, from (1)

1 =
1,2,3∑
i,j

aijζiζj =
1,2,3∑
i,j

aij

(
ζi +

∂ζi
∂φ

dφ
)(
ζj +

∂ζj
∂φ

dφ
)
,

cos dφ =
1,2,3∑
i,j

aijζi

(
ζj +

∂ζi
∂φ

dφ
)
,

cos
dφ

2
= 1− 1

2

1,2,3∑
i,j

aij
∂ζi
∂φ

∂ζj
∂φ

dφ,

sin
dφ

2
=
dφ

2
=
dφ

2

√√√√1,2,3∑
i,j

aij
∂ζi
∂φ

∂ζj
∂φ

,

giving eventually (∂√G
∂r

)
r=0

= 1; A = k.

Hence, by the equations preceding (6)

ds2 = dr2 + k2 sin2 r

k
[E′dθ2 + 2F ′dθ dφ+ dφ2].

We proceed to calculate F ′. The differential equations for a geodesic curve
of the surface θ = const., will be

d

ds

(dr
ds

)
=

1
2
∂θ

∂r

(dφ
ds

)2

,

d

ds

(
G
dφ

ds

)
= 0.

These must be equivalent to those obtained from (6), when θ = const., i.e.
we must have

d

ds

(
F ′G

dφ

ds

)
= 0,

F ′ = const.,

and as F ′ is not a function of θ it is a constant everywhere. Now when φ = 0,

there is no dθ term in ds2, so that E = 0; but
E√
FG

, which is the cosine of the
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angle which curves θ = const. and φ = const., make on the surface r = const.,
is surely less than unity. Hence

F ′ = 0.

Lastly, we must find E′. The surfaces r = const. have constant Gaussian
curvature, for each is capable of∞3 congruent transformations into itself. Hence

ds2 = k2 sin2 r

k
[E′dθ2 + dφ2],

1√
E′

d2
√
E′

dφ2
= const.,

√
E = A sin lφ+B cos lφ.

As we saw a moment ago B = 0, for E vanishes with φ. On the other hand,
when

φ =
π

2
,
√
E′ = 1, A sin

lπ

2
= 1.

But also A sin lπ = 0.

Hence l is an odd integer, and

A2 = 1.

ds2 = dr2 + k2 sin2 r

k
[sin2 φdθ2 + dφ2]. (7)

This is our ultimate form for the square of the distance element. Let the

reader show that under the second case
1
k2

= 0, we have

ds2 = dr2 + r2
[
sin2 φdθ2 + dφ2

]
. (7′)

It is now time to return to coordinates of a more familiar sort. Let us write

x0 = k cos
r

k
,

x1 = k sin
r

k
cos θ cosφ,

x2 = k sin
r

k
sin θ cosφ,

x3 = k sin
r

k
sinφ,

(xx) = k2,

(dx dx) = ds2.

(8)

To find the differential equation of a geodesic, we have a problem in relative
minima ∫ s

0

(√(dx
ds

dx

ds

)
+ λ[(xx)− k2]

)
ds = 0,
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d

ds

(dxi

ds

)
= 2λxi, i = 0, 1, 2, 3.

To determine λ
(xx) = k2, (x dx) = − 1

2ds
2,

(x d2x) + ds2 = d(− 1
2ds

2) = 0.

But from our equations

(x d2x) + ds2 = 2λk2ds2,

2λ = − 1
k2
.

We thus get for the final form for our differential equation

d2xi

ds2
+
xi

k2
= 0. (9)

Let the reader show that in the other case we have

d2x

ds2
=
d2y

ds2
=
d2z

ds2
= 0. (9′)

Integrating
xi = yi cos

s

k
+ zi sin

s

k
,

k2 = (xx) = (yy) = (zz),

(yz) = 0.

We have then for the length of the geodesic arc from (y) to (x)

k2 cos
d

k
= (xy),

or, if we replace our coordinates by homogeneous ones proportional to them

cos
d

k
=

(xy)√
(xx)

√
(yy)

. (10)

Let the reader show that when
1
k2

= 0,

d =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

Theorem 5. Axioms I, II, III are compatible with the euclidean hyperbolic
and elliptic hypotheses, and with these alone.
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Our task is now completed. At bottom, the essential feature of a geomet-
rical system where the elements are points is the expression for distance, for
the projective theory is the same for a limited domain in all restricted regions.
We have established our distance formulae three several times, each time ap-
proaching the subject from a new point of view. In Chapters I–IV we took as
fundamental the concepts point, distance, and sum of distances. We reached
our analytic formulae by proceeding from elementary geometry to trigonome-
try, and then introducing a simple coordinate system, such as we do when we
first take up the study of elementary analytic geometry. The Chapters VI–XVII
were devoted to erecting a superstructure upon the foundation which we had
established. In Chapter XVIII we took a fresh start, laid down point line and
separation as fundamental, constructed the common projective geometry for all
of our systems (except the spherical, which would involve slight modifications),
and established the system of projective coordinates. We then introduced cer-
tain collineations called congruent transformations, and worked around to our
previous distance formulae through group-theory. In the present chapter we
took as fundamental the concepts point and correspondence of point and coor-
dinate set. The essentials in our development were the distance element, the
geodesic curve, and the space constant, or measure of curvature. We reached
our familiar formulae by means of surface theory, integration, and the calculus
of variations.

Which of the three methods of approach is the best? To this question no def-
inite answer may be given, for that method which is best for one purpose is not,
necessarily, best for another. The first method depended upon the simplest and
most natural fundamental conceptions, and presupposed a minimum of math-
ematical knowledge. It also corresponded most closely to the line of historical
development. On the other hand it is the longest, even after cutting out a num-
ber of theorems, interesting in themselves, but not essential as steps towards the
ultimate goal. The second method possessed the advantage of beginning with
the assumptions which serve as a basis for the important subject of projective
geometry; metrical ideas were grafted upon this stem as a natural development.
Moreover, the fundamental importance of the six-parameter collineation group
which keeps a conic or quadric invariant was brought into the clearest light.
On the other hand, we were obliged to develop a coordinate system, which to
some readers might seem a trifle unnatural or forced, and exposed ourselves to
being put down among those whom the late Professor Tait has stigmatized as
‘That section of mathematicians for whom transversals and anharmonic pencils
have a, to us, incomprehensible charm’.115 third and last method is, beyond a
peradventure, the quickest and most direct; and has the advantage of bringing
out the full significance of the space constant. It may, however, be urged with
some justice, that too high a price has been paid for this directness, by assum-
ing at the outset that space is something whose elements depend in a definite
manner on three independent parameters. The modern tendency is to take a
more abstract view, to look upon space, in the last analysis, as a set of objects
115Tait, An Elementary Treatise on Quaternions, third edition, Cambridge, 1890, p. 309.
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which can be arranged in multiple series.116 The battle is more than half over
when the coordinate system has been set up.

No, there is no answer to the question which method of approach is the
best. The determining choice among the three, will, in the end, be a matter
of personal aesthetic preference. And this is well. Let us not forget that, in
large measure, we study pure mathematics to satisfy an aesthetic need. We are
fortunate when, as in the present case, we are free at the outset to choose our
line of approach.

