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PREFACE.

Most persons do not possess, and do not easily acquire, the power of ab-
straction requisite for apprehending geometrical conceptions, and for keeping
in mind the successive steps of a continuous argument. Hence, with a very
large proportion of beginners in Geometry, it depends mainly upon the form in
which the subject is presented whether they pursue the study with indifference,
not to say aversion, or with increasing interest and pleasure.

Great care, therefore, has been taken to make the pages attractive. The
figures have been carefully drawn and placed in the middle of the page, so that
they fall directly under the eye in immediate connection with the text; and
in no case is it necessary to turn the page in reading a demonstration. Full,
long-dashed, and short-dashed lines of the figures indicate given, resulting,
and auxiliary lines, respectively. Bold-faced, italic, and roman type has been
skilfully used to distinguish the hypothesis, the conclusion to be proved, and
the proof.

As a further concession to the beginner, the reason for each statement in the
early proofs is printed in small italics, immediately following the statement.
This prevents the necessity of interrupting the logical train of thought by
turning to a previous section, and compels the learner to become familiar with
a large number of geometrical truths by constantly seeing and repeating them.
This help is gradually discarded, and the pupil is left to depend upon the
knowledge already acquired, or to find the reason for a step by turning to the
given reference.

It must not be inferred, because this is not a geometry of interrogation
points, that the author has lost sight of the real object of the study. The
training to be obtained from carefully following the logical steps of a complete
proof has been provided for by the Propositions of the Geometry, and the
development of the power to grasp and prove new truths has been provided
for by original exercises. The chief value of any Geometry consists in the
happy combination of these two kinds of training. The exercises have been
arranged according to the test of experience, and are so abundant that it
is not expected that any one class will work them all out. The methods
of attacking and proving original theorems are fully explained in the first
Book, and illustrated by sufficient examples; and the methods of attacking and
solving original problems are explained in the second Book, and illustrated
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by examples worked out in full. None but the very simplest exercises are
inserted until the student has become familiar with geometrical methods, and
is furnished with elementary but much needed instruction in the art of handling
original propositions; and he is assisted by diagrams and hints as long as these
helps are necessary to develop his mental powers sufficiently to enable him to
carry on the work by himself.

The law of converse theorems, the distinction between positive and negative
quantities, and the principles of reciprocity and continuity have been briefly
explained; but the application of these principles is left mainly to the discretion
of teachers.

The author desires to express his appreciation of the valuable suggestions
and assistance which he has received from distinguished educators in all parts
of the country. He also desires to acknowledge his obligation to Mr. Charles
Hamilton, the Superintendent of the composition room of the Athenæum
Press, and to Mr. I. F. White, the compositor, for the excellent typography of
the book.

Criticisms and corrections will be thankfully received.

G. A. WENTWORTH.

Exeter, N.H., June, 1899.
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NOTE TO TEACHERS.

It is intended to have the first sixteen pages of this book simply read in
the class, with such running comment and discussion as may be useful to help
the beginner catch the spirit of the subject-matter, and not leave him to the
mere letter of dry definitions. In like manner, the definitions at the beginning
of each Book should be read and discussed in the recitation room. There is a
decided advantage in having the definitions for each Book in a single group so
that they can be included in one survey and discussion.

For a similar reason the theorems of limits are considered together. The
subject of limits is exceedingly interesting in itself, and it was thought best to
include in the theory of limits in the second Book every principle required for
Plane and Solid Geometry.

When the pupil is reading each Book for the first time, it will be well to let
him write his proofs on the blackboard in his own language, care being taken
that his language be the simplest possible, that the arrangement of work be
vertical, and that the figures be accurately constructed.

This method will furnish a valuable exercise as a language lesson, will
cultivate the habit of neat and orderly arrangement of work, and will allow a
brief interval for deliberating on each step.

After a Book has been read in this way, the pupil should review the Book,
and should be required to draw the figures free-hand. He should state and
prove the propositions orally, using a pointer to indicate on the figure every
line and angle named. He should be encouraged in reviewing each Book, to
do the original exercises; to state the converse propositions, and determine
whether they are true or false; and also to give well-considered answers to
questions which may be asked him on many propositions.

The Teacher is strongly advised to illustrate, geometrically and arithmeti-
cally, the principles of limits. Thus, a rectangle with a constant base b, and
a variable altitude x, will afford an obvious illustration of the truth that the
product of a constant and a variable is also a variable; and that the limit of
the product of a constant and a variable is the product of the constant by the
limit of the variable. If x increases and approaches the altitude a as a limit,
the area of the rectangle increases and approaches the area of the rectangle ab
as a limit; if, however, x decreases and approaches zero as a limit, the area of
the rectangle decreases and approaches zero as a limit.
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An arithmetical illustration of this truth may be given by multiplying the
approximate values of any repetend by a constant. If, for example, we take
the repetend 0.3333 etc., the approximate values of the repetend will be 3

10
,

33
100

, 333
1000

, 3333
10000

, etc., and these values multiplied by 60 give the series 18, 19.8,
19.98, 19.998, etc., which evidently approaches 20 as a limit; but the product
of 60 into 1

3
(the limit of the repetend 0.333 etc.) is also 20.

Again, if we multiply 60 into the different values of the decreasing series
1
30

, 1
300

, 1
3000

, 1
30000

, etc., which approaches zero as a limit, we shall get the
decreasing series 2, 1

5
, 1

50
, 1

500
, etc.; and this series evidently approaches zero

as a limit.

The Teacher is likewise advised to give frequent written examinations.
These should not be too difficult, and sufficient time should be allowed for
accurately constructing the figures, for choosing the best language, and for
determining the best arrangement.

The time necessary for the reading of examination books will be diminished
by more than one half, if the use of symbols is allowed.

Exeter, N.H., 1899.



CONTENTS vii

Contents

GEOMETRY. 1
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . 1

GENERAL TERMS. . . . . . . . . . . . . . . . . . . . . . . . 3

GENERAL AXIOMS. . . . . . . . . . . . . . . . . . . . . . . 6

SYMBOLS AND ABBREVIATIONS. . . . . . . . . . . . . . . 6

PLANE GEOMETRY. 7

BOOK I. RECTILINEAR FIGURES. 7

DEFINITIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

THE STRAIGHT LINE. . . . . . . . . . . . . . . . . . . . . . 8

THE PLANE ANGLE. . . . . . . . . . . . . . . . . . . . . . . 10

PERPENDICULAR AND OBLIQUE LINES. . . . . . . . . . 17

PARALLEL LINES. . . . . . . . . . . . . . . . . . . . . . . . 26

TRIANGLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

LOCI OF POINTS. . . . . . . . . . . . . . . . . . . . . . . . . 48

QUADRILATERALS. . . . . . . . . . . . . . . . . . . . . . . 51

POLYGONS IN GENERAL. . . . . . . . . . . . . . . . . . . . 61

SYMMETRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS viii

BOOK II. THE CIRCLE. 89

DEFINITIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ARCS, CHORDS, AND TANGENTS. . . . . . . . . . . . . . 91

MEASUREMENT. . . . . . . . . . . . . . . . . . . . . . . . . 109

THEORY OF LIMITS. . . . . . . . . . . . . . . . . . . . . . . 111

MEASURE OF ANGLES. . . . . . . . . . . . . . . . . . . . . 119

PROBLEMS OF CONSTRUCTION. . . . . . . . . . . . . . . 135

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

BOOK III. PROPORTION. SIMILAR POLYGONS. 168

THEORY OF PROPORTION. . . . . . . . . . . . . . . . . . 168

SIMILAR POLYGONS. . . . . . . . . . . . . . . . . . . . . . 183

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

NUMERICAL PROPERTIES OF FIGURES. . . . . . . . . . 197

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

PROBLEMS OF CONSTRUCTION. . . . . . . . . . . . . . . 210

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

BOOK IV. AREAS OF POLYGONS. 226

COMPARISON OF POLYGONS. . . . . . . . . . . . . . . . . 235

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

PROBLEMS OF CONSTRUCTION. . . . . . . . . . . . . . . 242

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

BOOK V. REGULAR POLYGONS AND CIRCLES. 258

PROBLEMS OF CONSTRUCTION. . . . . . . . . . . . . . . 274

MAXIMA AND MINIMA. . . . . . . . . . . . . . . . . . . . . 282

EXERCISES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

TABLE OF FORMULAS. 302

INDEX. 305



GEOMETRY.

INTRODUCTION.

1. If a block of wood or stone is cut in the shape represented in Fig. 1, it
will have six flat faces.

Each face of the block is called a surface; and if the faces are made smooth
by polishing, so that, when a straight edge is applied to any one of them, the
straight edge in every part will touch the surface, the faces are called plane
surfaces, or planes.

Fig. 1.

2. The intersection of any two of these surfaces is called a line.

3. The intersection of any three of these lines is called a point.

4. The block extends in three principal directions:

From left to right, A to B.

From front to back, A to C.

From top to bottom, A to D.

These are called the dimensions of the block, and are named in the order
given, length, breadth (or width), and thickness (height or depth).
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5. A solid, in common language, is a limited portion of space filled with
matter ; but in Geometry we have nothing to do with the matter of which a
body is composed; we study simply its shape and size; that is, we regard a
solid as a limited portion of space which may be occupied by a physical body,
or marked out in some other way. Hence,

A geometrical solid is a limited portion of space.

6. The surface of a solid is simply the boundary of the solid, that which
separates it from surrounding space. The surface is no part of a solid and has
no thickness. Hence,

A surface has only two dimensions, length and breadth.

7. A line is simply a boundary of a surface, or the intersection of two sur-
faces. Since the surfaces have no thickness, a line has no thickness. Moreover,
a line is no part of a surface and has no width. Hence,

A line has only one dimension, length.

8. A point is simply the extremity of a line, or the intersection of two lines.
A point, therefore, has no thickness, width, or length; therefore, no magnitude.
Hence,

A point has no dimension, but denotes position simply.

9. It must be distinctly understood at the outset that the points, lines,
surfaces, and solids of Geometry are purely ideal, though they are represented
to the eye in a material way. Lines, for example, drawn on paper or on the
blackboard, will have some width and some thickness, and will so far fail of
being true lines ; yet, when they are used to help the mind in reasoning, it is
assumed that they represent true lines, without breadth and without thickness.

A

B

C D

F
Fig. 2.

10. A point is represented to the eye by a fine dot, and named by a letter,
as A (Fig. 2). A line is named by two letters, placed one at each end, as BF .
A surface is represented and named by the lines which bound it, as BCDF .
A solid is represented by the faces which bound it.
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11. A point in space may be considered by itself, without reference to a
line.

12. If a point moves in space, its path is a line. This line may be considered
apart from the idea of a surface.

13. If a line moves in space, it generates, in general, a surface. A surface
can then be considered apart from the idea of a solid.

14. If a surface moves in space, it generates, in general, a solid.

A

B

C

D

E

F

G

H

Fig. 3.

Thus, let the upright surface ABCD (Fig. 3) move to the right to the
position EFGH, the points A, B, C, and D generating the lines AE, BF ,
CG, and DH, respectively. The lines AB, BC, CD, and DA will generate
the surfaces AF . BG, CH, and DE, respectively. The surface ABCD will
generate the solid AG.

15. Geometry is the science which treats of position, form, and magni-
tude.

16. A geometrical figure is a combination of points, lines, surfaces, or
solids.

17. Plane Geometry treats of figures all points of which are in the same
plane.

Solid Geometry treats of figures all points of which are not in the same
plane.

GENERAL TERMS.

18. A proof is a course of reasoning by which the truth or falsity of any
statement is logically established.
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19. An axiom is a statement admitted to be true without proof.

20. A theorem is a statement to be proved.

21. A construction is the representation of a required figure by means of
points and lines.

22. A postulate is a construction admitted to be possible.

23. A problem is a construction to be made so that it shall satisfy certain
given conditions.

24. A proposition is an axiom, a theorem, a postulate, or a problem.

25. A corollary is a truth that is easily deduced from known truths.

26. A scholium is a remark upon some particular feature of a proposition.

27. The solution of a problem consists of four parts:

1. The analysis , or course of thought by which the construction of the
required figure is discovered.

2. The construction of the figure with the aid of ruler and compasses.

3. The proof that the figure satisfies all the conditions.

4. The discussion of the limitations, if any, within which the solution is
possible.

28. A theorem consists of two parts: the hypothesis, or that which is
assumed; and the conclusion, or that which is asserted to follow from the
hypothesis.

29. The contradictory of a theorem is a theorem which must be true
if the given theorem is false, and must be false if the given theorem is true.
Thus,

A theorem: If A is B, then C is D.
Its contradictory: If A is B, then C is not D.
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30. The opposite of a theorem is obtained by making both the hypothesis
and the conclusion negative. Thus,

A theorem: If A is B, then C is D.
Its opposite: If A is not B, then C is not D.

31. The converse of a theorem is obtained by interchanging the hypothesis
and conclusion. Thus,

A theorem: If A is B, then C is D.

Its converse: If C is D, then A is B.

32. The converse of a truth is not necessarily true.

Thus, Every horse is a quadruped is true, but the converse, Every quadru-
ped is a horse, is not true.

33. If a direct proposition and its opposite are true, the converse proposition
is true; and if a direct proposition and its converse are true, the opposite
proposition is true.

Thus, if it were true that

1. If an animal is a horse, the animal is a quadruped;

2. If an animal is not a horse, the animal is not a quadruped;
it would follow that

3. If an animal is a quadruped, the animal is a horse.

Moreover, if 1 and 3 were true, then 2 would be true.
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34. GENERAL AXIOMS.

1. Magnitudes which are equal to the same magnitude, or equal magni-
tudes, are equal to each other.

2. If equals are added to equals, the sums are equal.

3. If equals are taken from equals, the remainders are equal.

4. If equals are added to unequals, the sums are unequal in the same order;
if unequals are added to unequals in the same order, the sums are unequal in
that order.

5. If equals are taken from unequals, the remainders are unequal in the
same order; if unequals are taken from equals, the remainders are unequal in
the reverse order.

6. The doubles of the same magnitude, or of equal magnitudes are equal;
and the doubles of unequals are unequal.

7. The halves of the same magnitude, or of equal magnitudes are equal;
and the halves of unequals are unequal.

8. The whole is greater than any of its parts.

9. The whole is equal to the sum of all its parts.

35. SYMBOLS AND ABBREVIATIONS.

> is (or are) greater than. Def. . . . definition.
< is (or are) less than. Ax. . . . axiom.
m is (or are) equivalent to. Hyp. . . . hypothesis.
∴ therefore. Cor. . . . corollary.
⊥ perpendicular. Scho. . . . scholium.
⊥s perpendiculars. Ex. . . . exercise.
‖ parallel. ‖s parallels. Adj. . . . adjacent.
∠ angle. ∠s angles. Iden. . . . identical.
4 triangle. 4s triangles. Const.. . . construction.

/ / parallelogram. Sup. . . . supplementary.
/ /s parallelograms. Ext. . . . exterior.
� circle. �s circles. Int. . . . interior.

rt. right. st. straight. Alt. . . . alternate.
q.e.d. stands for quod erat demonstrandum, which was to be proved.
q.e.f. stands for quod erat faciendum, which was to be done.
The signs +, −, ×, ÷, =, have the same meaning as in Algebra.
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BOOK I. RECTILINEAR FIGURES.

DEFINITIONS.

A B

C D

E F

Fig. 4.

36. A straight line is a line such that any part of it, however placed on
any other part, will lie wholly in that part if its extremities lie in that part,
as AB.

37. A curved line is a line no part of which is straight, as CD.

38. A broken line is made up of different straight lines, as EF .

Note. A straight line is often called simply a line.

39. A plane surface, or a plane, is a surface in which, if any two points
are taken, the straight line joining these points lies wholly in the surface.

40. A curved surface is a surface no part of which is plane.

41. A plane figure is a figure all points of which are in the same plane.

42. Plane figures which are bounded by straight lines are called rectilinear
figures; by curved lines, curvilinear figures.

43. Figures that have the same shape are called similar. Figures that have
the same size but not the same shape are called equivalent. Figures that have
the same shape and the same size are called equal or congruent.
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THE STRAIGHT LINE.

44. Postulate. A straight line can be drawn from one point to another.

45. Postulate. A straight line can be produced indefinitely.

46. Axiom.∗ Only one straight line can be drawn from one point to an-
other. Hence, two points determine a straight line.

47. Cor. 1. Two straight lines which have two points in common coincide
and form but one line.

48. Cor. 2. Two straight lines can intersect in only one point.

For if they had two points common, they would coincide and not intersect.

Hence, two intersecting lines determine a point.

49. Axiom. A straight line is the shortest line that can be drawn from one
point to another.

50. Def. The distance between two points is the length of the straight
line that joins them.

51. A straight line determined by two points may be considered as pro-
longed indefinitely.

52. If only the part of the line between two fixed points is considered, this
part is called a segment of the line.

53. For brevity, we say “the line AB,” to designate a segment of a line
limited by the points A and B.

54. If a line is considered as extending from a fixed point, this point is
called the origin of the line.

∗The general axioms on page 6 apply to all magnitudes. Special geometrical axioms will
be given when required.



THE STRAIGHT LINE. 9

A B

C

Fig. 5.

55. If any point, C, is taken in a given straight line, AB, the two parts CA
and CB are said to have opposite directions from the point C (Fig. 5).

Every straight line, as AB, may be considered as extending in either of two
opposite directions, namely, from A towards B, which is expressed by AB, and
read segment AB; and from B towards A, which is expressed by BA, and read
segment BA.

56. If the magnitude of a given line is changed, it becomes longer or shorter.

Thus (Fig. 5), by prolonging AC to B we add CB to AC, and AB = AC+
CB. By diminishing AB to C, we subtract CB from AB, and AC = AB−CB.

If a given line increases so that it is prolonged by its own magnitude several
times in succession, the line is multiplied, and the resulting line is called a
multiple of the given line.

A B C D E

Fig. 6.

Thus (Fig. 6), if AB = BC = CD = DE, then AC = 2AB, AD = 3AB,
and AE = 4AB. Hence,

Lines of given length may be added and subtracted; they may also be mul-
tiplied by a number.
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THE PLANE ANGLE.

DE

F

Fig. 7.

57. The opening between two straight lines drawn from the same point is
called a plane angle. The two lines, ED and EF , are called the sides, and
E, the point of meeting, is called the vertex of the angle.

The size of an angle depends upon the extent of opening of its sides, and
not upon the length of its sides.

58. If there is but one angle at a given vertex, the angle is designated by
a capital letter placed at the vertex, and is read by simply naming the letter.

A

BC D

E F

Fig. 8.
A B

a
bc

d

Fig. 9.

If two or more angles have the same vertex, each angle is designated by
three letters, and is read by naming the three letters, the one at the vertex
between the others. Thus, DAC (Fig. 8) is the angle formed by the sides AD
and AC.

An angle is often designated by placing a small italic letter between the
sides and near the vertex, as in Fig. 9.

59. Postulate of Superposition. Any figure may be moved from one
place to another without altering its size or shape.

60. The test of equality of two geometrical magnitudes is that they may
be made to coincide throughout their whole extent. Thus,

Two straight lines are equal, if they can be placed one upon the other so
that the points at their extremities coincide.

Two angles are equal, if they can be placed one upon the other so that
their vertices coincide and their sides coincide, each with each.
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61. A line or plane that divides a geometric magnitude into two equal parts
is called the bisector of the magnitude.

If the angles BAD and CAD (Fig. 8) are equal, AD bisects the angle BAC.

62. Two angles are called adjacent angles when they have the same vertex
and a common side between them; as the angles BOD and AOD (Fig. 10).

A B

D

O

Fig. 10.
A BC

D

Fig. 11.

63. When one straight line meets another straight line and makes the
adjacent angles equal, each of these angles is called a right angle; as angles
DCA and DCB (Fig. 11).

64. A perpendicular to a straight line is a straight line that makes a right
angle with it.

Thus, if the angle DCA (Fig. 11) is a right angle, DC is perpendicular to
AB, and AB is perpendicular to DC.

65. The point (as C, Fig. 11) where a perpendicular meets another line is
called the foot of the perpendicular.

66. When the sides of an angle extend in opposite directions, so as to be
in the same straight line, the angle is called a straight angle.

A B

C

Fig. 12.

Thus, the angle formed at C (Fig. 12) with its sides CA and CB extending
in opposite directions from C is a straight angle.

67. Cor. A right angle is half a straight angle.



BOOK I. PLANE GEOMETRY. 12

A

Fig. 13.

A

D

O

Fig. 14.

68. An angle less than a right angle is called an acute angle; as, angle A
(Fig. 13).

69. An angle greater than a right angle and less than a straight angle is
called an obtuse angle; as, angle AOD (Fig. 14).

70. An angle greater than a straight angle and less than two straight angles
is called a reflex angle; as, angle DOA, indicated by the dotted line (Fig. 14).

71. Angles that are neither right nor straight angles are called oblique
angles; and intersecting lines that are not perpendicular to each other are
called oblique lines.
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EXTENSION OF THE MEANING OF ANGLES.

A

B

C

D

O
A′

B′

Fig. 15.

72. Suppose the straight line OC (Fig. 15) to move in the plane of the paper
from coincidence with OA, about the point O as a pivot, to the position OC;
then the line OC describes or generates the angle AOC, and the magnitude
of the angle AOC depends upon the amount of rotation of the line from the
position OA to the position OC.

If the rotating line moves from the position OA to the position OB, per-
pendicular to OA, it generates the right angle AOB; if it moves to the position
OD, it generates the obtuse angle AOD; if it moves to the position OA′, it
generates the straight angle AOA′; if it moves to the position OB′ it generates
the reflex angle AOB′, indicated by the dotted line; and if it moves to the
position OA again, it generates two straight angles. Hence,

73. The angular magnitude about a point in a plane is equal to two straight
angles, or four right angles; and the angular magnitude about a point on one
side of a straight line drawn through the point is equal to a straight angle, or
two right angles.

74. The whole angular magnitude about a point in a plane is called a
perigon; and two angles whose sum is a perigon are called conjugate angles.

Note. This extension of the meaning of angles is necessary in the applications
of Geometry, as in Trigonometry, Mechanics, etc.
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a b
c

d

Fig. 16.
B

C D

O

Fig. 17.
A B

D

O

Fig. 18.

75. When two angles have the same vertex, and the sides of the one are
prolongations of the sides of the other, they are called vertical angles; as,
angles a and b, c and d (Fig. 16).

76. Two angles are called complementary when their sum is equal to a
right angle; and each is called the complement of the other; as, angles DOB
and DOC (Fig. 17).

77. Two angles are called supplementary when their sum is equal to a
straight angle; and each is called the supplement of the other; as, angles DOB
and DOA (Fig. 18).

UNIT OF ANGLES.

78. By adopting a suitable unit for measuring angles we are able to express
the magnitudes of angles by numbers.

If we suppose OC (Fig. 15) to turn about O from coincidence with OA
until it makes one three hundred sixtieth of a revolution, it generates an angle
at O, which is taken as the unit for measuring angles. This unit is called a
degree.

The degree is subdivided into sixty equal parts, called minutes, and the
minute into sixty equal parts, called seconds.

Degrees, minutes, and seconds are denoted by symbols. Thus, 5 degrees
13 minutes 12 seconds is written 5◦ 13′ 12′′.

A right angle is generated when OC has made one fourth of a revolution
and contains 90◦; a straight angle, when OC has made half of a revolution
and contains 180◦; and a perigon, when OC has made a complete revolution
and contains 360◦.
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Note. The natural angular unit is one complete revolution. But this unit would
require us to express the values of most angles by fractions. The advantage of using
the degree as the unit consists in its convenient size, and in the fact that 360 is
divisible by so many different integral numbers.

AB

C

DE

F
G

H

Fig. 19.

79. By the method of superposition we are able to compare magnitudes of
the same kind. Suppose we have two angles, ABC and DEF (Fig. 19). Let
the side ED be placed on the side BA, so that the vertex E shall fall on B;
then, if the side EF falls on BC, the angle DEF equals the angle ABC; if
the side EF falls between BC and BA in the position shown by the dotted
line BG, the angle DEF is less than the angle ABC; but if the side EF falls
in the position shown by the dotted line BH, the angle DEF is greater than
the angle ABC.
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A
B

C

DE

F F

H

Fig. 20.
AB

C

D

M

P

Fig. 21.

80. If we have the angles ABC and DEF (Fig. 20), and place the vertex
E on B and the side ED on BC, so that the angle DEF takes the position
CBH, the angles DEF and ABC will together be equal to the angle ABH.

If the vertex E is placed on B, and the side ED on BA, so that the angle
DEF takes the position ABF , the angle FBC will be the difference between
the angles ABC and DEF .

If an angle is increased by its own magnitude two or more times in succes-
sion, the angle is multiplied by a number.

Thus, if the angles ABM , MBC, CBP , PBD (Fig. 21) are all equal, the
angle ABD is 4 times the angle ABM . Therefore,

Angles may be added and subtracted; they may also be multiplied by a num-
ber.
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PERPENDICULAR AND OBLIQUE LINES.

Proposition I. Theorem.

81. All straight angles are equal.

A B
C

D
E

F

Let the angles ACB and DEF be any two straight angles.

To prove that ∠ACB = ∠DEF .
Proof. Place the ∠ACB on the ∠DEF , so that the vertex C shall fall on the

vertex E, and the side CB on the side EF .

Then CA will fall on ED, § 47
(because ACB and DEF are straight lines).

∴ ∠ACB = ∠DEF . § 60
q.e.d.

82. Cor. 1. All right angles are equal. Ax. 7

83. Cor. 2. At a given point in a given line there can be but one perpen-
dicular to the line.

For, if there could be two ⊥s, we should have rt. ∠s of different magnitudes;
but this is impossible, § 82.

84. Cor. 3. The complements of the same angle or of equal angles are
equal. Ax. 3

85. Cor. 4. The supplements of the same angle or of equal angles are
equal. Ax. 3
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Note. The beginner must not forget that in Plane Geometry all the points of a
figure are in the same plane. Without this restriction in Cor. 2, an indefinite number
of perpendiculars can be erected at a given point in a given line.

Proposition II. Theorem.

86. If two adjacent angles have their exterior sides in a straight line, these
angles are supplementary.

A B

D

O

Let the exterior sides OA and OB of the adjacent angles AOD and
BOD be in the straight line AB.

To prove that ∠sAOD and BOD are supplementary.
Proof.

AOB is a straight line. Hyp.

∴ ∠AOB is a st. ∠. § 66
But

∠AOD + ∠BOD = the st. ∠AOB. Ax. 9

∴ the ∠sAOD and BOD are supplementary. § 77
q.e.d.

87. Def. Adjacent angles that are supplements of each other are called
supplementary-adjacent angles .

Since the angular magnitude about a point is neither increased nor dimin-
ished by the number of lines which radiate from the point, it follows that,

88. Cor. 1. The sum of all the angles about a point in a plane is equal to
a perigon, or two straight angles.

89. Cor. 2. The sum of all the angles about a point in a plane, on the
same side of a straight line passing through the point, is equal to a straight
angle, or two right angles.
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Proposition III. Theorem.

90. Conversely: If two adjacent angles are supplementary, their exterior
sides are in the same straight line.

A BC

F

O

Let the adjacent angles OCA and OCB be supplementary.

To prove that AC and CB are in the same straight line.
Proof. Suppose CF to be in the same line with AC.
Then

∠sOCA and OCF are supplementary, § 86
(if two adjacent angles have their exterior sides in a straight line, these angles

are supplementary).
But

∠sOCA and OCB are supplementary. Hyp.

∴ ∠sOCF and OCB have the same supplement.

∴ ∠OCF = ∠OCB. § 85

∴ CB and CF coincide. § 60

∴ AC and CB are in the same straight line. q.e.d.
Since Propositions II. and III. are true, their opposites are true. Hence, § 33

91. Cor. 1. If the exterior sides of two adjacent angles are not in a straight
line, these angles are not supplementary.

92. Cor. 2. If two adjacent angles are not supplementary, their exterior
sides are not in the same straight line.



BOOK I. PLANE GEOMETRY. 20

Proposition IV. Theorem.

93. If one straight line intersects another straight line, the vertical angles
are equal.

A

B

C

P

O

Let the lines OP and AB intersect at C.
To prove that

∠OCB = ∠ACP .
Proof.

∠OCA and ∠OCB are supplementary. § 86

∠OCA and ∠ACP are supplementary, § 86
(if two adjacent angles have their exterior sides in a straight line, these angles

are supplementary).

∴ ∠sOCB and ACP have the same supplement.

∴ ∠OCB = ∠ACP . § 85
In like manner,

∠ACO = ∠PCB. q.e.d.

94. Cor. If one of the four angles formed by the intersection of two straight
lines is a right angle, the other three angles are right angles.

Ex. 1. Find the complement and the supplement of an angle of 49◦.

Ex. 2. Find the number of degrees in an angle if it is double its comple-
ment; if it is one fourth of its complement.

Ex. 3. Find the number of degrees in an angle if it is double its supplement;
if it is one third of its supplement.
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Proposition V. Theorem

95. Two straight lines drawn from a point in a perpendicular to a given line,
cutting off on the given line equal segments from the foot of the perpendicular,
are equal and make equal angles with the perpendicular.

A B

C

E F K

Let CF be a perpendicular to the line AB, and CE and CK two
straight lines cutting off on AB equal segments FE and FK from F .

To prove that CE = CK; and ∠FCE = ∠FCK.
Proof. Fold over CFA, on CF as an axis, until it falls on the plane at the right

of CF .

FA will fall along FB,
(since ∠CFA = ∠CFB, each being a rt. ∠, by hyp.).

Point E will fall on point K,
(since FE = FK, by hyp.).

∴ CE = CK, § 60
(their extremities being the same points);

and ∠FCE = ∠FCK, § 60
(since their vertices coincide, and their sides coincide, each with each).

q.e.d.

Ex. 4. Find the number of degrees in the angle included by the hands of
a clock at 1 o’clock. 3 o’clock. 4 o’clock. 6 o’clock.
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Proposition VI. Theorem.

96. Only one perpendicular can be drawn to a given line from a given
external point.

A
BCD

P

P ′

Let AB be the given line, P the given external point, PC a perpen-
dicular to AB from P , and PD any other line from P to AB.

To prove that
PD is not ⊥ to AB.

Proof. Produce PC to P ′, making CP ′ equal to PC.

Draw DP ′.

By construction, PCP ′ is a straight line.

∴ PDP ′ is not a straight line, § 46
(only one straight line can be drawn from one point to another).

Hence, ∠PDP ′ is not a straight angle.

Since PC is ⊥ to DC, and PC = CP ′,

AC is ⊥ to PP ′ at its middle point.

∴ ∠PDC = ∠P ′DC, § 95
(two straight lines from a point in a ⊥ to a line, cutting off on the line equal

segments from the foot of the ⊥, make equal ∠s with the ⊥)

Since ∠PDP ′ is not a straight angle,

∠PDC, the half of ∠PDP ′, is not a right angle.

∴ PD is not ⊥ to AB. q.e.d.
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Proposition VII. Theorem.

97. The perpendicular is the shortest line that can be drawn to a straight
line from an external point.

A
BCD

P

P ′

Let AB be the given straight line, P the given point, PC the perpen-
dicular, and PD any other line drawn from P to AB.

To prove that
PC < PD.

Proof. Produce PC to P ′, making CP ′ = PC.

Draw DP ′.
Then

PD = DP ′, § 95
(two straight lines drawn from a point in a ⊥ to a line, cutting off on the line

equal segments from the foot of the ⊥, are equal).

∴ PD +DP ′ = 2PD,
and

PC + CP ′ = 2PC. Const.
But

PC + CP ′ < PD +DP ′. § 49

∴ 2PC < 2PD.

∴ PC < PD. Ax. 7
q.e.d.

98. Cor. The shortest line that can be drawn from a point to a given line
is perpendicular to the given line.
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99. Def. The distance of a point from a line is the length of the perpen-
dicular from the point to the line.

Proposition VIII. Theorem.

100. The sum of two lines drawn from a point to the extremities of a
straight line is greater than the sum of two other lines similarly drawn, but
included by them.

A B

C

E

O

Let CA and CB be two lines drawn from the point C to the extrem-
ities of the straight line AB. Let OA and OB be two lines similarly
drawn, but included by CA and CB.

To prove that
CA+ CB > OA+OB.

Proof. Produce AO to meet the line CB at E.
Then

CA+ CE > OA+OE,
and

BE +OE > OB, § 49
(a straight line is the shortest line from one point to another).

Add these inequalities, and we have

CA+ CE +BE +OE > OA+OE +OB. Ax. 4

Substitute for CE +BE its equal CB, then

CA+ CB +OE > OA+OE +OB.

Take away OE from each side of the inequality.

CA+ CB > OA+OB. Ax. 5
q.e.d.
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Proposition IX. Theorem.

101. Of two straight lines drawn from the same point in a perpendicular
to a given line, cutting off on the line unequal segments from the foot of the
perpendicular, the more remote is the greater.

A BC

D

E F G

O

Let OC be perpendicular to AB, OG and OE two straight lines to
AB, and CE greater than CG.

To prove that
OE > OG.

Proof. Take CF equal to CG, and draw OF .
Then

OF = OG, § 95
(two straight lines drawn from a point in a ⊥ to a line, cutting off on the line

equal segments from the foot of the ⊥, are equal).

Produce OC to D, making CD = OC.

Draw ED and FD.
Then

OE = ED, and OF = FD. § 95
But

OE + ED > OF + FD, § 100

∴ 2OE > 2OF , OE > OF , and OE > OG. q.e.d.

102. Cor. Only two equal straight lines can be drawn from a point to a
straight line; and of two unequal lines, the greater cuts off on the line the
greater segment from the foot of the perpendicular.
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PARALLEL LINES.

103. Def. Two parallel lines are lines that lie in the same plane and
cannot meet however far they are produced.

Proposition X. Theorem.

104. Two straight lines in the same plane perpendicular to the same straight
line are parallel.

A B

C D

Let AB and CD be perpendicular to AC.

To prove that AB and CD are parallel.
Proof. If AB and CD are not parallel, they will meet if sufficiently prolonged;

and we shall have two perpendicular lines from their point of meeting to the same
straight line; but this is impossible, § 96

(only one perpendicular can be drawn to a given line from a given external
point).

∴ AB and CD are parallel. q.e.d.

105. Axiom. Through a given point only one straight line can be drawn
parallel to a given straight line.

106. Cor. Two straight lines in the same plane parallel to a third straight
line are parallel to each other.

For if they could meet, we should have two straight lines from the point of
meeting parallel to a straight line; but this is impossible. § 105
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Proposition XI. Theorem.

107. If a straight line is perpendicular to one of two parallel lines, it is
perpendicular to the other also.

A B

CE F

H

K

M

N

O

Let AB and EF be two parallel lines, and let HK be perpendicular
to AB, and cut EF at C.

To prove that
HK is ⊥ to EF .

Proof. Suppose MN drawn through C ⊥ to HK.
Then

MN is ‖ to AB. § 104
But

EF is ‖ to AB. Hyp.

∴ EF coincides with MN . § 105
But

MN is ⊥ to HK. Const.

∴ EF is ⊥ to HK,
that is,

HK is ⊥ to EF . q.e.d.

108. Def. A straight line that cuts two or more straight lines is called a
transversal of those lines.
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A B

C

D

E

F

a
b c
d

e
f g

h

109. If the transversal EF cuts AB and CD, the angles a, d, g, f are
called interior angles; b, c, h, e are called exterior angles.

The angles d and f , and a and g, are called alternate-interior angles; the
angles b and h, and c and e, are called alternate-exterior angles.

The angles b and f , c and g, e and a, h and d, are called exterior-interior
angles.
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Proposition XII. Theorem.

110. If two parallel lines are cut by a transversal, the alternate-interior
angles are equal.

A B

C D

E F

G H

O

Let EF and GH be two parallel lines cut by the transversal BC.
To prove that

∠EBC = ∠BCH.
Proof. Through O, the middle point of BC, suppose AD drawn ⊥ to GH.
Then

AD is likewise ⊥ to EF , § 107
(a straight line ⊥ to one of two ‖s is ⊥ to the other),

that is,
CD and BA are both ⊥ to AD.

Apply the figure COD to the figure BOA, so that OD shall fall along OA.
Then

OC will fall along OB, § 93
(since ∠COD = ∠BOA, being vertical ∠s);

and
C will fall on B,

(since OC = OB, by construction).
Then

the ⊥ CD will fall along the ⊥ BA, § 96
(only one ⊥ can be drawn to a given line from a given external point).

∴ ∠OCD coincides with ∠OBA, and is equal to it, § 60
(two angles are equal, if their vertices coincide and their sides coincide, each

with each).
q.e.d.
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Proposition XIII. Theorem.

111. Conversely: When two straight lines in the same plane are cut by
a transversal, if the alternate-interior angles are equal, the two straight lines
are parallel.

A B

C D

E

F

H

K

M

N

Let EF cut the straight lines AB and CD in the points H and K,
and let the angles AHK and HKD be equal.

To prove that
AB is ‖ to CD.

Proof. Suppose MN drawn through H ‖ to CD.
Then

∠MHK = ∠HKD, § 110
(being alt.-int. ∠s of ‖ lines).

But
∠AHK = ∠HKD. Hyp.

∴ ∠MHK = ∠AHK. Ax. 1

∴ MN and AB coincide. § 60
But

MN is ‖ to CD. Const.

∴ AB, which coincides with MN , is ‖ to CD. q.e.d.

Ex. 5. Find the complement and the supplement of an angle that contains
37◦ 53′ 49′′.

Ex. 6. If the complement of an angle is one third of its supplement, how
many degrees does the angle contain?
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Proposition XIV. Theorem.

112. If two parallel lines are cut by a transversal, the exterior-interior
angles are equal.

A B

C D

E

F

H

K

Let AB and CD be two parallel lines cut by the transversal EF , in
the points H and K.

To prove that
∠EHB = ∠HKD.

Proof.
∠EHB = ∠AHK, § 93

(being vertical ∠s).

∠AHK = ∠HKD, § 110
(being alt.-int. ∠s of ‖ lines).

∴ ∠EHB = ∠HKD. Ax. 1
In like manner

∠EHA = ∠HKC. q.e.d.

113. Cor. The alternate-exterior angles EHB and CKF , and also AHE
and DKF , are equal.
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Proposition XV. Theorem.

114. Conversely: When two straight lines in a plane are cut by a
transversal, if the exterior-interior angles are equal, these two straight lines
are parallel.

(Proof similar to that in § 111.)

Proposition XVI. Theorem.

115. If two parallel lines are cut by a transversal, the two interior angles
on the same side of the transversal are supplementary.

A B

C D

E

F

H

K

Let AB and CD be two parallel lines cut by the transversal EF in
the points H and K.