116Cf. Russell, loc. cit., p. 372.
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— of a pencil of complexes, 96

Barbarin, 130
Battaglini, 109
Beck, 96
Beltrami, 53, 177
Bianchi, 2, 157, 172, 173, 178, 192,

236, 237
Birectangular quadrilateral, 33, 38
Bisector of an angle, 84, 85, 90, 110,

112, 113, 120, 123, 128, 132,
134, 186, 188

Bolza, 177
Borel, 26
Bound of half-line, 21
Bound of half-plane, 22
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— synectic, 99, 101
— chain, 100, 107
— of lines, analytic, 182–199
— of lines, general, 184
— of normals, 136, 175, 177, 188–192,
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Diameters of conic, 124–127
— of quadric, 134
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233–239
Division of segment, 17–20
Dunkel, 48
Dupin, 118, 166, 170, 173

Edge of tetrahedron, 15
Ellipse, 119, 122, 129, 140, 141
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Ellipsoid, 130, 132, 140, 141
Elliptic co-ordinates, 128, 136
— hypothesis, 36, 58, 59, 231, 240
— space, 66, 207
Engel, 33
Enlargement of congruent transfor-

mation, 21
Enriques, 25, 149, 210
Equidistant curves, 109, 119
— surfaces, 132
Equivalent points, 65, 200
Euclid, 37, 58
Euclidean hypothesis, 35, 58, 59, 231,

240
— space, 62, 73, 202–205
Evolutes, 161–163
Excess of a triangle, 146–148, 150
Extension of segment, 10, 63
— of space, 62–64
Extremity of segment, 11

Face of tetrahedron, 15
Fibbi, 182, 187
Focal cones, 133, 134
— conics, 133, 134, 140–142
— lines, 120, 121, 123, 126
— points and planes, 187–189
— surfaces, 177, 192, 197
Foci, 120, 121, 123, 126
Forms, fundamental one-dimensional,

219, 220, 226
Von Frank, 156
Frenet, 160
Fricke, 206
Frischauf, 148, 156
Fubini, 193, 194
Fundamental region, 202–209
— one-dimensional forms, 219, 220,

226

Geodesic curvature, 176, 177
— lines, 137, 177, 232–237, 239
— surfaces, 235–237
Gérard, 38, 42
Graves, 129
Greater than, 10–12, 25, 26, 28, 73

Half-line, 21–25, 28, 50, 53
Half-plane, 22, 28, 29
Halsted, 18, 60, 149
Hamilton, 80, 99, 187
Harmonic conjugate, 214, 216, 220
— separation, 214, 215, 217
— set, 214
Hilbert, 9, 18, 27, 60, 149, 223
Homothetic conics, 128
— quadrics, 135
Horocycle, 110, 119, 206
Horocyclic surface, 132, 173
Hyperbola, 119, 122, 140–142
Hyperbolic hypothesis, 36, 58, 62,

231, 240
— space, 62, 200
Hyperboloid, 131, 140–142

Ideal elements, 67, 68
Imaginary elements, 69, 225
Improper cross, 97, 98, 105, 196
— ray, 196
Indicatrix of Dupin, 170, 173
Infinitely distant elements, 68
Infinitesimal domain, 32, 37, 54, 146,

147
Initial point, 49
Intersection of lines, 12, 211
— of planes, 16, 213
Involution, 69, 224, 225
Isosceles quadrilateral, 33, 39
— triangle, 23, 25
Isotropic curves, 171, 176
— congruence, 138, 192, 195, 197–199

Joachimsthal, 166
Jordan, 234

1
k2

measure of curvature of space,
42, 148, 158, 172, 232, 237

Killing, 119, 200, 208
Klein, 78, 107, 135, 206
Kummer, 182

Layer of cross space, 98, 99, 104
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Left and right generators of Absolute,
81, 103, 198

Left and right parataxy, 81, 175, 191
Left and right translations, 81, 208
Length of arc, 233
Less than, 10–12, 25, 27, 28, 73
Levy, 9, 60
Lie, 226–228
Liebmann, 119
Limiting points and planes, 185, 186,

188
Lindemann, 116, 148
Line, 12, 63, 210, 211
Lobatchewskian hypothesis, 36
Lobatchewsky, 36, 87
Lüroth, 69, 71, 226

Manning, 88, 148, 173
Marie, Ste-, 37
Measure of distance, 19, 21, 70
— of curvature of space, 42, 148,

158, 172, 175, 232, 237
Menelaus, 86
Meunier, 169, 175
Middle point of segment, 18
Minimal surfaces, 107, 178–181
Moment, relative of two lines, 93
— relative of two rays, 95, 161
Moore, 9, 36, 60
Motions, 79, 80
Multiply connected space, 201–209
Münich, 116

Normals to curve, 161–163
— to surface, 136, 165, 175, 177,

188–192, 194
Null angle, 23
— distance, 10

Opposite edges of tetrahedon, 15
— half-lines, 23
Opposite senses, 50, 69, 225
— sides of plane, 16
Origin, 51
Orthogonal points, 83, 85, 98, 110,

112, 114–116, 120, 158, 173,
182, 183, 185, 189

Orthogonal substitutions, 55, 59, 78,
80

— system of surfaces, 166, 167
d’Ovidio, 93, 119, 143

Padoa, 9, 215
Parabola, 119
Parabolic hypothesis, 35
Paraboloid, 130, 133
Parallel angle, 87, 88, 91
Parallelism, 68, 81, 87, 94, 198, 199
Parataxy, 81, 95, 104, 107, 173–175,

191, 198, 199
Pasch, 13, 21, 69, 223
Peano, 9
Pencil of complexes, 96
— of geodesics, 235
Perpendicularity, 25, 27, 29, 83, 84,

97, 110, 113, 115, 116, 120,
153, 154, 162, 165, 183, 185,
186, 189, 235

Phi function, 40, 41
Picard, 147, 177
Pieri, 9, 60, 69, 210
Plane, 14–16, 29, 53, 56, 65, 66, 77,

90, 98, 190, 205, 211–214,
219, 223, 224, 226, 227

Poincaré, 116
Point, 9, 63, 67, 69, 210, 224, 232
Polygon, 149
Principal points and planes, 186
Products connected with a conic, 122,

125, 126
Projection, 215, 219
Projectivity, 219, 221, 226
Pseudo-isotropic congruence, 194, 195,

198, 199
Pseudo-normal congruence, 189, 194
Pseudo-parallelism of lines, 94, 198,

199
Pythagorean theorem, 43, 45

Quadrangle, complete, 213
Quadrilateral, 33, 34, 38, 147
— complete, 214, 224
Quaternions, 80, 208
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Ratio of opposite sides of quadrilat-
eral, 39–42

Ratios, constant connected with con-
ics, 121, 127

Ray, 95, 161, 193, 198, 199
Rectangle, 33, 34
Reflection in plane, 29, 66
— in point, 49
Region consistent, 63–66, 200, 201
Region, fundamental, 202–209
— restricted, 227, 232–234
Revolution, surfaces of, 131
Riccordi, 109
Richmond, 155
Riemann, 36, 42, 53, 232
Riemannian hypothesis, 36
Right angle, 24, 25, 30, 235
— triangle, 24, 34, 35, 43
Right and left generators of Absolute,

81, 103, 198
Right and left parataxy, 81, 175, 191
Right and left translations, 81, 208
Russell, 60

Saccheri, 33, 39
Salmon, 112
Scalene triangles, 26
Schläfli, 154, 155
Schur, 9, 232
Segment, 11–13, 17–19, 21
Segre, 99
Semi-hyperbola, 119
Semi-hyperboloid, 130
Sense of directed distances, 50
— of description of involution, 69,

225
Separation, 210, 211, 216–218, 221
— classes, 210, 211, 216–218
— harmonic, 214, 215, 217
Sides of angle, 22, 23
— of quadrangle, 213
— of quadrilateral, 33, 214
Sides of triangle, 13, 23, 26, 27
Similitude, centres of, 112, 113
Sine of distance from point to plane,

56

Sines, law of, 46, 47
Singular region, 201
Space, 15, 16, 62, 201–209, 212
Sphere, 58, 59, 115–118, 132, 193
Spheres, representing, 193
Spherical space, 67
Spheroid, 131, 132
Stäckel, 33
Staude, 135
Von Staudt, 69, 71, 226
Stephanos, 89
Stolz, 18
Story, 119
Strip, 107
Study, 73, 75, 81, 96, 102, 104, 105,

194, 199
Sturm, 197
Sum of angles, 24, 25
— of angles of a triangle, 35
Sum of distances, 10–12, 73, 75
Sum of distances connected with a

conic, 122, 124, 125
Sum of distances connected with a

quadric, 134
Sum of two sides of triangle, 26
Supplementary angles, 24
Surface integral, 147
Symmetry transformations, 79, 80,

106
Synectic congruence, 99, 101

Tait, 241
Tangent plane to surface, 163, 164
Tannery, 230
Tensor, 80
Terminal point, 49
Tetrahedron, 14, 15, 152–154
Thread construction, 142
Torsion, 159–161, 171, 175
Transformations, congruent, 21, 28,

29, 55, 58, 59, 64, 66, 76–82,
202, 226–229, 234–236

Translations, 49, 81, 106, 202, 203,
208

Triangle, 13, 23–27, 143, 144, 146–149
Triangles, congruent, 23
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Trirectangular quadrilateral, 33

Ultra-infinite elements, 68, 157
Umbilical points, 136

Vahlen, 9, 18, 60, 210, 219, 223
Vailati, 210, 215
Veblen, 9, 13, 61, 210
Veronese, 9, 60
Vertex of angle, 22, 23
— of quadrangle, 213
— of quadrilateral, 214
— of tetrahedron, 15
— of triangle, 13
Vertical angles, 24, 25
Volume, 152, 153
— integral, 153
— of cone, 155
— of sphere, 156
— of tetrahedron, 153–155
Voss, 157

Weber, 36
Weierstrass, 119
Within a segment, 11
Within a triangle, 13
Woods, 200, 208, 235

Young, 210
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Dialogus de Scaccario. Edited by A. Hughes, C. G. Crump, and C. Johnson,
with introduction and notes. 8vo. 12s. 6d. net.

Passio et Miracula Beati Olaui. Edited from the Twelfth-century MS by F.
Metcalfe. Small 4to. 6s.

The Song of Lewes. Edited from the MS, with introduction and notes, by C. L.
Kingsford. Extra fcap 8vo. 5s.

Chronicon Galfridi le Baker de Swynebroke, edited by Sir E. Maunde
Thompson, K.C.B. Small 4to, 18s.; cloth, gilt top, £1 1s.

Chronicles of London. Edited, with introduction and notes, by C. L. Kings-
ford. 8vo. 10s. 6d. net.

Gascoigne’s Theological Dictionary (‘Liber Veritatum’): selected passages,
illustrating the condition of Church and State, 1403-1458. With an introduction
by J. E. Thorold Rogers. Small 4to. 10s. 6d.

Fortescue’s Governance of England. A revised text, edited, with introduction,
etc, by C. Plummer. 8vo, leather back. 12s. 6d.

Stow’s Survey of London. Edited by C. L. Kingsford. 8vo, 2 vols., with a
folding map of London in 1600 (by Emery Walker and H. W. Cribb) and
other illustrations. 30s. net.

The Protests of the Lords, from 1624 to 1874; with introductions. By J. E.
Thorold Rogers. In three volumes. 8vo. £2 2s.
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The Clarendon Press Series of Charters, Statutes, etc

From the earliest times to 1307. By Bishop Stubbs.
Select Charters and other illustrations of English Constitutional History. Eighth

edition. Crown 8vo. 8s. 6d.

From 1558 to 1625. By G. W. Prothero.
Select Statutes and other Constitutional Documents of the Reigns of

Elizabeth and James I. Third edition. Crown 8vo. 10s. 6d.

From 1625 to 1660. By S. R. Gardiner.
The Constitutional Documents of the Puritan Revolution. Third edition.

Crown 8vo. 10s. 6d.

Calendars, etc

Calendar of Charters and Rolls preserved in the Bodleian Library. 8vo. £1
11s. 6d.

Calendar of the Clarendon State Papers preserved in the Bodleian Library.
In three volumes. 1869-76. Vol. I. From 1523 to January 1649. 8vo. 18s. Vol.
II. From 1649 to 1654. 8vo. 16s. Vol. III. From 1655 to 1657. 8vo. 14s.

Hakluyt’s Principal Navigations, being narratives of the Voyages of the Eliza-
bethan Seamen to America. Selection edited by E. J. Payne. Crown 8vo, with
portraits. Second edition. Two volumes. 5s. each.

Also abridged, in one volume, with additional notes, maps, &c., by C. Ray-
mond Beazley. Crown 8vo, with illustrations. 4s. 6d. Also, separately, The
Voyages of Hawkins, Frobisher, and Drake; The Voyages of Drake and Gilbert,
each 2s. 6d.

Aubrey’s ‘Brief Lives,’ set down between the Years 1669 and 1696. Edited from
the Author’s MSS by A. Clark. Two volumes. 8vo. £1 5s.

Whitelock’s Memorials of English Affairs from 1625 to 1660. 4 vols, 8vo. £1
10s.

Ludlow’s Memoirs, 1625-1672. Edited, with Appendices of Letters and illustra-
tive documents, by C. H. Firth. Two volumes. 8vo. £1 16s.

Luttrell’s Diary. A brief Historical Relation of State Affairs, 1678-1714. Six
volumes. 8vo. £1 10s. net.

Burnet’s History of James II. 8vo. 9s. 6d.
Life of Sir M. Hale, with Fell’s Life of Dr. Hammond. Small 8vo.

2s. 6d.
Memoirs of James and William, Dukes of Hamilton. 8vo. 7s.

6d.
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Burnet’s History of My Own Time A new edition based on that of M. J.
Routh. Edited by Osmund Airy. Vol. I. 12s. 6d. net. Vol. II. (Completing
Charles the Second, with Index to Vols. I and II.) 12s. 6d. net.

Supplement, derived from Burnet’s Memoirs, Autobiography, etc, all hith-
erto unpublished. Edited by H. C. Foxcroft, 1902. 8vo. 16s. net.

The Whitefoord Papers, 1739 to 1810. Ed. by W. A. S. Hewins. 8vo. 12s.
6d.

History of Oxford

A complete list of the Publications of the Oxford Historical Society can be
obtained from Mr. Frowde.

Manuscript Materials relating to the History of Oxford; contained in the
printed catalogues of the Bodleian and College Libraries. By F. Madan. 8vo.
7s. 6d.