To prove that ∠sBHK and HKD are supplementary.
Proof.

∠EHB + ∠BHK = a st. ∠, § 86
(being sup.-adj. ∠s).

But
∠EHB = ∠HKD, § 112

(being ext.-int. ∠s of ‖ lines).

∴ ∠BHK + ∠HKD = a st. ∠.

∴ ∠sBHK and HKD are supplementary. § 77
q.e.d.
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Proposition XVII. Theorem.

116. Conversely: When two straight lines in a plane are cut by a
transversal, if two interior angles on the same side of the transversal are sup-
plementary, the two straight lines are parallel.

(Proof similar to that in § 111.)

TRIANGLES.

117. A triangle is a portion of a plane bounded by three straight lines;
as, ABC (Fig. 1).

A

B CD
Fig. 1.

A

B C D
Fig. 2.

The bounding lines are called the sides of the triangle, and their sum is
called its perimeter; the angles included by the sides are called the angles
of the triangle, and the vertices of these angles, the vertices of the triangle.

118. Adjacent angles of a rectilinear figure are two angles that have one
side of the figure common; as, angles A and B (Fig. 2).

119. An exterior angle of a triangle is an angle included by one side and
another side produced; as, ACD (Fig. 2). The interior angle ACB is adja-
cent to the exterior angle; the interior angles, A and B, are called opposite
interior angles.
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Scalene. Isosceles. Equilateral.

120. A triangle is called a scalene triangle when no two of its sides are
equal; an isosceles triangle, when two of its sides are equal; an equilateral
triangle, when its three sides are equal.

Right. Obtuse. Acute. Equiangular.

121. A triangle is called a right triangle, when one of its angles is a
right angle; an obtuse triangle, when one of its angles is an obtuse angle; an
acute triangle, when all three of its angles are acute angles; an equiangular
triangle, when its three angles are equal.

122. In a right triangle, the side opposite the right angle is called the
hypotenuse, and the other two sides the legs.

123. The side on which a triangle is supposed to stand is called the base of
the triangle. In the isosceles triangle, the equal sides are called the legs, and
the other side, the base; in other triangles, any one of the sides may be taken
as the base.

124. The angle opposite the base of a triangle is called the vertical angle,
and its vertex, the vertex of the triangle.

125. The altitude of a triangle is the perpendicular from the vertex to
the base, or to the base produced; as, AD (Fig. 1).
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126. The three perpendiculars from the vertices of a triangle to the opposite
sides (produced if necessary) are called the altitudes of the triangle; the three
bisectors of the angles are called the bisectors of the triangle; and the three
lines from the vertices to the middle points of the opposite sides are called the
medians of the triangle.

127. If two triangles have the angles of the one equal, respectively, to the
angles of the other, the equal angles are called homologous angles, and the
sides opposite the equal angles are called homologous sides.

128. Two triangles are equal in all respects if they can be made to coincide
(§ 60). The homologous sides of equal triangles are equal, and the homologous
angles are equal.
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Proposition XVIII. Theorem.

129. The sum of the three angles of a triangle is equal to two right angles.

A

B

C

E

F

Let A, B, and BCA be the angles of the triangle ABC.

To prove that ∠A+ ∠B + ∠BCA = 2 rt. ∠s.
Proof. Suppose CE drawn ‖ to AS, and prolong AC to F .
Then

∠ECF + ∠ECB + ∠BCA = 2 rt. ∠s, § 89
(the sum of all the ∠s about a point on the same side of a straight line passing

through the point is equal to 2 rt. ∠s).
But

∠A = ∠ECF , § 112
(being ext.-int. ∠s of the ‖ lines AB and CE),

and
∠B = ∠BCE, § 110

(being alt.-int. ∠s of the ‖ lines AB and CE).
Put for the ∠sECF and BCE their equals, the ∠sA and B.
Then

∠A+ ∠B + ∠BCA = 2 rt. ∠s. q.e.d.

130. Cor. 1. The sum of two angles of a triangle is less than two right
angles.

131. Cor. 2. If the sum of two angles of a triangle is taken from two right
angles, the remainder is equal to the third angle.

132. Cor. 3. If two triangles have two angles of the one equal to two angles
of the other, the third angles are equal.

133. Cor. 4. If two right triangles have an acute angle of the one equal
to an acute angle of the other, the other acute angles are equal.
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134. Cor. 5. In a triangle there can be but one right angle, or one obtuse
angle.

135. Cor. 6. In a right triangle the two acute angles are together equal to
one right angle, or 90◦.

136. Cor. 7. In an equiangular triangle, each angle is one third of two
right angles, or 60◦.

137. Cor. 8. An exterior angle of a triangle is equal to the sum of the two
opposite interior angles, and therefore greater than either of them.

Proposition XIX. Theorem.

138. The sum of two sides of a triangle is greater than the third side, and
their difference is less than the third side.

A

B

C

In the triangle ABC, let AC be the longest side.

To prove that AB +BC > AC, and AC −BC < AB.
Proof.

AB +BC > AC, § 49
(a straight line is the shortest line from one point to another).

Take away BC from both sides.
Then

AB > AC −BC, Ax. 5
or

AC −BC < AB. q.e.d.
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Proposition XX. Theorem.

139. Two triangles are equal if two angles and the included side of the one
are equal, respectively, to two angles and the included side of the other.

A B

C

D E

F

In the triangles ABC, DEF , let the angle A be equal to the angle D,
B to E, and the side AB to DE.

To prove that
4ABC = 4DEF .

Proof. Apply the 4ABC to the 4DEF so that AB shall coincide with its
equal, DE.

Then
AC will fall along DF , and BC along EF ,

(for ∠A = ∠D, and ∠B = ∠E, by hyp.).

∴ C will fall on F , § 48
(two straight lines can intersect in only one point).

∴ the two 4s coincide, and are equal. § 60
q.e.d.

140. Cor. 1. Two triangles are equal if a side and any two angles of the
one are equal to the homologous side and two angles of the other. § 132

141. Cor. 2. Two right triangles are equal if the hypotenuse and an acute
angle of the one are equal, respectively, to the hypotenuse and an acute angle
of the other. § 133

142. Cor. 3. Two right triangles are equal if a leg and an acute angle of
the one are equal, respectively, to a leg and the homologous acute angle of the
other. § 133
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Proposition XXI. Theorem.

143. Two triangles are equal if two sides and the included angle of the one
are equal, respectively, to two sides and the included angle of the other.

A B

C

D E

F

In the triangles ABC and DEF , let AB be equal to DE, AC to DF ,
and the angle A to the angle D.

To prove that
4ABC = 4DEF .

Proof. Apply the 4ABC to the 4DEF so that AB shall coincide with its
equal, DE.

Then AC will fall along DF ,
(for ∠A = ∠D, by hyp.);

and C will fall on F ,
(for AC = DF , by hyp.).

∴ CB = FE,
(their extremities being the same points).

∴ the two 4s coincide, and are equal. q.e.d.

144. Cor. Two right triangles are equal if their legs are equal, each to
each.

Note. In § 139 we have given two angles and the included side, in § 143 two
sides and the included angle; hence, by interchanging the words sides and angles,
either theorem is changed to the other. This is called the Principle of Duality , or
the Principle of Reciprocity . The reciprocal of a theorem is not always true, just as
the converse of a theorem is not always true.



BOOK I. PLANE GEOMETRY. 40

Proposition XXII. Theorem.

145. In an isosceles triangle the angles opposite the equal sides are equal.
A

B CD

Let ABC be an isosceles triangle, having AB and AC equal.
To prove that

∠B = ∠C.
Proof. Suppose AD drawn so as to bisect the ∠BAC.

In the 4sADB and ADC,

AB = AC, Hyp.

AD = AD, Iden.

and ∠BAD = ∠CAD. Const.

∴ 4ADB = 4ADC, § 143
(two 4s are equal if two sides and the included ∠ of the one are equal,

respectively, to two sides and the included ∠ of the other).

∴ ∠B = ∠C, § 128
(being homologous angles of equal triangles).

q.e.d.

146. Cor. An equilateral triangle is equiangular, and each angle is two
thirds of a right angle.

Ex. 7. If the equal sides of an isosceles triangle are produced, the angles
on the other side of the base are equal.
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Proposition XXIII. Theorem.

147. If two angles of a triangle are equal, the sides opposite the equal angles
are equal, and the triangle is isosceles.

A

B CD

In the triangle ABC, let the angle B be equal to the angle C.
To prove that

AB = AC.
Proof.

Suppose AD drawn ⊥ to BC.
In the rt. 4sADB and ADC,

AD = AD, Iden.

and ∠B = ∠C. Hyp.

∴ rt. 4ADB = rt. 4ADC, § 142
(having a leg and an acute ∠ of the one equal, respectively, to a leg and the

homologous acute ∠ of the other).

∴ AB = AC, § 128
(being homologous sides of equal 4s).

q.e.d.

148. Cor. 1. An equiangular triangle is also equilateral.

149. Cor. 2. The perpendicular from the vertex to the base of an isosceles
triangle bisects the base, and bisects the vertical angle of the triangle.
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Proposition XXIV. Theorem.

150. Two triangles are equal if the three sides of the one are equal, respec-
tively, to the three sides of the other.

A

B

C

B′

A′

B′

C′

In the triangles ABC and A′B′C′, let AB be equal to A′B′, AC to
A′C′, BC to B′C′.

To prove that
4ABC = 4A′B′C ′.

Proof. Place 4A′B′C ′ in the position 4AB′C having its greatest side 4A′C ′
in coincidence with its equal 4AC, and its vertex at B′, opposite B; and draw BB′.

Since
AB = AB′ Hyp.

∠ABB′ = ∠AB′B § 145
(in an isosceles 4 the ∠s opposite the equal sides are equal).

Since
CB = CB′, Hyp.

∠CBB′ = ∠CB′B. § 145

∴ ∠ABB′ + ∠CBB′ = ∠AB′B + ∠CB′B. Ax. 2
Hence,

∠ABC = ∠AB′C.

∴ 4ABC = 4AB′C, § 143
(two 4s are equal if two sides and the included ∠ of the one are equal,

respectively, to two sides and the included ∠ of the other).

∴ 4ABC = 4A′B′C ′. q.e.d.
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Proposition XXV. Theorem.

151. Two right triangles are equal if a leg and the hypotenuse of the one
are equal, respectively, to a leg and the hypotenuse of the other.

A

BC C

A′

B′ C′

A′

B′ C′

In the right triangles ABC and A′B′C′, let AB be equal to A′B′, and
AC to A′C′.

To prove that
4ABC = 4A′B′C ′.

Proof. Apply the 4ABC to the 4A′B′C ′, so that AB shall coincide with A′B′,
A falling on A′, B on B′, and C and C ′ on opposite sides of A′B′.

Then
BC will fall along C ′B′ produced,

(for ∠ABC = ∠A′B′C ′, each being a rt. ∠.).
Since

AC = A′C ′, Hyp.

the 4A′CC ′ is an isosceles triangle. § 120

∴ ∠C = ∠C ′, § 145
(∠s opposite the equal sides of an isosceles 4 are equal).

∴ 4sABC and A′B′C ′ are equal, § 141
(two right 4s are equal if they have the hypotenuse and an acute ∠ of, the one

equal to the hypotenuse and an acute ∠ of the other).
q.e.d.

Ex. 8. How many degrees are there in each of the acute angles of an
isosceles right triangle?
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Proposition XXVI. Theorem.

152. If two sides of a triangle are unequal, the angles opposite are unequal,
and the greater angle is opposite the greater side.

A

BC

E

In the triangle ACB, let AB be greater than AC.

To prove that ∠ACB is greater than ∠B.
Proof.

On AB take AE equal to AC.

Draw EC.

∠AEC = ∠ACE § 145
(being ∠s opposite equal sides).

But
∠AEC is greater than ∠B § 137

(an exterior ∠ of a 4 is greater than either opposite interior ∠),
and

∠ACB is greater than ∠ACE. Ax. 8

Substitute for ∠ACE its equal ∠AEC,
then

∠ACB is greater than ∠AEC.
Since ∠AEC is greater than ∠B, and ∠ACB is greater than ∠AEC,

∠ACB is greater than ∠B. q.e.d.

Ex. 9. If any angle of an isosceles triangle is equal to two thirds of a right
angle (60◦), what is the value of each of the two remaining angles?

Ex. 10. One angle of a triangle is 34◦. Find the other angles, if one of
them is twice the other.
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Proposition XXVII. Theorem.

153. Reciprocally: If two angles of a triangle are unequal, the sides
opposite are unequal, and the greater side is opposite the greater angle.

A

BC

In the triangle ACB, let the angle C be greater than the angle B.

To prove that AB > AC.
Proof.

Now AB = AC, or < AC, or > AC.

But AB is not equal to AC;

for then the ∠C would be equal to the ∠B, § 145
(being ∠s opposite equal sides).

And AB is not less than AC;

for then the ∠C would be less than the ∠B. § 152
Both these conclusions are contrary to the hypothesis that the ∠C is greater

than the ∠B.

Hence, AB cannot be equal to AC or less than AC.

∴ AB > AC. q.e.d.

Ex. 11. If the vertical angle of an isosceles triangle is equal to 30◦, find
the exterior angle included by a side and the base produced.

Ex. 12. If the vertical angle of an isosceles triangle is equal to 36◦, find
the angle included by the bisectors of the base angles.
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Proposition XXVIII. Theorem.

154. If two triangles have two sides of the one equal, respectively, to two
sides of the other, but the included angle of the first triangle greater than the
included angle of the second, then the third side of the first is greater than the
third side of the second.

A

B

E

A

B

C

E

F A

B

C

In the triangles ABC and ABE, let AB be equal to AB, BC to BE;
but let the angle ABC be greater than the angle ABE.

To prove that
AC > AE.

Proof. Place the 4s so that AB of the one shall fall on AB of the other, and
BE within the ∠ABC.

Suppose BF drawn to bisect the ∠EBC, and draw EF .
The 4sEBF and CBF are equal. § 143
For

BF = BF , Iden.

BE = BC, Hyp.
and

∠EBF = ∠CBF . Const.

∴ EF = FC. § 128
Now

AF + FE > AE. § 138

∴ AF + FC > AE.

∴ AC > AE. q.e.d.
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Proposition XXIX. Theorem.

155. Conversely: If two sides of a triangle are equal, respectively, to two
sides of another, but the third side of the first triangle is greater than the third
side of the second, then the angle opposite the third side of the first triangle is
greater than the angle opposite the third side of the second.

A

B C

D

E F

In the triangles ABC and DEF , let AB be equal to DE, AC to DF ;
but let BC be greater than EF.

To prove that the ∠A is greater than the ∠D.
Proof. Now the ∠A is equal to the ∠D, or less than the ∠D, or greater than

the ∠D.

But the ∠A is not equal to the ∠D;

for then the 4ABC would be equal to the 4DEF , § 143
(having two sides and the included ∠ of the one equal, respectively, to two sides

and the included ∠ of the other),

and BC would be equal to EF .
And the ∠A is not less than the ∠D, for then BC would be less than EF . § 154
Both these conclusions are contrary to the hypothesis that BC is greater than

EF .
Since the ∠A is not equal to the ∠D or less than the ∠D,

the ∠A is greater than the ∠D. q.e.d.
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LOCI OF POINTS.

156. If it is required to find a point which shall fulfil a single geometric
condition, the point may have an unlimited number of positions. If, however,
all the points are in the same plane, the required point will be confined to a
particular line, or group of lines.

A point in a plane at a given distance from a fixed straight line of indefinite
length in that plane, is evidently in one of two straight lines, so drawn as to
be everywhere at the given distance from the fixed line, one on one side of the
fixed line, and the other on the other side of it.

A point in a plane equidistant from two parallel lines in that plane is
evidently in a straight line drawn between the two given parallel lines and
everywhere equidistant from them.

157. All points in a plane that satisfy a single geometrical condition lie, in
general, in a line or group of lines; and this line or group of lines is called the
locus of the points that satisfy the given condition.

158. To prove completely that a certain line is the locus of points that fulfil
a given condition, it is necessary to prove

1. Any point in the line satisfies the given condition; and any point not in
the line does not satisfy the given condition.

Or, to prove

2. Any point that satisfies the given condition lies in the line; and any
point in the line satisfies the given condition.

Note. The word locus (pronounced lo´kus) is a Latin word that signifies place.
The plural of locus is loci (pronounced lo´si).

159. Def. A line which bisects a given line and is perpendicular to it is
called the perpendicular bisector of the line.
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Proposition XXX. Theorem.

160. The perpendicular bisector of a given line is the locus of points equidis-
tant from the extremities of the line.

A B

C

D

O

P

R

Let PR be the perpendicular bisector of the line AB, O any point in
PR, and C any point not in PR.

Draw OA and OB, CA and CB.
To prove OA and OB equal, CA and CB unequal.
Proof.

1. 4OPA = 4OPB, § 144

for PA = PB by hypothesis, and OP is common,
(two right 4s are equal if their legs are equal, each to each).

∴ OA = OB. § 128
2. Since C is not in the ⊥, CA or CB will cut the ⊥.

Let CA cut the ⊥ at D, and draw DB.
Then, by the first part of the proof DA = DB.
But

CB < CD +DB. § 138

∴ CB < CD +DA.
That is,

CB < CA.
∴ PR is the locus of points equidistant from A and B. § 158,1

q.e.d.

161. Cor. Two points each equidistant from the extremities of a line de-
termine the perpendicular bisector of the line.
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Proposition XXXI. Theorem.

162. The bisector of a given angle is the locus of points equidistant from
the sides of the angle.

A

B

C

D
F

G

O

P

Q

Let O be any point equidistant from the sides of the angle PAQ.

To prove that O is in the bisector of the ∠PAQ.
Proof.

Draw AO.

Suppose OF drawn ⊥ to AP and OG ⊥ to AQ.

In the rt. 4sAFO and AGO,

AO = AO, Iden.

OF = OG, Hyp.

∴ 4AFO = 4AGO. § 151

∴ ∠FAO = ∠GAO. § 128

∴ O is in the bisector of the ∠PAQ.
Let D be any point in the bisector of the angle PAQ.

To prove that D is equidistant from AP and AQ.
Proof.

Suppose DB drawn ⊥ to AP and DC ⊥ to AQ.

In the rt. 4sABD and ACD,

AD = AD, Iden.

∠DAB = ∠DAC, Hyp.

∴ 4ABD = 4ACD. § 141

∴ DB = DC. § 128

∴ D is equidistant from AP and AQ.
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∴ the bisector of the ∠PAQ is the locus of points that are equidistant from its
sides. § 158, 2

QUADRILATERALS.

163. A quadrilateral is a portion of a plane bounded by four straight lines.
The bounding lines are the sides, the angles formed by these sides are the
angles, and the vertices of these angles are the vertices, of the quadrilateral.

164. A trapezium is a quadrilateral which has no two sides parallel.

165. A trapezoid is a quadrilateral which has two sides, and only two
sides, parallel.

166. A parallelogram is a quadrilateral which has its opposite sides par-
allel.

Trapezium. Trapezoid. Parallelogram.

167. A rectangle is a parallelogram which has its angles right angles.

168. A square is a rectangle which has its sides equal.

169. A rhomboid is a parallelogram which has its angles oblique angles.

170. A rhombus is a rhomboid which has its sides equal.

Square. Rectangle. Rhombus. Rhomboid.

171. The side upon which a parallelogram stands, and the opposite side,
are called its lower and upper bases .
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172. Two parallel sides of a trapezoid are called its bases, the other two
sides its legs, and the line joining the middle points of the legs is called the
median of the trapezoid.

A

B C

E

P

Q

173. A trapezoid is called an isosceles trapezoid if its legs are equal.

174. The altitude of a parallelogram or trapezoid is the perpendicular
distance between its bases, as PQ.

175. A diagonal of a quadrilateral is a straight line joining two opposite
vertices, as AC.
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Proposition XXXII. Theorem.

176. Two angles whose sides are parallel, each to each, are either equal or
supplementary.

A

B
C

D

H

M N

a

c

x

a′c′

Let BA be parallel to HD, and BC be parallel to MN .

To prove ∠sa, a′ and c equal; a and c′ supplementary.
Proof.

Let HD and BC prolonged intersect at x.
Then

∠a = ∠x, and ∠a′ = ∠x. § 112

∴ ∠a = ∠a′. Ax. 1
Also

∠c = ∠a′ (§ 93). ∴ ∠c = ∠a. Ax. 1
Now

∠a′ and ∠c′ are supplementary. § 89

Put ∠a for its equal, ∠a′.
Then

∠a and ∠c′ are supplementary. q.e.d.

177. Cor. The opposite angles of a parallelogram are equal, and the adja-
cent angles are supplementary.
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Proposition XXXIII. Theorem.

178. The opposite sides of a parallelogram are equal.

A

B C

E

Let the figure ABCE be a parallelogram.

To prove BC = AE, and AB = EC.
Proof.

Draw the diagonal AC.

4ABC = 4CEA. § 139

For AC is common,

∠BAC = ∠ACE, and ∠ACB = ∠CAE, § 110
(being alt-int. ∠s of ‖ lines).

∴ BC = AE, and AB = CE, § 128
(being homologous sides of equal 4s).

q.e.d.

179. Cor. 1. A diagonal divides a parallelogram into two equal triangles.

180. Cor. 2. Parallel lines comprehended between parallel lines are equal.
A B

CD

181. Cor. 3. Two parallel lines are everywhere equally distant.

For if AB and DC are parallel, ⊥s dropped from any points in AB to DC,
are equal, § 180. Hence, all points in AB are equidistant from DC.



QUADRILATERALS. 55

Proposition XXXIV. Theorem.

182. If the opposite sides of a quadrilateral are equal, the figure is a paral-
lelogram.

A

B C

E

Let the figure ABCE be a quadrilateral, having BC equal to AE and
AB to EC.

To prove that the figure ABCE is a / /.
Proof.

Draw the diagonal AC.
In the 4sABC and CEA,

BC = AE, Hyp.

AB = CE, Hyp.
and

AC = AC, Iden.

∴ 4ABC = 4CEA, § 150
(having three sides of the one equal, respectively, to the three sides of the other).

∴ ∠ACB = ∠CAE, § 128
and

∠BAC = ∠ACE,
(being homologous ∠s of equal 4s).

∴ BC is ‖ to AE,
and

AB is ‖ to EC, § 111
(two lines in the same plane cut by a transversal are parallel, if the alt.-int. ∠s

are equal).

∴ the figure ACBE is a / /, § 166
(having its opposite sides parallel). q.e.d.
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Proposition XXXV. Theorem.

183. If two sides of a quadrilateral are equal and parallel, then the other
two sides are equal and parallel, and the figure is a parallelogram.

A

B C

E

Let the figure ABCE be a quadrilateral, having the side AE equal
and parallel to BC.

To prove that AB is equal and parallel to EC.
Proof.

Draw AC.
The 4sABC and CEA are equal, § 143

(having two sides and the included ∠ of each equal, respectively).
For

AC is common,

BC = AE Hyp.
and

∠BCA = ∠CAE, § 110
(being alt.-int. ∠s of ‖ lines).

∴ AB = EC,
and

∠BAC = ∠ACE, § 128
(being homologous parts of equal 4s).

∴ AB is ‖ to EC, § 111
(two lines are ‖, if the alt.-int. ∠s are equal).

∴ the figure ABCE is a / /, § 166
(the opposite sides being parallel).

q.e.d.
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Proposition XXXVI. Theorem.

184. The diagonals of a parallelogram bisect each other.

A

B C

E

O

Let the figure ABCE be a parallelogram, and let the diagonals AC
and BE cut each other at O.

To prove that AO = OC, and BO = OE.
Proof. In the 4sAOE and COB,

AE = BC, § 178
(being opposite sides of a / /).

∠OAE = ∠OCB, § 110

and ∠OEA = ∠OBC,
(being alt.-int. ∠s of ‖ lines).

∴ 4AOE = 4COB, § 139
(having two ∠s and the included side of the one equal, respectively, to two ∠s

and the included side of the other).

∴ AO = OC, and BO = OE, § 128
(being homologous sides of equal 4s).

q.e.d.

Ex. 13. The median from the vertex to the base of an isosceles triangle
is perpendicular to the base, and bisects the vertical angle.

Ex. 14. If two straight lines are cut by a transversal so that the alternate-
exterior angles are equal, the two straight lines are parallel.

Ex. 15. If two parallel lines are cut by a transversal, the two exterior
angles on the same side of the transversal are supplementary.
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Ex. 16. If two straight lines are cut by a transversal so as to make the
exterior angles on the same side of the transversal supplementary, the two lines
are parallel.

Proposition XXXVII. Theorem.

185. Two parallelograms are equal, if two sides and the included angle of
the one are equal, respectively, to two sides and the included angle of the other.

A

B C

D A′

B′ C′

D′

In the parallelograms ABCD and A′B′C′D′, let AB be equal to A′B′,
AD to A′D′, and angle A to A′.

To prove that the / /s are equal.
Proof. Place the / / ABCD on the / / A′B′C ′D′, so that AD will fall on and

coincide with its equal, A′D′.

Then AB will fall on A′B′, and B on B′;
(for ∠A = ∠A′, and AB = A′B′, by hyp.)

Now, BC and B′C ′ are both ‖ to A′D′ and drawn through B′.

∴ BC and B′C ′ coincide, § 105
(through a given point only one line can be drawn ‖ to a given line).

Also DC and D′C ′ are ‖ to A′B′ and drawn through D′.

∴ DC and D′C ′ coincide. § 105

∴ C falls on C ′, § 48
(two lines can intersect in only one point),

∴ the two / /s coincide, and are equal. q.e.d.

186. Cor. Two rectangles having equal bases and altitudes are equal.



QUADRILATERALS. 59

Proposition XXXVIII. Theorem.

187. If three or more parallels intercept equal parts on one transversal, they
intercept equal parts on every transversal.

A

B

C

D

E

F

G

H

K

M

P

Let the parallels AH, BK, CM , DP intercept equal parts HK, KM ,
MP on the transversal HP .

To prove that they intercept equal parts AB, BC, CD on the transversal AD.
Proof. Suppose AH, BF , and CG drawn ‖ to HP .

∠s AEB, BFC, etc. = ∠s HKE, KMF , etc., respectively. § 112

But ∠s HKE, KMF , etc. are equal. § 112

∴ ∠s AEB, BFC, etc. are equal. Ax. 1

Also ∠s BAE, CBF , etc. are equal. § 112

Now AE = HK, BF = KM , CG = MP , § 180
(parallels comprehended between parallels are equal).

∴ AE = BF = CG. Ax. 1

∴ 4ABE = 4BCF = 4CDG, § 139
(having two ∠s and the included side of each respectively equal).

∴ AB = BC = CD. § 128
q.e.d.
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A

B C

D E

F

188. Cor. 1. If a line is parallel to the base of a triangle and bisects one
side, it bisects the other side also.

Let DE be ‖ to BC and bisect AB. Suppose a line is drawn through A ‖
to BC. Then this line is ‖ to DE, by § 106. The three parallels by hypothesis
intercept equal parts on the transversal AB, and therefore, by § 187, they
intercept equal parts on the transversal AC; that is, the line DE bisects AC.

189. Cor. 2. The line which joins the middle points of two sides of a
triangle is parallel to the third side, and is equal to half the third side.

A line drawn through D, the middle point of AB, ‖ to BC, passes through
E, the middle point of AC, by § 188. Therefore the line joining D and E
coincides with this parallel and is ‖ to BC. Also, since EF drawn ‖ to AB
bisects AC, it bisects BC, by § 188; that is, BF = FC = 1

2
BC. But BDEF

is a / / by § 166, and therefore DE = BF = 1
2
BC.

A B

CD

E
F

G

190. Cor. 3. The median of a trapezoid is parallel to the bases, and is
equal to half the sum of the bases.

Draw the diagonal DB. In the 4ADB join E, the middle point of AD, to
F , the middle point of DB. Then, by § 189, EF is ‖ to AB and = 1

2
AB. In

the 4DBC join F to G, the middle point of BC. Then FG is ‖ to DC and
= 1

2
DC. AB and FG, being ‖ to DC, are ‖ to each other. But only one line

can be drawn through F ‖ to AB (§ 105). Therefore FG is the prolongation
of EF . Hence, EFG is parallel to AB and DC, and equal to 1

2
(AB +DC).
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POLYGONS IN GENERAL.

191. A polygon is a portion of a plane bounded by straight lines.

The bounding lines are the sides, and their sum, the perimeter of the
polygon. The angles included by the adjacent sides are the angles of the
polygon, and the vertices of these angles are the vertices of the polygon. The
number of sides of a polygon is evidently equal to the number of its angles.

192. A diagonal of a polygon is a line joining the vertices of two angles
not adjacent; as, AC (Fig. 1).

A

B

C

D

E
Fig. 1.

A

B

C

D

E
Fig. 2.

D

E

F

Fig. 3.

193. An equilateral polygon is a polygon which has all its sides equal.

194. An equiangular polygon is a polygon which has all its angles equal.

195. A convex polygon is a polygon of which no side, when produced,
will enter the polygon.

196. A concave polygon is a polygon of which two or more sides, if
produced, will enter the polygon.

197. Each angle of a convex polygon (Fig. 2) is called a salient angle, and
is less than a straight angle.

198. The angle EDF of the concave polygon (Fig. 3) is called a re-entrant
angle, and is greater than a straight angle.

When the term polygon is used, a convex polygon is meant.
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199. Two polygons are equal when they can be divided by diagonals into
the same number of triangles, equal each to each, and similarly placed; for
if the polygons are applied to each other, the corresponding triangles will
coincide, and hence the polygons will coincide and be equal.

200. Two polygons are mutually equiangular , if the angles of the one are
equal to the angles of the other, each to each, when taken in the same order.
Figs. 1 and 2.

201. The equal angles in mutually equiangular polygons are called homolo-
gous angles; and the sides which are included by homologous angles are called
homologous sides.

202. Two polygons are mutually equilateral , if the sides of the one are
equal to the sides of the other, each to each, when taken in the same order.
Figs. 1 and 2.

Fig. 4. Fig. 5. Fig. 6. Fig. 7.

203. Two polygons may be mutually equiangular without being mutually
equilateral; as, Figs. 4 and 5.

And, except in the case of triangles, two polygons may be mutually equi-
lateral without being mutually equiangular; as, Figs. 6 and 7.

If two polygons are mutually equilateral and mutually equiangular they are
equal, for they can be made to coincide.

204. A polygon of three sides is called a triangle; one of four sides, a
quadrilateral ; one of five sides, a pentagon; one of six sides, a hexagon; one
of seven sides, a heptagon; one of eight sides, an octagon; one of ten sides, a
decagon; one of twelve sides, a dodecagon.



POLYGONS IN GENERAL. 63

Proposition XXXIX. Theorem.

205. The sum of the interior angles of a polygon is equal to two right
angles, taken as many times less two as the figure has sides.

A B

C

DE

F

Let the figure ABCDEF be a polygon, having n sides.

To prove that ∠A+ ∠B + ∠C, etc. = (n− 2)2 rt. ∠s.
Proof. From A draw the diagonals AC, AD, and AE.
The sum of the ∠s of the 4s is equal to the sum of the ∠s of the polygon.

Now, there are (n− 2) 4s,

and the sum of the ∠s of each 4 = 2 rt. ∠s. § 129
∴ the sum of the ∠s of the 4s, that is, the sum of the ∠s of the polygon is equal

to (n− 2)2 rt. 4s. q.e.d.

206. Cor. The sum of the angles of a quadrilateral equals 4 right angles;
and if the angles are all equal, each is a right angle. In general, each angle of

an equiangular polygon of n sides is equal to
2(n− 2)

n
right angles.

Ex. 17. How many diagonals can be drawn in a polygon of n sides?
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Proposition XL. Theorem.

207. The exterior angles of a polygon, made by producing each of its sides
in succession, are together equal to four right angles.

A B

C

D

E

a
b

c

d

e

Let the figure ABCDE be a polygon, having its sides produced in
succession.

To prove the sum of the ext. ∠s = 4 rt. ∠s.
Proof. Denote the int. ∠s of the polygon by A, B, C, D, E, and the corre-

sponding ext. ∠s by a, b, c, d, e.

∠A+ ∠a = 2 rt. ∠s, § 89
and

∠B + ∠b = 2 rt. ∠s,
(being sup.-adj. ∠s).

In like manner each pair of adj. ∠s = 2 rt. ∠s.
∴ the sum of the interior and exterior ∠s of a polygon of n sides is equal to 2n

rt. ∠s.
But the sum of the interior ∠s = (n− 2)2 rt. ∠s § 205

= 2n rt. ∠s − 4 rt. ∠s.

∴ the sum of the exterior ∠s = 4 rt. ∠s. q.e.d.

Ex. 18. How many sides has a polygon if the sum of its interior ∠s is
twice the sum of its exterior ∠s? ten times the sum of its exterior ∠s?
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SYMMETRY.

208. Two points are said to be symmetrical with respect to a third point,
called the centre of symmetry, if this third point bisects the straight line
which joins them.

O

P

P ′

XX′ A

B C

A′

B′C′

O A

B
C

D

B′
C′

XX′

Two points are said to be symmetrical with respect to a straight line, called
the axis of symmetry, if this straight line bisects at right angles the straight
line which joins them.

Thus, P and P ′ are symmetrical with respect to O as a centre, and XX ′

as an axis, if O bisects the line PP ′, and if XX ′ bisects PP ′ at right angles.

209. A figure is symmetrical with respect to a point as a centre of symme-
try, if the point bisects every straight line drawn through it and terminated
by the boundary of the figure.

210. A figure is symmetrical with respect to a line as an axis of symmetry
if one of the parts of the figure coincides, point for point, with the other part
when it is folded over on that line as an axis.
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C

A′

B′

C′

XX′

211. Two figures are said to be symmetrical with respect to an axis if every
point of one has a corresponding symmetrical point in the other.

Thus, if every point in the figure A′B′C ′ has a symmetrical point in ABC,
with respect to XX ′ as an axis, the figure A′B′C ′ is symmetrical to ABC with
respect to XX ′ as an axis.
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Proposition XLI. Theorem.

212. A quadrilateral which has two adjacent sides equal, and the other two
sides equal, is symmetrical with respect to the diagonal joining the vertices of
the angles formed by the equal sides, and the diagonals are perpendicular to
each other.

A

B

C

D

O

Let ABCD be a quadrilateral, having AB equal to AD, and CB equal
to CD, and having the diagonals AC and BD.

To prove that the diagonal AC is an axis of symmetry, and that it is ⊥ to the
diagonal BD.

Proof. In the 4sABC and ADC,

AB = AD, and BC = DC, Hyp.
and

AC = AC. Iden.

∴ 4ABC = 4ADC. § 150

∴ ∠BAC = ∠DAC, and ∠BCA = ∠DCA.
Hence, if ABC is turned on AC as an axis until it falls on ADC, AB will fall

upon AD, CB on CD, and OB on OD.

∴ the 4ABC will coincide with the 4ADC.

∴ AC is an axis of symmetry (§ 210) and is ⊥ to BD. § 208
q.e.d.
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Proposition XLII. Theorem.

213. If a figure is symmetrical with respect to two axes perpendicular to
each other, it is symmetrical with respect to their intersection as a centre.

A

B C

D

E

FG

H

I

K

L

M N

O
XX′

Y

Y ′

Let the figure ABCDEFGH be symmetrical with respect to the two
perpendicular axes XX′, Y Y ′, which intersect at O.

To prove that O is the centre of symmetry of the figure.
Proof. Let N be any point in the perimeter.

Suppose NMI drawn ⊥ to Y Y ′, IKL ⊥ to XX ′.
Then

NI is ‖ to XX ′ and IL is ‖ to Y Y ′. § 104

Draw LO, ON , and KM .
Now

KI = KL, § 208
(the figure being symmetrical with respect to XX ′).

But
KI = OM . § 180

∴ KL = OM , and KLOM is a / /. § 183

∴ LO is equal and parallel to KM . § 183

In like manner ON is equal and parallel to KM .

∴ LON is a straight line. § 105
∴ O bisects LN , any straight line and therefore every straight line drawn through

O and terminated by the perimeter.

∴ O is the centre of symmetry of the figure. q.e.d.
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REVIEW QUESTIONS ON BOOK I.

1. What is the subject-matter of Geometry?

2. What is a geometric magnitude?

3. What is an axiom? a theorem? a converse theorem? an opposite
theorem? a contradictory theorem?

4. Define a straight line; a curved line; a broken line; a plane surface; a
curved surface.

5. How many points are necessary to determine a straight line?

6. How many straight lines are necessary to determine a point?

7. On what does the magnitude of an angle depend?

8. Define a straight angle; a right angle; an oblique angle.

9. Define adjacent angles; complementary angles; supplementary angles;
conjugate angles.

10. Define parallel lines and give the axiom of parallels.

11. If two lines in the same plane are parallel and cut by a transversal, what
pairs of angles are equal? what pairs are supplementary?

12. Define a right triangle; an isosceles triangle; a scalene triangle.

13. To how many right angles is the sum of the angles of a triangle equal?
the sum of the acute angles of a right triangle?

14. To what angles is the exterior angle of a triangle equal?

15. What is the test of equality of two geometric magnitudes?

16. How does a reciprocal theorem differ from a converse theorem?

17. State the three cases in which two triangles are equal.

18. State the cases in which two right triangles are equal.

19. What is meant by a locus of points?

20. Where are the points located in a plane that are each equidistant from
two given points? from two intersecting lines?

21. Define a parallelogram; a trapezoid; an isosceles trapezoid.

22. When is a figure symmetrical with respect to a centre?
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23. When is a figure symmetrical with respect to an axis?

24. Must a triangle be equiangular if equilateral? must a triangle be equi-
lateral if equiangular?

25. When are two polygons said to be mutually equiangular?

26. When are two polygons said to be mutually equilateral?

27. Can two polygons of more than three sides be mutually equiangular
without being mutually equilateral? mutually equilateral without being
mutually equiangular?

28. What line do two points each equidistant from the extremities of a given
straight line determine?

METHODS OF PROVING THEOREMS.

214. There are three general methods of proving theorems, the synthetic,
the analytic, and the indirect methods.

The synthetic method is the method employed in most of the theorems
already given, and consists in putting together known truths in order to obtain
a new truth.

The analytic method is the reverse of the synthetic method. It asserts that
the conclusion is true if another proposition is true, and so on step by step,
until a known truth is reached. Thus, proposition A is true if proposition B
is true, and B is true if C is true; but C is true, hence A and B are true.

If a known truth suggests the required proof, it is best to use the synthetic
form at once. If no proof occurs to the mind, it is necessary to use the analytic
method to discover the proof, and then the synthetic proof may be given.