The Early Oxford Press. A Bibliography of Printing and Publishing at Oxford,
‘1468’-1640. With notes, appendices, and illustrations. By F. Madan. 8vo.
18s.

Bibliography

Cotton’s Typographical Gazetteer. First Series. 8vo. 12s. 6d.
Ebert’s Bibliographical Dictionary. 4 vols. 8vo. £3 3s. net.

Bishop Stubbs’s and Professor Freeman’s Books

The Constitutional History of England, in its Origin and Development. By
W. Stubbs. Library edition. Three volumes. Demy 8vo. £2 8s. Also in three
volumes, crown 8vo, price 12s. each.

Seventeen Lectures on the Study of Mediaeval and Modern History and kindred
subjects, 1867-1884. By the same. Third edition, revised and enlarged, 1900.
Crown 8vo, half-roan. 8s. 6d.

History of the Norman Conquest of England; its Causes and Results. By
E. A. Freeman. Vols. I, II and V (English edition) are out of print.

Vols. III and IV. £1 1s. each. Vol. VI (Index). 10s. 6d.
A Short History of the Norman Conquest of England. Third edition. By

the same. Extra fcap 8vo. 2s. 6d.
The Reign of William Rufus and the Accession of Henry the First. By the

same. Two volumes. 8vo. £1 16s.
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Special Periods and Biographies

Ancient Britain and the Invasions of Julius Caesar. By T. Rice Holmes.
8vo. 21s. net.

Life and Times of Alfred the Great, being the Ford Lectures for 1901. By C.
Plummer. 8vo. 5s. net.

The Domesday Boroughs. By Adolphus Ballard. 8vo. 6s. 6d. net.
Villainage in England. Essays in English Mediaeval History. By P. Vinograd-

off. 8vo. 16s. net.
English Society in the Eleventh Century. Essays in English Mediaeval His-

tory. By P. Vinogradoff. 8vo. 16s. net.
The Gild Merchant: a contribution to British municipal history. By C. Gross.

Two volumes. 8vo, leather back, £1 4s.
The Welsh Wars Of Edward I; a contribution to mediaeval military history.

By J. E. Morris. 8vo. 9s. 6d. net.
The Great Revolt of 1381. By C. Oman. With two maps. 8vo. 8s. 6d. net.
Lancaster and York. (a.d. 1399-1485.) By Sir J. H. Ramsay. Two volumes.

8vo, with Index, £1 17s. 6d. Index separately, 1s. 6d.
Life and Letters of Thomas Cromwell. By R. B. Merriman. In two vol-

umes. [Vol. I, Life and Letters, 1523-1535, etc. Vol. II, Letters, 1536-1540,
notes, index, etc.] 8vo. 18s. net.

Edward Hyde, Earl of Clarendon, A lecture by C. H. Firth. 8vo. 1s. net.
A History of England, principally in the Seventeenth Century. By L. von

Ranke. Translated under the superintendence of G. W. Kitchin and C. W.
Boase. Six volumes. 8vo. £3 3s. net. Index separately, 1s.

Sir Walter Ralegh, a Biography, by W. Stebbing. Post 8vo. 6s. net.
Henry Birkhead and the foundation of the Oxford Chair of Poetry. By J. W.

Mackail. 8vo. 1s. net.
Biographical Memoir of Dr. William Markham, Archbishop of York, by Sir

Clements Markham, K.C.B. 8vo. 5s. net.
The Life and Works of John Arbuthnot. By G. A. Aitken. 8vo, cloth

extra, with Portrait. 16s.
Life and Letters of Sir Henry Wotton. By L. Pearsall Smith. 8vo. Two

volumes. 25s. net.
Great Britain and Hanover. By A. W. Ward. Crown 8vo. 5s.
History of the Peninsular War. By C. Oman. To be completed in six volumes,

8vo, with many maps, plans, and portraits.
Already published: Vol. I. 1807-1809, to Corunna. Vol. II. 1809, to Talav-

era. Vol. III. 1809-10, to Torres Vedras. 11s. net each.
Anglo-Chinese Commerce and Diplomacy: mainly in the nineteenth century.

By A. J. Sargent. 12s. 6d. net.
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Frederick York Powell. A Life and a selection from his Letters and Occasional
Writings. By Oliver Elton. Two volumes. 8vo. With photogravure portraits,
facsimiles, etc. 21s. net.

David Binning Monro: a Short Memoir. By J. Cook Wilson. 8vo, stiff
boards, with portrait. 2s. net.

F. W. Maitland. Two lectures by A. L. Smith. 8vo. 2s. 6d. net.

School Books

Companion to English History (Middle Ages). Edited by F. P. Barnard.
With 97 illustrations. Crown 8vo. 8s. 6d. net.

School History of England to the death of Victoria. With maps, plans, etc. By
O. M. Edwards, R. S. Rait, and others. Crown 8vo, 3s. 6d.

Oxford School Histories

Crown 8vo, with many illustrations, each 1s. 6d. net.

Berkshire, by E. A. G. Lamborn.
Oxfordshire, by H. A. Liddell.

Others in preparation.

Also, for junior pupils, illustrated, each 1s.

Stories from the History of Berkshire. By E. A. G. Lamborn.
Stories from the History of Oxfordshire. By John Irving.
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History and Geography of America and
the British Colonies

For other Geographical books, see pages 59, 60.

History of the New World called America. By E. J. Payne.
Vol. I. 8vo. 18s. Bk. I. The Discovery. Bk. II, Part I. Aboriginal America.
Vol. II. 8vo. 14s. Bk. II, Part II. Aboriginal America (concluded).

A History of Canada, 1763-1812. By Sir C. P. Lucas, K.C.M.G. 8vo. With
eight maps. 12s. 6d. net.

The Canadian War of 1812. By Sir C. P. Lucas, K.C.M.G. 8vo. With eight
maps. 12s. 6d. net.

Historical Geography of the British Colonies. By Sir C. P. Lucas, K.C.M.G.
Crown 8vo.

Introduction. New edition by H. E. Egerton. 1903. (Origin and growth
of the Colonies.) With eight maps. 3s. 6d. In cheaper binding, 2s. 6d.

Vol. I. The Mediterranean and Eastern Colonies. With 13 maps.
Second edition, revised and brought up to date, by R. E. Stubbs. 1906. 5s.

Vol. II. The West Indian Colonies. With twelve maps. Second edition,
revised and brought up to date, by C. Atchley, I.S.O. 1905. 7s. 6d.

Vol. III. West Africa. Second Edition. Revised to the end of 1899 by
H. E. Egerton. With five maps. 7s. 6d.

Vol. IV. South and East Africa. Historical and Geographical. With
eleven maps. 9s. 6d.
Also Part I. Historical. 1898. 6s. 6d. Part II. 1903. Geographical. 3s. 6d.

Vol. V. Canada, Part I. 1901. 6s. Part II, by H. E. Egerton. 4s. 6d.
Part III (Geographical) in preparation.

Vol. VI. Australasia. By J. D. Rogers. 1907. With 22 maps. 7s. 6d.
Also Part I, Historical, 4s. 6d. Part II, Geographical, 3s. 6d.

History of the Dominion of Canada. By W. P. Greswell. Crown 8vo. 7s. 6d,
Geography of the Dominion of Canada and Newfoundland. By the same author.

With ten maps. 1891. Crown 8vo. 6s.
Geography of Africa South of the Zambesi. By the same author. With maps. 1892.

Crown 8vo. 7s. 6d.
The Claims of the Study of Colonial History upon the attention of the

University of Oxford. An inaugural lecture delivered on April 28, 1906, by
H. E. Egerton. 8vo, paper covers, 1s. net.

Historical Atlas. Europe and her Colonies, 27 maps. 35s. net.
Cornewall-Lewis’s Essay on the Government of Dependencies. Edited

by Sir C. P. Lucas, K.C.M.G. 8vo, quarter-bound, 14s.
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Rulers of India

Edited by Sir W. W. Hunter. Crown 8vo. 2s. 6d. each.
Asoka. By V. A. Smith.

Bábar. By S. Lane-Poole.

Albuquerque. By H. Morse Stephens.

Akbar. By Colonel Malleson.

Aurangźıb. By S. Lane-Poole.

Dupleix. By Colonel Malleson.

Lord Clive. By Colonel Malleson.

Warren Hastings. By Captain L. J. Trotter.

Mádhava Ráo Sindhia. By H. G. Keene.

The Marquis of Cornwallis. By W. S. Seton-Karr.

Haidar Aĺı and Tipú Sultán. By L. B. Bowring.

The Marquis Wellesley, K.G. By W. H. Hutton.

Marquess of Hastings. By Major Ross-of-Bladensburg.

Mountstuart Elphinstone. By J. S. Cotton.

Sir Thomas Munro. By J. Bradshaw.

Earl Amherst. By Anne T. Ritchie and R. Evans.

Lord William Bentinck. By D. C. Boulger.

The Earl of Auckland. By Captain L. J. Trotter.

Viscount Hardinge. By his son, Viscount Hardinge.

Ranjit Singh. By Sir L. Griffin.

The Marquess of Dalhousie. By Sir W. W. Hunter.

James Thomason. By Sir R. Temple.

John Russell Colvin. By Sir A. Colvin.

Sir Henry Lawrence. By Lieut.-General J. J. McLeod Innes.

Clyde and Strathnairn. By Major-General Sir O. T. Burne.

Earl Canning. By Sir H. S. Cunningham.

Lord Lawrence. By Sir C. Aitchison.

The Earl of Mayo. By Sir W. W. Hunter.

Sketches of Rulers of India. Abridged from the Rulers of India by G. D.
Oswell. Vol. I, The Mutiny and After; Vol. II, The Company’s Governors;
Vol. III, The Governors-General; Vol. IV, The Princes of India. Crown 8vo. 2s.
net each.

The Imperial Gazeteer of India. New Edition. To be completed in twenty-six
volumes. 8vo. Subscription price, cloth, £5 net; morocco back, £6 6s. net. The
four volumes of ‘The Indian Empire’ separately 6s. net each, in cloth, or 7s. 6d.
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net with morocco back; the Atlas separately 15s. net in cloth, or 17s. 6d. net
with morocco back. Subscriptions may be sent through any bookseller.

Vol. I. Descriptive.
Vol. II. Historical.
Vol. III. Economic.
Vol. IV. Administrative.
Vol. V-XXIV. Alphabetical Gazetteer.
Vol. XXV. Index.
Vol. XXVI. Atlas.

Each volume contains a map of India specially prepared for this Edition.

Reprints from the Imperial Gazetteer.

A sketch of the Flora of British India. By Sir Joseph Hooker. 8vo. Paper covers.
1s. net.

The Indian Army. A sketch of its History and Organization. 8vo. Paper covers.
1s. net.

A Brief History of the Indian Peoples. By Sir W. W. Hunter. Revised up
to 1903 by W. H. Hutton. Eighty-ninth thousand. 3s. 6d.

The Government of India, being a digest of the Statute Law relating thereto;
with historical introduction and illustrative documents. By Sir C. P. Ilbert.
Second edition, 1907. 10s. 6d. net.

The Early History of India from 600 b.c. to the Muhammadan Con-
quest, including the invasion of Alexander the Great. By V. A. Smith. 8vo.
With maps, plans, and other illustrations. Second edition, revised and enlarged.
14s. net.

The Oxford Student’s History of India. By V. A. Smith. Crown 8vo. With
7 maps and 10 other illustrations. 2s. 6d.

The English Factories in India: By W. Foster. 8vo. (Published under the
patronage of His Majesty’s Secretary of State for India in Council.)

Vol. I. 1618-1621. 12s. 6d. n. Vol. II. 1622-1623. 12s. 6d. n.
(The six previous volumes of Letters received by the East India Company

from its Servants in the East (1602-1617) may also be obtained, price 15s. each
volume.)

Court Minutes of the East India Company, 1635-1639. By E. B. Sains-
bury. Introduction by W. Foster. 8vo. 12s. 6d. net.

The Court Minutes of the Company previous to 1635 have been calendared
in the Calendars of State Papers, East Indies, published by the Public Record
Office.

Wellesley’s Despatches, Treaties, and other Papers relating to his Government
of India. Selection edited by S. J. Owen. 8vo. £1 4s.

Wellington’s Despatches, Treaties, and other Papers relating to India. Selec-
tion edited by S. J. Owen. 8vo. £1 4s.

Hastings and the Rohilla War. By Sir J. Strachey. 8vo. 10s. 6d.
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European History

Historical Atlas of Modern Europe, from the Decline of the Roman Empire.
90 maps, with letterpress to each: the maps printed by W. & A. K. Johnston,
Ltd., and the whole edited by R. L. Poole.

In one volume, imperial 4to, half-persian, £5 15s. 6d. net; or in selected
sets–British Empire, etc, at various prices from 30s. to 35s. net each; or in
single maps, 1s. 6d. net each. Prospectus on application.

Genealogical Tables illustrative of Modern History. By H. B. George. Fourth
(1904) edition. Oblong 4to, boards. 7s. 6d.

The Life and Times of James the First of Aragon. By F. D. Swift. 8vo.
12s. 6d.

The Renaissance and the Reformation. A textbook of European History,
1494-1610. By E. M. Tanner. Crown 8vo, with 8 maps. 3s. 6d.

A History of France, with numerous maps, plans, and tables, by G. W. Kitchin.
Crown 8vo; Vol. I (to 1453), revised by F. F. Urquhart; Vols. II (1624), III
(1795), revised by A. Hassall. 10s. 6d. each volume.

De Tocqueville’s L’Ancien Régime et la Révolution. Edited, with intro-
ductions and notes, by G. W. Headlam. Crown 8vo. 6s.

The Principal Speeches of the Statesmen and Orators of the French
Revolution, 1789-1795. Ed. H. Morse Stephens. Two vols. Crown 8vo. £1
1s.

Documents of the French Revolution, 1789-1791. By L. G. Wickham
Legg. Crown 8vo. Two volumes. 12s. net.

Napoleonic Statesmanship: Germany. By H. A. L. Fisher. 8vo, with maps.
12s. 6d. net.

Bonapartism. Six lectures by H. A. L. Fisher. 8vo. 3s. 6d. net.
Thiers’ Moscow Expedition, edited by H. B. George. Cr. 8vo, 6 maps. 5s.
Great Britain and Hanover. By A. W. Ward. Crown 8vo. 5s.
History of the Peninsular War. By C. Oman. To be completed in six volumes,

8vo, with many maps, plans, and portraits.
Already published: Vol. I. 1807-1809, to Corunna. Vol. II. 1809, to Talavera.