The indirect method, or the method of reductio ad absurdum, is illustrated
on page 45. It consists in proving a theorem to be true by proving its contra-
dictory to be false.
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215. Generally auxiliary lines are required, as a line connecting two points ;
a line parallel to or perpendicular to a given line; a line produced by its own
length; a line making with another line an angle equal to a given angle.

Two lines are proved equal by proving them homologous sides of equal
triangles ; or legs of an isosceles triangle; or opposite sides of a parallelogram.

Two angles are proved equal by proving them alternate-interior an-
gles or exterior-interior angles of parallel lines ; or homologous angles of equal
triangles ; or base angles of an isosceles triangle; or opposite angles of a paral-
lelogram.

Two suggestions are of special importance to the beginner:

1. Draw as accurate figures as possible.

2. Draw as general figures as possible.
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EXERCISES.

Prove by the analytic method:
A

B CD

E

Ex. 19. A median of a triangle is less than half the sum of the two adjacent
sides.

To prove the median AD < 1
2
(AB + AC).

Now
AD < 1

2
(AB + AC),

if
2AD < AB + AC.

This suggests producing AD by its own length to E, and joining BE.
Then

AE = 2AD,
and

2AD < AB + AC if AE < AB + AC.
But

AE < AB +BE. § 138

∴ AE < AB + AC if AC = BE.
And

AC = BE if 4ACD = 4EBD. § 128
But

4ACD = 4EBD. § 143
For

CD = DB, Hyp.

AD = DE, Const.
and

∠ADC = ∠BDE. § 93

∴ AE < AB + AC.
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∴ AD < 1
2
(AB + AC).

A

B C

D E G

Ex. 20. A straight line which bisects two sides of a triangle is parallel to
the third side.

If AD = DB and AE = EC, to prove DE ‖ to BC.

Draw CG ‖ to BA, and produce DE to meet it at G.

DE is ‖ to BC if BCGD is a / /. § 166

BCGD is a / / if CG = BD. § 183

CG = BD if each is equal to AD. Ax. 1
Now

BD = AD. Hyp.
And

CG = AD if 4CGE = 4ADE. § 128
But

4CGE = 4ADE. § 139
For

EC = AE. Hyp.

∠GEC = ∠AED. § 93

∠ECG = ∠DAE. § 110

∴ DE is ‖ to BC.
Prove by the synthetic method:

Ex. 21. The middle point of the hypotenuse of a right triangle is equidistant
from the three vertices.

From D, the middle point, draw DE ⊥ to CB.

DE is ‖ to AC (why?), and DE bisects CB (why?).

∴ D is equidistant from B, A, and C. (Why?)
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A

BC

D

E

A

BC

D

E
abc

2a

Ex. 22. If one acute angle of a right triangle is double the other, the
hypotenuse is double the shorter leg.

The median CD = BD = AD (Ex. 21).

Then ∠b = ∠a; and ∠c = ∠2a. (Why?)

Now a+ 2a = 90◦. (Why?)

∴ ∠a = 30◦; ∠2a = 60◦; ∠c = 60◦.

∴ 4ACD is equilateral (why?), and AD, half of AB = AC. ∴ AB = 2AC.



EXERCISES. 75

Ex. 23. If two triangles have two sides of the one equal, respectively, to
two sides of the other, and the angles opposite two equal sides equal, the angles
opposite the other two equal sides are equal or supplementary, and if equal the
triangles are equal.

Let AC = A′C ′, BC = B′C ′, and ∠B = ∠B′.

Place 4A′B′C ′ on 4ABC so that B′C ′ shall coincide with BC, and ∠A′

and ∠A shall be on the same side of BC.

A B

C

D A′ B′

C′

A′ B′

C′

Since ∠B′ = ∠B, B′A′ will fall along BA, and A′ will fall at A or at some
other point in BA, as D. If A′ falls at A, the 4sA

′B′C ′ and ABC coincide
and are equal.

If A′ falls at D, the 4sA
′B′C ′ and DBC coincide and are equal.

Since CD = C ′A′ = CA, ∠A = ∠CDA. (Why?)

But ∠sCDA and CDB are supplements. (Why?)

∴ ∠sA and CDB are supplements. (Why?)

Draw figures and show that the triangles are equal:

1. If the given angles B and B′ are both right or both obtuse angles.

2. If the required angles A and A′ are both acute, both right, or both
obtuse.

3. If AC and A′C ′ are not less than BC and B′C ′, respectively.
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A B
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FO
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B C

D E

F

D′
E′

F ′
O

Ex. 24. The bisectors of the angles of a triangle meet in a point which is
equidistant from the sides of the triangle.

Let the bisectors AD and BE intersect at O. Then O being in AD is
equidistant from AC and AB. (Why?) And O being in BE is equidistant
from BC and AB. Hence, O is equidistant from AC and BC, and therefore
in the bisector CF . (Why?)

Ex. 25. The perpendicular bisectors of the sides of a triangle meet in a
point which is equidistant from the vertices of the triangle.

Let the ⊥ bisectors EE ′ and DD′ intersect at O. Then O being in EE ′ is
equidistant from A and C. (Why?) And O being in DD′ is equidistant from
A and B. Hence, O is equidistant from B and C, and therefore is in the ⊥
bisector FF ′. (Why?)

Ex. 26. The perpendiculars from the vertices of a triangle to the opposite
sides meet in a point.

Let the ⊥s be AH, BP , and CK. Through A, B, C suppose B′C ′, A′C ′,
A′B′, drawn ‖ to BC, AC, AB, respectively. Then AH is ⊥ to B′C ′. (Why?)
Now ABCB′ and ACBC ′ are / /s (why?) and AB′ = BC, and AC ′ = BC.
(Why?) That is, A is the middle point of B′C ′. In the same way, B and C are
the middle points of A′C ′ and A′B′, respectively. Therefore, AH, BP , and
CK are the ⊥ bisectors of the sides of the 4A′B′C ′. Hence, they meet in a
point. (Why?)
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A
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Ex. 27. The medians of a triangle meet in a point which is two thirds of
the distance from each vertex to the middle of the opposite side.

Let the two medians AD and CE meet in O. Take F the middle point of
OA, and G of OC. Join GF , FE, ED, and DG. In 4AOC, GF is ‖ to AC
and equal to 1

2
AC. (Why?) DE is ‖ to AC and equal to 1

2
AC. (Why?) Hence,

DGFE is a / /. (Why?) Hence, AF = FO = OD, and CG = GO = OE.
(Why?) Hence, any median cuts off on any other median two thirds of the
distance from the vertex to the middle of the opposite side. Therefore, the
median from B will cut off AO, two thirds of AD; that is, will pass through
O.

Note. If three or more lines pass through the same point, they are called con-
current lines.

Ex. 28. If an angle is bisected, and if a line is drawn through the vertex
perpendicular to the bisector, this line forms equal angles with the sides of the
given angle.

A

BC D

E F A B

C

D

EF

A B

C

D

E

F

G

A B

C

D

E

F

G

Ex. 29. The bisectors of two supplementary adjacent angles are perpen-
dicular to each other.

Ex. 30. If the bisectors of two adjacent angles are perpendicular to each
other, the adjacent angles are supplementary.

Ex. 31. The bisector of one of two vertical angles bisects the other.

Ex. 32. The bisectors of two vertical angles form one line.
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Ex. 33. The bisectors of the two pairs of vertical angles formed by two
intersecting lines are perpendicular to each other.

Ex. 34. The bisector of the vertical angle of an isosceles triangle bisects
the base, and is perpendicular to the base.

4ADC = 4BDC (§ 143)

A B

C

D A B

C

D

E

Ex. 35. The perpendicular bisector of the base of an isosceles triangle
passes through the vertex and bisects the angle at the vertex (§ 160).

Ex. 36. If the perpendicular bisector of the base of a triangle passes
through the vertex, the triangle is isosceles.

Ex. 37. Any point in the bisector of the vertical angle of an isosceles
triangle is equidistant from the extremities of the base (Ex. 34, § 160).

Ex. 38. If the bisector of an angle of a triangle is perpendicular to the
opposite side, the triangle is isosceles.

Ex. 39. If two isosceles triangles are on the same base, a straight line
passing through their vertices is perpendicular to the base, and bisects the
base (§ 161).

Ex. 40. Two isosceles triangles are equal when a side and an angle of the
one are equal, respectively, to the homologous side and angle of the other.
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A

B C

D

E

Ex. 41. The bisector of an exterior angle of an isosceles triangle, formed
by producing one of the legs through the vertex, is parallel to the base. Why
does ∠DAC = ∠B + ∠C? Why is ∠DAE = ∠ABC? Why is AE ‖ to BC?

Ex. 42. If the bisector of an exterior angle of a triangle is parallel to one
side, the triangle is isosceles.

A B

C

D

Ex. 43. If one of the legs of an isosceles triangle is produced through the
vertex by its own length, the line joining the end of the leg produced to the
nearer end of the base is perpendicular to the base.

∠CBA = ∠A, and ∠CBD = ∠D. (Why?)

∴ ∠ABD = ∠A+ ∠D.

Ex. 44. A line drawn from the vertex of the right angle of a right triangle
to the middle point of the hypotenuse divides the triangle into two isosceles
triangles.

Ex. 45. If the equal sides of an isosceles triangle are produced through
the vertex so that the external segments are equal, the extremities of these
segments will be equally distant from the extremities of the base, respectively.
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Ex. 46. If through any point in the bisector of an angle a line is drawn
parallel to either of the sides of the angle, the triangle thus formed is isosceles.

Ex. 47. Through any point C in the line AB an intersecting line is drawn,
and from any two points in this line equidistant from C perpendiculars are
dropped on AB or AB produced. Prove that these perpendiculars are equal.

Ex. 48. If the median drawn from the vertex of a triangle to the base is
equal to half the base, the vertical angle is a right angle.

A B

C

D

EF

Ex. 49. The lines joining the middle points of the sides of a triangle divide
the triangle into four equal triangles.

Ex. 50. The altitudes upon the legs of an isosceles triangle are equal.

Rt. 4BEC = rt. 4CDB (§ 141).

Ex. 51. If the altitudes upon two sides of a triangle are equal, the triangle
is isosceles.

Rt. 4BEC = rt. 4CDB (§ 151).
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Ex. 52. The medians drawn to the legs of an isosceles triangle are equal.

4BEC = 4CDB (§ 143).

Ex. 53. If the medians to two sides of a triangle are equal, the triangle is
isosceles.

BO = CO, and OE = OD (Ex. 27).

∠BOE = ∠COD. ∴ 4BOE = 4COD (§ 143).

Ex. 54. The bisectors of the base angles of an isosceles triangle are equal.

4BEC = 4CDB (§ 139).

Ex. 55. Opposite Theorem. If a triangle is not isosceles, the bisectors
of the base angles are not equal.

Let ∠ABC be greater than ∠ACB; then KC > KB. (Why?)

Now CD > BE, if KD is greater than or equal to KE.

But suppose KD < KE. Lay off KH = KD and KG = KB, join HG,
and draw GF ‖ to BE.

4KDB = 4KHG. (Why?) ∴ ∠KHG = ∠KDB. (Why?)

∴ ∠KEC is greater than ∠KHG. (Why?) ∴ GF > HE. (Why?)

∠GFC is greater than ∠FCG (1
2
ACB). ∴ CG > GF , and > HE.

∴ KC −KG > KE −KH, or KC +KD > KB +KE, or CD > BE.

Ex. 56. State the converse theorem of Ex. 54. Is the converse theorem
true?
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A

B CD

E F

Ex. 57. The perpendiculars dropped from the middle point of the base
upon the legs of an isosceles triangle are equal.

4BED = 4CFD (§ 141).

Ex. 58. State and prove the converse.

4BED = 4CFD (§ 151).

Ex. 59. The difference of the distances from any point in the base produced
of an isosceles triangle to the equal sides of the triangle is constant.

Rt. 4DGC = rt. 4DFC. (Why?) ∴ DF = DG.

∴ DE −DF = DE −DG = EG, the ⊥ distance between the two ‖s, BA
and CH.

A

B C
D

E

F

G

H
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D
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Ex. 60. The sum of the perpendiculars dropped from any point in the base
of an isosceles triangle to the legs is constant, and equal to the altitude upon
one of the legs.

Let PE and PD be the ⊥s and BF the altitude.

Draw PG ⊥ to BF .

EPGF is a parallelogram. (Why?) ∴ GF = PE. It remains to prove
GB = PD.

The rt. 4PGB = the rt. 4BDP . (Why?)
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Ex. 61. The sum of the perpendiculars dropped from any point within an
equilateral triangle to the three sides is constant, and equal to the altitude.

AD is the altitude, PE, PG, and PF the three perpendiculars. Through
P draw HK ‖ to BC, meeting AD at M .

Then
MD = PE. (Why?)

PG+ PF = AM (Ex. 60).
A

B CDE

F
G

H K
MP

A B

C
D

Ex. 62. ABC and ABD are two triangles on the same base AB, and on
the same side of it, the vertex of each triangle being without the other. If AC
equals AD, show that BC cannot equal BD (§ 154).

Ex. 63. The sum of the lines which join a point within a triangle to the
three vertices is less than the perimeter, but greater than half the perimeter.

A B

C

O

A

B CD

E

F

Ex. 64. If from any point in the base of an isosceles triangle parallels
to the legs are drawn, a parallelogram is formed whose perimeter is constant,
being equal to the sum of the legs of the triangle.

Ex. 65. The bisector of the vertical angle A of a triangle ABC, and the
bisectors of the exterior angles at the base formed by producing the sides AB
and AC, meet in a point which is equidistant from the base and the sides
produced (§ 162).
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Ex. 66. If the bisectors of the base angles of a triangle are drawn, and
through their point of intersection a line is drawn parallel to the base, the
length of this parallel between the sides is equal to the sum of the segments of
the sides between the parallel and the base.

∠EOB = ∠OBC = ∠OBE. ∴ BE = EO.

Ex. 67. The bisector of the vertical angle of a triangle makes with the
perpendicular from the vertex to the base an angle equal to half the difference
of the base angles.

Let ∠B be greater than ∠A.

∠DCE = 90◦ − ∠A− ∠ACD.

∠ACD = 90◦ − 1
2
∠A− 1

2
∠B.

∴ ∠DCE = 90◦ − ∠A− (90◦ − 1
2
∠A− 1

2
∠B) = 1

2
∠B − 1

2
∠A.

A B

C

D E A B

CD

O

Ex. 68. If the diagonals of a quadrilateral bisect each other, the figure is
a parallelogram.

Prove 4AOB = 4COD.
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A B

CD

Ex. 69. The diagonals of a rectangle are equal.

Prove 4ABC = 4BAD.

Ex. 70. If the diagonals of a parallelogram are equal, the figure is a
rectangle.

Ex. 71. The diagonals of a rhombus are perpendicular to each other, and
bisect the angles of the rhombus.

Ex. 72. The diagonals of a square are perpendicular to each other, and
bisect the angles of the square.

A B

CD

E F

M

N

Ex. 73. Lines from two opposite vertices of a parallelogram to the middle
points of the opposite sides trisect the diagonal.

EBFD is a / / (why?), and DF is ‖ to EB.

AM = MN , and MN = CN (§ 188).

Ex. 74. The lines joining the middle points of the sides of any quadrilateral,
taken in order, enclose a parallelogram.

Prove HG and EF ‖ to AC; and FG and EH ‖ to BD (§ 189).

Then HG and EF are each equal to 1
2
AC.
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Ex. 75. The lines joining the middle points of the sides of a rhombus,
taken in order, enclose a rectangle. (Proof similar to that of Ex. 74.)

Ex. 76. The lines joining the middle points of the sides of a rectangle
(not a square), taken in order, enclose a rhombus.

Ex. 77. The lines joining the middle points of the sides of a square, taken
in order, enclose a square.

Ex. 78. The lines joining the middle points of the sides of an isosceles
trapezoid, taken in order, enclose a rhombus or a square.

SHR and QFP drawn ⊥ to AB are parallel. ∴ PQSR is a / /, and by
Const. is a rectangle or a square.

∴ EFGH is a rhombus or a square (Exs. 76, 77).
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Ex. 79. The bisectors of the angles of a rhomboid enclose a rectangle.

Ex. 80. The bisectors of the angles of a rectangle enclose a square.

Ex. 81. If two parallel lines are cut by a transversal, the bisectors of the
interior angles form a rectangle.
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Ex. 82. The median of a trapezoid passes through the middle points of
the two diagonals.

The median EF is ‖ to AB and bisects AD (§ 190).

∴ it bisects DB.

Likewise EF bisects BC and BD.

Ex. 83. The lines joining the middle points of the diagonals of a trapezoid
is equal to half the difference of the bases.

4BFG = 4DFC. (Why?) ∴ EF = 1
2
AG (§ 180).

CF = FG, DC = BG.

∴ AG = AB −DC. ∴ EF = 1
2
(AB −DC)

A B

CD

E F

G A B

C D

E A B

CD

A B

CD

Ex. 84. In an isosceles trapezoid each base makes equal angles with the
legs.

Draw CE ‖ to DB. CE = DB. (Why?) ∠A = ∠CEA, ∠B = ∠CEA,
∠sC and D have equal supplements.

Ex. 85. If the angles at the base of a trapezoid are equal, the other angles
are equal, and the trapezoid is isosceles.

Ex. 86. In an isosceles trapezoid the opposite angles are supplementary:

∠C = ∠D (Ex. 84)



BOOK I. PLANE GEOMETRY. 88

Ex. 87. The diagonals on an isosceles trapezoidal are equal.

Prove 4ACD = 4BDC.

Ex. 88. If the diagonals of a trapezoid are equal, the trapezoid is isosceles.

Draw CE and DF ⊥ to AB.

4ADF = 4BCE. (Why?)

∴ ∠ADF = ∠CBA.

4ABC = 4BAD.

A B

C D

E F

O

A B

CD

E

F

Ex. 89. If from the diagonal DB, of a square ABCD, BE is cut off equal
to BC, and EF is drawn perpendicular to BD meeting DC at F , then DE is
equal to EF and also to FC.

∠EDF = 45◦, and ∠DFE = 45◦; and DE = DF . Rt. 4BEF =
rt. 4BCF (§ 151); and EF = FC.

Ex. 90. Two angles whose sides are so perpendicular, each to each, are
either equal or supplementary.



BOOK II. THE CIRCLE.

DEFINITIONS.

216. A circle is a portion of a plane bounded by a curved line, all points of
which are equally distant from a point within called the centre. The bounding
line is called the circumference of the circle.

217. A radius is a straight line from the centre to the circumference;
and a diameter is a straight line through the centre, with its ends in the
circumference.

By the definition of a circle, all its radii are equal. All its diameters are
equal, since a diameter is equal to two radii.

218. Postulate. A circumference can be described from any point as a
centre, with any given radius.

219. A secant is a straight line of unlimited length which intersects the
circumference in two points; as, AD (Fig. 1).
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Fig. 1.

220. A tangent is a straight line of unlimited length which has one point,
and only one, in common with the circumference; as, BC (Fig. 1). In this
case the circle is said to be tangent to the straight line. The common point is
called the point of contact, or point of tangency.

221. Two circles are tangent to each other, if both are tangent to a straight
line at the same point; and are said to be tangent internally or externally,
according as one circle lies wholly within or without the other.
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222. An arc is any part of the circumference; as, BC (Fig. 3). Half a
circumference is called a semicircumference. Two arcs are called conjugate
arcs, if their sum is a circumference.

223. A chord is a straight line that has its extremities in the circumference;
as, the straight line BC (Fig. 3).

224. A chord subtends two conjugate arcs. If the arcs are unequal, the
less is called the minor arc, and the greater the major arc. A minor arc is
generally called simply an arc.
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225. A segment of a circle is a portion of the circle bounded by an arc
and its chord (Fig. 2).

226. A semicircle is a segment equal to half the circle (Fig. 2).

227. A sector of a circle is a portion of the circle bounded by two radii
and the arc which they intercept. The angle included by the radii is called the
angle of the sector (Fig. 2).

228. A quadrant is a sector equal to a quarter of the circle (Fig. 2).

229. An angle is called a central angle, if its vertex is at the centre and
its sides are radii of the circle; as, ∠AOD (Fig. 2).

230. An angle is called an inscribed angle, if its vertex is in the circum-
ference and its sides are chords; as, ∠ABC (Fig. 3).

An angle is inscribed in a segment , if its vertex is in the arc of the segment
and its sides pass through the extremities of the arc.
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231. A polygon is inscribed in a circle, if its sides are chords; and a circle
is circumscribed about a polygon, if all the vertices of the polygon are in the
circumference (Fig. 3).

232. A circle is inscribed in a polygon, if the sides of the polygon are
tangent to the circle; and a polygon is circumscribed about a circle if its sides
are tangents (Fig. 4).

233. Two circles are equal, if they have equal radii.

For they will coincide, if their centres are made to coincide.

Conversely: Two equal circles have equal radii.

234. Two circles are concentric, if they have the same centre.

ARCS, CHORDS, AND TANGENTS.

Proposition I. Theorem.

235. A straight line cannot meet the circumference of a circle in more than
two points.

H K

M

O

P

Let HK be any line meeting the circumference HKM in H and K.

To prove that HK cannot meet the circumference in any other point.
Proof. If possible, let HK meet the circumference in P .

Then the radii OH, OP , and OK are equal. § 217

∴ P does not lie in the straight line HK. § 102

∴ HK meets the circumference in only two points. q.e.d.
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Proposition II. Theorem.

236. In the same circle or in equal circles, equal central angles intercept
equal arcs; and of two unequal central angles the greater intercepts the greater
arc.

A

B
C

O
P

A′

B′

O′

P ′

In the equal circles whose centres are O and O′, let the angles AOB
and A′O′B′ be equal, and angle AOC be greater than angle A′O′C′.

To prove that 1. arcAB = arcA′B′;
2. arcAC > arcA′B′.

Proof. 1. Place the �A′B′P ′ on the �ABP so that the ∠A′O′B′ shall coincide
with its equal, the ∠AOB.

Then A′ falls on A, and B′ on B. § 233

∴ arcA′B′ coincides with arcAB. § 216
2. Since the ∠AOC is greater than the ∠A′O′B′, it is greater than the ∠AOB,

the equal of the ∠A′O′B′.

Therefore, OC falls without the ∠AOB.

∴ arcAC > arcAB. Ax. 8

∴ arcAC > arcA′B′, the equal of arcAB. q.e.d.
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237. Conversely: In the same circle or in equal circles, equal arcs sub-
tend equal central angles; and of two unequal arcs the greater subtends the
greater central angle.

To prove that
1. ∠AOB = ∠A′O′B′;

2. ∠AOC is greater than ∠A′O′B′.
Proof. 1. Place the �A′B′P ′ on the �ABP so that O′A shall fall on its

equal OA, and the arc A′B′ on its equal AB.

Then O′B′ will coincide with OB. § 47

∴ ∠A′O′B′ = ∠AOB. § 60
2. Since arcAC > A′B′, it is greater than arcAB, the equal of A′B′, and

OB will fall within the ∠AOC.

∴ ∠AOC is greater than ∠AOB. Ax. 8

∴ ∠AOC is greater than ∠A′O′B′. q.e.d.

238. Cor. 1. In the same circle or in equal circles, two sectors that have
equal angles are equal; two sectors that have unequal angles are unequal, and
the greater sector has the greater angle.

239. Cor. 2. In the same circle or in equal circles, equal sectors have equal
angles; and of two unequal sectors the greater has the greater angle.
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240. Law of Converse Theorems. It was stated in § 32 that the converse
of a theorem is not necessarily true. If, however, a theorem is in fact a group
of three theorems, and if one of the hypotheses of the group must be true, and
no two of the conclusions can be true at the same time, then the converse of
the theorem is necessarily true.

Proposition II. is a group of three theorems. It asserts that the arc AB
is equal to the arc A′B′, if the angle AOB is equal to the angle A′O′B′; that
the arc AB is greater than the arc A′B′, if the angle AOB is greater than the
angle A′O′B′; that the arc AB is less than the arc A′B′, if the angle AOB is
less than the angle A′O′B′.

One of these hypotheses must be true; for the angle AOB must be equal
to, greater than, or less than, the angle A′O′B′.

No two of the conclusions can be true at the same time, for the arc AB
cannot be both equal to and greater than the arc A′B′; nor can it be both
equal to and less than the arc A′B′; nor both greater than and less than the
arc A′B′. In such a case, the converse theorem is necessarily true, and no
proof like that given in the text is required to establish it.
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Proposition III. Theorem.

241. In the same circle or in equal circles, equal arcs are subtended by equal
chords; and of two unequal arcs the greater is subtended by the greater chord.

A

BF

O
A′

B′

O′

In the equal circles whose centres are O and O′, let the arcs AB and
A′B′ be equal, and the arc AF greater than arc A′B′.

To prove that
1. chord AB = chord A′B′;

2. chord AF > chord A′B′.
Proof.

Draw the radii OA, OB, OF , O′A′, O′B′.
1.

The 4sAOB and A′O′B′ are equal. § 143

For OA = O′A′, and OB = O′B′, § 233
(radii of equal circles),

and ∠AOB = ∠A′O′B′, § 237
(in equal �s equal arcs subtend equal central ∠s).

∴ chord AB = chord A′B′. § 128

2.
In the 4sAOF and A′O′B′,

OA = O′A′, and OF = O′B′. § 233

But the ∠AOF is greater than the ∠A′O′B′, § 237
(in equal �s, the greater of two unequal arcs subtends the greater ∠).

∴ chord AF > chord A′B′. § 154
q.e.d.
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242. Cor. In the same circle or in equal circles, the greater of two unequal
major arcs is subtended by the less chord.
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Proposition IV. Theorem.

243. Conversely: In the same circle or in equal circles, equal chords
subtend equal arcs; and of two unequal chords the greater subtends the greater
arc.

A

BF

O
A′

B′

O′

In the equal circles whose centres are O and O′, let the chords AB
and A′B′ be equal, and the chord AF greater than A′B′.

To prove that 1. arcAB = arcA′B′;
2. arcAF > arcA′B′.

Proof.
Draw the radii OA, OB, OF , O′A′, O′B′.

1.
The 4sOAB and O′A′B′ are equal. § 150

For OA = O′A′, and OB = O′B′, § 233

and chord AB = chord A′B′. Hyp.

∴ ∠AOB = ∠A′O′B′. § 128

∴ arcAB = arcA′B′, § 236
(in equal �s equal central ∠s intercept equal arcs).

2.
In the 4sOAFandO

′A′B′,

OA = O′A′ and OF = O′B′. § 233

But chord AF > chord A′B′. Hyp.

∴ the ∠AOF is greater than the ∠A′O′B′. § 155

∴ arcAF > arcA′B′, § 236
(in equal �s the greater central ∠ intercepts the greater arc).

q.e.d.
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244. Cor. In the same circle or in equal circles, the greater of two unequal
chords subtends the less major arc.

Proposition V. Theorem.

245. A diameter perpendicular to a chord bisects the chord and the arcs
subtended by it.
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Let ES be a diameter perpendicular to the chord AB at M .

To prove that AM = BM , AS = BS, and AE = BE.
Proof. Draw OA and OB from O, the centre of the circle.

The rt. 4sOAM and OBM are equal. § 151
For

OM = OM , Iden.
and

OA = OB. § 217

∴ AM = BM , and ∠AOS = ∠BOS. § 128
Likewise

∠AOE = ∠BOE. § 85

∴ AS = BS, and AE = BE. § 236
q.e.d.

246. Cor. 1. A diameter bisects the circumference and the circle.

247. Cor. 2. A diameter which bisects a chord is perpendicular to it.

248. Cor. 3. The perpendicular bisector of a chord passes through the
centre of the circle, and bisects the arcs of the chord.
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Proposition VI. Theorem.

249. In the same circle or in equal circles, equal chords are equally distant
from the centre. Conversely: Chords equally distant from the centre are
equal.

A

B

C FH

O

P

Let AB and CF be equal chords of the circle ABFC.

To prove that AB and CF are equidistant from the centre O.
Proof. Draw OP ⊥ to AB, OH ⊥ to CF , and join OA and OC.

OP bisects AB, and OH bisects CF . § 245

The rt. 4sOPA and OHC are equal. § 151

AP = CH, Ax. 7
and

OA = OC, § 217
Hence,

OP = OH. § 128

∴ AB and CF are equidistant from O.

Conversely:
Let OP = OH.

To prove
AB = CF .

Proof. The rt. 4sOPA and OHC are equal. § 151
For

OA = OC, § 217
and

OP = OH, Hyp.
Hence,

AP = CH. § 128
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∴ AB = CF . Ax. 6
q.e.d.

Proposition VII. Theorem.

250. In the same circle or in equal circles, if two chords are unequal, they
are unequally distant from the centre; and the greater chord is at the less
distance.
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In the circle whose centre is O, let the chords AB and CD be un-
equal, and AB the greater; and let OE be perpendicular to AB and OF
perpendicular to CD.

To prove that
OE < OF .

Proof. Suppose AG drawn equal to CD, and OH ⊥ to AG.

Draw EH.

OE bisects AB, and OH bisects AG. § 245
By hypothesis,

AB > CD.

∴ AB > AG, the equal of CD.

∴ AE > AH. Ax. 7

∴ ∠AHE is greater than ∠AEH. § 152
∴ ∠OHE, the complement of ∠AHE, is less than ∠OEH, the complement of

∠AEH. Ax. 5

∴ OE < OH. § 153
But

OH = OF . § 249

∴ OE < OF . q.e.d.
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Ex. 91. The perpendicular bisectors of the sides of an inscribed polygon
are concurrent (pass through the same point).

Proposition VIII. Theorem.

251. Conversely: In the same circle or in equal circles, if two chords
are unequally distant from the centre, they are unequal; and the chord at the
less distance is the greater.
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In the circle whose centre is O, let AB and CD be unequally distant
from O; and let OE, the perpendicular to AB, be less than OF , the
perpendicular to CD.

To prove that
AB > CD.

Proof. Suppose AG drawn equal to CD, and OH ⊥ to AG.
Then

OH = OF § 249
Hence,

OE < OH.

Draw EH.

∠OHE is less than ∠OEH. § 152
∴ ∠AHE, the complement of ∠OHE, is greater than ∠AEH, the complement

of ∠OEH. Ax. 5

∴ AE > AH. § 153
But

AE = 1
2AB, and AH = 1

2AG. § 245

∴ AB > AG. Ax. 6
But

CD = AG. Const.

∴ AB > CD. q.e.d.
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252. Cor. A diameter of a circle is greater than any other chord.

Proposition IX. Theorem.

253. A straight line perpendicular to a radius at its extremity is a tangent
to the circle.

A B

C

HM

O

Let MB be perpendicular to the radius OA at A.

To prove that MB is a tangent to the circle.
Proof. From O draw any other line to MB, as OH.
Then

OH > OA. § 97

∴ the point H is without the circle. § 216
Hence, every point, except A, of the line MB is without the circle, and therefore

MB is a tangent to the circle at A. § 220
q.e.d.

254. Cor. 1. A tangent to a circle is perpendicular to the radius drawn to
the point of contact.

For OA is the shortest line from O to MB, and is therefore ⊥ to MB
(§ 98); that is, MB is ⊥ to OA.

255. Cor. 2. A perpendicular to a tangent at the point of contact passes
through the centre of the circle.

For a radius is ⊥ to a tangent at the point of contact, and therefore a ⊥
erected at the point of contact coincides with this radius and passes through
the centre.
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256. Cor. 3. A perpendicular from the centre of a circle to a tangent
passes through the point of contact.
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Proposition X. Theorem.

257. Parallels intercept equal arcs on a circumference.
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Fig. 1.
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Fig. 3.

Case 1. Let AB (Fig. 1) be a tangent at F parallel to CD, a secant.
To prove that

arcCF = arcDF .
Proof.

Suppose FF ′ drawn ⊥ to AB.

Then FF ′ is a diameter of the circle. § 255

And FF ′ is also ⊥ to CD. § 107

∴ CF = DF , and CF ′ = DF ′. § 245

Case 2. Let AB and CD (Fig. 2) be parallel secants.
To prove that

arcAC = arcBD.
Proof.

Suppose EF ‖ to CD and tangent to the circle at M .
Then

arcAM = arcBM , Case 1
and

arcCM = arcDM .

∴ arcAC = arcBD. Ax. 3

Case 3. Let AB and CD (Fig. 3) be parallel tangents at E and F .
To prove that

arcEGF = arcEHF .
Proof.

Suppose GH drawn ‖ to AB.
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Then
arcEG = arcEH, Case 1

and
arcGF = arcHF .

∴ arcEGF = arcEHF . Ax. 2
q.e.d.

Proposition XI. Theorem.

258. Through three points not in a straight line one circumference, and
only one, can be drawn.

A B

C

O

Let A, B, C be three points not in a straight line.

To prove that one circumference, and only one, can be drawn through A, B,
and C.

Proof.
Draw AB and BC.

At the middle points of AB and BC suppose ⊥s erected.
These ⊥s will intersect at some point O, since AB and BC are not in the same

straight line.
The point O is in the perpendicular bisector of AB, and is therefore equidistant

from A and B; the point O is also in the perpendicular bisector of BC, and is
therefore equidistant from B and C. § 160

Therefore, O is equidistant from A, B, and C; and a circumference described
from O as a centre, with a radius OA, will pass through the three given points.

The centre of a circumference passing through the three points must be in both
perpendiculars, and hence at their intersection. As two straight lines can intersect
in only one point, O is the centre of the only circumference that can pass through
the three given points. q.e.d.
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259. Cor. Two circumferences can intersect in only two points. For, if
two circumferences have three points common, they coincide and form one
circumference.

260. Def. A tangent from an external point to a circle is the part
of the tangent between the external point and the point of contact.

Proposition XII. Theorem.

261. The tangents to a circle drawn from an external point are equal, and
make equal angles with the line joining the point to the centre.

A

B

C

O

Let AB and AC be tangents from A to the circle whose centre is O,
and let AO be the line joining A to the centre O.

To prove that AB = AC, and ∠BAO = ∠CAO.
Proof.

Draw OB and OC.

AB is ⊥ to OB, and AC ⊥ to OC, § 254
(a tangent to a circle is ⊥ to the radius drawn to the point of contact).

The rt. 4sOAB and OAC are equal. § 151
For OA is common, and the radii OB and OC are equal. § 217

∴ AB = AC, and ∠BAO = ∠CAO. § 128
q.e.d.

262. Def. The line joining the centres of two circles is called the line of
centres.

263. Def. A tangent to two circles is called a common external tangent
if it does not cut the line of centres, and a common internal tangent if it
cuts the line of centres.



ARCS, CHORDS, AND TANGENTS. 107

Proposition XIII. Theorem.

264. If two circles intersect each other, the line of centres is perpendicular
to their common chord at its middle point.

A

B

C C′

Let C and C′ be the centres of the two circles, AB the common chord,
and CC′ the line of centres.

To prove that CC ′ is ⊥ to AB at its middle point.
Proof.

Draw CA, CB, C ′A, and C ′B.

CA = CB, and C ′A = C ′B. § 217

∴ C and C ′ are two points, each equidistant from A and B.

∴ CC ′ is the perpendicular bisector of AB. § 161
q.e.d.

Ex. 92. Describe the relative position of two circles if the line of centres:

1. is greater than the sum of the radii;

2. is equal to the sum of the radii;

3. is less than the sum but greater than the difference of the radii;

4. is equal to the difference of the radii;

5. is less than the difference of the radii.

Illustrate each case by a figure.

Ex. 93. The straight line drawn from the middle point of a chord to the
middle point of its subtended arc is perpendicular to the chord.

Ex. 94. The line which passes through the middle points of two parallel
chords passes through the centre of the circle.



BOOK II. PLANE GEOMETRY. 108

Proposition XIV. Theorem.

265. If two circles are tangent to each other, the line of centres passes
through the point of contact.

A

B

C O
C′

Let the two circles, whose centres are C and C′, be tangent to the
straight line AB at Q, and CC′ the line of centres.

To prove that O is in the straight line CC ′.
Proof. A ⊥ to AB, drawn through the point O, passes through the centres C

and C ′, § 255
(a ⊥ to a tangent at the point of contact passes through the centre of the circle).

∴ the line CC ′, having two points in common with this ⊥ must coincide with
it. § 47

∴ O is in the straight line CC ′. q.e.d.

Ex. 95. Describe the relative position of two circles if they may have:

1. two common external and two common internal tangents;

2. two common external tangents and one common internal tangent;

3. two common external tangents and no common internal tangent;

4. one common external and no common internal tangent;

5. no common tangent.

Illustrate each case by a figure.

Ex. 96. The line drawn from the centre of a circle to the point of inter-
section of the two tangents is the perpendicular bisector of the chord joining
the points of contact.
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MEASUREMENT.

266. To measure a quantity of any kind is to find the number of times it
contains a known quantity of the same kind, called the unit of measure.

The number which shows the number of times a quantity contains the unit
of measure is called the numerical measure of that quantity.

267. No quantity is great or small except by comparison with another
quantity of the same kind. This comparison is made by finding the numerical
measures of the two quantities in terms of a common unit, and then dividing
one of the measures by the other.

The quotient is called their ratio. In other words the ratio of two quantities
of the same kind is the ratio of their numerical measures expressed in terms
of a common unit.

The ratio of a to b is written a : b, or
a

b
.

268. Two quantities that can be expressed in integers in terms of a common
unit are said to be commensurable, and the exact value of their ratio can be
found. The common unit is called their common measure, and each quantity
is called a multiple of this common measure.

Thus, a common measure of 21
2

feet and 32
3

feet is 1
6

of a foot, which is
contained 15 times in 21

2
feet, and 22 times in 32

3
feet. Hence, 21

2
feet and

32
3

feet are multiples of 1
6

of a foot, since 21
2

feet may be obtained by taking
1
6

of a foot 15 times, and 32
3

feet by taking 1
6

of a foot 22 times. The ratio of
21

2
feet to 32

3
feet is expressed by the fraction 15

22
.
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269. Two quantities of the same kind that cannot both be expressed in
integers in terms of a common unit, are said to be incommensurable, and the
exact value of their ratio cannot be found. But by taking the unit sufficiently
small, an approximate value can be found that shall differ from the true value
of the ratio by less than any assigned value, however small.

Thus, suppose the ratio,
a

b
=
√

2.

Now
√

2 = 1.41421356 · · · , a value greater than 1.414213, but less than
1.414214.

If, then, a millionth part of b is taken as the unit of measure, the value

of
a

b
lies between 1.414213 and 1.414214, and therefore differs from either of

these values by less than 0.000001.

By carrying the decimal further, an approximate value may be found that
will differ from the true value of the ratio by less than a billionth, a trillionth,
or any other assigned value.

In general, if
a

b
>
m

n
but <

m+ 1

n
, then the error in taking either of these

values for
a

b
is less than

1

n
, the difference between these two fractions. But by

increasing n indefinitely,
1

n
can be decreased indefinitely, and a value of the

ratio can be found within any required degree of accuracy.