Vol. III. 1809-10, to Torres Vedras. 14s. net each.
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The Oxford Geographies

Relations of Geography and History. By H. B. George. With two maps.
Crown 8vo. Third edition. 4s. 6d.

Geography for Schools, by A. Hughes. Crown 8vo. 2s. 6d.
The Oxford Geographies. By A. J. Herbertson. Crown 8vo.

Vol. I. The Preliminary Geography, Ed. 2, 72 maps and diagrams, 1s. 6d.
Vol. II. The Junior Geography, Ed. 2, 166 maps and diagrams, 2s.
Vol. III. The Senior Geography, Ed. 2, 117 maps and diagrams, 2s. 6d.

Practical Geography. By J. F. Unstead. Crown 8vo. Part I, 27 maps and
diagrams, Part II, 21 maps and diagrams, each 1s. 6d.; together 2s. 6d.
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Geography and Anthropology

The Dawn of Modern Geography. By C. R. Beazley. in three volumes. £2
10s. Vol. I (to a.d. 900). Not sold separately. Vol. II (a.d. 900-1260). 15s.
net. Vol. III. 20s. net.

Regions of the World. Geographical Memoirs under the general editorship of
H. J. Mackinder. Medium 8vo. 7s. 6d. net per volume.

Britain and the British Seas. Second edition. By H. J. Mackinder.—
Central Europe. By John Partsch.—The Nearer East. By D. G. Hoga-
rth.—North America. By J. Russell.—India. By Sir Thomas Holdich.—
The Far East. By Archibald Little.

Frontiers: Romanes Lecture for 1907. By Lord Curzon of Kedleston. 8vo.
2s. net.

The Face of the Earth. By Eduard Suess. See p. 92.

Transactions of the Third (1908) International Congress for the History
of Religions. Royal 8vo. 2 vols. 21s. net.

Anthropological Essays presented to Edward Burnett Tylor in honour of
his seventy-fifth birthday; by H. Balfour, A. E. Crawley, D. J. Cunning-
ham, L. R. Farnell, J. G. Frazer, A. C. Haddon, E. S. Hartland, A.
Lang, R. R. Marett, C. S. Myers, J. L. Myres, C. H. Read, Sir J.
Rhŷs, W. Ridgeway, W. H. R. Rivers, C. G. Seligmann, T. A. Joyce,
N. W. Thomas, A. Thomson, E. Westermarck; with a bibliography by
Barbara W. Freire-Marreco. Imperial 8vo. 21s. net.

The Evolution of Culture, and other Essays, by the late Lieut.-Gen. A.
Lane-Fox Pitt-Rivers; edited by J. L. Myres, with an Introduction by H.
Balfour. 8vo, with 21 plates, 7s. 6d. net.

Anthropology and the Classics. Six lectures by A. Evans, A. Lang, G. G. A.
Murray, F. B. Jevons, J. L. Myres, W. W. Fowler. Edited by R. R.
Marett. 8vo. Illustrated. 6s. net.

Folk-Memory. By Walter Johnson. 8vo. Illustrated. 12s. 6d. net.
Celtic Folklore: Welsh and Manx. By J. Rhŷs, 2 vols. 8vo. £1 1s.
Studies in the Arthurian Legend. By J. Rhŷs. 8vo. 12s. 6d.
Iceland and the Faroes. By N. Annandale. With an appendix on the Celtic

Pony, by F. H. A. Marshall. Crown 8vo. 4s. 6d. net.
Dubois’ Hindu Manners. Translated and edited by H. K. Beauchamp. Third

edition. Crown 8vo. 6s. net. On India Paper, 7s. 6d. net.
The Melanesians, studies in their Anthropology and Folk-Lore. By R. H. Co-

drington. 8vo. 16s. net.
The Masai, their Language and Folk-lore. By A. C. Hollis. With intro-

duction by Sir Charles Eliot. 8vo. Illustrated. 14s. net.
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The Nandi, their Language and Folk-lore. By A. C. Hollis. With intro-
duction by Sir Charles Eliot. 8vo. Illustrated. 16s. net.

The Ancient Races Of the Thebaid: an anthropometrical study. By Arthur
Thomson and D. Randall-MacIver. Imperial 4to, with 6 collo-types, 6
lithographic charts, and many other illustrations. 42s. net.

The Earliest Inhabitants of Abydos. (A craniological study.) By D. Randall-
MacIver. Portfolio. 10s. 6d. net.
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LAW
Jurisprudence

Bentham’s Fragment on Government. Edited by F. C. Montague. 8vo.
7s. 6d.

Bentham’s Introduction to the Principles of Morals and Legislation.
Second edition. Crown 8vo. 6s. 6d.

Studies in History and Jurisprudence. By the Right Hon. James Bryce.
1901. Two volumes. 8vo. £1 5s. net.

The Elements of Jurisprudence. By T. E. Holland. Tenth edition. 1906.
8vo. 10s. 6d.

Elements of Law, considered with reference to Principles of General Jurispru-
dence. By Sir W. Markby, K.C.I.E. Sixth edition revised, 1905. 8vo. 12s.
6d.

Roman Law

Imperatoris Iustiniani Institutionum Libri Quattuor; with introductions,
commentary, and translation, by J. B. Moyle. Two volumes. 8vo. Vol. I
(fourth edition, 1903), 16s.; Vol. II, Translation (fourth edition, 1906), 6s.

The Institutes Of Justinian, edited as a recension of the Institutes of Gaius.
By T. E. Holland. Second edition. Extra fcap 8vo. 5s.

Select Titles from the Digest of Justinian. By T. E. Holland and C. L.
Shadwell. 8vo. 14s.

Also, sold in parts, in paper covers: Part I. Introductory Titles. 2s. 6d.
Part II. Family Law. 1s. Part III. Property Law. 2s. 6d. Part IV. Law of
Obligations. No. 1. 3s. 6d. No. 2. 4s. 6d.

Gai Institutionum Iuris Civilis Commentarii Quattuor: with a translation
and commentary by the late E. Poste. Fourth edition. Revised and enlarged
by E. A. Whittuck, with an historical introduction by A. H. J. Greenidge.
8vo. 16s. net.

Institutes of Roman Law, by R. Sohm. Translated by J. C. Ledlie: with an
introductory essay by E. Grueber. Third edition. 8vo. 16s. net.

Infamia; its place in Roman Public and Private Law. By A. H. J. Greenidge.
8vo. 10s. 6d.

Legal Procedure in Cicero’s Time. By A. H. J. Greenidge. 8vo. 25s. net.
The Roman Law of Damage to Property: being a commentary on the title

of the Digest ‘Ad Legem Aquiliam’ (ix. 2), with an introduction to the study of
the Corpus Iuris Civilis. By E. Grueber. 8vo. 10s. 6d.

Contract of Sale in the Civil Law. By J. B. Moyle. 8vo. 10s. 6d.
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The Principles of German Civil Law. By Ernest J. Schuster, 8vo. 12s.
6d. net.

English Law

Principles of the English Law of Contract, and of Agency in its relation to
Contract. By Sir W. R. Anson. Eleventh edition. 1906. 8vo. 10s. 6d.

Law and Custom of the Constitution. By the same. In two volumes. 8vo.
Vol. I. Parliament. (Out of print. New edition in the press.)
Vol. II. The Crown. Third edition. Part I, 10s. 6d. net. Part II, 8s. 6d. net.

Introduction to the History of the Law of Real Property. By Sir K. E.
Digby. Fifth edition. 8vo. 12s. 6d.

Legislative Methods and Forms. By Sir C. P. Ilbert, K.C.S.I. 1901. 8vo,
leather back, 16s.

Modern Land Law. By E. Jenks. 8vo. 15s.
Essay on Possession in the Common Law. By Sir F. Pollock and Sir R. S.

Wright. 8vo. 8s. 6d.
Outline of the Law of Property. By T. Raleigh. 8vo. 7s. 6d.
Law in Daily Life. By Rud. von Jhering. Translated with Notes and Additions

by H. Goudy. Crown 8vo. 3s. 6d. net.
Cases illustrating the Principles of the Law of Torts, with table of all Cases

cited. By F. R. Y. Radcliffe and J. C. Miles. 8vo. 1904. 12s. 6d. net.
The Management of Private Affairs. By Joseph King, F. T. R. Bigham,

M. L. Gwyer, Edwin Cannan, J. S. C. Bridge, A. M. Latter. Crown
8vo. 2s. 6d. net.

Calendar of Charters and Rolls, containing those preserved in the Bodleian
Library. 8vo. £1 11s. 6d.

Handbook to the Land-Charters, and other Saxonic Documents. By J.
Earle. Crown 8vo. 16s.

Fortescue’s Difference between an Absolute and a Limited Monarchy.
Text revised and edited, with introduction, etc, by C. Plummer. 8vo, leather
back, 12s. 6d.

Villainage in England. By P. Vinogradoff. 8vo. 16s. net.
Welsh Mediaeval Law: the Laws of Howel the Good. Text, translation, etc., by

A. W. Wade Evans. Crown 8vo. 8s. 6d. net.
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Constitutional Documents

Select Charters and other Illustrations of English Constitutional History, from
the earliest times to Edward I. Arranged and edited by W. Stubbs. Eighth
edition. 1900. Crown 8vo. 8s. 6d.

Select Statutes and other Constitutional Documents, illustrative of the
reigns of Elizabeth and James I. Edited by G. W. Prothero. Third edition.
Crown 8vo. 10s. 6d.

Constitutional Documents of the Puritan Revolution, selected and edited by
S. R. Gardiner. Third edition. Crown 8vo. 10s. 6d.

International Law

International Law. By W. E. Hall. Fifth edition by J. B. Atlay. 1904. 8vo.
£1 1s. net.

Treatise on the Foreign Powers and Jurisdiction of the British Crown.
By W. E. Hall. 8vo. 10s. 6d.

The European Concert in the Eastern Question, a collection of treaties and
other public acts. Edited, with introductions and notes, by T. E. Holland.
8vo. 12s. 6d.

Studies in International Law. By T. E. Holland. 8vo. 10s. 6d.
The Laws of War on Land. By T. E. Holland. 8vo. 6s. net.
Gentilis Alberici de Iure Belli Libri Tres edidit T. E. Holland. Small

quarto, half-morocco. £1 1s.
The Law of Nations. By Sir T. Twiss. Part I. In time of peace. New edition,

revised and enlarged. 8vo. 15s.
Pacific Blockade. By A. E. Hogan. 8vo. 6s. net.

Colonial and Indian Law

The Government of India, being a Digest of the Statute Law relating thereto,
with historical introduction and illustrative documents. By Sir C. P. Ilbert,
K.C.S.I. Second edition. 8vo, cloth. 10s. 6d. net.

British Rule and Jurisdiction beyond the Seas. By the late Sir H. Jenkyns,
K.C.B., with a preface by Sir C. P. Ilbert, and a portrait of the author. 1902.
8vo, leather back, 15s. net.

Cornewall-Lewis’s Essay on the Government of Dependencies. Edited
by Sir C. P. Lucas, K.C.M.G. 8vo, leather back, 14s.

An Introduction to Hindu and Mahommedan Law for the use of students.
1900. By Sir W. Markby, K.C.I.E. 6s. net.

Land-Revenue and Tenure in British India. By B. H. Baden-Powell,
C.I.E. With map. Second edition, revised by T. W. Holderness, C.S.I.
(1907.) Crown 8vo. 5s. net.
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Land-Systems of British India, being a manual of the Land-Tenures, and of
the systems of Land-Revenue administration. By the same. Three volumes.
8vo, with map. £3 3s.

Anglo-Indian Codes, by Whitley Stokes. 8vo.
Vol. I. Substantive Law. £1 10s. Vol. II. Adjective Law. £1 15s.

1st supplement, 2s. 6d. 2nd supplement, to 1891, 4s. 6d. In one vol., 6s. 6d.
The Indian Evidence Act, with notes by Sir W. Markby, K.C.I.E. 8vo. 3s.

6d. net (published by Mr. Frowde).

Corps de Droit Ottoman: un Recueil des Codes, Lois, Règlements, Ordon-
nances et Actes les plus importants du Droit Intérieur, et d’Études sur le Droit
Coutumier de l’Empire Ottoman. Par George Young. Seven vols. 8vo.
Cloth, £4 14s. 6d. net; paper covers, £4 4s. net. Parts I (Vols. I–III) and II
(Vols. IV–VII) can be obtained separately; price per part, in cloth, £2 17s. 6d.
net, in paper covers, £2 12s. 6d. net.
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Political Science and Economy
For Bryce’s Studies and other books on general jurisprudence and political

science, see p. 61.

Industrial Organization in the 16th and 17th Centuries. By G. Unwin.
8vo. 7s. 6d. net.

Relations of the Advanced and Backward Races of Mankind, the Ro-
manes Lecture for 1902. By J. Bryce. 8vo. 2s. net.

Cornewall-Lewis’s Remarks on the Use and Abuse of Some Political
Terms. New edition, with introduction by T. Raleigh. Crown 8vo, paper,
3s. 6d.; cloth, 4s. 6d.

Adam Smith’s Wealth of Nations. Edited by J. E. Thorold Rogers. Two
volumes. 8vo. £1 1s. net.

Adam Smith’s Lectures on Justice, Police, Revenue and Arms. Edited with
introduction and notes by E. Cannan. 8vo. 10s. 6d. net.

Bluntschli’s Theory of the State. Translated from the sixth German edition.
Third edition. 1901. Crown 8vo, leather back, 8s. 6d.

Co-operative Production. By B. Jones. With preface by A. H. Dyke-
Acland. Two volumes. Crown 8vo. 15s. net.

A Geometrical Political Economy. Being an elementary Treatise on the
method of explaining some Theories of Pure Economic Science by diagrams.
By H. Cunynghame, C.B. Cr. 8vo. 2s. 6d. net.

The Elements of Railway Economics. By W. M. Acworth. Crown 8vo.
Second impression. 2s. net.

Elementary Political Economy. By E. Cannan. Fourth edition. Extra fcap
8vo, 1s. net.

Elementary Politics. By Sir T. Raleigh. Sixth edition revised. Extra fcap
8vo, stiff covers, 1s. net.

The Study of Economic History. By L. L. Price, 1s. net.