270. The ratio of two incommensurable quantities is called an incommen-
surable ratio; and is a fixed value which its successive approximate values
constantly approach.
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THE THEORY OF LIMITS.

271. When a quantity is regarded as having a fixed value throughout the
same discussion, it is called a constant; but when it is regarded, under the
conditions imposed upon it, as having different successive values, it is called
a variable.

If a variable, by having different successive values, can be made to differ
from a given constant by less than any assigned value, however small, but
cannot be made absolutely equal to the constant, that constant is called the
limit of the variable, and the variable is said to approach the constant as
its limit.

A BM M ′ M ′′

272. Suppose a point to move from A toward B, under the conditions that
the first second it shall move one half the distance from A to B, that is, to
M ; the next second, one half the remaining distance, that is, to M ′; and so
on indefinitely.

Then it is evident that the moving point may approach as near to B as we
choose, but will never arrive at B. For, however near it may be to B at any
instant, the next second it will pass over half the distance still remaining; it
must, therefore, approach nearer to B, since half the distance still remaining
is some distance, but will not reach B, since half the distance still remaining
is not the whole distance.

Hence, the distance from A to the moving point is an increasing variable,
which indefinitely approaches the constant AB as its limit ; and the distance
from the moving point to B is a decreasing variable, which indefinitely ap-
proaches the constant zero as its limit.
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A B
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K

273. Again, suppose a square ABCD inscribed in a circle, and E, F , H, K
the middle points of the arcs subtended by the sides of the square. If we draw
the lines AE, EB, BF , etc., we shall have an inscribed polygon of double the
number of sides of the square.

The length of the perimeter of this polygon, represented by the dotted
lines, is greater than that of the square, since two sides replace each side of
the square and form with it a triangle, and two sides of a triangle are together
greater than the third side; but less than the length of the circumference, for
it is made up of straight lines, each one of which is less than the part of the
circumference between its extremities.



THEORY OF LIMITS. 113

By continually doubling the number of sides of each resulting inscribed
figure, the length of the perimeter will increase with the increase of the number
of sides, but will not become equal to the length of the circumference.

The difference between the perimeter of the inscribed polygon and the
circumference of the circle can be made less than any assigned value, but
cannot be made equal to zero.

The length of the circumference is, therefore, the limit of the length of
the perimeter as the number of sides of the inscribed figure is indefinitely
increased. § 271

274. Consider the decimal 0.333 · · · which may be written
3
10

+ 3
100

+ 3
1000

+ · · ·
The value of each fraction after the first is one tenth of the preceding

fraction, and by continuing the series we shall reach a fraction less than any
assigned value, that is, the values of the successive fractions approach zero as
a limit.

The sum of these fractions is less than 1
3
; but the more terms we take, the

nearer does the sum approach 1
3

as a limit.

275. Test for a limit. In order to prove that a variable approaches a
constant as a limit, it is necessary to prove that the difference between the
variable and the constant:

1. Can be made less than any assigned value, however small.

2. Cannot be made absolutely equal to zero.

276. Theorem. If the limit of a variable x is zero, then the limit of kx,
the product of the variable by any finite constant k, is zero.

1. Let q be any assigned quantity, however small.

Then
q

k
is not 0. Hence x, which may differ as little as we please from 0,

may be taken less than
q

k
, and then kx will be less than q.

2. Since x cannot be 0, kx cannot be 0.

Therefore, the limit of kx = 0 § 275
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277. Cor. If the limit of a variable x is zero, then the limit of the quotient
of the variable by any finite constant k, is also zero.

For
x

k
=

1

k
× x, which by § 276 can be made less than any assigned value,

however small, but cannot be made equal to zero.

278. Theorem. The limit of the sum of a finite number of variables
x, y, z, · · · is equal to the sum of their respective limits a, b, c, · · · .

Let d, d′, d′′, · · · denote the differences between x, y, z, · · · and a, b, c, · · · ,
respectively. Then d+ d′ + d′′ + · · · can be made less than any assigned quan-
tity q.

For, if d, d′, d′′, · · · are n in number and d is the largest,

d+ d′ + d′′ + · · · < nd. (1)
Since d may be diminished at pleasure, we may make d so small that

d <
q

n
; and therefore nd < q.

But by (1), d+ d′ + d′′ + · · · < nd, and therefore < q.

Therefore, the difference between (x+ y+ z+ · · · ) and (a+ b+ c+ · · ·) can
be made less than any assigned quantity, but not zero.

Therefore, the limit of (x+ y + z + · · ·) = a+ b+ c+ · · · . § 275

279. Theorem. If the limit of a variable x is not zero, and if k is any
finite constant, the limit of the product kx is equal to the limit of x multiplied
by k.

1. If a denotes the limit of x, then x cannot be equal to a. § 271

Therefore, kx cannot be equal to ka.
2. The limit of (a− x) = 0. Hence, the limit of ka− kx = 0. § 276

Therefore, the limit of kx = ka. § 275

280. Cor. The limit of the quotient of a variable x by any finite constant
k is the limit of x divided by k.

For
x

k
=

1

k
× x, and

the limit of x

k
=

1

k
× the limit of x.
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281. Theorem. The limit of the product of two or more variables is the
product of their respective limits, provided no one of these limits is zero.

If x and y are variables, a and b their respective limits, we may put x = a−d,
y = b−d′; then d and d′ are variables which can be made less than any assigned
quantity, but not zero. § 275

Now, xy = (a− d)(b− d′)
= ab− ad′ − bd+ dd′

∴ ab− xy = ad′ + bd− dd′.

Since every term on the right contains d or d′, the whole right member can
be made less than any assigned quantity, but not zero. § 278

Hence, ab− xy can be made less than any assigned quantity, but not zero.

Therefore, the limit of xy = ab. § 275

Similarly, for three or more variables.

282. Cor. 1. The limit of the nth power of a variable is the nth power of
its limit.

For the limit of the product of the variables x, y, z, · · · to n factors is the
product of their respective limits, the constants a, b, c, · · · to n factors (§ 281).
If the n factors xyz · · · are each equal to x, and the n factors abc · · · are each
equal to a, we have xyz · · · = xn, and abc · · · = an.

Therefore, the limit of xn = an.

283. Cor. 2. The limit of the nth root of a variable is the nth root of its
limit.

For if the limit of x = a, we may put this in the following form,

the limit of n
√
xn = n

√
an;

that is, the limit of n
√
xxx · · · to n factors is n

√
aaa · · · to n factors.

Now, xxx · · · is a variable since each factor is a variable, and aaa · · · is a
constant since each factor is a constant.

If we denote xxx · · · to n factors by the variable y, and aaa · · · to n factors
by the constant b, we have

the limit of n
√
y = n

√
b.
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284. Theorem. If two variables are constantly equal, and each approaches
a limit, the limits are equal.

Let x and y be two variables, a and b their respective limits, d and d′

the respective differences between the variables and their limits. Then, if the
variables are increasing toward their limits

a = x+ d, and b = y + d′.
Since the equation x = y is always true, we have by subtraction

a− b = d− d′.
Since a and b are constants, a− b is a constant; therefore, d− d′, which is

equal to a− b, is a constant.

But the only constant which is less than any assigned value is 0. Therefore,
d− d′ = 0. Therefore, a− b = 0, and a = b.

If the variables x and y are decreasing toward their limits a and b, respec-
tively, then

a = x− d and b = y − d′.
Therefore, by subtraction

a− b = d′ − d.
Therefore, by the same proof as for increasing variables

a = b.

285. Theorem. If two variables have a constant ratio, and each approaches
a limit that is not zero, the limits have the same ratio.

Let x and y be two variables, a and b their respective limits.
Let

x

y
= r, a constant; then x = ry.

Since x and ry are two variables that are always equal,

the limit of x = the limit of ry. § 284
Now,

the limit of ry = r × limit of y. § 279
But the limit of x is a, and the limit of y is b.
Therefore,

a = rb; that is,
a

b
= r.
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Proposition XV. Problem.

286. To find the ratio of two straight lines.

A B

C D

E

F

H

K

Let AB and CD be two straight lines.

To find the ratio of AB and CD.

Apply CD to AB as many times as possible.

Suppose twice, with a remainder EB.

Then apply EB to CD as many times as possible.

Suppose three times, with a remainder FD.

Then apply FD to EB as many times as possible.

Suppose once, with a remainder HB.

Then apply HB to FD as many times as possible.

Suppose once, with a remainder KD.

Then apply KD to HB as many times as possible.

Suppose KD is contained just twice in HB.
Then

HB = 2KD;

FD = HB +KD = 3KD;

EB = FD +HB = 5KD;

CD = 3EB + FD = 18KD;

AB = 2CD + EB = 41KD;

∴
AB

CD
=

41KD
18KD

=
41
18

. q.e.f.
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Note. By the same process the ratio of two arcs of the same circle or of equal
circles can be found.

If the lines or arcs are incommensurable, an approximate value of the ratio can
be found by the same method.
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MEASURE OF ANGLES.

Proposition XVI. Theorem.

287. In the same circle or in equal circles, two central angles have the same
ratio as their intercepted arcs.

A′ B′

C′

m
Fig. 1.

A B

C

Fig. 2.

A′ B′

C′

D

Fig. 3.

In the equal circles whose centres are C and C′, let ACB and A′C′B′

be the angles, AB and A′B′ the intercepted arcs.
To prove that

∠A′C ′B′

∠ACB
=

arcA′B′

arcAB
.

Case 1. When the arcs are commensurable (Figs. 1 and 2).
Proof. Let the arc m be a common measure of A′B′ and AB.

Suppose m to be contained 4 times in A′B′,

and 7 times in AB.
Then

arcA′B′

arcAB
=

4
7

.

At the several points of division on AB and A′B′ draw radii.
These radii will divide ∠ACB into 7 parts, and ∠A′C ′B′ into 4 parts, equal each

to each, § 237
(in the same �, or equal �s, equal arcs subtend equal central ∠s).

∴
∠A′C ′B′

∠ACB
=

4
7

.

∴
∠A′C ′B′

∠ACB
=

arcA′B′

arcAB
. Ax. 1
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Case 2. When the arcs are incommensurable (Figs. 2 and 3).
Proof. Divide AB into any number of equal parts, and apply one of these parts

to A′B′ as many times as A′B′ will contain it.
Since AB and A′B′ are incommensurable, a certain number of these parts will

extend from A′ to some point, as D, leaving a remainder DB′ less than one of these
parts. Draw C ′D.

By construction AB and A′D are commensurable.

∴
∠A′C ′D
∠ACB

=
arcA′D
arcAB

. Case 1

By increasing the number of equal parts into which AB is divided we can di-
minish at pleasure the length of each part, and therefore make DB′ less than any
assigned value, however small, since DB′ is always less than one of the equal parts
into which AB is divided.

We cannot make DB′ equal to zero, since, by hypothesis, AB and A′B′ are
incommensurable. § 269

Hence, DB′ approaches zero as a limit, if the number of parts of AB is indefi-
nitely increased. § 275

And the corresponding angle DC ′B′ approaches zero as a limit.
Therefore, the arc A′D approaches the arc A′B′ as a limit, § 271

and the ∠A′C ′D approaches the ∠A′C ′B′ as a limit.
Therefore,

arcA′D
arcAB

approaches
arcA′B′

arcAB
as a limit, § 280

and
∠A′C ′D
∠ACB

approaches
∠A′C ′B′

∠ACB
as a limit. § 280

But
∠A′C ′D
∠ACB

is constantly equal to
arcA′D
arcAB

,

as A′D varies in value and approaches A′B′ as a limit.

∴
∠A′C ′B′

∠ACB
=

arcA′B′

arcAB
. § 284

q.e.d.
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288. A circumference is divided into 360 equal parts, called degrees ; and
therefore a unit angle at the centre intercepts a unit arc on the circumference.
Hence, the numerical measure of a central angle expressed in terms of the
unit angle is equal to the numerical measure of its intercepted arc expressed
in terms of the unit arc. This must be understood to be the meaning when it
is said that

A central angle is measured by its intercepted arc.
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Proposition XVII. Theorem.

289. An inscribed angle is measured by half the arc intercepted between its
sides.

A

B

C

P
Fig. 1.

A

B

C

E

P

Fig. 2.

A

B

C

F

P

Fig. 3.

1. Let the centre C (Fig. 1) be in one of the sides of the angle.

To prove that the ∠B is measured by 1
2 the arc PA.

Proof.
Draw CA.

CA = CB. § 217

∴ ∠B = ∠A. § 145
But

∠PCA = ∠B + ∠A. § 137

∴ ∠PCA = 2∠B.
But

∠PCA is measured by arcPA, § 288
(a central ∠ is measured by its intercepted arc).

∴ ∠B is measured by 1
2 arcPA.

2. Let the centre C (Fig. 2) fall within the angle PBA.

To prove that the ∠PBA is measured by 1
2 the arc PA.

Proof.
Draw the diameter BCE.

Then
∠EBA is measured by 1

2 arcAE,
and

∠EBP is measured by 1
2 arcEP . Case 1
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∴ ∠EBA+ ∠EBP is measured by 1
2(arcAE + arcEP ),

or
∠PBA is measured by 1

2 arcPA.

3. Let the centre C (Fig. 3) fall without the angle PBA.

To prove that the ∠PBA is measured by 1
2 the arc PA.

Proof.
Draw the diameter BCF .

Then
∠FBA is measured by 1

2 arcFA,
and

∠FBP is measured by 1
2 arcFP . Case 1

∴ ∠FBA− ∠FBP is measured by 1
2(arcFA− arcFP ),

or
∠PBA is measured by 1

2 arcPA. q.e.d.

A

B C

Fig. 4.

A

B

C D

Fig. 5.

A

B

C

D E

Fig. 6.

290. Cor. 1. An angle inscribed in a semicircle is a right angle. For it is
measured by half a semicircumference (Fig. 4).

291. Cor. 2. An angle inscribed in a segment greater than a semicircle is
an acute angle. For it is measured by an arc less than half a semicircumference;
as, ∠CAD (Fig. 5).

292. Cor. 3. An angle inscribed in a segment less than a semicircle is an
obtuse angle. For it is measured by an arc greater than half a semicircumfer-
ence; as, ∠CBD (Fig. 5).

293. Cor. 4. Angles inscribed in the same segment or in equal segments
are equal (Fig. 6).
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Proposition XVIII. Theorem.

294. An angle formed by two chords intersecting within the circumference
is measured by half the sum of the intercepted arcs.

A

BC

D

E

O

Let the angle COD be formed by the chords AC and BD.

To prove that the ∠COD is measured by 1
2(CD +AB).

Proof.
Suppose AE drawn ‖ to BD.

Then arcAB = arcDE, § 257
(parallels intercept equal arcs on a circumference).

Also ∠COD = ∠CAE, § 112
(ext.-int. ∠s of ‖s).

But ∠CAE is measured by 1
2(CD +DE), § 289

(an inscribed ∠ is measured by half its intercepted arc).
Put ∠COD for its equal, the ∠CAE, and arcAB for its equal, the arc DE; then

∠COD is measured by 1
2(CD +AB).

q.e.d.

Ex. 97. The opposite angles of an inscribed quadrilateral are supplemen-
tary.

Ex. 98. If through a point within a circle two perpendicular chords are
drawn, the sum of either pair of the opposite arcs which they intercept is equal
to a semicircumference.

Ex. 99. The line joining the centre of the square described upon the
hypotenuse of a right triangle to the vertex of the right angle bisects the right
angle.
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Proposition XIX. Theorem.

295. An angle included by a tangent and a chord drawn from the point of
contact is measured by half the intercepted arc.

A

E

FH

M O

Let MAH be the angle included by the tangent MO to the circle at
A and the chord AH.

To prove that the ∠MAH is measured by 1
2 the arc AEH.

Proof.
Suppose HF drawn ‖ to MO.

Then arcAF = arcAEH, § 257
(parallels intercept equal arcs on a circumference).

Also ∠MAH = ∠AHF , § 110
(alt.-int. ∠s of ‖s).

∠AHF is measured by 1
2AF , § 289

(an inscribed ∠ is measured by half its intercepted arc).
Put ∠MAH for its equal, the ∠AHF , and arcAEH for its equal, the arc AF ;

then ∠MAH is measured by 1
2 arcAEH.

Likewise, the ∠OAH, the supplement of the ∠MAH, is measured by half the
arc AFH, the conjugate of the arc AEH.

q.e.d.

Ex. 100. Two circles are tangent externally at A, and a common external
tangent touches them at B and C, respectively. Show that angle BAC is a
right angle.
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Proposition XX. Theorem.

296. An angle formed by two secants, two tangents, or a tangent and a
secant, drawn to a circle from an external point, is measured by half the dif-
ference of the intercepted arcs.

A

BC

E

O

P

AB

E

M

O

P

A

B

C

E

O

P

The proof of this theorem is left as an exercise for the student.
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A

B

C

D

O

o

/

A

B

C

B′

297. Positive and Negative Quantities. In measurements it is con-
venient to mark the distinction between two quantities that are measured in
opposite directions, by calling one of them positive and the other negative.

Thus, if OA is considered positive, then OC may be considered negative,
and if OR is considered positive, then OD may be considered negative.

When this distinction is applied to angles, an angle is considered to be
positive, if the rotating line that describes it moves in the opposite direction
to the hands of a clock (counter clockwise), and to be negative, if the rotating
line moves in the same direction as the hands of a clock (clockwise).

Arcs corresponding to positive angles are considered positive, and arcs cor-
responding to negative angles are considered negative.

Thus, the angle ACB described by a line rotating about C from CA to CB
is positive, and the arc AB is positive; the angle ACB′ described by the line
rotating about C from CA to CB′ is negative, and the arc AB′ is negative.

298. The Principle of Continuity. By marking the distinction between
quantities measured in opposite directions, a theorem may often be so stated
as to include two or more particular theorems.
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The following theorem furnishes a good illustration:

299. The angle included between two lines of unlimited length that cut or
touch a circumference is measured by half the sum of the intercepted arcs.

Here the word sum means the algebraic sum and includes both the arith-
metical sum and the arithmetical difference of two quantities.

ab

c
d

o

ab

c d

o

ab

c d

o
a

b

c
d

m

o
a

b

c dm

n
o a b

c
d

a b

c d

m

no

1. If the lines intersect at the centre, the two intercepted arcs are equal,
and half the sum will be one of the arcs (§ 288).

2. If the lines intersect between the centre and the circumference, the angle
is measured by half the sum of the arcs (§ 294).

3. If the lines intersect on the circumference, one of the arcs becomes zero
and we have an inscribed angle (§ 289), or an angle formed by a tangent and
a chord (§ 295). In each case the angle is measured by half the sum of the
intercepted arcs.

4. If the lines intersect without the circumference, then the arc ab is nega-
tive and the algebraic sum is the arithmetical difference of the included arcs.

When the reasoning employed to prove a theorem is continued in the man-
ner just illustrated to include two or more theorems, we are said to reason by
the Principle of Continuity.
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REVIEW QUESTIONS ON BOOK II.

1. What do we call the locus of points in a plane that are equidistant from
a fixed point in the plane?

2. What does the chord of a segment become when the segment is a semi-
circle?

3. What kind of an angle do the radii of a sector include when the sector
is a semicircle?

4. What is the difference between a chord and a secant?

5. What part of a tangent is meant by a tangent to a circle from an external
point?

6. Two chords are equal in equal circles under either of two conditions.
What are the two conditions?

7. Points that lie in a straight line are called collinear ; points that lie in a
circumference are called concyclic. How many collinear points can be
concyclic?

8. What is meant by the statement that a central angle is measured by
the arc intercepted between its sides?

9. What is an inscribed angle? What is its measure?

10. What kind of an angle is the angle inscribed in a semicircle? in a
segment less than a semicircle? in a segment greater than a semicircle?

11. What is the measure of an angle included by two intersecting chords?
by two secants intersecting without the circle?

12. What is the measure of an angle included by a tangent and a chord
drawn to the point of contact?

13. When are two quantities of the same kind incommensurable?

14. When are two quantities of the same kind commensurable?

15. Define a variable and the limit of a variable.

16. Does the series 1
2

in., 3
4

in., 7
8

in., 15
16

in., etc., constitute a variable? Is
the variable increasing or decreasing?

17. What is the limit of this variable?

18. What is the test of a limit?
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THEOREMS.

Ex. 101. An angle formed by a tangent and a chord is equal to the angle
inscribed in the opposite segment.

Ex. 102. Two chords drawn perpendicular to a third chord at its extrem-
ities are equal.

Ex. 103. The sum of two opposite sides of a circumscribed quadrilateral
is equal to the sum of the other two sides.

A B

CD

O

M

A
BC

D

O

Ex. 104. If the sum of two opposite angles of a quadrilateral is equal to
two right angles, a circle may be circumscribed about the quadrilateral.

Let ∠A+ ∠C = 2 rt. ∠s. Pass a circumference through D, A, and B, and
prove that this circumference passes through C.

Ex. 105. The shortest line that can be drawn from a point within a circle
to the circumference is the shorter segment of the diameter through that point.

Let A be the given point. Prove AB shorter than any other line AD from
A to the circumference.

Ex. 106. The longest line that can be drawn from a point within a circle
to the circumference is the longer segment of the diameter through that point.

A B

C

D

OP

Ex. 107. The shortest line that can be drawn from a point without a circle
to the circumference will pass through the centre of the circle if produced.

Ex. 108. The longest line that can be drawn from a point without a circle
to the concave arc of the circumference passes through the centre of the circle.
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A B
C

DO

P
Q

A

B
C

D

E

H

KM

N
O

A B

C

D

G

H

K

L
O

A

B CD

E

F

O

Ex. 109. The shortest chord that can be drawn through a point within a
circle is perpendicular to the diameter at that point.

Ex. 110. If two intersecting chords make equal angles with the diameter
drawn through the point of intersection, the two chords are equal.

Rt. 4COM = rt. 4CON . ∴ OM = ON .

Ex. 111. The angles subtended at the centre of a circle by any two opposite
sides of a circumscribed quadrilateral are supplementary.

Ex. 112. The radius of a circle inscribed in an equilateral triangle is equal
to one third the altitude of the triangle.

4OEF is equiangular and equilateral; ∠FEA = ∠FAE.

∴ AF = EF . ∴ AF = FO = OD.

Ex. 113. The radius of a circle circumscribed about an equilateral triangle
is equal to two thirds the altitude of the triangle (Ex. 27).

Ex. 114. A parallelogram inscribed in a circle is a rectangle.

Ex. 115. A trapezoid inscribed in a circle is an isosceles trapezoid.

Ex. 116. All chords of a circle which touch an interior concentric circle
are equal, and are bisected at the point of contact.

Ex. 117. If the inscribed and circumscribed circles of a triangle are con-
centric, the triangle is equilateral (Ex. 116).

Ex. 118. If two circles are tangent to each other the tangents to them
from any point of the common internal tangent are equal.
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Ex. 119. If two circles touch each other and a line is drawn through the
point of contact terminated by the circumferences, the tangents at its ends are
parallel.

A

B

C

D

M

N

P A

B

C D

E
F

Ex. 120. If two circles touch each other and two lines are drawn through
the point of contact terminated by the circumferences, the chords joining the
ends of these lines are parallel.

∠A = ∠MPC and ∠B = ∠NPD. ∴ ∠A = ∠B.

Ex. 121. If two circles intersect and a line is drawn through each point
of intersection terminated by the circumferences, the chords joining the ends
of these lines are parallel.

A

BC D

O O′

A B

C

D

E

F

O

Ex. 122. Through one of the points of intersection of two circles a diameter
of each circle is drawn. Prove that the line joining the ends of the diameters
passes through the other point of intersection.

∠ABC = ∠ABD = 90◦ § 290

Ex. 123. If two common external tangents or two common internal tan-
gents are drawn to two circles, the segments intercepted between the points of
contact are equal.

Ex. 124. The diameter of the circle inscribed in a right triangle is equal
to the difference between the sum of the legs and the hypotenuse.
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A

B C

D

E

O

A

B

C

H

K

M

Ex. 125. If one leg of a right triangle is the diameter of a circle, the tangent
at the point where the circumference cuts the hypotenuse bisects the other leg.

∠BOE = ∠DOE. ∠BOE = ∠OAD.

∴ OE and AC are ‖. ∴ BE = EC (§ 188).

Ex. 126. If, from any point in the circumference of a circle, a chord and
a tangent are drawn, the perpendiculars dropped on them from the middle
point of the subtended arc are equal. ∠BAM = ∠CAM .

Ex. 127. The median of a trapezoid circumscribed about a circle is equal
to one fourth the perimeter of the trapezoid (Ex. 103).

Ex. 128. Two fixed circles touch each other externally and a circle of
variable radius touches both externally. Show that the difference of the dis-
tances from the centre of the variable circle to the centres of the fixed circles
is constant.

Ex. 129. If two fixed circles intersect, and circles are drawn to touch both,
show that either the sum or the difference of the distances of their centres from
the centres of the fixed circles is constant, according as they touch (i) one
internally and one externally, (ii) both internally or both externally.
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A B

CD

E

F

O

P
E′

F ′
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B C

M

P

Ex. 130. If two straight lines are drawn through any point in a diagonal
of a square parallel to the sides of the square, the points where these lines
meet the sides lie on the circumference of a circle whose centre is the point of
intersection of the diagonals.

4POE = 4POF (§ 143). ∴ OE = OF . 4POE ′ = 4POF ′.

Ex. 131. If ABC is an inscribed equilateral triangle and P is any point in
the arc BC, then PA = PB + PC.

Take PM = PB. 4ABM = 4CBP (§ 143) and AM = PC.

Ex. 132. The tangents drawn through the vertices of an inscribed rect-
angle, which is not a square, enclose a rhombus.
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A B
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Ex. 133. The bisectors of the angles included by the opposite sides
(produced) of an inscribed quadrilateral intersect at right angles.

Arc AF − arcBM = arcDF − arcCM

and arcAH − arcDN = arcBH − arcCN .

∴ arcFH + arcMN = arcHM + arcFN .

∴ ∠FIH = ∠HIM .
Discussion. This problem is impossible, if any two sides of the quadrilat-

eral are parallel.

PROBLEMS OF CONSTRUCTION.

Note. Hitherto we have supposed the figures constructed. We now proceed to
explain the methods of constructing simple problems, and afterwards to apply these
methods to the solution of more difficult problem.
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Proposition XXI. Problem.

300. To let fall a perpendicular upon a given line from a given external
point.

...............
....

...
..

A B

C

H KM

O

Let AB be the given straight line, and C the given external point.

To let fall a ⊥ to the line AB from the point C.
From C as a centre, with a radius sufficiently great, describe an arc cutting AB

in two points, H and K.
From H and K as centres, with equal radii greater than 1

2HK,

describe two arcs intersecting at O.

Draw CO,

and produce it to meet AB at M .

CM is the ⊥ required.
Proof. Since C and O are two points each equidistant from H and K, they

determine a ⊥ to HK at its middle point. § 161
q.e.f.

Note. Given lines of the figures are represented by full lines, resulting lines by
long-dashed, and auxiliary lines by short-dashed lines.
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Proposition XXII. Problem.

301. At a given point in a straight line, to erect a perpendicular to that
line.

....... . ........
......

...

A
B

C
H O

R

Fig. 1.

A
B

C

D

E

Fig. 2.

1. Let O be the given point in AC. Fig. 1.

Take OH and OB equal.
From H and B as centres, with equal radii greater than OB, describe two arcs

intersecting at R. Join OR.
Then the line OR is the ⊥ required.
Proof. O and R, two points each equidistant from H and B, determine the

perpendicular bisector of HB. § 161
2. Let B be the given point. Fig. 2.
Take any point C without AB; and from C as a centre, with the distance CB

as a radius, describe an arc intersecting AB at E.
Draw EC, and prolong it to meet the arc again at D.
Join BD, and BD is the ⊥ required.
Proof.

The ∠B is a right angle. § 290

∴ BD is ⊥ to AB. q.e.f.
Discussion. The point C must be so taken that it will not be in the required

perpendicular.
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Proposition XXIII. Problem.

302. To bisect a given straight line.

A B

C

D

E

To bisect the given straight line AB.

From A and B as centres, with equal radii greater than 1
2AB, describe arcs

intersecting at C and E.

Join CE.

Then CE bisects AB. § 161
q.e.f.
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Proposition XXIV. Problem.

303. To bisect a given arc.

A B

C

D

E

To bisect the given arc AB.

Draw the chord AB.
From A and B as centres, with equal radii greater than 1

2AB, describe arcs
intersecting at D and E.

Draw DE.

Then DE is the ⊥ bisector of the chord AB. § 161

∴ DE bisects the arc ACB. § 248
q.e.f.
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Proposition XXV. Problem.

304. To bisect a given angle.
................
....
.....

..

A B

C

D

E

Let AEB be the given angle.

From E as a centre, with any radius, as EA, describe an arc cutting the sides
of the ∠E at A and B.

From A and B as centres, with equal radii greater than half the distance from
A to B, describe two arcs intersecting at D.

Draw DE.

Then DE bisects the arc AB at C. § 303

∴ DE bisects the angle E. § 237
q.e.f.

Ex. 134. To construct an angle of 45◦; of 135◦.

Ex. 135. To construct an equilateral triangle, having given one side.

Ex. 136. To construct an angle of 60◦; of 150◦.

Ex. 137. To trisect a right angle.
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Proposition XXVI. Problem.

305. At a given point in a given straight line, to construct an angle equal
to a given angle.

A

E

F

C

G

H
M

O

At C in the line CM , construct an angle equal to the given angle A.

From A as a centre, with any radius, AE, describe an arc cutting the sides of
the ∠A at E and F .

From C as a centre, with a radius equal to AE,

describe an arc HG cutting CM at H.

From H as a centre, with a radius equal to the chord EF ,

describe an arc intersecting the arc HG at O.

Draw CO, and ∠ HCO is the required angle. Why?
q.e.f.
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Proposition XXVII. Problem.

306. To draw a straight line parallel to a given straight line through a given
external point.

A B

C

D

E

FH

Let AB be the given line, and C the given point.

Draw ECD, making any convenient ∠EDB.

At the point C construct ∠ECF equal to ∠EDB. § 305

Then the line HCF is ‖ to AB. Why?
q.e.f.
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Proposition XXVIII. Problem.

307. To divide a given straight line into a given number of equal parts.
A B

C

O

Let AB be the given straight line.

From A draw the line AO, making any convenient angle with AB.
Take any convenient length, and apply it to AO as many times as the line AB

is to be divided into parts.
From C, the last point thus found on AO, draw CB.
Through the points of division on AO draw parallels to the line CB. § 306

These lines will divide AB into equal parts. § 187
q.e.f.

Ex. 138. To construct an equilateral triangle, having given the perimeter.

Ex. 139. To divide a line into four equal parts by two different methods.

Ex. 140. Through a given point to draw a line which shall make equal
angles with the two sides of a given angle.

Through the given point draw a ⊥ to the bisector of the given ∠.

Ex. 141. To draw a line through a given point, so that it shall form with
the sides of a given angle an isosceles triangle (Ex. 140).
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Proposition XXIX. Problem.

308. To find the third angle of a triangle when two of the angles are given.

A

B E FH

R

abc

Let A and B be the two given angles.

At any point H in any line EF ,

construct ∠a equal to ∠A, and ∠b equal to ∠B. § 305
Then

∠c is the ∠ required. Why?
q.e.f.
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Proposition XXX. Problem.

309. To construct a triangle when two sides and the included angle are
given.

E

b

c

A B

C

D

b

c

Let b and c be the two sides of the triangle and E the included angle.

Take AB equal to the side c.
At A, construct ∠BAD equal to the given ∠E. § 305

On AD take AC equal to b, and draw CB.

Then 4ACB is the 4 required. q.e.f.



BOOK II. PLANE GEOMETRY. 146

Proposition XXXI. Problem.

310. To construct a triangle when a side and two angles of the triangle are
given.

A B

c

CE

H

K

O

c

Let c be the given side, A and B the given angles.

Take EC equal to the side c.

At E construct the ∠CEH equal to ∠A. § 305

At C construct the ∠ECK equal to ∠B.

Produce EH and CK until they intersect at O.

Then 4COE is the 4 required. q.e.f.
Remark. If one of the given angles is opposite to the given side, find the third

angle by § 308, and proceed as above.
Discussion. The problem is impossible when the two given angles are together

equal to or greater than two right angles.

Ex. 142. To construct an equilateral triangle, having given the altitude.

To construct an isosceles triangle, having given:

Ex. 143. The base and the altitude.

Ex. 144. The altitude and one of the legs.

Ex. 145. The angle at the vertex and the altitude.
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Proposition XXXII. Problem.

311. To construct a triangle when two sides and the angle opposite one of
them are given.

A

a

b

A

B

CC′

D

E

a
a

b

Let a and b be the given sides, and A the angle opposite a.

Case 1. If a is less than b.

Construct ∠DAE equal to the given ∠A § 305

On AD take AB equal to b.

From B as a centre, with a radius equal to a,

describe an arc intersecting the line AE at C and C ′.

Draw BC and BC ′.
Then both the 4sABC and ABC ′ fulfil the conditions, and hence we have two

constructions.
This is called the ambiguous case.

A

B

D

E
H

a
b

A

B

D

E

a
b

Discussion. If the side a is equal to the ⊥ BH, the arc described from B will
touch AE, and there will be but one construction, the right 4ABH.

If the given side a is less than the ⊥ from B, the arc described from B will not
intersect or touch AE, and hence the problem is impossible.

If the ∠A is right or obtuse, the problem is impossible; for the side opposite a
right or obtuse angle is the greatest side. § 153
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Case 2. If a is equal to b.

A

B

C

D

E

ab

If the ∠A is acute, and a = b, the arc described from B as a centre, and with a
radius equal to a, will cut the line AE at the points A and C. There is therefore
but one solution: the isosceles 4ABC.

Discussion. If the ∠A is right or obtuse, the problem is impossible; for equal
sides of a 4 have equal ∠s opposite them, and a 4 cannot have two right ∠s or two
obtuse ∠s.

A

B

CC′ DE

a
b

a

A

B

CC′ DE

a
b

a

A

B

CC′ DE

a
b

a

Case 3. If a is greater than b.
If the given ∠A is acute, the arc described from B will cut the line ED on

opposite sides of A, at C and C ′. The 4ABC answers the required conditions, but
the 4 ABC ′ does not, for it does not contain the acute ∠A. There is then only one
solution; namely, the 4ABC.

If the ∠A is right, the arc described from B cuts the line ED on opposite sides
of A, and we have two equal right 4s which fulfil the required conditions.

If the ∠A is obtuse, the arc described from B cuts the line ED on opposite sides
of A, at the points C and C ′. The 4ABC answers the required conditions, but the
4ABC ′ does not, for it does not contain the obtuse ∠A. There is then only one
solution; namely, the 4ABC. q.e.f.
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Proposition XXXIII. Problem.

312. To construct a triangle when the three sides of the triangle are given.

A B

C

ab

c

c

a

b

Let the three sides be c, a, and b.

Take AB equal to c. From A as a centre, with a radius equal to b, describe an
arc. From B as a centre, with a radius equal to a, describe an arc, intersecting the
other arc at C.

Draw CA and CB.

4CAB is the 4 required. q.e.f.
Discussion. The problem is impossible when one side is equal to or greater

than the sum of the other two sides.
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Proposition XXXIV. Problem.

313. To construct a parallelogram when two sides and the included angle
are given.

C

m

o A B

EH

D

m

o

Let m and o be the two sides, and C the included angle.

Take AB equal to o.

At A construct ∠BAD equal to ∠C. § 305
Take AH equal to m. From H as a centre, with a radius equal to o, describe an

arc, and from B as a centre, with a radius equal to m, describe an arc, intersecting
the other arc at E; and draw EH and EB.

The quadrilateral ABEH is the / / required. § 182
q.e.f.
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Proposition XXXV. Problem.

314. To circumscribe a circle about a given triangle.
A

B CD

E F

G

O

Let ABC be the given triangle.

Bisect AB and BC. § 302

At E and D, the points of bisection, erect ⊥s. § 301
Since BC is not the prolongation of AB, these ⊥s will intersect at some point

O.
From O, with a radius equal to OB, describe a circle.

The �ABC is the � required.
Proof.

The point O is equidistant from A and B,

and also is equidistant from B and C. § 160

∴ the point O is equidistant from A, B, and C,
and a � described from O as a centre, with a radius equal to OB, will pass through
the vertices A, B, and C. q.e.f.

The same construction serves to describe a circumference which shall pass
through three points not in the same straight line; also to find the centre of a
given circle or of a given arc.

Note. The point O is called the circum-centre of the triangle.
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Proposition XXXVI. Problem.

315. To inscribe a circle in a given triangle.

A

B

C

K

E

M

H

Let ABC be the given triangle.

Bisect the ∠sA and C. § 304

From E, the intersection of the bisectors,

draw EH ⊥ to the side AC. § 300

From E as centre, with radius EH, describe the �KHM .

The �KHM is the � required.
Proof. Since E is in the bisector of the ∠A, it is equidistant from the sides AB

and AC; and since E is in the bisector of the ∠C, it is equidistant from the sides
AC and BC. § 162

∴ a � described from E as centre, with a radius equal to EH, will touch the
sides of the 4 and be inscribed in it. q.e.f.

Note. The point E is called the in-centre of the triangle.
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A

B

C

DE

F

O

P

Q

316. The intersections of the bisectors of the exterior angles of a triangle
are the centres of three circles, each of which will touch one side of the triangle,
and the two other sides produced. These three circles are called escribed circles;
and their centres are called the ex-centres of the triangle.
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Proposition XXXVII. Problem.

317. Through a given point, to draw a tangent to a given circle.

Case 1. When the given point is on the circumference.

A
C

M

O
O

M

H

E

Let C be the given point on the circumference whose centre is O.

From the centre O draw the radius OC.

Through C draw AM ⊥ to OC. § 301

Then AM is the tangent required. § 253
Case 2. When the given point is without the circle.
Let O be the centre of the given circle, E the given point.

Draw OE.
On OE as a diameter, describe a circumference intersecting the given circum-

ference at the points M and H.

Draw OM and EM .

Then EM is the tangent required.
Proof.

∠OME is a right angle. § 290

∴ EM is tangent to the circle at M . § 253
In like manner, we may prove EH tangent to the given �.

q.e.f.

Ex. 146. To draw a tangent to a given circle, so that it shall be parallel
to a given straight line.
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Proposition XXXVIII. Problem.

318. Upon a given straight line, to describe a segment of a circle in which
a given angle may be inscribed.

A B

E

F

O

M

K

Let AB be the given line, and M the given angle.

Construct the ∠ABE equal to the ∠M . § 305

Bisect the line AB by the ⊥ OF . § 302

From the point B draw BO ⊥ to EB. § 301
From O, the point of intersection of FO and BO, as a centre with a radius equal

to OB, describe a circumference.

The segment AKB is the segment required.
Proof.

The point O is equidistant from A and B. § 160

∴ the circumference will pass through A.

But BE is ⊥ to OB. Const.

∴ BE is tangent to the �, § 253
(a straight line ⊥ to a radius at its extremity is tangent to the �).

∴ ∠ABE is measured by 1
2 arcAB, § 295

(being an ∠ formed by a tangent and a chord).
But any ∠ as ∠K inscribed in the segment AKB is measured by 1

2 arcAB.§ 289
∴ the ∠M may be inscribed in the segment AKB.

q.e.f.
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SOLUTION OF PROBLEMS.

319. If a problem is so simple that the solution is obvious from a known
theorem, we have only to make the construction according to the theorem,
and then give a synthetic proof, if a proof is necessary, that the construction
is correct, as in the examples of the fundamental problems already given.

320. But problems are usually of a more difficult type. The application of
known theorems to their solution is not immediate, and often far from obvious.
To discover the mode of application is the first and most difficult part of the
solution. The best way to attack such problems is by a method resembling the
analytic proof of a theorem, called the analysis of the problem.

1. Suppose the construction made, and let the figure represent all
parts concerned, both given and required.

2. Study the relations among the parts with the aid of known theorems,
and try to find some relation that will suggest the construction.

3. If this attempt fails, introduce new relations by drawing auxiliary lines,
and study the new relations. If this attempt fails, make a new trial, and so on
till a clue to the right construction is found.

321. A problem is determinate if it has a definite number of solutions,
indeterminate if it has an indefinite number of solutions, and impossible if it
has no solution. A problem is sometimes determinate for certain relative posi-
tions or magnitudes of the given parts, and indeterminate for other positions
or magnitudes of the given parts.

322. The discussion of a problem consists in examining the problem with
reference to all possible conditions, and in determining the conditions necessary
for its solution.
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Ex. 147. Problem. To construct a circle that shall pass through a given
point and cut chords of a given length from two parallels.

A

B C

D E

F
G

M N

O
P

Analysis. Suppose the problem solved. Let A be the given point, BC
and DE the given parallels, MN the given length, and O the centre of the
required circle.

Since the circle cuts equal chords from two parallels its centre must be
equidistant from them. Therefore, one locus for O is FG ‖ to BC and equidis-
tant from BC and DE.

Draw the ⊥ bisector of MN , cutting FG in P . PM is the radius of the
circle required. With A as centre and radius PM describe an arc cutting FG
at O. Then O is the centre of the required circle.

Discussion. The problem is impossible if the distance from A to FG is
greater than PM .
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A B

C

DE F

G H

m n

Ex. 148. Problem. To construct a triangle, having given the perimeter,
one angle, and the altitude from the vertex of the given angle.

Analysis. Suppose the problem solved, and let ABC be the 4 required,
ACB the given ∠, and CD the given altitude.

Produce AB both ways, and take AE = AC, and BF = BC, then EF =
the given perimeter. Join CE and CF , forming the isosceles 4sCAE and
CBF .

In the 4ECF , ∠E+∠F +∠ECF = 180◦ (why?), but ∠ECF = ∠ECA+
∠FCB + ∠ACB.

Since ∠E = ∠ECA and ∠F = ∠FCB, we have ∠ECF = ∠E + ∠F +
∠ACB. ∴ 2∠E + 2∠F + ∠ACB = 180◦.

∴ ∠E + ∠F + 1
2
∠ACB = 90◦, and ∠E + ∠F = 90◦ − 1

2
∠ACB.

By substitution, ∠ECF = 90◦ + 1
2
∠ACB.

∴ ∠ECF is known.

Construction. To find the point C, construct on EF a segment that will
contain the ∠ECF (§ 318), and draw a parallel to EF at the distance CD,
the given altitude.

To find the points A and B, draw the ⊥ bisectors of the lines CE and CF ,
and the points A and B will be vertices of the required 4. Why?

PROBLEMS OF CONSTRUCTION.

Ex. 149. Find the locus of a point at a given distance from a given
circumference.

Find the locus of the centre of a circle:

Ex. 150. Which has a given radius r and passes through a given point P .
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Ex. 151. Which has a given radius r and touches a given line AB.

Ex. 152. Which passes through two given points P and Q.

Ex. 153. Which touches a given straight line AB at a given point P .

Ex. 154. Which touches each of two given parallels.

Ex. 155. Which touches each of two given intersecting lines.

Ex. 156. To find in a given line a point X which is equidistant from two
given points.

The required point is the intersection of the given line with the perpendic-
ular bisector of the line joining the two given points (§ 160).

Ex. 157. To find a point X equidistant from three given points.

P Q

R

X

X′
d

Ex. 158. To find a point X equidistant from two given points and at a
given distance from a third given point.

Ex. 159. To construct a circle which has a given radius and passes through
two given points.

Ex. 160. To find a point X at given distances from two given points.

Ex. 161. To construct a circle which has its centre in a given line and
passes through two given points.

Ex. 162. To find a point X equidistant from two given points and also
equidistant from two given intersecting lines (§§ 160 and 162).

Ex. 163. To find a point X equidistant from two given points and also
equidistant from two given parallel lines.

Ex. 164. To find a point X equidistant from two given intersecting lines
and also equidistant from two given parallels.
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A

B
C

D

E

X

Y
Z

P

T

d

Ex. 165. To find a point X equidistant from two given intersecting lines
and at a given distance from a given point.

Ex. 166. To find a point X which lies in one side of a given triangle and
is equidistant from the other two sides.

A

B

CD E

X Y

Z T

A

B C

D EF

Ex. 167. A straight railway passes two miles from a town. A place is four
miles from the town and one mile from the railway. To find by construction
the places that answer this description.

Ex. 168. In a triangle ABC, to draw DE parallel to the base BC, cutting
the sides of the triangle in D and E, so that DE shall equal DB+EC (§ 162).

A

B CD

EF

d

Ex. 169. To draw through two sides of a triangle a line parallel to the third
side so that the part intercepted between the sides shall have a given length.

Take BD = d.

Ex. 170. Prove that the locus of the vertex of a right triangle, having
a given hypotenuse as base, is the circumference described upon the given
hypotenuse as diameter (§ 290).

Ex. 171. Prove that the locus of the vertex of a triangle, having a given
base and a given angle at the vertex, is the arc which forms with the base a
segment capable of containing the given angle (§ 318).

Ex. 172. Find the locus of the middle point of a chord of a given length
that can be drawn in a given circle.
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Ex. 173. Find the locus of the middle point of a chord drawn from a
given point in a given circumference.

A

B

C

D
E

OM

A B

C D

O M

A

BO

M

Ex. 174. Find the locus of the middle point of a straight line drawn from
a given exterior point to a given circumference.

Ex. 175. A straight line moves so that it remains parallel to a given line,
and touches at one end a given circumference. Find the locus of the other end.

Ex. 176. A straight rod moves so that its ends constantly touch two fixed
rods which are perpendicular to each other. Find the locus of its middle point.

Ex. 177. In a given circle let AOB be a diameter, OC any radius, CD
the perpendicular from C to AB. Upon OC take OM equal to CD. Find the
locus of the point M as OC turns about O.

AB

C

D

E

O

M

A B

C

D

O

Ex. 178. To construct an equilateral triangle, having given the radius of
the circumscribed circle.

To construct on isosceles triangle, having given:

Ex. 179. The angle at the vertex and the base (§ 160 and § 318).

Ex. 180. The base and the radius of the circumscribed circle.

Ex. 181. The base and the radius of the inscribed circle.
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A B

C

DE F

Ex. 182. The perimeter and the altitude.

Let ABC be the 4 required, EF the given perimeter. The altitude CD
passes through the middle of EF , and the 4sAEC, BFC are isosceles.

To construct a right triangle, having given:

Ex. 183. The hypotenuse and one leg.

Ex. 184. One leg and the altitude upon the hypotenuse.

Ex. 185. The median and the altitude drawn from the vertex of the right
angle.

Ex. 186. The hypotenuse and the altitude upon the hypotenuse.

Ex. 187. The radius of the inscribed circle and one leg.

Ex. 188. The radius of the inscribed circle and an acute angle.

Ex. 189. An acute angle and the sum of the legs.

Ex. 190. An acute angle and the difference of the legs.
A

B C

D

E

F

P

Q R

O

Ex. 191. To construct an equilateral triangle, having given the radius of
the inscribed circle.

To construct a triangle, having given:

Ex. 192. The base, the altitude, and an angle at the base.
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Ex. 193. The base, the altitude, and the ∠ at the vertex.

Ex. 194. The base, the corresponding median, and the ∠ at the vertex.

Ex. 195. The perimeter and the angles.

Ex. 196. One side, an adjacent ∠, and the sum of the other sides.

To construct a triangle, having given:

Ex. 197. One side, an adjacent ∠, and the difference of the other sides.

Ex. 198. The sum of two sides and the angles.

Ex. 199. One side, an adjacent ∠, and the radius of the circumscribed
circle.

Ex. 200. The angles and the radius of the circumscribed circle.

Ex. 201. The angles and the radius of the inscribed circle.

Ex. 202. An angle, and the bisector and the altitude drawn from the
vertex of the given angle.

Ex. 203. Two sides and the median corresponding to the other side.

Ex. 204. The three medians.

To construct a square, having given:

Ex. 205. The diagonal.

Ex. 206. The sum of the diagonal and one side.

Let ABCD be the square required, CA the diagonal. Produce CA, making
AE = AB. 4sABC and ABE are isosceles and ∠BAC = ∠BCA = 45◦.
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Ex. 207. Given two perpendiculars, AB and CD, intersecting in O, and
a straight line intersecting these perpendiculars in E and F ; to construct a
square, one of whose angles shall coincide with one of the right angles at O, and
the vertex of the opposite angle of the square shall lie in EF . (Two solutions.)

To construct a rectangle, having given:

Ex. 208. One side and the angle between the diagonals.

Ex. 209. The perimeter and the diagonal.

Ex. 210. The perimeter and the angle between the diagonals.

Ex. 211. The difference of two adjacent sides and the angle between the
diagonals.

To construct a rhombus, having given:

Ex. 212. The two diagonals.

Ex. 213. One side and the radius of the inscribed circle.

Ex. 214. One angle and the radius of the inscribed circle.

Ex. 215. One angle and one of the diagonals.

To construct a rhomboid, having given:

Ex. 216. One side and the two diagonals.

Ex. 217. The diagonals and the angle between them.
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Ex. 218. One side, one angle, and one diagonal.

Ex. 219. The base, the altitude, and one angle.

To construct an isosceles trapezoid, having given:

Ex. 220. The bases and one angle.

Ex. 221. The bases and the altitude.

Ex. 222. The bases and the diagonal.

A B

CD

E

F

G

O

Ex. 223. The bases and the radius of the circumscribed circle.

Let ABCD be the isosceles trapezoid required, O the centre of the circum-
scribed �. A diameter ⊥ to AB is ⊥ to CD, and bisects both AB and CD.
Draw CG ‖ to FE. Then EG = FC = 1

2
DC.

To construct a trapezoid, having given:

Ex. 224. The four sides.

Ex. 225. The two bases and the two diagonals.

Ex. 226. The bases, one diagonal, and the ∠ between the diagonals.

To construct a circle which has the radius r and which also:

Ex. 227. Touches each of two intersecting lines AB and CD.

Ex. 228. Touches a given line AB and a given circle K.

Ex. 229. Passes through a given point P and touches a given line AB.

Ex. 230. Passes through a given point P and touches a given circle K.



BOOK II. PLANE GEOMETRY. 166

To construct a circle which shall:

Ex. 231. Touch two given parallels and pass through a given point P .

Ex. 232. Touch three given lines two of which are parallel.

Ex. 233. Touch a given line AB at P and pass through a given point Q.

Ex. 234. Touch a given circle at P and pass through a given point Q.

Ex. 235. Touch two given lines and touch one of them at a given point P .

Ex. 236. Touch a given line and touch a given circle at a point P .

Ex. 237. Touch a given line AB at P and also touch a given circle.

Ex. 238. To inscribe a circle in a given sector.

Ex. 239. To construct within a given circle three equal circles, so that
each shall touch the other two and also the given circle.

Ex. 240. To describe circles about the vertices of a given triangle as
centres, so that each shall touch the two others.

A

B

C

D
E

F
GHI

Ex. 241. To bisect the angle formed by two lines, without producing the
lines to their point of intersection.

Draw any line EF ‖ to BA. Take EG = EH, and produce GH to meet
BA at I. Draw the ⊥ bisector of GI.

A B

C

D

E

FG

P A BC

D

E

P

Q

A BC

D

E F

P
Q

Ex. 242. To draw through a given point P between the sides of an angle
BAC a line terminated by the sides of the angle and bisected at P .
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Ex. 243. Given two points P , Q, and a line AB; to draw lines from P and
Q which shall meet on AB and make equal angles with AB.

Make use of the point which forms with P a pair of points symmetrical
with respect to AB.

Ex. 244. To find the shortest path from P to Q which shall touch a
line AB.

A

B

C
D

E

FG

H

O O′
P

Q

R

S

Ex. 245. To draw a common tangent to two given circles.

Let r and r′ denote the radii of the circles, O and O′ their centres. With
centre O and radius r − r′ describe a �. From O′ draw the tangents O′M ,
O′N . Produce OM and ON to meet the circumference at A and C. Draw the
radii O′B and O′D ‖, respectively, to OA and OC. Draw AB and CD.

To draw the internal tangents use an auxiliary � of radius r + r′.
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THE THEORY OF PROPORTION.

323. A proportion is an expression of equality between two equal ratios;
and is written in one of the following forms:

a : b = c : d; a : b :: c : d;
a

b
=
c

d
.

This proportion is read, “a is to b as c is to d”; or “the ratio of a to b is equal
to the ratio of c to d.”

324. The terms of a proportion are the four quantities compared; the first
and third terms are called the antecedents, the second and fourth terms, the
consequents; the first and fourth terms, the extremes, the second and third
terms, the means.

Thus, in the proportion a : b = c : d; a and c are the antecedents, b and d
the consequents, a and d the extremes, b and c the means.

325. The fourth proportional to three given quantities is the fourth term
of the proportion which has for its first three terms the three given quantities
taken in order.

Thus, d is the fourth proportional to a, b, and c in the proportion

a : b = c : d.

326. The quantities a, b, c, d, e, are said to be in continued proportion,
if a : b = b : c = c : d = d : e.

If three quantities are in continued proportion, the second is called the
mean proportional between the other two, and the third is called the third
proportional to the other two.

Thus, in the proportion a : b = b : c; b is the mean proportional between a
and c; and c is the third proportional to a and b.
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Proposition I. Theorem.

327. In every proportion the product of the extremes is equal to the product
of the means.

Let
a : b = c : d.

Then
a

b
=
c

d
. § 323

Whence
ad = bc. q.e.d.

Proposition II. Theorem.

328. The mean proportional between two quantities is equal to the square
root of their product.

Let
a : b = b : c.

Then
b2 = ac. § 327

Whence, extracting the square root,

b =
√
ac. q.e.d.

Proposition III. Theorem.

329. If the product of two quantities is equal to the product of two others,
either two may be made the extremes of the proportion in which the other two
are made the means.

Let
ad = bc.

To prove that
a : b = c : d

Divide both members of the given equation by bd.
Then

a

b
=
c

d
.

Or
a : b = c : d. q.e.d.
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Proposition IV. Theorem.

330. If four quantities are in proportion, they are in proportion by alter-
nation; that is, the first term is to the third as the second is to the fourth.

Let
a : b = c : d.

To prove that
a : c = b : d.

Now
ad = bc. § 327

Divide each member of the equation by cd.
Then

a

c
=
b

d
.

Or
a : c = b : d. q.e.d.

Proposition V. Theorem.

331. If four quantities are in proportion, they are in proportion by inver-
sion; that is, the second term is to the first as the fourth is to the third.
Let

a : b = c : d.
To prove that

b : a = d : c.
Now

bc = ad. § 327
Divide each member of the equation by ac.
Then

b

a
=
d

c
.

Or
b : a = d : c. q.e.d.
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Proposition VI. Theorem.

332. If four quantities are in proportion, they are in proportion by com-
position that is, the sum of the first two terms is to the second term as the
sum of the last two terms is to the fourth term.

Let
a : b = c : d.

To prove that
a+ b : b = c+ d : d.

Now
a

b
=
c

d
.

Then
a

b
+ 1 =

c

d
+ 1;

that is,
a+ b

b
=
c+ d

d
.

Or
a+ b : b = c+ d : d.

In like manner
a+ b : a = c+ d : c. q.e.d.
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Proposition VII. Theorem.

333. If four quantities are in proportion, they are in proportion by divi-
sion; that is, the difference of the first two terms is to the second term as the
difference of the last two terms is to the fourth term.

Let
a : b = c : d.

To prove that
a− b : b = c− d : d.

Now
a

b
=
c

d
.

Then
a

b
− 1 =

c

d
− 1;

that is,
a− b
b

=
c− d
d

.

Or
a− b : b = c− d : d.

In like manner
a− b : a = c− d : c. q.e.d.
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Proposition VIII. Theorem.

334. If four quantities are in proportion, they are in proportion by com-
position and division; that is, the sum of the first two terms is to their
difference as the sum of the last two terms is to their difference.

Let
a : b = c : d

Then
a+ b

a
=
c+ d

c
. § 332

And
a− b
a

=
c− d
c

. § 333

Divide,
a+ b

a− b
=
c+ d

c− d
.

Or
a+ b : a− b = c+ d : c− d. q.e.d.
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Proposition IX. Theorem.

335. In a series of equal ratios, the sum of the antecedents is to the sum
of the consequents as any antecedent is to its consequent.

Let
a : b = c : d = e : f = g : h.

To prove that a+ c+ e+ g : b+ d+ f + h = a : b.
Let

r =
a

b
=
c

d
=
e

f
=
g

h
.

Then
a = br, c = dr, e = fr, g = hr.

And
a+ c+ e+ g = (b+ d+ f + h)r.

Divide by (b+ d+ f + h).

Then
a+ c+ e+ g

b+ d+ f + h
= r =

a

b
.

Or
a+ c+ e+ g : b+ d+ f + h = a : b. q.e.d.
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Proposition X. Theorem.

336. The products of the corresponding terms of two or more proportions
are in proportion.

Let
a : b = c : d, e : f = g : h, k : l = m : n.

To prove that
aek : bfl = cgm : dhn.

Now
a

b
=
c

d
,
e

f
=
g

h
,
k

l
=
m

n
.

The products of the first members and of the second members of these
equations give

aek

bfl
=
cgm

dhn
.

Or
aek : bfl = cgm : dhn. q.e.d.

337. Cor. If three quantities are in continued proportion, the first is to
the third as the square of the first is to the square of the second.

Proposition XI. Theorem.

338. Like powers of the terms of a proportion are in proportion.
Let

a : b = c : d.
To prove that

an : bn = cn : dn.
Now

a

b
=
c

d
.

Raise to the nth power,
an

bn
=
cn

dn
.

Or
an : bn = cn : dn. q.e.d.
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339. Def. Equimultiples of two quantities are the products obtained
by multiplying each of them by the same number. Thus, ma and mb are
equimultiples of a and b.

Proposition XII. Theorem.

340. Equimultiples of two quantities are in the same ratio as the quantities
themselves.

Let a and b be any two quantities.
To prove that

ma : mb = a : b.
Now

a

b
=
a

b
.

Multiply both terms of the first fraction by m.
Then

ma

mb
=
a

b
.

Or
ma : mb = a : b. q.e.d.

341. Scholium. In the treatment of proportion, it is assumed that the
quantities involved are expressed by their numerical measures. It is evident
that the ratio of two quantities of the same kind may be represented by a frac-
tion, if the two quantities are expressed in integers in terms of a common unit.
If there is no unit in terms of which both quantities can be expressed in inte-
gers, it is still possible by taking the unit of measure sufficiently small to find
a fraction that will represent the ratio to any required degree of accuracy. § 269

If we speak of the product of two quantities, it must be understood that
we mean simply the product of the numbers which represent them when they
are expressed in terms of a common unit.

In order that four quantities, a, b, c, d, may form a proportion, a and b must
be quantities of the same kind; and c and d must be quantities of the same
kind; though c and d need not be of the same kind as a and b. In alternation,
however, the four quantities must be of the same kind.
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Proposition XIII. Theorem.

342. If a line is drawn through two sides of a triangle parallel to the third
side, it divides those sides proportionally.

A

B C

E F

M

A

B C

E F

K H

In the triangle ABC, let EF be drawn parallel to BC.
To prove that

EB : AE = FC : AF .
Case 1. When AE and EB (Fig. 1) are commensurable.
Proof. Find a common measure of AE and EB, as MB.
Let MB be contained m times in EB, and n times in AE.
Then

EB : AE = m : n.
At the points of division on BE and AE draw lines ‖ to BC. These lines will

divide AC into m+n equal parts, of which FC will contain m, and AF will contain
n. § 187

∴ FC : AF = m : n.
∴ EB : AE = FC : AF . Ax. 1

Case 2. When AE and EB (Fig. 2) are incommensurable.
Proof. Divide AE into any number of equal parts, and apply one of these parts

to EB as many times as EB will contain it.
Since AE and EB are incommensurable, a certain number of these parts will

extend from E to some point K, leaving a remainder KB less than one of these
parts. Draw KH ‖ BC.

Then
EK : AE = FH : AF Case 1

By increasing the number of equal parts into which AE is divided, we can make
the length of each part less than any assigned value, however small, but not zero.

Hence, KB, which is less than one of these equal parts, has zero for a limit. § 275
And the corresponding segment HC has zero for a limit.
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Therefore, EK approaches EB as a limit, § 271
and FH approaches FC as a limit.

∴ the variable
EK

AE
approaches

EB

AE
as a limit, § 280

and the variable
FH

AF
approaches

FC

AF
as a limit.

But
EK

AE
is constantly equal to

FH

AF
Case 1

∴
EB

AE
=
FC

AF
. § 284

q.e.d.

343. Cor. 1. One side of a triangle is to either part cut off by a straight
line parallel to the base as the other side is to the corresponding part.

For
AE : EB = AF : FC.

By composition,
AE + EB : AE = AF + FC : AF . § 332

Or
AB : AE = AC : AF .

344. Cor. 2. If two lines are cut by any number of parallels the corre-
sponding intercepts are proportional.

A

B

C

D

F G

H K

L

M

N

Draw AN ‖ to CD. Then

AL = CG, LM = GK, MN = KD. § 180
Now

AH : AM = AF : AL = FH : LM

= HB : MN . § 343
Or

AF : CG = FH : GK = HB : KD.
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Proposition XIV. Theorem.

345. If a straight line divides two sides of a triangle proportionally, it is
parallel to the third side.

A

B C

E F
H

In the triangle ABC, let EF be drawn so that
AB

AE
=
AC

AF
.

To prove that
EF is ‖ to BC.

Proof.
From E draw EH ‖ to BC.

Then
AB : AE = AC : AH, § 343

(one side of a triangle is to either part cut off by a line parallel to the base as
the other side to the corresponding part).

But
AB : AE = AC : AF . Hyp.

∴ AC : AF = AC : AH. Ax. 1
∴ AF = AH.

∴ EF and EH coincide. § 47
But

EH is ‖ to BC. Const.

∴ EF , which coincides with EH, is ‖ to BC. q.e.d.

Ex. 246. Find the fourth proportional to 91, 65, and 133.

Ex. 247. Find the mean proportional between 39 and 351.

Ex. 248. Find the third proportional to 54 and 3.
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346. If a given line AB is divided at M , a point between the extremities
A and B, it is said to be divided internally into the segments MA and MB;
and if it is divided at M ′, a point in the prolongation of AB, it is said to be
divided externally into the segments M ′A and M ′B.

A

B

M

M ′

In either case the segments are the distances from the point of division
to the extremities of the line. If the line is divided internally, the sum of the
segments is equal to the line; and if the line is divided externally, the difference
of the segments is equal to the line.

Suppose it is required to divide the given line AB internally and ex-
ternally in the same ratio; as, for example, the ratio of the two numbers
3 and 5.

x
M ′ A M B

y

We divide AB into 5 + 3, or 8, equal parts, and take 3 parts from A; we
then have the point M , such that

MA : MB = 3 : 5. (1)
Secondly, we divide AB into 5 − 3, or 2, equal parts, and lay off on the

prolongation of AB, to the left of A, three of these equal parts; we then have
the point M ′, such that

M ′A : M ′B = 3 : 5. (2)

Comparing (1) and (2),

MA : MB = M ′A : M ′B.

347. Def. If a given straight line is divided internally and externally into
segments having the same ratio, the line is said to be divided harmonically.
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Proposition XV. Theorem.

348. The bisector of an angle of a triangle divides the opposite side into
segments which are proportional to the adjacent sides.

A B

C

E

M

Let CM bisect the angle C of the triangle CAB.
To prove that

MA : MB = CA : CB.
Proof. Draw AE ‖ to MC, meeting BC produced at E.
Then

MA : MB = CE : CB, § 342
(if a line is drawn through two sides of a 4 parallel to the third side, it divides

those sides proportionally).
Also,

∠ACM = ∠CAE, § 110
(being alt.-int. ∠s of ‖ lines);

and
∠BCM = ∠CEA, § 112

(being ext.-int. ∠s of ‖ lines).
But

∠ACM = ∠BCM . Hyp.

∴ ∠CAE = ∠CEA. Ax. 1

∴ CE = CA. § 147
Put CA for its equal, CE, in the first proportion.
Then

MA : MB = CA : CB. q.e.d.

Ex. 249. In a triangle ABC, AB = 12, AC = 14, BC = 13. Find the
segments of BC made by the bisector of the angle A.

Ex. 250. In a triangle CAB, CA = 6, CB = 12, AB = 15. Find the
segments of AB made by the bisector of the angle C.
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Proposition XVI. Theorem.

349. The bisector of an exterior angle of a triangle divides the opposite
side externally into segments which are proportional to the adjacent sides.

A
B

C

E

F

M ′

Let CM ′ bisect the exterior angle ACE of the triangle CAB, and
meet BA produced at M ′.

To prove that
M ′A : M ′B = CA : CB.

Proof.
Draw AF ‖ to M ′C, meeting BC at F .

Then
M ′A : M ′B CF : CB. § 343

Now
∠M ′CE = ∠AFC, § 112

and
∠M ′CA = ∠CAF , § 110

(being alt.-int. ∠s of ‖ lines).
But

∠M ′CE = ∠M ′CA. Hyp.

∴ ∠AFC = ∠CAF . Ax. 1

∴ CA = CF . § 147
Put CA for its equal, CF , in the first proportion.
Then

M ′A : M ′B = CA : CB. q.e.d.

Question. To what case does this theorem not apply? (See Ex. 41,
page 79.)

350. Cor. The bisectors of an interior angle and an exterior angle at
one vertex of a triangle meeting the opposite side divide that side harmoni-
cally. § 347
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SIMILAR POLYGONS.

351. Def. Similar polygons are polygons that have their homologous
angles equal, and their homologous sides proportional.

A

B

C

DE

A′

B′

C′

D′E′

Thus, the polygons ABCDE and A′B′C ′D′E ′ are similar, if the ∠sA, B,
C, etc., are equal, respectively, to the ∠sA

′, B′, C ′, etc., and if

AB : A′B′ = BC : B′C ′ = CD : C ′D′, etc.

352. Def. Homologous lines in similar polygons are lines similarly sit-
uated.

353. Def. The ratio of any two homologous lines in similar polygons, is
called the ratio of similitude of the polygons.

The primary idea of similarity is likeness of form. The two conditions
necessary to similarity are:

1. For every angle in one of the figures there must be an equal angle in the
other.

2. The homologous sides must be proportional.

Thus, Q and Q′ are not similar; the homologous sides are proportional,
but the homologous angles are not equal. Also R and R′ are not similar; the
homologous angles are equal, but the sides are not proportional.

Q Q′ R R′

In the case of triangles, either condition involves the other (see § 354 and
§ 358).
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Proposition XVII. Theorem.

354. Two mutually equiangular triangles are similar.
A

B C

E H

A′

B′ C′

In the triangles ABC and A′B′C′, let the angles A, B, C be equal to
the angles A′, B′, C′, respectively.

To prove that the 4sABC and A′B′C ′ are similar.
Since the 4s are mutually equiangular, we have only to prove that

AB : A′B′ = AC : A′C ′ = BC : B′C ′. § 351
Proof. Place the 4A′B′C ′ on the 4ABC so that ∠A′ shall coincide with its

equal, the ∠A; and B′C ′ take the position EH.
Then

∠AEH = ∠B Hyp.

∴ EH is ‖ to BC. § 114

∴ AB : AE = AC : AH. § 343
That is,

AB : A′B′ = AC : A′C ′.
Similarly, by placing 4A′B′C ′ on 4ABC, so that ∠B′ shall coincide with its

equal, the ∠B, we may prove that

AB : A′B′ = BC : B′C ′ q.e.d.

355. Cor. 1. Two triangles are similar if two angles of the one are equal,
respectively, to two angles of the other.

356. Cor. 2. Two right triangles are similar if an acute angle of the one
is equal to an acute angle of the other.
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Proposition XVIII. Theorem.

357. If two triangles have an angle of the one equal to an angle of the
other, and the including sides proportional, they are similar.

A

B C

E H

A′

B′ C′

In the triangles ABC and A′B′C′, let ∠A = ∠A′, and let

AB : A′B′ = AC : A′C′.
To prove that the 4sABC and A′B′C ′ are similar.
In this case we prove the 4s similar by proving them mutually equiangular.
Proof. Place the 4A′B′C ′ on the 4ABC, so that the ∠A′ shall coincide with

its equal, the ∠A.
Then the 4A′B′C ′ will take the position of 4AEH.
Now

AB

A′B′
=

AC

A′C ′
. Hyp.

That is,
AB

AE
=
AC

AH
.

∴ EH is ‖ to BC, § 345
(if a line divides two sides of a 4 proportionally, it is ‖ to the third side).

∴ ∠AEH = ∠B, and ∠AHE = ∠C. § 112

∴ 4AEH is similar to 4ABC. § 354

∴ 4A′B′C ′ is similar to 4ABC. q.e.d.



BOOK III. PLANE GEOMETRY. 186

Proposition XIX. Theorem.

358. If two triangles have their sides respectively proportional, they are
similar.

A

B C

E H

A′

B′ C′

In the triangles ABC and A′B′C′, let

AB : A′B′ = AC : A′C′ = BC : B′C′.
To prove that the 4sABC and A′B′C ′ are similar.
Proof. Upon AB take AE equal to A′B′, and upon AC take AH equal to A′C ′;

and draw EH.
Now

AB : A′B′ = AC : A′C ′. Hyp.
Or, since

AE = A′B′ and AH = A′C ′,

AB : AE = AC : AH.

∴ 4sABC and AEH are similar. § 357

∴ AB : AE = BC : EH; § 351
that is,

AB : A′B′ = BC : EH.
But

AB : A′B′ = BC : B′C ′. Hyp.

∴ BC : EH = BC : B′C ′. Ax. 1
∴ EH = B′C ′.

Hence, the 4sAEH and A′B′C ′ are equal. § 150
But

4AEH is similar to 4ABC.

∴ 4A′B′C ′ is similar to 4ABC. q.e.d.
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Proposition XX. Theorem.

359. Two triangles which have their sides respectively parallel, or respec-
tively perpendicular, are similar.

A B

C

A′B′

C′

x y

D

E

F

D′

E′ F ′

H

K

O

Let ABC and A′B′C′ have their sides respectively parallel; and DEF
and D′E′F ′ have their sides respectively perpendicular.

To prove that the 4sABC and A′B′C ′ are similar; and that the 4sDEF and
D′E′F ′ are similar.

Proof. 1. Prolong BC and AC to B′A′, forming ∠sx and y.

Then ∠B′ = ∠x (§ 112), and ∠B = ∠x. § 110
Therefore,

∠B′ = ∠B Ax. 1
In like manner,

∠A′ = ∠A.

Therefore, 4A′B′C ′ is similar to 4ABC. § 355
2. Prolong DE and FD to meet D′E′ at H and D′F ′ at K.
The quadrilateral EHE′O has ∠sEHE

′ and E′OE right angles, by hypothesis.
Therefore,

∠E′ and ∠OEH are supplementary. § 206
But

∠DEF and ∠OEH are supplementary. § 86

Therefore, ∠DEF = ∠E′. § 85
In like manner,

∠EDF = ∠D′.

Therefore, 4DEF is similar to 4D′E′F ′. § 355
q.e.d.

360. Cor. The parallel sides and the perpendicular sides are homologous
sides of the triangles.
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Proposition XXI. Theorem.

361. The homologous altitudes of two similar triangles have the same ratio
as any two homologous sides.

A B

C

O A′ B′

C′

O′

In the two similar triangles ABC and A′B′C′, let CO and C′O′ be
homologous altitudes.

To prove that
CO

C ′O′
=

AC

A′C ′
=

AB

A′B′
=

BC

B′C ′
.

Proof. In the rt. 4sCOA and C ′O′A′,

∠A = ∠A′, § 351
(being homologous 4s of the similar 4sABC and A′B′C ′).

∴ 4sCOA and C ′O′A′ are similar, § 356
(two rt. 4s having an acute ∠ of the one equal to an acute ∠ of the other are

similar).

∴
CO

C ′O′
=

AC

A′C ′
. § 351

In the similar 4sABC and A′B′C ′,
AC

A′C ′
=

AB

A′B′
=

BC

B′C ′
. § 351

Therefore,
CO

C ′O′
=

AC

A′C ′
=

AB

A′B′
=

BC

B′C ′
. q.e.d.

Ex. 251. The base and altitude of a triangle are 7 feet 6 inches and 5 feet
6 inches, respectively. If the homologous base of a similar triangle is 5 feet
6 inches, find its homologous altitude.
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Proposition XXII. Theorem.

362. If two parallels are cut by three or more transversals that pass through
the same point, the corresponding segments are proportional.

A B C D E

A′ B′ C′ D′ E′

A B C D E

A′B′C′D′E′

O

Let the two parallels AE and A′E′ be cut by the transversals OA,
OB, OC, OD, OE in A, A′, B, B′, etc.

To prove that
AB

A′B′
=

BC

B′C ′
=

CD

C ′D′
=

DE

D′E′
.

Proof. Since A′E′ is ‖ to AE, the pairs of 4sOAB and OA′B′, OBC and
OB′C ′, etc., are similar. § 354

∴
AB

A′B′
=
OB

OB′
and

BC

B′C ′
=
OB

OB′
. § 351

(homologous sides of similar 4s are proportional).

∴
AB

A′B′
=

BC

B′C ′
. Ax. 1

In a similar way it may be shown that
BC

B′C ′
=

CD

C ′D′
and

CD

C ′D′
=

DE

D′E′
. q.e.d.

Note. A condensed form of writing the above is
AB

A′B′
=
(
OB

OB′

)
=

BC

B′C ′
=
(
OC

OC ′

)
=

CD

C ′D′
=
(
OD

OD′

)
=

DE

D′E′
.

A parenthesis about a ratio signifies that this ratio is used to prove the equality
of the ratios immediately preceding and following it.
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Proposition XXIII. Theorem.

363. Conversely: If three or more non-parallel straight lines intercept
proportional segments upon two parallels, they pass through a common point.

A

B

C

D

E

F

O

Let AB, CD, EF cut the parallels AE and BF so that

AC : BD = CE : DF.
To prove that AB, CD, EF prolonged meet in a point.
Proof. Prolong AB and CD until they meet in O.

Draw OE.

Designate by F ′ the point where OE cuts BF .
Then

AC : BD = CE : DF ′. § 362
But

AC : BD = CE : DF . Hyp.

∴ CE : DF ′ = CE : DF . Ax. 1
∴ DF ′ = DF .

∴ F ′ coincides with F .

∴ EF coincides with EF ′. § 47

∴ EF prolonged passes through O.

∴ AB, CD, and EF prolonged meet in the point O. q.e.d.
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Proposition XXIV. Theorem.

364. The perimeters of two similar polygons have the same ratio as any
two homologous sides.

A

B C

D

E

A

B C

D

E

Let the two similar polygons be ABCDE and A′B′C′D′E′, and let P
and P ′ represent their perimeters.

To prove that
P : P ′ = AB : A′B′.

Proof.
AB : A′B′ = BC : B′C ′ = CD : C ′D′, etc. § 351

∴ AB +BC + etc. : A′B′ +B′C ′ + etc. = AB : A′B′, § 335
(in a series of equal ratios the sum of the antecedents is to the sum of the

consequents as any antecedent is to its consequent).
That is,

P : P ′ = AB : A′B′. q.e.d.

Ex. 252. If the line joining the middle points of the bases of a trapezoid
is produced, and the two legs are also produced, the three lines will meet in
the same point.

Ex. 253. AB and AC are chords drawn from any point A in the cir-
cumference of a circle, and AD is a diameter. The tangent to the circle at
D intersects AB and AC at E and F , respectively. Show that the triangles
ABC and AEF are similar.

Ex. 254. AD and BE are two altitudes of the triangle CAB. Show that
the triangles CED and CAB are similar.
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Ex. 255. If two circles are tangent to each other, the chords formed by
a straight line drawn through the point of contact have the same ratio as the
diameters of the circles.
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Proposition XXV. Theorem.

365. If two polygons are similar, they are composed of the same number of
triangles, similar each to each, and similarly placed.

A

B C

D

E

A

B C

D

E

Let the polygons ABCDE and A′B′C′D′E′ be similar.

From two homologous vertices, as E and E′, draw diagonals EB, EC, and E′B′,
E′C ′.

To prove that the 4sEAB, EBC, ECD are similar, respectively, to the
4sE

′A′B′, E′B′C ′, E′C ′D′.
Proof. The 4sEAB and E′A′B′ are similar. § 357
For

∠A = ∠A′, § 351
and

AE : A′E′ = AB : A′B′. § 351
Now

∠ABC = ∠A′B′C ′, § 351
and

∠ABE = ∠A′B′E′. § 351
By subtracting,

∠EBC = ∠E′B′C ′. Ax. 3
Now

EB : E′B′ = AB : A′B′ § 351
and

BC : B′C ′ = AB : A′B′ § 351

∴ EB : E′B′ = BC : B′C ′. Ax. 1

∴ 4sEBC and E′B′C ′ are similar. § 357
In like manner 4sECD and E′C ′D′ are similar. q.e.d.
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Proposition XXVI. Theorem.

366. Conversely: If two polygons are composed of the same number of
triangles, similar each to each, and similarly placed, the polygons are similar.