Economic Documents

Ricardo’s Letters to Malthus (1810-1823). Edited by J. Bonar. 8vo. 7s. 6d.
Letters to Trower and others (1811-1823). Edited by J. Bonar

and J. H. Hollander. 8vo. 7s. 6d.
Lloyd’s Prices of Corn in Oxford, 1583-1830. 8vo. 1s.
The History of Agriculture and Prices in England, a.d. 1259-1793. By

J. E. Thorold Rogers.
Vols. I and II (1259-1400). 8vo. 84s. net.
Vols. III and IV (1401-1582). 8vo. 32s. net.
Vols. V and VI (1583-1702). 8vo. 32s. net.
Vol. VII. In two Parts (1702-1793). 8vo. 32s. net.

First Nine Years of the Bank of England. By the same. 8vo. 8s. 6d.
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Typographical Errors corrected

in Project Gutenberg edition

p. 13. ‘Theorem 12. The mainfold of all points’ in text, read ‘manifold’.
p. 22. ‘two other points of one-half-line’, the first hyphen removed as appar-

ently spurious.
p. 25. ‘|AL1 belongs to the interior ]b1BAL1

′’ in text, the last group is
meaningless and was amended to ‘]BAL1

′’.
p. 28. Theorem 41, statement has ‘any half-plane bounded by AB into any

half-plane bounded by A′B’, the rest of this section requires ‘bounded by A′B′’.
The overline on the final O′C ′ of the explanation is assumed, it is not visible on
the scan.

p. 34. ‘hence ]EDCF is a rectangle’ in text, the ] is evidently spurious,
read ‘EDCF is a rectangle’.

p. 44. ‘B2 on the extension of (C1B1) beyond B2’ in text, obviously garbled,
read ‘beyond B1’ (and see Fig. 2).

p. 51. ‘in place of ξ, η, ζ’ in text, context requires ‘ξ, η, ω’.
p. 58. Chapter VI heading ‘CONSISTENCY A SIGNIFICANCE OF THE

AXIOMS’ in text, amended to ‘CONSISTENCY AND SIGNIFICANCE OF
THE AXIOMS’ as per the original ToC.

p. 67. ‘the coordinates of whose points are of the form λy0 + µxi’ in text,
there is no y0 in this discussion, read ‘λyi + µxi’.

p. 76. The first term of the transformation is given as ‘x0
′ = f0(x0x1x2)x3

′’,
this makes no sense so I have made it ‘x0

′ = f0(x0x1x2x3)’ in line with the
other terms.

p. 76. ‘ẋ′0 = ẋ0 cosh d + ẋ1 sin d’ in text, but the context is hyperbolic, so
read ‘· · ·+ ẋ1 sinh d’.

p. 95. ‘and of the line (x
√

(yy)− iy
√

(xx))(x′
√

(y′y′)− iy′
√

(xx))’ in text,
read ‘· · · − iy′

√
(x′x′))’ to conform with 2 previous expressions.

p. 101. ‘the same cross has ∞′ determinations.’ in text, taken to mean ‘∞1’.
p. 105. Equation (2) first fraction numerator is ‘(rXrX)’ in text, evidently

should be ‘(rXrY )’.
p. 112. The paragraph before Theorem 5 ends with the dangling words ‘They

will’. These have been removed.
p. 122. In the equation after (11), the RHS was printed

cl(ch − ck)xk
2 − ck(cl − ch)xl

2[
(ch − ck)xk

2 − (cl − ch)xh
2
]
(cl − ck)

.
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For homogeneity with the rest of this discussion the second denominator term
needs to be (cl− ch)xl

2. Compare, in particular, the expression after (9), which
must be added to this one to give the simplification (12).

p. 128. The equation before (22) was

xh : xk : xl =
√
−ckce(

√
−clyl ±

√
ckyk) : ∓chyh

√
−cl : −chyh

√
ck,

there is no ce here, I have rather tentatively amended to
√
−ckcl - note the

extended root sign. The overlines in (22) were not visible in the scan.
p. 148. ‘a repetition of this process or division’ in text, taken to mean ‘process

of division’.
p. 160. Text has

k2 − (∆s)2

2
− k2 + k2(x′′x′′)

∆s2

2
=
k2

ρ2

(∆s)2

from the argument (back to equation (4)), last term reconstructed to
k2

ρ2

(∆s)2

2
.

p. 168. The equation before ‘In particular’ was

∂xi

∂u
du+

∂xi

∂v
∂v = tan

r

k

[∂yi

∂u
du+

∂yi

∂v
dv
]
.

obviously the second term on the left is meant to be
∂xi

∂v
dv.

p. 169. Spot the 4 differences! Text has

dti
ds

= k

[
∂2xi

∂u2

(du
ds

)2

+ 2
∂2xi

∂u ∂v

du

ds

dv

ds
+
∂xi

∂v2

(
dv

ds

)2
]

+ k
[∂xi

du

d2u

ds2
+
∂xi

dv

dv2

ds2

]
Corrected to

dti
ds

= k

[
∂2xi

∂u2

(du
ds

)2

+ 2
∂2xi

∂u ∂v

du

ds

dv

ds
+
∂2xi

∂v2

(
dv

ds

)2
]

+ k
[∂xi

∂u

d2u

ds2
+
∂xi

∂v

d2v

ds2

]
p. 180. ‘Now . . . by (31)’ equation was printed:

∂

∂v

(∂2x

∂u2

∂2x

∂u2

)
= 2
(∂2x

∂u2

∂3x

∂u ∂v

)
= −2

(∂2x

∂u2

∂

∂u
(Fx)

)
= 0,

the second term should be 2
(∂2x

∂u2

∂3x

∂u2 ∂v

)
.

p. 182. The equation before (4) was:

k2
(∂y
∂u

∂y

∂v

)
−
(
x
∂y

∂u

)(∂y
∂v

)
= F ′,
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for consistency I take it to be
(
x
∂y

∂u

)(
x
∂y

∂v

)
.

p. 183. The equation before (9) was printed

G′ =
1

∆′2 [G′f2 − 2F ′(fg) + E′g2],

to fit the pattern this should be G = . . .
p. 184. The plus sign in the second equation after ‘Let us now ask’ was not

printed.
p. 185. Before (15) ‘in the hyberbolic case’, read ‘hyperbolic’.
p. 186. The pair of limiting points are both given as (

√
a1 +

√
a2, 0, 0,

√
a1 −√

a2). From the following discussion it appears the intention is to negate the
first element of the second one.

p. 196. The first solution is given as

u1 = u′1, z1 = z′1,

u2 = − 1
u′1
, z2 = − 1

z′2
,

but following the equations the last equality should be z2 = − 1
z′1

.

p. 216. ‘If A and C have the coordinates (x) any (y) respectively’ in text,
taken to read ‘(x) and (y)’.

p. 220. Equation is printed

(P0Pβ , PγBδ) = (P∞P 1
β
, P 1

γ
P 1

δ
)

- there are no Bs in this discussion so switched to (P0Pβ , PγPδ). Similarly just
below in equation (1) (PαBβ , PγPδ).

p. 238. ds2 = dr2 + k2 sin2 r

k
[E′dθ2 + 2F ′dφ dφ + dφ2] in text, corrected to

. . .+ 2F ′dθ dφ+ . . ..
p. 239. ‘Hence l is an old integer’ corrected to ‘odd’.
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