A

B C

D

E

A

B C

D

E

In the two polygons ABCDE and A′B′C′D′E′, let the triangles AEB,
BEC, CED be similar, respectively, to the triangles A′E′B′, B′E′C′,
C′E′D′; and similarly placed.

To prove that ABCDE is similar to A′B′C ′D′E′.
Proof.

∠A = ∠A′ § 351
Also,

∠ABE = ∠A′B′E′,
and

∠EBC = ∠E′B′C ′. § 351
By adding,

∠ABC = ∠A′B′C ′. Ax. 2
In like manner, ∠BCD = ∠B′C ′D′, ∠CDE = ∠C ′D′E′, etc.

Hence, the polygons are mutually equiangular.

Also,
AB

A′B′
=
(
EB

E′B′

)
=

BC

B′C ′
=
(
EC

E′C ′

)
=

CD

C ′D′
, etc. § 351

Hence, the polygons have their homologous sides proportional.

Therefore, the polygons are similar. § 351
q.e.d.
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THEOREMS.

Ex. 256. If two circles are tangent to each other externally, the correspond-
ing segments of two lines drawn through the point of contact and terminated
by the circumferences are proportional.

Ex. 257. In a parallelogram ABCD, a line DE is drawn, meeting the

diagonal AC in F , the side BC in G, and the side AB produced in E.

Prove that DF
2

= FG× FE.

Ex. 258. Two altitudes of a triangle are inversely proportional to the
corresponding bases.

Ex. 259. Two circles touch at P . Through P three lines are drawn,
meeting one circle in A, B, C, and the other in A′, B′, C ′, respectively. Prove
that the triangles ABC, A′B′C ′ are similar.

Ex. 260. Two chords AB, CD intersect at M , and A is the middle point
of the arc CD. Prove that the product AB×AM is constant if the chord AB
is made to turn about the fixed point A.

Draw the diameter AE, and draw BE.

Ex. 261. If two circles touch each other, their common external tangent
is the mean proportional between their diameters.

Let AB be the common tangent. Draw the diameters AC, BD. Join the
point of contact P to A, B, C, and D. Show that APD and BPC are straight
lines ⊥ to each other, and that 4sCAB, ABD are similar.

Ex. 262. If two circles are tangent internally, all chords of the greater
circle drawn from the point of contact are divided proportionally by the cir-
cumference of the smaller circle.

Draw any two of the chords, and join the points where they meet the
circumferences. The 4s thus formed are similar (Ex. 120).
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A

B

CD

E

Ex. 263. In an inscribed quadrilateral, the product of the diagonals is
equal to the sum of the products of the opposite sides.

Draw DE, making ∠CDE = ∠ADB. The 4sABD and ECD are similar;
and the 4sBCD and AED are similar.

Ex. 264. Two isosceles triangles with equal vertical angles are similar.

Ex. 265. The bisector of the vertical angle A of the triangle ABC intersects
the base at D and the circumference of the circumscribed circle at E.

Show that AB × AC = AD × AE.
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NUMERICAL PROPERTIES OF FIGURES.

Proposition XXVII. Theorem.

367. If in a right triangle a perpendicular is drawn from the vertex of the
right angle to the hypotenuse:

1. The triangles thus formed are similar to the given triangle, and to each
other.

2. The perpendicular is the mean proportional between the segments of the
hypotenuse.

3. Each leg of the right triangle is the mean proportional between the hy-
potenuse and its adjacent segment.

A B

C

F

a

ba′

b′

In the right triangle ABC, let CF be drawn from the vertex of the
right angle C, perpendicular to AB.

1. To prove that 4’s BCA, CFA, BFC are similar.
Proof. The rt. 4sCFA and BCA are similar, § 356

since the ∠a′ is common.
The rt. 4sBFC and BCA are similar, § 356

since the ∠b is common.
Since the 4sCFA and BFC are each similar to 4BCA, they are similar to each

other. § 354
2. To prove that

AF : CF = CF : FB.
Proof. In the similar 4sCFA and BFC,

AF : CF = CF : FB. § 351
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3. To prove that
AB : AC = AC : AF ,

and
AB : BC = BC : BF .

Proof. In the similar 4sBCA and CFA,

AB : AC = AC : AF § 351
In the similar 4sBCA and BFC,

AB : BC = BC : BF . § 351
q.e.d.

368. Cor. 1. The squares of the two legs of a right triangle are proportional
to the adjacent segments of the hypotenuse.

From the proportions in § 367,3,

AC
2

= AB × AF , and BC
2

= AB ×BF . § 327
Hence,

AC
2

BC
2 =

AB × AF
AB ×BF

=
AF

BF
.

369. Cor. 2. The squares of the hypotenuse and either leg are proportional
to the hypotenuse and the adjacent segment.

For
AB

2

AC
2 =

AB × AB
AB × AF

=
AB

AF
.

A
B

C

D

370. Cor. 3. The perpendicular from any point in the circumference to
the diameter of a circle is the mean proportional between the segments of the
diameter.

The chord drawn from any point in the circumference to either extremity of
the diameter is the mean proportional between the diameter and the adjacent
segment.

For
the ∠ACB is a rt. ∠. § 290
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Proposition XXVIII. Theorem.

371. The sum of the squares of the two legs of a right triangle is equal to
the square of the hypotenuse.

A B

C

F

Let ABC be a right triangle with its right angle at C.
To prove that

AC
2 + CB

2 = AB
2.

Proof.
Draw CF ⊥ to AB.

Then
AC

2 = AB ×AF ,
and

CB
2 = AB ×BF . § 367

By adding,
AC

2 + CB
2 = AB(AF +BF ) = AB

2
q.e.d.

372. Cor. 1. The square of either leg of a right triangle is equal to the
difference of the square of the hypotenuse and the square of the other leg.

A B

CD

A B

C

D

P R

373. Cor. 2. The diagonal and a side of a square are incommensurable.
For

AC
2

= AB
2

+BC
2

= 2AB
2
.

∴ AC = AB
√

2.

374. Def. The projection of any line upon a second line is the segment
of the second line included between the perpendiculars drawn to it from the
extremities of the first line. Thus, PR is the projection of CD upon AB.
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Proposition XXIX. Theorem.

375. In any triangle, the square of the side opposite an acute angle is equal
to the sum of the squares of the other two sides diminished by twice the product
of one of those sides by the projection of the other upon that side.

A

B C
D

A

B CD

Let C be an acute angle of the triangle ABC, and DC the projection
of AC upon BC.

To prove that AB2 = BC
2 +AC

2 − 2BC ×DC.
Proof. If D falls upon the base (Fig. 1),

DB = BC −DC.
If D falls upon the base produced (Fig. 2),

DB = DC −BC.
In either case,

DB
2 = BC

2 +DC
2 − 2BC ×DC.

Add AD
2 to both sides of this equality, and we have

AD
2 +DB

2 = BC
2 +AD

2 +DC
2 − 2BC ×DC.

But
AD

2 +DB
2 = AB

2

and
AD

2 +DC
2 = AC

2 § 371

Put AB2 and AC
2 for their equals in the above equality.

Then
AB

2 = BC
2 +AC

2 − 2BC ×DC. q.e.d.
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Proposition XXX. Theorem.

376. In any obtuse triangle, the square of the side opposite the obtuse angle
is equal to the sum of the squares of the other two sides increased by twice the
product of one of those sides by the projection of the other upon that side.

A

C
B

D

Let C be the obtuse angle of the triangle ABC, and CD be the pro-
jection of AC upon BC produced.

To prove that AB2 = BC
2 +AC

2 + 2BC ×DC.
Proof.

DB = BC +DC.
Squaring,

DB
2 = BC

2 +DC
2 + 2BC ×DC.

Add AD
2 to both sides, and we have

AD
2 +DB

2 = BC
2 +AD

2 +DC
2 + 2BC ×DC.

But
AD

2 +DB
2 = AB

2, and AD
2 +DC

2 = AC
2. § 371

Put AB2 and AC
2 for their equals in the above equality.

Then
AB

2 = BC
2 +AC

2 + 2BC ×DC. q.e.d.

Note 1. By the Principle of Continuity the last three theorems may be included
in one theorem. Let the student explain.

Note 2. The last three theorems enable us to compute the lengths of the alti-
tudes of a triangle if the lengths of the three sides are known.
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Proposition XXXI. Theorem.

377. 1. The sum of the squares of two sides of a triangle is equal to twice
the square of half the third side increased by twice the square of the median
upon that side.

2. The difference of the squares of two sides of a triangle is equal to twice
the product of the third side by the projection of the median upon that side.

A

B C
DM

In the triangle ABC, let AM be the median and MD the projection
of AM upon the side BC. Also, let AB be greater than AC.

To prove that
1. AB2 +AC

2 = 2BM2 + 2AM2.

2. AB2 −AC2 = 2BC ×MD.
Proof. Since AB > AC, the ∠AMB will be obtuse, and the ∠AMC will be

acute. § 155
Then

AB
2 = BM

2 +AM
2 + 2BM ×MD, § 376

and
AC

2 = MC
2 +AM

2 − 2MC ×MD. § 375
Add these two equalities, and observe that BM = MC.
Then

AB
2 +AC

2 = 2BM2 + 2AM2.
Subtract the second equality from the first.
Then

AB
2 −AC2 = 2BC ×MD. q.e.d.

Note. This theorem enables us to compute the lengths of the medians of a
triangle if the lengths of the three sides are known.
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Proposition XXXII. Theorem.

378. If two chords intersect in a circle, the product of the segments of one
is equal to the product of the segments of the other.

M

N

O

P

Q
a

c

a′

c′

Let any two chords MN and PQ intersect at O.
To prove that

OM ×ON = OQ×OP .
Proof.

Draw MP and NQ.

∠a = ∠a′, § 289
(each being measured by 1

2 arcPN).
And

∠c = ∠c′, § 289
(each being measured by 1

2 arcMQ).

∴ the 4sNOQ and POM are similar. § 355

∴ OQ : OM = ON : OP . § 351

∴ OM ×ON = OQ×OP . § 327
q.e.d.

379. Scholium. This proportion may be written

OM

OQ
=
OP

ON
, or

OM

OQ
=

1
ON

OP

;

that is, the ratio of two corresponding segments is equal to the reciprocal
of the ratio of the other two segments.

Hence, these segments are said to be reciprocally proportional.
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380. Def. A secant from a point to a circle is understood to mean
the segment of the secant lying between the point and the second point of
intersection of the secant and circumference.

Proposition XXXIII. Theorem.

381. If from a point without a circle a secant and a tangent are drawn,
the tangent is the mean proportional between the whole secant and its external
segment.

A

B

C

D
a

b

a′

Let AD be a tangent and AC a secant drawn from the point A to the
circle BCD.

To prove that AC : AD = AD : AB.
Proof.

Draw DC and DB.

The 4sADC and ABD are similar. § 355

For ∠b is common; and ∠a′ = ∠a, §§ 289, 295
(each being measured by 1

2 arcBD).

∴ AC : AD = AD : AB. § 351
q.e.d.

382. Cor. If from a fixed point without a circle a secant is drawn, the
product of the secant and its external segment is constant in whatever direction
the secant is drawn.

For
AC × AB = AD

2
. § 327
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Proposition XXXIV. Theorem.

383. The square of the bisector of an angle of a triangle is equal to the
product of the sides of this angle diminished by the product of the segments
made by the bisector upon the third side of the triangle.

M

N

O
P

Q

a

b

a′

b′

Let NO bisect the angle MNP of the triangle MNP .

To prove that NO2 = NM ×NP −OM ×OP .
Proof.

Circumscribe the �MNP about the 4MNP . § 314
Produce NO to meet the circumference in Q, and draw PQ.

The 4sNQP and NMO are similar. § 355
For

∠b = ∠b′ Hyp.
and

∠a = ∠a′ § 289
Whence

NQ : NM = NP : NO. § 351

∴ NM ×NP = NQ×NO

= (NO +OQ)NO

= NO
2 +NO ×OQ.

But
NO ×OQ = MO ×OP . § 378

∴ MN ×NP = NO
2 +MO ×OP .

Whence
NO

2 = NM ×NP = MO ×OP . Ax. 3
q.e.d.
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Note. This theorem enables us to compute the lengths of the bisectors of the
angles of a triangle if the lengths of the sides are known.

Proposition XXXV. Theorem.

384. In any triangle the product of two sides is equal to the product of the
diameter of the circumscribed circle by the altitude upon the third side.

M

N

O
Q

P

a

a′

Let NMQ be a triangle, NO the altitude, and QNMP the circle cir-
cumscribed about the triangle NMQ.

Draw the diameter NP , and draw PQ.
To prove that NM ×NQ = NP ×NO.
Proof. In the 4sNOM and NQP ,

∠NOM is a rt. ∠, Hyp.

∠NQP is a rt. ∠, § 290

and ∠a = ∠a′, § 289
(each being measured by 1

2 arcNQ).

∴ 4sNOM and NQP are similar. § 356
Whence

NM : NP = NO : NQ. § 351

∴ NM ×NQ = NP ×NO. § 327
q.e.d.

Note. This theorem enables us to compute the length of the radius of a circle
circumscribed about a triangle, if the lengths of the three sides of the triangle are
known.
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Ex. 266. If OE, OF , OG are the perpendiculars from any point O within

the triangle ABC upon the sides AB, BC, CA, respectively, show that AE
2
+

BF
2

+ CG
2

= EB
2

+ FC
2

+GA
2
.

THEOREMS.

Ex. 267. The sum of the squares of the segments of two perpendicular
chords is equal to the square of the diameter of the circle.

If AB, CD are the chords, draw the diameter BE, draw AC, ED, BD.
Prove that AC = ED, and apply § 371.

Ex. 268. The tangents to two intersecting circles drawn from any point
in their common chord produced, are equal. (§ 381.)

Ex. 269. The common chord of two intersecting circles, if produced, will
bisect their common tangents. (§ 381.)

A

B
C

D E

P O

Ex. 270. If three circles intersect one another, the common chords all pass
through the same point.

Let two of the chords AB and CD meet at O. Join the point of intersection
E to O, and suppose that EO produced meets the same two circles at two
different points P and Q. Then prove that OP = OQ (§ 378); hence, that the
points P and Q coincide.

Ex. 271. If two circles are tangent to each other, the common internal
tangent bisects the two common external tangents.

Ex. 272. If the perpendiculars from the vertices of the triangle ABC upon
the opposite sides intersect at D, show that

AB
2 − AC2

= BD
2 − CD2

.
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Ex. 273. In an isosceles triangle, the square of a leg is equal to the square
of any line drawn from the vertex to the base, increased by the product of the
segments of the base.

Ex. 274. The squares of two chords drawn from the same point in a
circumference have the same ratio as the projections of the chords on the
diameter drawn from the same point.

Ex. 275. The difference of the squares of two sides of a triangle is equal
to the difference of the squares of the segments of the third side, made by the
perpendicular on the third side from the opposite vertex.

Ex. 276. E is the middle point of BC, one of the parallel sides of the
trapezoid ABCD; AE and DE produced meet DC and AB produced at F
and G, respectively. Show that FG is parallel to DA.

4sAGD and BGE are similar; and 4sAFD and EFC are similar.

Ex. 277. If two tangents are drawn to a circle at the extremities of a
diameter, the portion of a third tangent intercepted between them is divided
at its point of contact into segments whose product is equal to the square of
the radius.

Ex. 278. If two exterior angles of a triangle are bisected, the line drawn
from the point of intersection of the bisectors to the opposite angle of the
triangle bisects that angle.

Ex. 279. The sum of the squares of the diagonals of a quadrilateral is
equal to twice the sum of the squares of the lines that join the middle points
of the opposite sides.

A B

CD

E
F

A B

C

D

F

H

Ex. 280. The sum of the squares of the four sides of any quadrilateral is
equal to the sum of the squares of the diagonals, increased by four times the
square of the line joining the middle points of the diagonals.

Apply § 377 to the 4s ABC and ADC, add the results, and eliminate

BE
2

+DE
2

by applying § 377 to the 4BDE.
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Ex. 281. The square of the bisector of an exterior angle of a triangle is
equal to the product of the external segments determined by the bisector upon
one of the sides, diminished by the product of the other two sides.

Let CD bisect the exterior ∠BCH of the 4ABC. 4s ACD and FCB are
similar (§ 355). Apply § 382.

Ex. 282. If a point O is joined to the vertices of a triangle ABC; through
any point A′ in OA a line parallel to AB is drawn, meeting OB at B′; through
B′ a line parallel to BC, meeting OC at C ′; and C ′ is joined to A′; the triangle
A′B′C ′ is similar to the triangle ABC.

Ex. 283. If the line of centres of two circles meets the circumferences at
the consecutive points A, B, C, D, and meets the common external tangent
at P , then PA× PD = PB × PC.

Ex. 284. The line of centres of two circles meets the common external tan-
gent at P , and a secant is drawn from P , cutting the circles at the consecutive
points E, F , G, H. Prove that PE × PH = PF × PG.

Draw radii to the points of contact, and to E, F , G, H. Let fall ⊥s on PH
from the centres of the �s. The various pairs of 4s are similar.

Ex. 285. If a line drawn from a vertex of a triangle divides the opposite
side into segments proportional to the adjacent sides, the line bisects the angle
at the vertex.
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PROBLEMS OF CONSTRUCTION.

Proposition XXXVI. Problem.

385. To divide a given straight line into parts proportional to any number
of given lines.

A B

C

E

F

H K

X

m

n

pm
n
p

Let AB, m, n, and p be given straight lines.

To divide AB into parts proportional to m, n, and p.

Draw AX, making any convenient ∠ with AB.

On AX take AC equal to m, CE to n, EF to p.

Draw BF .

From E and C draw EK and CH ‖ to FB.

Through A draw a line ‖ to BF .

K and H are the division points required.
Proof.

AH

AC
=
HK

CE
=
KB

EF
, § 344

(if two lines are cut by any number of parallels, the corresponding intercepts are
proportional).

Substitute m, n, and p for their equals AC, CE, and EF .
Then

AH

m
=
HK

n
=
KB

p
. q.e.f.

Ex. 286. Divide a line 12 inches long into three parts proportional to the
numbers 3, 5, 7.
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Proposition XXXVII. Problem.

386. To find the fourth proportional to three given straight lines.
A B C

D

F

x

y

m n

p

m
n
p

Let the three given lines be m, n, and p.

To find the fourth proportional to m, n, and p.

Draw Ax and Ay containing any convenient angle.

On Ax take AB equal to m, BC to n.

On Ay take AD equal to p.

Draw BD.

From C draw CF ‖ to BD, meeting Ay at F .

DF is the fourth proportional required.
Proof.

AB : BC = AD : DF , § 342
(a line drawn through two sides of a 4 ‖ to the third side divides those sides

proportionally).

Substitute m, n, and p for their equals AB, BC, and AD.
Then

m : n = p : DF q.e.f.

Ex. 287. The square of the altitude of an equilateral triangle is equal to
three fourths of the square of one side of the triangle.
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Proposition XXXVIII. Problem.

387. To find the third proportional to two given straight lines.
A

B C

D E

m

n

Let m and n be the two given straight lines.

To find the third proportional to m and n.

Construct any convenient angle A,

and take AB equal to m, AC equal to n.

Produce AB to D, making BD equal to AC.

Draw BC.

Through D draw DE ‖ to BC, meeting AC produced at E.

CE is the third proportional required.
Proof.

AB : BD = AC : CE, § 342
(a line drawn through two sides of a 4 parallel to the third side divides those

sides proportionally).
Substitute, in the above proportion, AC for its equal BD.
Then

AB : AC = AC : CE,
that is,

m : n = n : CE. q.e.f.

Ex. 288. Construct x, if (1) x =
ab

c
, (2) x =

a2

c
.

Special cases: (1) a = 2, b = 8, c = 4; (2) a = 3, b = 7, c = 11; (3) a = 2,
c = 3; (4) a = 3, c = 5; (5) a = 2c.
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Proposition XXXIX. Problem.

388. To find the mean proportional between two given straight lines.

A
BC

H

E
m n

m

n

Let the two given lines be m and n.

To find the mean proportional between m and n.

On the straight line AE

take AC equal to m, and CB equal to n.

On AB as a diameter describe a semicircumference.

At C erect the ⊥ CH meeting the circumference at H.

CH is the mean proportional between m and n.
Proof.

AC : CH = CH : CB § 370
(the ⊥ let fall from a point in a circumference to the diameter of a circle is

the mean proportional between the segments of the diameter).
Substitute for AC and CB their equals m and n.
Then

m : CH = CH : n. q.e.f.

389. Def. A straight line is divided in extreme and mean ratio, when
one of the segments is the mean proportional between the whole line and the
other segment.

Ex. 289. Construct x, if x =
√
ab.

Special cases: (1) a = 2, b = 3; (2) a = 1, b = 6; (3) a = 3, b = 7.
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Proposition XL. Problem.

390. To divide a given line in extreme and mean ratio.

A BC

E

F

G

C′

Let AB be the given line.

To divide AB in extreme and mean ratio.

At B erect a ⊥ BE equal to half of AB.

From E as a centre, with a radius equal to EB, describe a �.

Draw AE, meeting the circumference in F and G.

On AB take AC equal to AF .

On BA produced take AC ′ equal to AG.
Then AB is divided internally at C and externally at C ′ in extreme and mean

ratio.

AG : AB = AB : AF . § 381

AB
2= AF ×AG AB

2= AG×AF
= AC(AF +AG) = C ′A(AG−AF )
= AC(AC +AB) = C ′A(C ′A−AB)
= AC

2 +AB ×AC. = C ′A2 −AB × C ′A.
∴ AB

2 −AB ×AC = AC
2. ∴ AB

2 +AB × C ′A = C ′A2.
∴ AB(AB −AC) = AC

2. ∴ AB(AB + C ′A) = C ′A2.
∴ AB × CB = AC

2. ∴ AB × C ′B = C ′A2.

q.e.f.
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Proposition XLI. Problem.

391. Upon a given line homologous to a given side of a given polygon, to
construct a polygon similar to the given polygon.

A

B C

D

E

A

B C

D

E

Let A′E′ be the given line homologous to AE of the given polygon
ABCDE.

To construct on A′E′ a polygon similar to the given polygon.

From E draw the diagonals EB and EC.

From E′ draw E′B′, E′C ′, and E′D′,

making 4’s A′E′B′, B′E′C ′, and C ′E′D′ equal, respectively, to

4sAEB, BEC, and CED.

From A′ draw A′B′, making ∠E′A′B′ equal to ∠EAB,

and meeting E′B′ at B′.

From B′ draw B′C ′, making ∠E′B′C ′ equal to ∠EBC,

and meeting E′C ′ at C ′.

From C ′ draw C ′D′, making ∠E′C ′D′ equal to ∠ECD,

and meeting E′D′ at D′.

Then A′B′C ′D′E′ is the required polygon.
Proof.

The 4sABE, A′B′E′, etc., are similar. § 354

Therefore, the two polygons are similar. § 366
q.e.f.



BOOK III. PLANE GEOMETRY. 216

PROBLEMS OF CONSTRUCTION.

Ex. 290. To divide one side of a given triangle into segments proportional
to the adjacent sides (§ 348).

A B

C

D

E

F

G

H

O
A B

C

D O
P

A

B

C

O

P

A B
C

DE

F

O

P

Ex. 291. To find in one side of a given triangle a point whose distances
from the other sides shall be to each other in the given ratio m : n.

Take AG = m ⊥ to AC, GH = n ⊥ to BC. Draw CD ‖ to OG.

Ex. 292. Given an obtuse triangle; to draw a line from the vertex of
the obtuse angle to the opposite side which shall be the mean proportional
between the segments of that side.

Ex. 293. Through a given point P within a given circle to draw a chord
AB so that the ratio AP : BP shall equal the given ratio m : n.

Draw OPC so that OP : PC = n : m. Draw CA equal to the fourth
proportional to n, m, and the radius of the circle.

Ex. 294. To draw through a given point P in the arc subtended by a chord
AB a chord which shall be bisected by AB.

On radius OP take CD equal to CP . Draw DE ‖ to BA.

A

B

C
D

P
A

B

C DP
A B

C

DE

O

P

G
D P

E
F

O A O′

Ex. 295. To draw through a given external point P a secant PAB to a
given circle so that the ratio PA : AB shall equal the given ratio m : n.

PD : DC = m : n. PD : PA = PA : PC.
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Ex. 296. To draw through a given external point P a secant PAB to a

given circle so that AB
2

= PA× PB.

PC : CD = CD : PD. PA = CD.

Ex. 297. To find a point P in the arc subtended by a given chord AB so
that the ratio PA : PB shall equal the given ratio m : n.

Ex. 298. To draw through one of the points of intersection of two circles
a secant so that the two chords that are formed shall be in the given ratio
m : n.

Ex. 299. Having given the greater segment of a line divided in extreme
and mean ratio, to construct the line.

Ex. 300. To construct a circle which shall pass through two given points
and touch a given straight line.

Ex. 301. To construct a circle which shall pass through a given point and
touch two given straight lines.

Ex. 302. To inscribe a square in a semicircle.

A B

C

D E

FG

H

M

N

Ex. 303. To inscribe a square in a given triangle.

Let DEFG be the required inscribed square. Draw CM ‖ to AB, meeting
AF produced in M . Draw CH and MN ⊥ to AB, and produce AB to meet
MN at N . The 4sACM , AGF are similar; also, the 4sAMN , AFE are
similar. By these triangles show that the figure CMNH is a square. By
constructing this square, the point F can be found.

Ex. 304. To inscribe in a given triangle a rectangle similar to a given
rectangle.

Ex. 305. To inscribe in a circle a triangle similar to a given triangle.
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Ex. 306. To inscribe in a given semicircle a rectangle similar to a given
rectangle.

Ex. 307. To circumscribe about a circle a triangle similar to a given
triangle.

Ex. 308. To construct the expression, x =
2abc

de
; that is,

2ab

d
× c

e
.

Ex. 309. To construct two straight lines, having given their sum and their
ratio.

Ex. 310. To construct two straight lines, having given their difference
and their ratio.

Ex. 311. Given two circles, with centres O and O′, and a point A in their
plane, to draw through the point A a straight line, meeting the circumferences
at B and C, so that AB : AC = m : n.
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PROBLEMS OF COMPUTATION.

Ex. 312. To compute the altitudes of a triangle in terms of its sides.

AB

C

D

a
b

c

h

At least one of the angles A or B is acute. Suppose B is acute.
In the 4 CDB,

h2 = a2 −BD2
, § 372

In the 4 ABC,
b2 = a2 + c2 − 2c× BD. § 376

Whence

BD =
a2 + c2 − b2

2c
.

Hence,

h2 = a2 − (a2 + c2 − b2)2

4c2
=

4a2c2 − (a2 + c2 − b2)2

4c2

=
(2ac+ a2 + c2 − b2)(2ac− a2 − c2 + b2)

4c2

=
{(a+ c)2 − b2}{b2 − (a− c)2}

4c2

=
(a+ b+ c)(a+ c− b)(b+ a− c)(b− a+ c)

4c2
.

Let
a+ b+ c = 2s.

Then
a+ c− b = 2(s− b),

b+ a− c = 2(s− c),

b− a+ c = 2(s− a).

Hence,

h2 =
2s× 2(s− a)× 2(s− b)× 2(2− c)

4c2
.

By simplifying, and extracting the square root,
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h =
2

c

√
s(s− a)(s− b)(s− c).

A B

C

DF

ab

c

m h

Ex. 313. To compute the medians of a triangle in terms of its sides.
By § 377,

a2 + b2 = 2m2 + 2
( c

2

)2

.

Whence
4m2 = 2(a2 + b2)− c2.

∴ m =
1

2

√
2(a2 + b2)− c2.
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A B

C

D

E

ab

c

t

Ex. 314. To compute the bisectors of a triangle in terms of the sides.
By § 383,

t2 = ab− AD ×BD.
By §348,

AD

B
=
BD

a
=
AD +BD

a+ b
=

c

a+ b
.

∴ AD =
bc

a+ b
, and BD =

ac

a+ b
.

Whence

t2 = ab− abc2

(a+ b)2

= ab

[
1− c2

(a+ b)2

]
=
ab{(a+ b)2 − c2}

(a+ b)2

=
ab(a+ b+ c)(a+ b− c)

(a+ b)2

=
ab× 2s× 2(s− c)

(a+ b2)
.

Whence

t =
2

a+ b

√
abs(s− c).
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B C

A

D

E

bc

a

Ex. 315. To compute the radius of the circle circumscribed about a triangle
in terms of the sides of the triangle.

By §384,
AC × AB = AE × AD,

or,
bc = 2B × AD.

But

AD =
2

a

√
s(s− a)(s− b)(s− c). Ex. 312

∴ R =
abc

4
√
s(s− a)(s− b)(s− c)

.

Ex. 316. If the sides of a triangle are 3, 4, and 5, is the angle opposite 5
right, acute, or obtuse?

Ex. 317. If the sides of a triangle are 7, 9, and 12, is the angle opposite 12
right, acute, or obtuse?

Ex. 318. If the sides of a triangle are 7, 9, and 11, is the angle opposite 11
right, acute, or obtuse?

Ex. 319. The legs of a right triangle are 8 inches and 12 inches; find the
lengths of the projections of these legs upon the hypotenuse, and the distance
of the vertex of the right angle from the hypotenuse.

Ex. 320. If the sides of a triangle are 6 inches, 9 inches, and 12 inches,
find the lengths (1) of the altitudes; (2) of the medians; (3) of the bisectors;
(4) of the radius of the circumscribed circle.

Ex. 321. A line is drawn parallel to a side AB of a triangle ABC, cutting
AC in D, BC in E. If AD : DC = 2 : 3, and AB = 20 inches, find DE.
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Ex. 322. The sides of a triangle are 9, 12, 15. Find the segments of the
sides made by bisecting the angles.

Ex. 323. A tree casts a shadow 90 feet long, when a post 6 feet high casts
a shadow 4 feet long. How high is the tree?

Ex. 324. The lower and upper bases of a trapezoid are a, b, respectively;
and the altitude is h. Find the altitudes of the two triangles formed by pro-
ducing the legs until they meet.

Ex. 325. The sides of a triangle are 6, 7, 8, respectively. In a similar
triangle the side homologous to 8 is 40. Find the other two sides.

Ex. 326. The perimeters of two similar polygons are 200 feet and 300 feet.
If a side of the first is 24 feet, find the homologous side of the second.

Ex. 327. How long a ladder is required to reach a window 24 feet high, if
the lower end of the ladder is 10 feet from the side of the house?

Ex. 328. If the side of an equilateral triangle is a, find the altitude.

Ex. 329. If the altitude of an equilateral triangle is h, find the side.

Ex. 330. Find the length of the longest chord and of the shortest chord
that can be drawn through a point 6 inches from the centre of a circle whose
radius is 10 inches.

Ex. 331. The distance from the centre of a circle to a chord 10 feet long
is 12 feet. Find the distance from the centre to a chord 24 feet long.

Ex. 332. The radius of a circle is 5 inches. Through a point 3 inches
from the centre a diameter is drawn, and also a chord perpendicular to the
diameter. Find the length of this chord, and the distance from one end of the
chord to the ends of the diameter.

Ex. 333. The radius of a circle is 6 inches. Find the lengths of the tangents
drawn from a point 10 inches from the centre, and also the length of the chord
joining the points of contact.

Ex. 334. The sides of a triangle are 407 feet, 368 feet, and 351 feet. Find
the three bisectors and the three altitudes.
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Ex. 335. If a chord 8 inches long is 8 inches distant from the centre of
the circle, find the radius, and the chords drawn from the end of the chord to
the ends of the diameter which bisects the chord.

Ex. 336. From the end of a tangent 20 inches long a secant is drawn
through the centre of the circle. If the external segment of this secant is
8 inches, find the radius of the circle.

Ex. 337. The radius of a circle is 13 inches. Through a point 5 inches
from the centre any chord is drawn. What is the product of the two segments
of the chord? What is the length of the shortest chord that can be drawn
through the point?

Ex. 338. The radius of a circle is 9 inches and the length of a tangent
12 inches. Find the length of a line drawn from the extremity of the tangent
to the centre of the circle.

Ex. 339. Two circles have radii of 8 inches and 3 inches, respectively,
and the distance between their centres is 15 inches. Find the lengths of their
common tangents.

Ex. 340. Find the segments of a line 10 inches long divided in extreme
and mean ratio.

Ex. 341. The sides of a triangle are 4, 5, 5. Is the largest angle acute,
right, or obtuse?

Ex. 342. Find the third proportional to two lines whose lengths are 28 feet
and 42 feet.

Ex. 343. If the sides of a triangle are a, b, c, respectively, find the lengths
of the three altitudes.

Ex. 344. The diameter of a circle is 30 feet and is divided into five equal
parts. Find the lengths of the chords drawn through the points of division
perpendicular to the diameter.

Ex. 345. The radius of a circle is 2 inches. From a point 4 inches from
the centre a secant is drawn so that the internal segment is 1 inch. Find the
length of the secant.
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Ex. 346. The sides of a triangular pasture are 1551 yards, 2068 yards,
2585 yards. Find the median to the longest side.

Ex. 347. The diagonal of a rectangle is d, and the perimeter is p. Find
the sides.

Ex. 348. The radius of a circle is r. Find the length of a chord whose
distance from the centre is 1

2
r.
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392. Def. The unit of surface is a square whose side is a unit of length.

393. Def. The area of a surface is the number of units of surface it
contains.

394. Def. Plane figures that have equal areas but cannot be made to co-
incide are called equivalent.

Note. In propositions relating to areas, the words “rectangle,” “triangle,” etc.,
are often used for “area of rectangle,” “area of triangle,” etc.

Proposition I. Theorem.

395. Two rectangles having equal altitudes are to each other as their bases.

A B

CD

O A E

FD

O

Let the rectangles AC and AF have the same altitude AD.

To prove that rect. AC : rect. AF = baseAB : baseAE.
Case 1. When AB and AE are commensurable.
Proof. Suppose AB and AE have a common measure, as AO, which is contained

m times in AB and n times in AE.
Then

AB : AE = m : n.
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Apply AO as a unit of measure to AB and AE, and at the several points of
division erect ⊥s.

The
rect. AC is divided into m rectangles,

and the
rect. AF is divided into n rectangles. § 107

These rectangles are all equal. § 186
Hence,

rect. AC : rect. AF = m : n.
Therefore,

rect. AC : rect. AF = AB : AE. Ax. 1
Case 2. When AB and AE are incommensurable.

A B

CD

A
K

E

FHD

Proof. Divide AB into any number of equal parts, and apply one of them to
AE as many times as AE will contain it.

Since AB and AE are incommensurable, a certain number of these parts will
extend from A to some point K, leaving a remainder KE less than one of the equal
parts of AB.

Draw KH ‖ to EF .
Then AB and AK are commensurable by construction.
Therefore,

rect. AH
rect. AC

=
AK

AB
. Case 1

If the number of equal parts into which AB is divided is indefinitely increased,
the varying values of these ratios will continue equal, and approach for their respec-
tive limits the ratios

rect. AF
rect. AC

and
AE

AB
. (See § 287.)

∴
rect. AF
rect. AC

=
AE

AB
. § 284

q.e.d.

396. Cor. Two rectangles having equal bases are to each other as their
altitudes.
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Proposition II. Theorem.

397. Two rectangles are to each other as the products of their bases by their
altitudes.

R
R′ S

a

b

a′

b′

a′

b

Let R and R′ be two rectangles, having for their bases b and b′, and
for their altitudes a and a′, respectively.

To prove that
R

R′
=

a× b
a′ × b′

.

Proof. Construct the rectangle S, with its base equal to that of R, and its
altitude equal to that of R′.

Then
R

S
=
a

a′
, § 396

and
S

R′
=
b

b′
. § 395

The products of the corresponding members of these equations give
R

R′
=

a× b
a′ × b′

. q.e.d.

Ex. 349. Find the ratio of a rectangular lawn 72 yards by 49 yards to a
grass turf 18 inches by 14 inches.

Ex. 350. Find the ratio of a rectangular courtyard 181
2

yards by 151
2

yards
to a flagstone 31 inches by 18 inches.

Ex. 351. A square and a rectangle have the same perimeter, 100 yards.
The length of the rectangle is 4 times its breadth. Compare their areas.

Ex. 352. On a certain map the linear scale is 1 inch to 5 miles. How
many acres are represented on this map by a square the perimeter of which is
1 inch?
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Proposition III. Theorem.

398. The area of a rectangle is equal to the product of its base by its altitude.

Ra

b

U1

1

Let R be a rectangle, b its base, and a its altitude.
To prove that

the area of R = a× b.
Proof. Let U be the unit of surface.

R

U
=
a× b
1× 1

= a× b,

(two rectangles are to each other as the products of their bases and altitudes).
But

R

U
= the number of units of surface in R. § 393

∴ the area of R = a× b. q.e.d.

399. Scholium. When the base and altitude each contain the linear unit
an integral number of times, this proposition is rendered evident by dividing
the figure into squares, each equal to the unit of surface. Thus, if the base
contains seven linear units, and the altitude four, the figure may be divided
into twenty-eight squares, each equal to the unit of surface.
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Proposition IV. Theorem.

400. The area of a parallelogram is equal to the product of its base by its
altitude.

A

B C

D

E F

a

b A

B C

D

E F

a

b

Let AEFD be a parallelogram, b its base, and a its altitude.

To prove that the area of the / /AEFD = a× b.
Proof. From A draw AB ‖ to DC to meet FE produced.
Then the figure ABCD is a rectangle, with the same base and the same altitude

as the / /AEFD.

The rt. 4sABE and DCF are equal. § 151

For AB = CD, and AE = DF . § 178
From ABFD take the 4DCF ; the rect. ABCD is left.
From ABFD take the 4ABE; the / /AEFD is left.

∴ rect. ABCD m / /AEFD Ax. 3

But the area of the rect. ABCD = a× b. § 398

∴ the area of the / /AEFD = a× b. Ax. 1
q.e.d.

401. Cor. 1. Parallelograms having equal bases and equal altitudes are
equivalent.

402. Cor. 2. Parallelograms having equal bases are to each other as their
altitudes; parallelograms having equal altitudes are to each other as their bases;
any two parallelograms are to each other as the products of their bases by their
altitudes.
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Proposition V. Theorem.

403. The area of a triangle is equal to half the product of its base by its
altitude.

A B

C

D

H

a

b

Let a be the altitude and b the base of the triangle ABC.

To prove that the area of the 4ABC = 1
2a× b.

Proof. Construct on AB and BC the parallelogram ABCH.
Then

4ABC = 1
2
/ /ABCH. § 179

The area of the / /ABCH = a× b. § 400

Therefore, the area of 4ABC = 1
2a× b. Ax. 7

q.e.d.

404. Cor. 1. Triangles having equal bases and equal altitudes are equiva-
lent.

405. Cor. 2. Triangles having equal bases are to each other as their alti-
tudes; triangles having equal altitudes are to each other as their bases; any two
triangles are to each other as the products of their bases by their altitudes.

406. Cor. 3. The product of the legs of a right triangle is equal to the
product of the hypotenuse by the altitude from the vertex of the right angle.

Ex. 353. The lines which join the middle point of either diagonal of a
quadrilateral to the opposite vertices divide the quadrilateral into two equiv-
alent parts.
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Proposition VI. Theorem.

407. The area of a trapezoid is equal to half the sum of its bases multiplied
by the altitude.

A B

CE

F

H

O P

a

b

b′

Let b and b′ be the bases and a the altitude of the trapezoid ABCH.

To prove that the area of the ABCH = 1
2a(b+ b′).

Proof.
Draw the diagonal AC.

Then
the area of the 4ABC = 1

2a× b,
and

the area of the 4AHC = 1
2a× b

′. § 403

∴ the area of ABCH = 1
2a(b+ b′). Ax. 2

q.e.d.

408. Cor. The area of a trapezoid is equal to the product of the median by
the altitude. § 190
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A

B

C

D

E

FG

409. Scholium. The area of an irregular polygon may be found by divid-
ing the polygon into triangles, and by finding the area of each of these triangles
separately. Or, we may draw the longest diagonal, and let fall perpendiculars
upon this diagonal from the other vertices of the polygon.

The sum of the areas of the right triangles, rectangles, and trapezoids thus
formed is the area of the polygon.
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Proposition VII. Theorem.

410. The areas of two triangles which have an angle of the one equal to an
angle of the other are to each other as the products of the sides including the
equal angles.

A

B
C

D

E

Let the triangles ABC and ADE have the common angle A.

To prove that
4ABC
4ADE

=
AB ×AC
AD ×AE

.

Proof.
Draw BE.

Now
4ABC
4ABE

=
AC

AE
,

and
4ABE
4ADE

=
AB

AD
. § 405

The products of the first members and of the second members of these equalities
give

4ABC
4ADE

=
AB ×AC
AD ×AE

. q.e.d.

Ex. 354. The areas of two triangles which have an angle of the one
supplementary to an angle of the other are to each other as the products of
the sides including the supplementary angles.
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COMPARISON OF POLYGONS.

Proposition VIII. Theorem.

411. The areas of two similar triangles are to each as the squares of any
two homologous sides.

A O

C

B

A′ O′

C′

B′

Let the two similar triangles be ACB and A′C′B′.
To prove that

4ACB
4A′C ′B′

=
AB

2

A′B′2
.

Proof. Draw the altitudes CO and C ′O′.
Then

4ACB
4A′C ′B′

=
AB × CO
A′B′ × C ′O′

=
AB

A′B′
× CO

C ′O′
, § 405

(two 4s are to each other as the products of their bases by their altitudes).
But

AB

A′B′
=

CO

C ′O′
. § 361

(the homologous altitudes of two similar 4s have the same ratio as any two
homologous sides).

Substitute, in the above equality, for
CO

C ′O′
its equal

AB

A′B′
;

then
4ACB
4A′C ′B′

=
AB

A′B′
× AB

A′B′
=

AB
2

A′B′2
. q.e.d.

Ex. 355. Prove this proposition by § 410.
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Proposition IX. Theorem.

412. The areas of two similar polygons are to each other as the squares of
any two homologous sides.

A

B C

D

E

A′

B′ C′

D′

E′

Let S and S′ denote the areas of the two similar polygons ABC etc.
and A′B′C′ etc.

To prove that
S : S′ = AB

2 : A′B′2.
Proof. By drawing all the diagonals from any homologous vertices E and E′,

the two similar polygons are divided into similar triangles. § 365

∴
AB

2

A′B′2
=
4ABE
4A′B′E′

=

(
BE

2

B′E′2

)
=
4BCE
4B′C ′E′

= etc. § 411

That is,
4ABE
4A′B′E′

=
4BCE
4B′C ′E′

=
4CDE
4C ′D′E′

.

∴
4ABE +4BCE +4CDE

4A′B′E′ +4B′C ′E′ +4C ′D′E′
=
4ABE
4A′B′E′

=
AB

2

A′B′2
. § 335

∴ S : S′ = AB
2 : A′B′2 q.e.d.
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413. Cor. 1. The areas of two similar polygons are to each other as the
squares of any two homologous lines.

414. Cor. 2. The homologous sides of two similar polygons have the same
ratio as the square roots of their areas.
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Proposition X. Theorem.

415. The square on the hypotenuse of a right triangle is equivalent to the
sum of the squares on the two legs.

A

B C

D E

F

G

H

K

L

Let BE, CH, AF , be squares on the three sides of the right triangle
ABC.

To prove that BE m CH +AF .
Proof. Through A draw AL ‖ to CE, and draw AD and CF .
Since ∠sBAC, BAG, and CAH are rt. ∠s, CAG and BAH are straight

lines. § 90
The

4ABD = 4FBC. § 143
For

BD = BC,

BA = BF , § 168
and

∠ABD = ∠FBC, Ax. 2
(each being the sum of a rt. ∠ and the ∠ABC).

Now the rectangle BL is double the 4ABD,
(having the same base BD, and the same altitude, the distance between the

‖s AL and BD),

and the square AF is double the 4FBC,
(having the same base FB, and the same altitude AB).
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∴ the rectangle BL is equivalent to the square AF . Ax. 6
In like manner, by drawing AE and BK, it may be proved that the rectangle

CL is equivalent to the square CH.
Hence, the square BE, the sum of the rectangles BL and CL, is equivalent to

the sum of the squares CH and AF . q.e.d.

416. Cor. The square on either leg of a right triangle is equivalent to the
difference of the square on the hypotenuse and the square on the other leg.

THEOREMS.

A B C

D
E

F

K H G

A
C

B

L E

G F

H K

D

E H D

G F

A C B

Ex. 356. The square constructed upon the sum of two straight lines is
equivalent to the sum of the squares constructed upon these two lines, in-
creased by twice the rectangle of these lines:

Let AB and BC be the two straight lines, and AC their sum. Construct
the squares ACGK and ABED upon AC and AB, respectively. Prolong BE
and DE until they meet KG and CG, respectively. Then we have the square
EFGH, with sides each equal to BC. Hence, the square ACGK is the sum
of the squares ABED and EFGH, and the rectangles DEHK and BCFE,
the dimensions of which are equal to AB and BC.
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Ex. 357. The square constructed upon the difference of two straight lines
is equivalent to the sum of the squares constructed upon these two lines, di-
minished by twice the rectangle of these lines.

Let AB and AC be the two straight lines, and BC their difference. Con-
struct the square ABFG upon AB, the square ACKH upon AC, and the
square BEDC upon BC (as shown in the figure). Prolong ED to meet AG
in L.

The dimensions of the rectangles LEFG and HKDL are AB and AC, and
the square BCDE is evidently the difference between the whole figure and the
sum of these rectangles; that is, the square constructed upon BC is equivalent
to the sum of the squares constructed upon AB and AC, diminished by twice
the rectangle of AB and AC.

Ex. 358. The difference between the squares constructed upon two straight
lines is equivalent to the rectangle of the sum and difference of these lines.

Let ABDE and BCFG be the squares constructed upon the two straight
lines AB and BC. The difference between these squares is the polygon
ACGFDE, which is composed of the rectangles ACHE and GFDH. Prolong
AE and CH to I and K, respectively, making EI and HK each equal to BC,
and draw IK. The rectangles GFDH and EHKI are equal. The difference
between the squares ABDE and BCGF is then equivalent to the rectangle
ACKI, which has for dimensions AI, equal to AB + BC, and EH, equal to
AB −BC.

Ex. 359. The area of a rhombus is equal to half the product of its diago-
nals.

Ex. 360. Two isosceles triangles are equivalent if their legs are equal each
to each, and the altitude of one is equal to half the base of the other.

Ex. 361. The area of a circumscribed polygon is equal to half the product
of its perimeter by the radius of the inscribed circle.

Ex. 362. Two parallelograms are equal if two adjacent sides of the one
are equal, respectively, to two adjacent sides of the other, and the included
angles are supplementary.
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Ex. 363. If ABC is a right triangle, C the vertex of the right angle, BD

a line cutting AC in D, then BD
2

+ AC
2

= AB
2

+DC
2
.

Ex. 364. Upon the sides of a right triangle as homologous sides three
similar polygons are constructed. Prove that the polygon upon the hypotenuse
is equivalent to the sum of the polygons upon the legs.

Ex. 365. If the middle points of two adjacent sides of a parallelogram are
joined, a triangle is formed which is equivalent to one eighth of the parallelo-
gram.

Ex. 366. If any point within a parallelogram is joined to the four vertices,
the sum of either pair of triangles having parallel bases is equivalent to half
the parallelogram.

Ex. 367. Every straight line drawn through the intersection of the diag-
onals of a parallelogram divides the parallelogram into two equal parts.

Ex. 368. The line which joins the middle points of the bases of a trapezoid
divides the trapezoid into two equivalent parts.

Ex. 369. Every straight line drawn through the middle point of the median
of a trapezoid cutting both bases divides the trapezoid into two equivalent
parts.

Ex. 370. If two straight lines are drawn from the middle point of either leg
of a trapezoid to the opposite vertices, the triangle thus formed is equivalent
to half the trapezoid.

Ex. 371. The area of a trapezoid is equal to the product of one of the
legs by the distance from this leg to the middle point of the other leg.

Ex. 372. The figure whose vertices are the middle points of the sides of
any quadrilateral is equivalent to half the quadrilateral.
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PROBLEMS OF CONSTRUCTION.

Proposition XI. Problem.

417. To construct a square equivalent to the sum of two given squares.

R
R′

B

A
C

S

Let R and R′ be two given squares.

To construct a square equivalent to R′ +R.

Construct the rt. ∠A.

Take AC equal to a side of R′,

and AB equal to a side of R; and draw BC.

Construct the square S, having each of its sides equal to BC.
Then

S is the square required.
Proof.

BC
2

m AC
2 +AB

2, § 415
(the square on the hypotenuse of a rt. 4 is equivalent to the sum of the

squares on the two legs).

∴ S m R′ +R.
q.e.f.

Ex. 373. If the perimeter of a rectangle is 72 feet, and the length is equal
to twice the width, find the area.

Ex. 374. How many tiles 9 inches long and 4 inches wide will be required
to pave a path 8 feet wide surrounding a rectangular court 120 feet long and
36 feet wide?

Ex. 375. The bases of a trapezoid are 16 feet and 10 feet; each leg is
equal to 5 feet. Find the area of the trapezoid.
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Proposition XII. Problem.

418. To construct a square equivalent to the difference of two given squares.

R
R′

B

A
C

X

S

Let R be the smaller square and R′ the larger.

To construct a square equivalent to R′ −R.

Construct the rt. ∠A.

Take AB equal to a side of R.

From B as a centre, with a radius equal to a side of R′,

describe an arc cutting the line AX at C.

Construct the square S, having each of its sides equal to AC.
Then

S is the square required.
Proof.

AC
2

m BC
2 −AB2, § 416

(the square on either leg of a rt. 4 is equivalent to the difference of the square
on the hypotenuse and the square on the other leg).

∴ S m R′ −R.
q.e.f.

Ex. 376. Construct a square equivalent to the sum of two squares whose
sides are 3 inches and 4 inches.

Ex. 377. Construct a square equivalent to the difference of two squares
whose sides are 21

2
inches and 2 inches.

Ex. 378. Find the side of a square equivalent to the sum of two squares
whose sides are 24 feet and 32 feet.

Ex. 379. Find the side of a square equivalent to the difference of two
squares whose sides are 24 feet and 40 feet.



BOOK IV. PLANE GEOMETRY. 244

Ex. 380. A rhombus contains 100 square feet, and the length of one
diagonal is 10 feet. Find the length of the other diagonal.

Proposition XIII. Problem.

419. To construct a polygon similar to two given similar polygons and
equivalent to their sum.

R

A B

R′

A′ B′

R′′

A′′ B′′

O

P H

Let R and R′ be two similar polygons, and AB and A′B′ two homol-
ogous sides.

To construct a similar polygon equivalent to R+R′.

Construct the rt. ∠P .

Take PH equal to A′B′, and PO equal to AB.

Draw OH, and take A′′B′′ equal to OH.

Upon A′′B′′, homologous to AB, construct R′′ similar to R.

Then R′′ is the polygon required.
Proof.

PO
2 + PH

2 = OH
2. § 415

Put for PO, PH, and OH their equals AB, A′B′, and A′′B′′.
Then

AB
2 +A′B′2 = A′′B′′2.

Now
R

R′′
=

AB
2

A′′B′′2
, and

R′

R′′
=

A′B′2

A′′B′′2
. § 412

By addition,
R+R′

R′′
=
AB

2 +A′B′2

A′′B′′2
= 1. Ax. 2

∴ R′′ m R+R′. q.e.f.
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Proposition XIV. Problem.

420. To construct a triangle equivalent to a given polygon.

A

B

C D

E F

H

I
K

Let ABCDHE be the given polygon.

To construct a triangle equivalent to the given polygon.
Let D, H, and E be any three consecutive vertices of the polygon. Draw the

diagonal DE.

From H draw HF ‖ to DE.

Produce AE to meet HF at F , and draw DF .
Again, draw CF , and draw DK ‖ to CF to meet AF produced at K, and draw

CK.
In like manner continue to reduce the number of sides of the polygon until we

obtain the 4CIK.

Then 4CIK is the triangle required.
Proof. The polygon ABCDF has one side less than the polygon

ACBDHE, but the two polygons are equivalent.

For the part ACBDE is common,

and the 4DEF m 4DEH, § 404
(for the base DE is common, and their vertices F and H are in the line FH ‖

to the base).
In like manner it may be proved that

ABCK m ABCDF , and CIK m ABCK. q.e.f.
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Proposition XV. Problem.

421. To construct a square equivalent to a given parallelogram.

A

B C

D

a

b

R

M
N O

P

X

Let ABCD be the parallelogram, b its base, and a its altitude.

To construct a square equivalent to the / /ABCD.

Upon a line MX take MN equal to a, NO equal to b.

Upon MO as a diameter, describe a semicircle.

At N erect NP ⊥ to MO, meeting the circumference at P .
Then the square R, constructed upon a line equal to NP , is equivalent to the

/ /ACBD.
Proof.

MN : NP = NP : NO, § 370
(a ⊥ let fall from any point of a circumference to the diameter is the mean

proportional between the segments of the diameter).

∴ NP
2 = MN ×NO = a× b. § 327

Therefore,
R m / /ABCD. q.e.f.

422. Cor. 1. A square may be constructed equivalent to a given triangle, by
taking for its side the mean proportional between the base and half the altitude
of the triangle.

423. Cor. 2. A square may be constructed equivalent to a given polygon,
by first reducing the polygon to an equivalent triangle, and then constructing a
square equivalent to the triangle.
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Proposition XVI. Problem.

424. To construct a parallelogram equivalent to a given square, and having
the sum of its base and altitude equal to a given line.

R

M
C

N

P
S Q

Let R be the given square, and let the sum of the base and altitude
of the required parallelogram be equal to the given line MN .

To construct a / / equivalent to R, with the sum of its base and altitude equal
to MN .

Upon MN as a diameter, describe a semicircle.
At M erect MP , a ⊥ to MN , equal to a side of the given square R.

Draw PQ ‖ to MN , cutting the circumference at S.

Draw SC ⊥ to MN .
Any / / having CM for its altitude and CN for its base is equivalent to R.
Proof.

SC = PM . §§ 104, 180

∴ SC
2 = PM

2 = R.

MC : SC = SC : CN , § 370
(a ⊥ let fall from any point of a circumference to the diameter is the mean

proportional between the segments of the diameter).
Then

SC
2

m MC × CN . § 327
q.e.f.

Note. This problem may be stated as follows:

To construct two straight lines the sum and product of which are known.
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Proposition XVII. Problem.

425. To construct a parallelogram equivalent to a given square, and having
the difference of its base and altitude equal to a given line.

R
M

C

N

B

S

R′

Let R be the given square, and let the difference of the base and
altitude of the required parallelogram be equal to the given line MN .

To construct a / / equivalent to R, with the difference of its base and altitude
equal to MN .

Upon the given line MN as a diameter, describe a circle.
From M draw MS, tangent to the �, and equal to a side of the given square R.
Through the centre of the � draw SB intersecting the circumference at C and

B.
Then any / /, as R′, having SB for its base and SC for its altitude, is equivalent

to R.
Proof.

SB : SM = SM : SC, § 381
(if from a point without a � a secant and a tangent are drawn, the tangent is

the mean proportional between the whole secant and the external segment).
Then

SM
2

m SB × SC, § 327
and the difference between SB and SC is the diameter of the �, that is, MN .

q.e.f.

Note. This problem may be stated: To construct two straight lines the difference
and product of which are known.
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Proposition XVIII. Problem.

426. To construct a polygon similar to a given polygon P and equivalent
to a given polygon Q.

P

A B

Q P ′

A′ B′

Let P and Q be the two given polygons, and AB a side of P .

To construct a polygon similar to P and equivalent to Q.

Find squares equivalent to P and Q, § 423

and let m and n respectively denote their sides.
Find A′B′, the fourth proportional to m, n, and AB. § 386
Upon A′B′, homologous to AB, construct P ′ similar to P .
Then

P ′ m Q.
Proof.

m : n = AB : A′B′. Const.

∴ m2 : n2 = AB
2 : A′B′2. § 338

But
P m m2, and Q m n2. Const.

∴ P : Q = m2 : n2 = AB
2 : A′B′2.

But
P : P ′ = AB

2 : A′B′2. § 412

∴ P : Q = P : P ′. Ax. 1

∴ P ′ m Q. q.e.f.

Ex. 381. To construct a square equivalent to the sum of any number of
given squares.

Ex. 382. To construct a polygon similar to two given similar polygons
and equivalent to their difference.
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Proposition XIX. Problem.

427. To construct a square which shall have a given ratio to a given square.

R
m

n

A
B

C

D

E

F

a b

m

n

x

y

Let R be the given square, and
n

m
the given ratio.

To construct a square which shall be to R as n is to m.
Take AB equal to a side of R, and draw Ay, making any convenient angle with

AB.
On Ay take AE equal to m, EF equal to n, and draw EB.

Draw FC ‖ to EB meeting AB produced at C.

On AC as a diameter, describe a semicircle.

At B erect the ⊥ BD, meeting the semicircumference at D.

Then BD is a side of the square required.
Proof.

Denote AB by a, BC by b, and BD by x.
Now

a : x = x : b. § 370
Therefore,

a2 : x2 = a : b. § 337
But

a : b = m : n. § 342
Therefore,

a2 : x2 = m : n. Ax. 1
By inversion,

x2 : a2 = n : m. § 331
Hence, the square on BD will have the same ratio to R as n has to m.

q.e.f.
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Proposition XX. Problem.

428. To construct a polygon similar to a given polygon and having a given
ratio to it.

R

A B

m

n

S

A′ B′

Let R be the given polygon, and
n

m
the given ratio.

To construct a polygon similar to R, which shall be to R as n is to m.
Construct a line A′B′, such that the square on A′B′ shall be to the square on

AB as n is to m. § 427
Upon A′B′, as a side homologous to AB, construct the polygon S similar to

R. § 391

Then S is the polygon required.
Proof.

S : R = A′B′2 : AB2. § 412
But

A′B′2 : AB2 = n : m. Const.
Therefore,

S : R = n : m. Ax. 1
q.e.f.

Ex. 383. To construct a triangle equivalent to a given triangle, and having
one side equal to a given length l.

Ex. 384. To transform a triangle into an equivalent right triangle.

Ex. 385. To transform a given triangle into an equivalent right triangle,
having one leg equal to a given length.

Ex. 386. To transform a given triangle into an equivalent right triangle,
having the hypotenuse equal to a given length.
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PROBLEMS OF CONSTRUCTION.

Ex. 387. To transform a triangle ABC into an equivalent triangle, having
a side equal to a given length l, and an angle equal to angle BAC.

Upon AB (produced if necessary), take AD equal to l, draw BE ‖ to CD,
meeting AC (produced if necessary) at E.

4BED m 4BEC.

Ex. 388. To transform a given triangle into an equivalent isosceles triangle,
having the base equal to a given length.

To construct a triangle equivalent to:

Ex. 389. The sum of two given triangles.

Ex. 390. The difference of two given triangles.

Ex. 391. To transform a given triangle into an equivalent equilateral
triangle.

To transform a parallelogram into an equivalent:

Ex. 392. Parallelogram having one side equal to a given length.

Ex. 393. Parallelogram having one angle equal to a given angle.

Ex. 394. Rectangle having a given altitude.

To transform a square into an equivalent:

Ex. 395. Equilateral triangle.

Ex. 396. Right triangle having one leg equal to a given length.

Ex. 397. Rectangle having one side equal to a given length.

To construct a square equivalent to:

Ex. 398. Five eighths of a given square.

Ex. 399. Three fifths of a given pentagon.
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Ex. 400. To divide a given triangle into two equivalent parts by a line
through a given point P in one of the sides.

Ex. 401. To find a point within a triangle, such that the lines joining this
point to the vertices shall divide the triangle into three equivalent parts.

Ex. 402. To divide a given triangle into two equivalent parts by a line
parallel to one of the sides.

Ex. 403. To divide a given triangle into two equivalent parts by a line
perpendicular to one of the sides.

PROBLEMS OF COMPUTATION.

A

B

CD

a

a/2

h

A

B

C
D

a

b

c

h

A

B C
D

E

a

b

c

h

Ex. 404. To find the area of an equilateral triangle in terms of its side.

Denote the side by a, the altitude by h, and the area by S.
Then

h2 a2 − a2

4
=

3a2

4
=
a2

4
× 3. § 372

∴ h =
a

2

√
3.

But

S =
a× h

2
. § 403

∴ S =
a

2
× a
√

3

2
=
a2
√

3

4
.



BOOK IV. PLANE GEOMETRY. 254

Ex. 405. To find the area of a triangle in terms of its sides.
By Ex. 312,

h =
2

b

√
s(s− a)(s− b)(s− c).

Hence,

S =
b

2
× 2

b

√
s(s− a)(s− b)(s− c) § 403

=
√
s(s− a)(s− b)(s− c).

Ex. 406. To find the area of a triangle in terms of the radius of the
circumscribed circle.

If R denotes the radius of the circumscribed circle, and h the altitude of
the triangle, we have, by § 384,

b× c = 2R× h.
Multiply by a, and we have,

a× b× c = 2R× a× h.
But

a× h = 2S. § 403

∴ a× b× c = 4R× S.

∴ S =
abc

4R
.

Show that the radius of the circumscribed circle is equal to
abc

4S
.

Ex. 407. Find the area of a right triangle, if the length of the hypotenuse
is 17 feet and the length of one leg is 8 feet.

Ex. 408. Find the ratio of the altitudes of two equivalent triangles, if the
base of one is three times that of the other.

Ex. 409. The bases of a trapezoid are 8 feet and 10 feet, and the altitude
is 6 feet. Find the base of the equivalent rectangle that has an equal altitude.

Ex. 410. Find the area of a rhombus, if the sum of its diagonals is 12 feet,
and their ratio is 3 : 5.

Ex. 411. Find the area of an isosceles right triangle, if the hypotenuse is
20 feet.
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Ex. 412. In a right triangle the hypotenuse is 13 feet, one leg is 5 feet.
Find the area.

Ex. 413. Find the area of an isosceles triangle, if base = b, and leg = c.

Ex. 414. Find the area of an equilateral triangle, if one side = 8 feet.

Ex. 415. Find the area of an equilateral triangle, if the altitude = h.

Ex. 416. A house is 40 feet long, 30 feet wide, 25 feet high to the roof,
and 35 feet high to the ridge-pole. Find the number of square feet in its entire
exterior surface.

Ex. 417. The sides of a right triangle are as 3 : 4 : 5. The altitude upon
the hypotenuse is 12 feet. Find the area.

Ex. 418. Find the area of a right triangle, if one leg = a, and the altitude
upon the hypotenuse = h.

Ex. 419. Find the area of a triangle, if the lengths of the sides are 104 feet,
111 feet, and 175 feet.

Ex. 420. The area of a trapezoid is 700 square feet. The bases are 30 feet
and 40 feet, respectively. Find the altitude.

Ex. 421. ABCD is a trapezium; AB = 87 feet, BC = 119 feet, CD = 41
feet, DA = 169 feet, AC = 200 feet. Find the area.

Ex. 422. What is the area of a quadrilateral circumscribed about a circle
whose radius is 25 feet, if the perimeter of the quadrilateral is 400 feet? What
is the area of a hexagon that has a perimeter of 400 feet and is circumscribed
about the same circle of 25 feet radius (Ex. 361)?

Ex. 423. The base of a triangle is 15 feet, and its altitude is 8 feet. Find
the perimeter of an equivalent rhombus, if the altitude is 6 feet.

Ex. 424. Upon the diagonal of a rectangle 24 feet by 10 feet a triangle
equivalent to the rectangle is constructed. What is its altitude?

Ex. 425. Find the side of a square equivalent to a trapezoid whose bases
are 56 feet and 44 feet, and each leg is 10 feet.
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Ex. 426. Through a point P in the side AB of a triangle ABC, a line
is drawn parallel to BC so as to divide the triangle into two equivalent parts.
Find the value of AP in terms of AB.

Ex. 427. What part of a parallelogram is the triangle cut off by a line
from one vertex to the middle point of one of the opposite sides?

Ex. 428. In two similar polygons, two homologous sides are 15 feet and
25 feet. The area of the first polygon is 450 square feet. Find the area of the
second polygon.

Ex. 429. The base of a triangle is 32 feet, its altitude 20 feet. What is
the area of the triangle cut off by a line parallel to the base at a distance of
15 feet from the base?

Ex. 430. The sides of two equilateral triangles are 3 feet and 4 feet. Find
the side of an equilateral triangle equivalent to their sum.

Ex. 431. If the side of one equilateral triangle is equal to the altitude of
another, what is the ratio of their areas?

Ex. 432. The sides of a triangle are 10 feet, 17 feet, and 21 feet. Find
the areas of the parts into which the triangle is divided by the bisector of the
angle formed by the first two sides.

Ex. 433. In a trapezoid, one base is 10 feet, the altitude is 4 feet, the area
is 32 square feet. Find the length of a line drawn between the legs parallel to
the bases and distant 1 foot from the lower base.

Ex. 434. The diagonals of a rhombus are 90 yards and 120 yards, respec-
tively. Find the area, the length of one side, and the perpendicular distance
between two parallel sides.

Ex. 435. Find the number of square feet of carpet that are required to
cover a triangular floor whose sides are, respectively, 26 feet, 35 feet, and
51 feet.

Ex. 436. If the altitude h of a triangle is increased by a length m, how
much must be taken from the base a that the area may remain the same?
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Ex. 437. Find the area of a right triangle, having given the segments
p, q, into which the hypotenuse is divided by a perpendicular drawn to the
hypotenuse from the vertex of the right angle.



BOOK V. REGULAR POLYGONS AND CIRCLES.

429. Def. A regular polygon is a polygon which is both equilateral and
equiangular. The equilateral triangle and the square are examples.

Proposition I. Theorem.

430. An equilateral polygon inscribed in a circle is a regular polygon.

A

B

C
D

F

Let ABC etc. be an equilateral polygon inscribed in a circle.

To prove that the polygon ABC etc. is a regular polygon.
Proof.

The arcs AB, BC, CD, etc., are equal. § 243

Hence, arcs ABC, BCD, etc., are equal. Ax. 2

Therefore, arcs CFA, DFB, etc., are equal. Ax. 3

Therefore, ∠sA, B, C, etc., are equal. § 289
Therefore, the polygon ABC etc. is a regular polygon, being equilateral and

equiangular. § 429
q.e.d.
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Proposition II. Theorem.

431. A circle may be circumscribed about, and a circle may be inscribed in,
any regular polygon.

A B

C

D

E

F

O

Let ABCDE be a regular polygon.

1. To prove that a circle may be circumscribed about ABCDE.
Proof. Let O be the centre of the circle which may be passed through A, B,

and C. § 258

Draw OA, OB, OC, and OD.
Then

∠ABC = ∠BCD, § 429
and

∠OBC = ∠OCB. § 145
By subtraction,

∠OBA = ∠OCD. Ax. 3

The 4sOBA and OCD are equal. § 143
For

∠OBA = ∠OCD,

OB = OC, § 217
and

AB = CD. § 429

∴ OA = OD. § 128
∴ the circle passing through A, B, C, passes through D.
In like manner it may be proved that the circle passing through B, C, and D

also passes through E; and so on.
Therefore, the circle described from O as a centre, with a radius OA, will be

circumscribed about the polygon. § 231
2. To prove that a circle may be inscribed in ABCDE.
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Proof. Since the sides of the regular polygon are equal chords of the circum-
scribed circle, they are equally distant from the centre. § 249

Therefore, the circle described from O as a centre, with the distance from O to
a side of the polygon as a radius, will be inscribed in the polygon (§ 232). q.e.d.

432. Def. The radius of the circumscribed circle, OA, is called the radius
of the polygon.

433. Def. The radius of the inscribed circle, OF , is called the apothem
of the polygon.

434. Def. The common centre, O, of the circumscribed and inscribed
circles is called the centre of the polygon.

435. Def. The angle between radii drawn to the extremities of any side is
called the angle at the centre of the polygon.

By joining the centre to the vertices of a regular polygon, the polygon can
be decomposed into as many equal isosceles triangles as it has sides.

436. Cor. 1. The angle at the centre of a regular polygon is equal to four
right angles divided by the number of sides of the polygon. Hence, the angles
at the centre of any regular polygon are all equal.

437. Cor. 2. The radius drawn to any vertex of a regular polygon bisects
the angle at the vertex.

438. Cor. 3. The angle at the centre of a regular polygon and an interior
angle of the polygon are supplementary.

For
∠sFOB and FBO are complementary. § 135

∴ their doubles AOB and FBC are supplementary. Ax. 6
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Proposition III. Theorem.

439. If the circumference of a circle is divided into any number of equal
arcs, the chords joining the successive points of division form a regular in-
scribed polygon; and the tangents drawn at the points of division form a regular
circumscribed polygon.

A B

C

D

E

F

G

HJ

K

Suppose the circumference divided into equal arcs AB, BC, etc. Let
AB, BC, etc., be the chords, FBG, GCH, etc., the tangents.

1. To prove that ABCDE is a regular polygon.
Proof.

The sides AB, BC, CD, etc., are equal. § 241

Therefore, the polygon is regular. § 430
2. To prove that To prove that FGHIK is a regular polygon.
Proof. The 4sAFB, BGC, CHD, etc., are all equal isosceles triangles.

§§ 295,139

∴ ∠sF , G, H, etc., are equal, and FB, BG, GC, etc., are equal.

∴ FG = GH = HI, etc. Ax. 6

∴ FGHIK is a regular polygon. § 429
q.e.d.

440. Cor. 1. Tangents to a circle at the vertices of a regular inscribed
polygon form a regular circumscribed polygon of the same number of sides as
the inscribed polygon.
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A′ B′

C′

D′

E′
O

A B

C

D

E

M

N

PQ

R

A B
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E

F

H

K

D K I C

L H

M G

A E F B

O

441. Cor. 2. Tangents to a circle at the middle points of the arcs subtended
by the sides of a regular inscribed polygon form a circumscribed regular polygon,
whose sides are parallel to the sides of the inscribed polygon and whose vertices
lie on the radii (prolonged) of the inscribed polygon.

For two corresponding sides, AB and A′B′, are perpendicular to OM
(§§ 248, 254), and are parallel (§ 104); and the tangents MB′ and NB′, inter-
secting at a point equidistant from OM and ON (§ 261), intersect upon the
bisector of the ∠MON (§ 162); that is, upon the radius OB.

442. Cor. 3. If the vertices of a regular inscribed polygon are joined to
the middle points of the arcs subtended by the sides of the polygon, the joining
lines form a regular inscribed polygon of double the number of sides.

443. Cor. 4. Tangents at the middle points the arcs between adjacent
points of contact of the sides of a regular circumscribed polygon form a regular
circumscribed polygon of double the number of sides.

444. Cor. 5. The perimeter of an inscribed polygon is less than the perime-
ter of an inscribed polygon of double the number of sides; and the perimeter
of a circumscribed polygon is greater than the perimeter of a circumscribed
polygon of double the number of sides.

For two sides of a triangle are together greater than the third side. § 138
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Proposition IV. Theorem.

445. Two regular polygons of the same number of sides are similar.

A B

C

D

E
Q

A′ B′

C′

D′

E′

Q′

Let Q and Q′ be two regular polygons, each having n sides.

To prove that Q and Q′ are similar.
Proof. The sum of the interior ∠s of each polygon is equal to

(n− 2)2 rt. ∠s, § 205
(the sum of the interior ∠s of a polygon is equal to 2 rt. ∠s taken as many

times less two as the polygon has sides).

Each angle of either polygon =
(n− 2)2 rt. ∠s

n
, § 206

(for the ∠s of a regular polygon are all equal, and hence each ∠ is equal to the
sum of the ∠s divided by their number).

Hence, the two polygons Q and Q′ are mutually equiangular.

Since AB = BC, etc., and A′B′ = B′C ′, etc., § 429

AB : A′B′ = BC : B′C ′, etc.
Hence, the two polygons have their homologous sides proportional.

Therefore the two polygons are similar. § 351
q.e.d.

446. Cor. The areas of two regular polygons of the same number of sides
are to each other as the squares of any two homologous sides. § 412
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Proposition V. Theorem.

447. The perimeters of two regular polygons of the same number of sides
are to each other as the radii of their circumscribed circles, and also as the
radii of their inscribed circles.

A B

C

D

E
O

M
A′ B′

C′

D′

E′

O′

M ′

Let P and P ′ denote the perimeters, O and O′ the centres, of the two
regular polygons.

From O, O′ draw OA, O′A′, OB, O′B′, and the ⊥s OM , O′M ′.
To prove that P : P ′ = OA : O′A′ = OM : O′M ′.
Proof.

Since the polygons are similar, § 445

P : P ′ = AB : A′B′. § 364
The 4sOAB and O′A′B′ are isosceles. § 431
Now

∠O = ∠O′, § 436
and

OA : OB = O′A′ : O′B′.

∴ the 4sOAB and O′A′B′ are similar. § 357

∴ AB : A′B′ = OA : O′A′. § 351
Also,

AB : A′B′ = OM : O′M ′. § 361

∴ P : P ′ = OA : O′A′ = OM : O′M ′. Ax. 1
q.e.d.

448. Cor. The areas of two regular polygons of the same number of sides
are to each other as the squares of the radii of the circumscribed circles, and
of the inscribed circles. § 413
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Proposition VI. Theorem.

449. If the number of sides of a regular inscribed polygon is indefinitely
increased, the apothem of the polygon approaches the radius of the circle as its
limit.

O

A B
P

Let AB be a side and OP the apothem of a regular polygon of n sides
inscribed in the circle whose radius is OA.

To prove that OP approaches OA as a limit, when n increases indefinitely.
Proof.

OP < OA, § 97
and

OA−OP < AP . § 138

∴ OA−OP < AB, which is twice AP . § 245
Now, if n is taken sufficiently great, AB, and consequently OA − OP , can be

made less than any assigned value, however small, but cannot be made zero.
Since OA− OP can be made less than any assigned value by increasing n, but

cannot be made zero, OA is the limit of OP by the test for a limit. § 275
q.e.d.

450. Cor. If the number of sides of a regular inscribed polygon is indefi-
nitely increased, the square of the apothem approaches the square of the radius
of the circle as a limit.

For
OA

2 −OP 2
= AP

2
. § 372

But by taking n sufficiently great, AB and consequently AP , the half of
AB, can be made less than any assigned value.
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Therefore, AP
2
, the product of AP by AP , can be made less than any

assigned value; for the product of two finite factors approaches zero as a limit,
if either factor approaches zero as a limit (§ 276); and for a still stronger reason,
the product approaches zero as a limit, if each of the factors approaches zero
as a limit.

Proposition VII. Theorem.

451. An arc of a circle is less than any line which envelops it and has the
same extremities.

A B

C

D

E

F

Let ACB be an arc of a circle, and AB its chord.

To prove that the arc ACB is less than any other line which envelops this arc
and terminates at A and B.

Proof. Of all the lines that can be drawn, each to include the area ACB between
itself and the chord AB, there must be at least one shortest line; for all the lines
are not equal.

Now the enveloping line ADB cannot be the shortest; for drawing ECF tangent
to the arc ACB at C, the line AECFB < AEDFB, since ECF < EDF . § 49

In like manner it can be shown that no other enveloping line can be the shortest.
Therefore, ACB is the shortest.

q.e.d.

452. Cor. 1. The circumference of a circle is less than the perimeter of
any polygon circumscribed about it.

453. Cor. 2. Any convex curve is less than the perimeter of a polygon
circumscribed about it.
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Proposition VIII. Theorem.

454. The circumference of a circle is the limit which the perimeters of
regular inscribed polygons and of similar circumscribed polygons approach, if
the number of sides of the polygons is indefinitely increased; and the area of a
circle is the limit which the areas of these polygons approach.

O

A B
A′ B′C

D

Let P and P ′ denote the lengths of the perimeters, AB and A′B′

two homologous sides, R and R′ the radii, of the polygons, and C the
circumference of the circle.

To prove that C is the limit of P and of P ′, if the number of sides of the polygons
is indefinitely increased.

Proof.
Since the polygons are similar by hypothesis,

P ′ : P = R′ : R. § 447
Therefore,

P ′ − P : P = R′ −R : R. § 333
Whence,

R(P ′ − P ) = P (R′ −R). § 327
Therefore,

P ′ − P = P
R (R′ −R).

Now P is always less than C. § 273

∴ P ′ − P < C
R (R′ −R).

But R′ −R, which is less than A′C (§ 138), can be made less than any assigned

quantity by increasing the number of sides of the polygons; and therefore
C

R
(R′−R)

can be made less than any assigned quantity. § 276
Hence, P ′ − P can be made less than any assigned quantity.



BOOK V. PLANE GEOMETRY. 268

Since P ′ is always greater than C (§ 452), and P is always less than C (§ 273),
the difference between C and either P ′ or P is less than the difference P ′ − P , and
consequently can be made less than any assigned quantity, but cannot be made zero.

Therefore, C is the common limit of P ′ and P . § 275
Let K denote the area of the circle, S the area of the inscribed poly-

gon, and S′ the area of the circumscribed polygon.

2. To prove that K is the limit of S and S′.
Proof.

S′ : S = R′2 : R2. § 448
By division,

S′ − S : S = R′2 −R2 : R2. § 333
Whence

S′ − S =
S

R2
(R′2 −R2).

Now K is always greater than S. Ax. 8
Therefore,

S′ − S <
K

R2
(R′2 −R2).

But R′2 − R2, which is equal to (R′ + R)(R′ − R), can be made less than any

assigned quantity; and therefore
K

R2
(R′2 −R2) can be made less than any assigned

quantity. § 276
Hence, S′ − S can be made less than any assigned quantity.
Since S′ > K always, and S < K always (Ax. 8), the difference between K and

either S′ or S is less than the difference S′ − S, and consequently can be made less
than any assigned quantity, but cannot be made zero.

Therefore, K is the common limit of S′ and S. § 275
q.e.d.
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Proposition IX. Theorem.

455. Two circumferences have the same ratio as their radii.

Q Q′

Let C and C′ be the circumferences, R and R′ the radii, of the two
circles Q and Q′.

To prove that
C : C ′ = R : R′.

Proof. Inscribe in the �s two similar regular polygons, and denote their perime-
ters by P and P ′.

Then
P : P ′ = R : R′. § 447

Conceive the number of sides of these regular polygons to be indefinitely in-
creased, the polygons continuing similar.

Then P and P ′ will have C and C ′ as limits. § 454
But P : P ′ will always be equal to R : R′. § 447

∴ C : C ′ = R : R′. § 285
q.e.d.

456. Cor. The ratio of the circumference of a circle to its diameter is
constant.

For
C : C ′ = R : R′. § 455

∴ C : C ′ = 2R : 2R′. § 340
By alternation,

C : 2R = C ′ : 2R′. § 330

457. Def. The constant ratio of the circumference of a circle to its diameter
is represented by the Greek letter π.
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458. Cor. π =
C

2R
. ∴ C = 2πR.

Proposition X. Theorem.

459. The area of a regular polygon is equal to half the product of its apothem
by its perimeter.

A B

C

DE

F
O

M

Let P represent the perimeter, R the apothem, and S the area of the
regular polygon ABC etc.

To prove that S = 1
2R× P .

Proof.
Draw the radii OA, OB, OC, etc.

The polygon is divided into as many 4s as it has sides.

The apothem is the common altitude of these 4s,

and the area of each 4 = 1
2R multiplied by the base. § 403

Hence, the area of all the 4s is equal to 1
2R multiplied by the sum of all the

bases.
But the sum of the areas of all the 4s is equal to the area of the polygon. Ax. 9
And the sum of all the bases of the 4s is equal to the perimeter of the polygon.

Ax. 9

∴ S = 1
2R× P . q.e.d.

460. Def. In different circles similar arcs, similar sectors, and similar
segments are such as correspond to equal angles at the centre.
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Proposition XI. Theorem.

461. The area of a circle is equal to half the product of its radius by its
circumference.

O

M

A

B C

D

E

Let R represent the radius, C the circumference, and S the area, of
the circle whose centre is O.

To prove that
S = 1

2R× C.
Proof. Circumscribe any regular polygon about the circle, and denote its

perimeter by P , and its area by S′.
Then

S′ = 1
2R× P . § 459

Conceive the number of sides of the polygon to be indefinitely increased.

Then P approaches C as its limit, § 454
1
2R× P approaches 1

2R× C as its limit, § 279

and S′ approaches S as its limit. § 454
But

S′ = 1
2R× P , always. § 459

∴ S = 1
2R× C. § 284

q.e.d.

462. Cor. 1. The area of a sector is equal to half the product of its radius
by its arc.

For the sector and its arc are like parts of the circle and its circumference,
respectively.



BOOK V. PLANE GEOMETRY. 272

463. Cor. 2. The area of a circle is equal to π times the square of its
radius.

For the area of the � = 1
2
R× C = 1

2
R× 2πR = πR2.

464. Cor. 3. The areas of two circles are to each other as the squares of
their radii.

For, if S and S ′ denote the areas, and R and R′ the radii,

S : S ′ = πR2 : πR′2 = R2 : R′2.

465. Cor. 4. Similar arcs are to each other as their radii; similar sectors
are to each other as the squares of their radii.
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Proposition XII. Theorem.

466. The areas of two similar segments are to each other as the squares of
their radii.

A B

C

P
A′ B′

C′

P ′

Let AC and A′C′ be the radii of the two similar sectors ACB and
A′C′B′, and let ABP and A′B′P ′ be the corresponding segments.

To prove that
ABP : A′B′P ′ = AC

2 : A′C ′2.
Proof.

Sector ACB : Sector A′C ′B′ = AC
2 : A′C ′2. § 465

The 4sACB and A′C ′B′ are similar. § 357

∴ 4ACB : 4A′C ′B′ = AC
2 : A′C ′2. § 411

∴ sector ACB : sector A′C ′B′ = 4ACB : 4A′C ′B′. Ax. 1

∴ sector ACB : 4ACB = sector A′C ′B′ : 4A′C ′B′. § 330

∴
sector ACB −4ACB

sector A′C ′B′ −4A′C ′B′
=
4ACB
4A′C ′B′

=
AC

2

A′C ′2
. § 333

That is,
ABP : A′B′P ′ = AC

2 : A′C ′2. q.e.d.
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PROBLEMS OF CONSTRUCTION.

Proposition XIII. Problem.

467. To inscribe a square in a given circle.

O

A

B C

D

Let O be the centre of the given circle.

To inscribe a square in the given circle.

Draw two diameters AC and BD ⊥ to each other.

Draw AB, BC, CD, and DA.

Then ABCD is the square required.
Proof.

The ∠sABC, BCD, etc., are rt. ∠s, § 290
(each being inscribed in a semicircle),

and the sides AB, BC, etc., are equal, § 241
(in the same � equal arcs are subtended by equal chords).

Hence the quadrilateral ABCD is a square. § 168
q.e.f.

468. Cor. By bisecting the arcs AB, BC, etc., a regular polygon of eight
sides may be inscribed in the circle; and, by continuing the process, regular
polygons of sixteen, thirty-two, sixty-four, etc., sides may be inscribed.

Ex. 438. The area of a circumscribed square is equal to twice the area of
the inscribed square.

Ex. 439. The area of a circular ring is equal to that of a circle whose
diameter is a chord of the outer circle tangent to the inner circle.
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Proposition XIV. Problem.

469. To inscribe a regular hexagon in a given circle.

O

A B

C

D

E

F

Let O be the centre of the given circle.

To inscribe a regular hexagon in the given circle.

From O draw any radius, as OC.

From C as a centre, with a radius equal to OC,

describe an arc intersecting the circumference at F .

Draw OF and CF .

Then CF is a side of the regular hexagon required.
Proof.

The 4OFC is equiangular, § 146
(since it is equilateral by construction).

Hence, the ∠FOC is 1
3 of 2 rt. ∠s, or 1

6 of 4 rt. ∠s. § 136

∴ the arc FC is 1
6 of the circumference,

and the chord FC is a side of a regular inscribed hexagon.
Hence, to inscribe a regular hexagon apply the radius six times as a chord. q.e.f.

470. Cor. 1. By joining the alternate vertices A, C, D, an equilateral
triangle is inscribed in the circle.

471. Cor. 2. By bisecting the arcs AB, BC, etc., a regular polygon of
twelve sides may be inscribed in the circle; and, by continuing the process,
regular polygons of twenty-four, forty-eight, etc., sides may be inscribed.
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Proposition XV. Problem.

472. To inscribe a regular decagon in a given circle.

O

B
C

F
S

Let O be the centre of the given circle.

To inscribe a regular decagon in the given circle.

Draw any radius OC,

and divide it in extreme and mean ratio, so that OC shall

be to OS as OS is to SC. § 389

From C as a centre, with a radius equal to OS,

describe an arc intersecting the circumference at B.

Draw BC.

Then BC is a side of the regular decagon required.
Proof.

Draw BS and BO.
Now

OC : OS = OS : SC, Const.
and

BC = OS. Const.

∴ OC : BC = BC : SC.
Moreover,

∠OCB = ∠SCB. Iden.

Hence, the 4sOCB and BCS are similar. § 357

But the 4OCB is isosceles. § 217

∴ 4BCS, which is similar to the 4OCB, is isosceles,

and CB = BS = SO. § 120

∴ the 4SOB is isosceles, and the ∠O = ∠SBO. § 145
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But the ext. ∠CSB = ∠O + ∠SBO = 2∠O. § 137
Hence,

∠SCB = 2∠O,
and

∠OBC = 2∠O.

∴ the sum of the ∠s of the 4OCB = 5∠O = 2rt. ∠s,
and

∠O = 1
5 of 2 rt. ∠s, or 1

10 of 4 rt. ∠s.

Therefore, the arc BC is 1
10 of the circumference,

and the chord BC is a side of a regular inscribed decagon.
Therefore, to inscribe a regular decagon, divide the radius internally in extreme

and mean ratio, and apply the greater segment ten times as a chord. q.e.f.

473. Cor. 1. By joining the alternate vertices of a regular inscribed
decagon, a regular pentagon is inscribed.

474. Cor. 2. By bisecting the arcs BC, CF , etc., a regular polygon of
twenty sides may be inscribed in the circle; and, by continuing the process,
regular polygons of forty, eighty, etc., sides may be inscribed.

If R denotes the radius of a regular inscribed polygon, r the apothem, a
one side, A an interior angle, and C the angle at the centre, show that

Ex. 440. In a regular inscribed triangle a = R
√

3, r = 1
2
R, A = 60◦,

C = 120◦.

Ex. 441. In an inscribed square a = R
√

2, r = 1
2
R
√

2, A = 90◦, C = 90◦.

Ex. 442. In a regular inscribed hexagon a = R, r = 1
2
R
√

3, A = 120◦,
C = 60◦.

Ex. 443. In a regular inscribed decagon

a =
R(
√

5− 1)

2
, r =

1

4
R

√
10 + 2

√
5, A = 144◦, C = 36◦.
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Proposition XVI. Problem.

475. To inscribe in a given circle a regular pentedecagon, or polygon of
fifteen sides.

Q

A

B

C

D

E
F

H

Let Q be the given circle.

To inscribe in Q a regular pentedecagon.

Draw EH equal to the radius of the circle,

and EF equal to a side of the regular inscribed decagon. § 472

Draw FH.
Then FH is a side of the regular pentedecagon required.
Proof.

The arc EH is 1
6 of the circumference, § 469

and the arc EF is 1
10 of the circumference. Const.

Hence, the arc FH is 1
6 −

1
10 , or 1

15 , of the circumference.
And the chord FH is a side of a regular inscribed pentedecagon.
By applying FH fifteen times as a chord, we have the polygon required. q.e.f.

476. Cor. By bisecting the arcs FH, HA, etc., a regular polygon of thirty
sides may be inscribed; and, by continuing the process, regular polygons of
sixty, one hundred twenty, etc., sides may be inscribed.
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Proposition XVII. Problem.

477. To inscribe in a given circle a regular polygon similar to a given
regular polygon.

O′

A′

B′

C′ D′

E′

F ′

O

A

B

C D

E

F

Let ABC etc. be the given regular polygon, and O′ the centre of the
given circle.

To inscribe in the circle a regular polygon similar to ABC etc.

From O, the centre of the given polygon,

draw OD and OC.

From O′, the centre of the given circle,

draw O′C ′ and O′D′,

making the ∠O′ equal to the ∠O.

Draw C ′D′.

Then C ′D′ is a side of the regular polygon required.
Proof. Each polygon has as many sides as the ∠O, or ∠O′, is contained times

in 4 rt. ∠s.
Therefore, the polygon C ′D′E′ etc. is similar to the polygon CDE etc., § 445

(two regular polygons of the same number of sides are similar).
q.e.f.

Ex. 444. The area of an inscribed regular octagon is equal to that of the
rectangle whose sides are equal to the sides of the inscribed and the circum-
scribed squares.
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Proposition XVIII. Problem.

478. Given the side and the radius of a regular inscribed polygon, to find
the side of the regular inscribed polygon of double the number of sides.

O

A B
C

D

H

Let AB be a side of the regular inscribed polygon.

To find AD, a side of the regular inscribed polygon of double the number of sides.

Denote the radius by R, and AB by a.

From D draw DH through the centre O, and draw OA, AH.

DH is ⊥ to AB at its middle point C. § 161
In the rt. 4OCA,

OC
2 = R2 − 1

4a
2. § 372

Therefore,

OC =
√
R2 − 1

4a
2,

and
DC = R−

√
R2 − 1

4a
2.

The ∠DAH is a rt. ∠. § 290

In the rt. 4DAH, AD2 = DH ×DC. § 367

But DH = 2R, and DC = R−
√
R2 − 1

4a
2.

∴ AD =

√
2R(R−

√
R2 − 1

4a
2)

=
√
R(2R−

√
4R2 − a2). q.e.f.

479. Cor. If R = 1, AD =
√

2−
√

4− a2.
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Proposition XIX. Problem.

480. To find the numerical value of the ratio of the circumference of a
circle to its diameter.

Let C be the circumference, when the radius is unity.

To find the numerical value of π.
By § 458, 2πR = C. ∴ π = 1

2C when R = 1.
Let S6 be the length of a side of a regular polygon of 6 sides, S12 of 12 sides,

and so on.
If R = 1, by § 469, S6 = 1 and by § 479 we have

Form of Computation. Length of Side. Length of Perimeter.

S12 =
√

2−
√

4− 12 0.51763809 6.21165708

S24 =
√

2−
√

4− (0.51763809)2 0.26105238 6.26525722

S48 =
√

2−
√

4− (0.26105238)2 0.13080626 6.27870041

S96 =
√

2−
√

4− (0.13080626)2 0.06543817 6.28206396

S192 =
√

2−
√

4− (0.06543817)2 0.03272346 6.28290510

S384 =
√

2−
√

4− (0.03272346)2 0.01636228 6.28311544

S768 =
√

2−
√

4− (0.01636228)2 0.00818121 6.28316941

∴ C = 6.28317 approximately; that is, π = 3.14159 nearly. q.e.f.

481. Scholium. π is incommensurable. We generally take

π = 3.1416, and
1

π
= 0.31831.
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MAXIMA AND MINIMA.

482. Def. Among geometrical magnitudes which satisfy given conditions,
the greatest is called the maximum; and the smallest is called the minimum.

Thus, the diameter of a circle is the maximum among all chords; and the
perpendicular is the minimum among all lines drawn to a given line from a
given external point.

483. Def. Isoperimetric polygons are polygons which have equal
perimeters.

Proposition XX. Theorem.

484. Of all triangles having two given sides, that in which these sides in-
clude a right angle is the maximum.

A

B CD D

E
E

Let the triangles ABC and EBC have the sides AB and BC equal to
EB and BC, respectively; and let the angle ABC be a right angle.

To prove that
4ABC > 4EBC.

Proof.
From E draw the altitude ED.

The 4sABC and EBC, having the same base, BC, are to each other as their
altitudes AB and ED. § 405

Now
EB > ED. § 97

But
EB = AB. Hyp.

∴ AB > ED.

∴ 4ABC > 4EBC. § 405
q.e.d.
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Proposition XXI. Theorem.

485. Of all isoperimetric triangles having the same base the isosceles tri-
angle is the maximum.

A B

C

D

E

F

H

K

M

P

Let the 4sACB and ADB have equal perimeters, and let AC and
CB be equal, and AD and DB be unequal.

To prove that 4ACB > 4ADB.
Proof.

Produce AC to H, making CH = AC; and draw HB.

Produce HB, take DP equal to DB, and draw AP .

Draw CE and DF ⊥ to AB, and CK and DM ‖ to AB.

The ∠ABH is a right ∠, for it may be inscribed in the semicircle whose centre
is C and radius CA. § 290

ADP is not a straight line, for then the ∠sDBA and DAB would be equal,
being complements of the equal ∠sDBM and DPM , respectively; and DA and DB
would be equal (§ 147), which is contrary to the hypothesis. Hence,

AP < AD +DP , ∴< AD +DB, ∴< AC + CB, ∴< AH.

∴ BH > BP . § 102

∴ CE(= 1
2BH) > DF (= 1

2BP ). Ax. 7
Therefore,

4ACB > 4ADB. § 405

q.e.d.



BOOK V. PLANE GEOMETRY. 284

Proposition XXII. Theorem.

486. Of all polygons with sides all given but one, the maximum can be
inscribed in a semicircle which has the undetermined side for its diameter.

A

B

C

D

E
M N

Let ABCDE be the maximum of polygons with sides AB, BC, CD,
DE, and the extremities A and E on the straight line MN .

To prove that ABCDE can be inscribed in a semicircle.
Proof. From any vertex, as C, draw CA and CE.
The 4ACE must be the maximum of all 4s having the sides CA and CE, and

the third side on MN ; otherwise by increasing or diminishing the ∠ACE, keeping
the lengths of the sides CA and CE unchanged, but sliding the extremities A and
E along the line MN , we could increase the 4ACE, while the rest of the polygon
would remain unchanged; and therefore increase the polygon. But this is contrary
to the hypothesis that the polygon is the maximum polygon.

Hence, the 4ACE is the maximum of 4s that have the sides CA and CE.

Therefore, the ∠ACE is a right angle. § 484

Therefore, C lies on the semicircumference. § 290
Hence, every vertex lies on the circumference; that is, the maximum polygon

can be inscribed in a semicircle having the undetermined side for a diameter. q.e.d.
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Proposition XXIII. Theorem.

487. Of all polygons with given sides, that which can be inscribed in a circle
is the maximum.

A

B

C

D

E

H

A′

B′

C′

D′

E′

H′

Let ABCDE be a polygon inscribed in a circle, and A′B′C′D′E′ be a
polygon, equilateral with respect to ABCDE, which cannot be inscribed
in a circle.

To prove that that ABCDE > A′B′C ′D′E′.
Proof.

Draw the diameter AH, and draw CH and DH.

Upon C ′D′ construct the 4C ′H ′D′ = 4CHD, and draw A′H ′.
Since, by hypothesis, a � cannot pass through all the vertices of A′B′C ′D′E′,

one or both of the parts ABCH, AEDH must be greater than the corresponding
part of A′B′C ′H ′D′E′. § 486

If either of these parts is not greater than its corresponding part, it is equal to
it, § 486
(for ABCH and AEDH are the maxima of polygons that have sides equal to

AB, BC, CH, and AE, ED, DH, respectively, and the remaining side
undetermined).

∴ ABCHDE > A′B′C ′H ′D′E′. Ax. 4

Take away from the two figures the equal 4sCHD and C ′H ′D′.
Then

ABCDE > A′B′C ′D′E′. Ax. 5

q.e.d.
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Proposition XXIV. Theorem.

488. Of isoperimetric polygons of the same number of sides, the maximum
is equilateral.

A

B

C

D

K

Let ABCD etc. be the maximum of isoperimetric polygons of any
given number of sides.

To prove that AB, BC, CD, etc., are equal.
Proof.

Draw AC.
The 4ABC must be the maximum of all the 4s which are formed upon AC

with a perimeter equal to that of 4ABC.
Otherwise a greater 4AKC could be substituted for 4ABC, without changing

the perimeter of the polygon.
But this is inconsistent with the hypothesis that the polygon ABCD etc. is the

maximum polygon.

∴ the 4ABC is isosceles. § 485

∴ AB = BC.
In like manner it may be proved that BC = CD, etc. q.e.d.

489. Cor. The maximum of isoperimetric polygons of the same number of
sides is a regular polygon.

For the maximum polygon is equilateral (§ 488), and can be inscribed in a
circle (§ 487), and is, therefore, regular. § 430
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Proposition XXV. Theorem.

490. Of isoperimetric regular polygons, that which has the greatest number
of sides is the maximum.

A B

C

D

E Q Q′

Let Q be a regular polygon of three sides, and Q′ a regular polygon
of four sides, and let the two polygons have equal perimeters.

To prove that Q′ is greater than Q.
Proof. Draw CD from C to any point in AB.
Invert the 4CDA and place it in the position DCE, letting D fall at C, C at

D, and A at E.
The polygon DBCE is an irregular polygon of four sides, which by construction

has the same perimeter as Q′, and the same area as Q.
Then the irregular polygon DBCE of four sides is less than the isoperimetric

regular polygon Q′ of four sides. § 489
In like manner it may be shown that Q′ is less than an isoperimetric regular

polygon of five sides, and so on. q.e.d.

Ex. 445. Of all equivalent parallelograms that have equal bases, the
rectangle has the minimum perimeter.

Ex. 446. Of all equivalent rectangles, the square has the minimum perime-
ter.

Ex. 447. Of all triangles that have the same base and the same altitude,
the isosceles has the minimum perimeter.

Ex. 448. Of all triangles that can be inscribed in a given circle, the
equilateral is the maximum and has the maximum perimeter.
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Proposition XXVI. Theorem.

491. Of regular polygons having a given area, that which has the greatest
number of sides has the least perimeter.

Q Q′
Q′′

Let Q and Q′ be regular polygons having the same area, and let Q′

have the greater number of sides.
To prove

the perimeter of Q > the perimeter of Q′.
Proof. Let Q′′ be a regular polygon having the same perimeter as Q′, and the

same number of sides as Q.
Then

Q′ > Q′′ § 490
(of isoperimetric regular polygons, that which has the greatest number of sides is

the maximum).
But

Q m Q′. Hyp.

∴ Q > Q′′.

∴ the perimeter of Q > the perimeter of Q′′.

But the perimeter of Q′ = the perimeter of Q′′. Hyp.

∴ the perimeter of Q > the perimeter of Q′. q.e.d.

Ex. 449. To inscribe in a semicircle the maximum rectangle.

Ex. 450. Of all polygons of a given number of sides which may be inscribed
in a given circle, that which is regular has the maximum area and the maximum
perimeter.

Ex. 451. Of all polygons of a given number of sides which may be cir-
cumscribed about a given circle, that which is regular has the minimum area
and the minimum perimeter.
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THEOREMS.

Ex. 452. Every equilateral polygon circumscribed about a circle is regular
if it has an odd number of sides.

Ex. 453. Every equiangular polygon inscribed in a circle is regular if it
has an odd number of sides.

Ex. 454. Every equiangular polygon circumscribed about a circle is reg-
ular.

Ex. 455. The side of a circumscribed equilateral triangle is equal to twice
the side of the similar inscribed triangle.

Ex. 456. The apothem of an inscribed regular hexagon is equal to half
the side of the inscribed equilateral triangle.

Ex. 457. The area of an inscribed regular hexagon is three fourths of the
area of the circumscribed regular hexagon.

Ex. 458. The area of an inscribed regular hexagon is the mean propor-
tional between the areas of the inscribed and the circumscribed equilateral
triangles.

Ex. 459. The square of the side of an inscribed equilateral triangle is
equal to three times the square of a side of the inscribed regular hexagon.

Ex. 460. The area of an inscribed equilateral triangle is equal to half the
area of the inscribed regular hexagon.

Ex. 461. The square of the side of an inscribed equilateral triangle is
equal to the sum of the squares of the sides of the inscribed square and of the
inscribed regular hexagon.

Ex. 462. The square of the side of an inscribed regular pentagon is equal
to the sum of the squares of the radius of the circle and the side of the inscribed
regular decagon.
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If R denotes the radius of a circle, and a one side of an inscribed regular
polygon, show that:

Ex. 463. In a regular pentagon, a = 1
2
R
√

10− 2
√

5.

Ex. 464. In a regular octagon, a = R
√

2−
√

2.

Ex. 465. In a regular dodecagon, a = R
√

2−
√

3.

Ex. 466. If two diagonals of a regular pentagon intersect, the longer
segment of each is equal to a side of the pentagon.

Ex. 467. The apothem of an inscribed regular pentagon is equal to half
the sum of the radius of the circle and the side of the inscribed regular decagon.

Ex. 468. The side of an inscribed regular pentagon is equal to the hy-
potenuse of the right triangle which has for legs the radius of the circle and
the side of the inscribed regular decagon.

Ex. 469. The radius of an inscribed regular polygon is the mean propor-
tional between its apothem and the radius of the similar circumscribed regular
polygon.

Ex. 470. If squares are constructed outwardly upon the six sides of a
regular hexagon, the exterior vertices of these squares are the vertices of a
regular dodecagon.

Ex. 471. If the alternate vertices of a regular hexagon are joined by
straight lines, show that another regular hexagon is thereby formed. Find the
ratio of the areas of these two hexagons.

Ex. 472. If on the legs of a right triangle as diameters semicircles are
described external to the triangle, and from the whole figure a semicircle on
the hypotenuse is subtracted, the remaining figure is equivalent to the given
right triangle.

Ex. 473. The star-shaped polygon, formed by producing the sides of a
regular hexagon, is equivalent to twice the given hexagon.
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Ex. 474. The sum of the perpendiculars drawn to the sides of a regular
polygon from any point within the polygon is equal to the apothem multiplied
by the number of sides.

Ex. 475. If two chords of a circle are perpendicular to each other, the sum
of the four circles described on the four segments as diameters is equivalent to
the given circle.

Ex. 476. If the diameter of a circle is divided into any two segments,
and upon these segments as diameters semicircumferences are described upon
opposite sides of the diameter, these semicircumferences divide the circle into
two parts which have the same ratio as the two segments of the diameter.

Ex. 477. The diagonals that join any vertex of a regular polygon to all
the vertices not adjacent divide the angle at that vertex into as many equal
parts less two as the polygon has sides.

PROBLEMS OF CONSTRUCTION.

Ex. 478. To circumscribe an equilateral triangle about a given circle.

Ex. 479. To circumscribe a square about a given circle.

Ex. 480. To circumscribe a regular hexagon about a given circle.

Ex. 481. To circumscribe a regular octagon about a given circle.

Ex. 482. To circumscribe a regular pentagon about a given circle.

Ex. 483. To draw through a given point a line so as to divide a given
circumference into two parts having the ratio 3 : 7.

Ex. 484. To construct a circumference equal to the sum of two given
circumferences.

Ex. 485. To construct a circumference equal to the difference of two given
circumferences.

Ex. 486. To construct a circle equivalent to the sum of two given circles.
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Ex. 487. To construct a circle equivalent to the difference of two given
circles.

Ex. 488. To construct a circle equivalent to three times a given circle.

Ex. 489. To construct a circle equivalent to three fourths of a given circle.

Ex. 490. To construct a circle whose ratio to a given circle shall be equal
to the given ratio m : n.

Ex. 491. To divide a given circle by a concentric circumference into two
equivalent parts.

Ex. 492. To divide a given circle by concentric circumferences into five
equivalent parts.

Ex. 493. To construct an angle of 18◦; of 36◦; of 9◦.

Ex. 494. To construct an angle of12◦; of 24◦; of 6◦.

To construct with a side of a given length:

Ex. 495. An equilateral triangle.

Ex. 496. A square.

Ex. 497. A regular hexagon.

Ex. 498. A regular octagon.

Ex. 499. A regular pentagon.

Ex. 500. A regular decagon.

Ex. 501. A regular dodecagon.

Ex. 502. A regular pentedecagon.

PROBLEMS OF COMPUTATION.

Ex. 503. Find the area of a circle whose radius is 12 inches.
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Ex. 504. Find the circumference and the area of a circle whose diameter
is 8 feet.

Ex. 505. A regular pentagon is inscribed in a circle whose radius is R. If
the length of a side is a, find the apothem.

Ex. 506. A regular polygon is inscribed in a circle whose radius is R. If
the length of a side is a, show that the apothem is 1

2

√
R2 − a2.

Ex. 507. Find the area of a regular decagon inscribed in a circle whose
radius is 16 inches.

Ex. 508. Find the side of a regular dodecagon inscribed in a circle whose
radius is 20 inches.

Ex. 509. Find the perimeter of a regular pentagon inscribed in a circle
whose radius is 25 feet.

Ex. 510. The length of each side of a park in the shape of a regular
decagon is 100 yards. Find the area of the park.

Ex. 511. Find the cost, at $2 per yard, of building a wall around a
cemetery in the shape of a regular hexagon, that contains 16, 627.84 square
yards.

Ex. 512. The side of an inscribed regular polygon of n sides is 16 feet.
Find the side of an inscribed regular polygon of 2n sides.

Ex. 513. If the radius of a circle is R, and the side of an inscribed regular
polygon is a, show that the side of the similar circumscribed regular polygon

is
2aR√

4R2 − a2
.

Ex. 514. What is the width of the circular ring between two concentric
circumferences whose lengths are 650 feet and 425 feet?

Ex. 515. Find the angle subtended at the centre by an arc 5 feet 10 inches
long, if the radius of the circle is 9 feet 4 inches.

Ex. 516. The chord of a segment is 10 feet, and the radius of the circle
is 16 feet. Find the area of the segment.
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Ex. 517. Find the area of a sector, if the angle at the centre is 20◦, and
the radius of the circle is 20 inches.

Ex. 518. The chord of half an arc is 12 feet, and the radius of the circle
is 18 feet. Find the height of the segment subtended by the whole arc.

Ex. 519. Find the side of a square which is equivalent to a circle whose
diameter is 35 feet.

Ex. 520. The diameter of a circle is 15 feet. Find the diameter of a circle
twice as large. Three times as large.

Ex. 521. Find the radii of the concentric circumferences that divide a
circle 11 inches in diameter into five equivalent parts.

Ex. 522. The perimeter of a regular hexagon is 840 feet, and that of a
regular octagon is the same. By how many square feet is the octagon larger
than the hexagon?

Ex. 523. The diameter of a bicycle wheel is 28 inches. How many revo-
lutions does the wheel make in going 10 miles?

Ex. 524. Find the diameter of a carriage wheel that makes 264 revolutions
in going half a mile.

Ex. 525. The sides of three regular octagons are 6 feet, 7 feet, 8 feet,
respectively. Find the side of a regular octagon equivalent to the sum of the
three given octagons.

Ex. 526. A circular pond 100 yards in diameter is surrounded by a walk
10 feet wide. Find the area of the walk.

Ex. 527. The span (chord) of a bridge in the form of a circular arc is
120 feet, and the highest point of the arch is 15 feet above the piers. Find the
radius of the arc.

Ex. 528. Three equal circles are described each tangent to the other two.
If the common radius is R, find the area contained between the circles.
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Ex. 529. Given p, P , the perimeters of regular polygons of n sides in-
scribed in and circumscribed about a given circle. Find p′, P ′, the perimeters
of regular polygons of 2n sides inscribed in and circumscribed about the given
circle.

Ex. 530. Given the radius R, and the apothem r of an inscribed regular
polygon of n sides. Find the radius R′ and the apothem r′ of an isoperimetrical
regular polygon of 2n sides.

MISCELLANEOUS EXERCISES.

THEOREMS.

Ex. 531. If two adjacent angles of a quadrilateral are right angles, the
bisectors of the other two angles are perpendicular.

Ex. 532. If two opposite angles of a quadrilateral are right angles, the
bisectors of the other two angles are parallel.

Ex. 533. The two lines that join the middle points of the opposite sides
of a quadrilateral bisect each other.

Ex. 534. The line that joins the feet of the perpendiculars dropped from
the extremities of the base of an isosceles triangle to the opposite sides is
parallel to the base.

Ex. 535. If AD bisects the angle A of a triangle ABC, and BD bisects
the exterior angle CBF , then angle ADB equals one half angle ACB.

Ex. 536. The sum of the acute angles at the vertices of a pentagram
(five-pointed star) is equal to two right angles.

Ex. 537. The altitudes AD, BE, CF of the triangle ABC bisect the angles
of the triangle DEF .

Circles with AB, BC, AC as diameters will pass through E and D, E and
F , D and F , respectively.

Ex. 538. The segments of any straight line intercepted between the cir-
cumferences of two concentric circles are equal.
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Ex. 539. If a circle is circumscribed about any triangle, the feet of the
perpendiculars dropped from any point in the circumference to the sides of
the triangle lie in one straight line.

Ex. 540. Two circles are tangent internally at P , and a chord AB of the
larger circle touches the smaller circle at C. Prove that PC bisects the angle
APB.

Ex. 541. The diagonals of a trapezoid divide each other into segments
which are proportional.

Ex. 542. If through a point P in the circumference of a circle two chords
are drawn, the chords and the segments between P and a chord parallel to the
tangent at P are reciprocally proportional.

Ex. 543. The perpendiculars from two vertices of a triangle upon the
opposite sides divide each other into segments reciprocally proportional.

Ex. 544. The perpendicular from any point of a circumference upon a
chord is the mean proportional between the perpendiculars from the same
point upon the tangents drawn at the extremities of the chord.

Ex. 545. In an isosceles right triangle either leg is the mean proportional
between the hypotenuse and the perpendicular upon it from the vertex of the
right angle.

Ex. 546. If two circles intersect in the points A and B, and through A any
secant CAD is drawn limited by the circumferences at C and D, the straight
lines BC, BD are to each other as the diameters of the circles.

Ex. 547. The area of a triangle is equal to half the product of its perimeter
by the radius of the inscribed circle.

Ex. 548. The perimeter of a triangle is to one side as the perpendicular
from the opposite vertex is to the radius of the inscribed circle.



EXERCISES. 297

Ex. 549. If three straight lines AA′, BB′, CC ′, drawn from the vertices of
a triangle ABC to the opposite sides, pass through a common point O within
the triangle, then

OA′

AA′
+
OB′

BB′
+
OC ′

CC ′
= 1.

Ex. 550. ABC is a triangle, M the middle point of AB, P any point in
AB between A and M . If MD is drawn parallel to PC, meeting BC at D,
the triangle BPD is equivalent to half the triangle ABC.

Ex. 551. Two diagonals of a regular pentagon, not drawn from a common
vertex, divide each other in extreme and mean ratio.

Ex. 552. If all the diagonals of a regular pentagon are drawn, another
regular pentagon is thereby formed.

Ex. 553. The area of an inscribed regular dodecagon is equal to three
times the square of the radius.

Ex. 554. The area of a square inscribed in a semicircle is equal to two
fifths the area of the square inscribed in the circle.

Ex. 555. The area of a circle is greater than the area of any polygon of
equal perimeter.

Ex. 556. The circumference of a circle is less than the perimeter of any
polygon of equal area.

PROBLEMS OF LOCI.

Ex. 557. Find the locus of the centre of the circle inscribed in a triangle
that has a given base and a given angle at the vertex.

Ex. 558. Find the locus of the intersection of the altitudes of a triangle
that has a given base and a given angle at the vertex.

Ex. 559. Find the locus of the extremity of a tangent to a given circle, if
the length of the tangent is equal to a given line.
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Ex. 560. Find the locus of a point, tangents drawn from which to a given
circle form a given angle.

Ex. 561. Find the locus of the middle point of a line drawn from a given
point to a given straight line.

Ex. 562. Find the locus of the vertex of a triangle that has a given base
and a given altitude.

Ex. 563. Find the locus of a point the sum of whose distances from two
given parallel lines is equal to a given length.

Ex. 564. Find the locus of a point the difference of whose distances from
two given parallel lines is equal to a given length.

Ex. 565. Find the locus of a point the sum of whose distances from two
given intersecting lines is equal to a given length.

Ex. 566. Find the locus of a point the difference of whose distances from
two given intersecting lines is equal to a given length.

Ex. 567. Find the locus of a point whose distances from two given points
are in the given ratio m : n.

Ex. 568. Find the locus of a point whose distances from two given parallel
lines are in the given ratio m : n.

Ex. 569. Find the locus of a point whose distances from two given inter-
secting lines are in the given ratio m : n.

Ex. 570. Find the locus of a point the sum of the squares of whose
distances from two given points is constant.

Ex. 571. Find the locus of a point the difference of the squares of whose
distances from two given points is constant.

Ex. 572. Find the locus of the vertex of a triangle that has a given base
and the other two sides in the given ratio m : n.
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PROBLEMS OF CONSTRUCTION.

Ex. 573. To divide a given trapezoid into two equivalent parts by a line
parallel to the bases.

Ex. 574. To divide a given trapezoid into two equivalent parts by a line
through a given point in one of the bases.

Ex. 575. To construct a regular pentagon, given one of the diagonals.

Ex. 576. To divide a given straight line into two segments such that their
product shall be the maximum.

Ex. 577. To find a point in a semicircumference such that the sum of its
distances from the extremities of the diameter shall be the maximum.

Ex. 578. To draw a common secant to two given circles exterior to each
other such that the intercepted chords shall have the given lengths a, b.

Ex. 579. To draw through one of the points of intersection of two inter-
secting circles a common secant which shall have a given length.

Ex. 580. To construct an isosceles triangle, given the altitude and one of
the equal base angles.

Ex. 581. To construct an equilateral triangle, given the altitude.

Ex. 582. To construct a right triangle, given the radius of the inscribed
circle and the difference of the acute angles.

Ex. 583. To construct an equilateral triangle so that its vertices shall lie
in three given parallel lines.

Ex. 584. To draw a line from a given point to a given straight line which
shall be to the perpendicular from the given point as m : n.

Ex. 585. To find a point within a given triangle such that the perpendic-
ulars from the point to the three sides shall be as the numbers m, n, p.

Ex. 586. To draw a straight line equidistant from three given points.
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Ex. 587. To draw a tangent to a given circle such that the segment
intercepted between the point of contact and a given straight line shall have a
given length.

Ex. 588. To inscribe a straight line of a given length between two given
circumferences and parallel to a given straight line.

Ex. 589. To draw through a given point a straight line so that its distances
from two other given points shall be in a given ratio.

Ex. 590. To construct a square equivalent to the sum of a given triangle
and a given parallelogram.

Ex. 591. To construct a rectangle having the difference of its base and
altitude equal to a given line, and its area equivalent to the sum of a given
triangle and a given pentagon.

Ex. 592. To construct a pentagon similar to a given pentagon and equiv-
alent to a given trapezoid.

Ex. 593. To find a point whose distances from three given straight lines
shall be as the numbers m, n, p.

Ex. 594. Given an angle and two points P and P ′ between the sides of
the angle. To find the shortest path from P to P ′ that shall touch both sides
of the angle.

Ex. 595. To construct a triangle, given its angles and its area.

Ex. 596. To transform a given triangle into a triangle similar to another
given triangle.

Ex. 597. Given three points A, B, C. To find a fourth point P such that
the areas of the triangles APB, APC, BPC shall be equal.

Ex. 598. To construct a triangle, given its base, the ratio of the other
sides, and the angle included by them.

Ex. 599. To divide a given circle into n equivalent parts by concentric
circumferences.
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Ex. 600. In a given equilateral triangle to inscribe three equal circles
tangent to each other, each circle tangent to two sides of the triangle.

Ex. 601. Given an angle and a point P between the sides of the angle.
To draw through P a straight line that shall form with the sides of the angle
a triangle with the perimeter equal to a given length a.

Ex. 602. In a given square to inscribe four equal circles, so that each
circle shall be tangent to two of the others and also tangent to two sides of
the square.

Ex. 603. In a given square to inscribe four equal circles, so that each
circle shall be tangent to two of the others and also tangent to one side of the
square.
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S = area.
π = 3.1416.
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Line Values.
PAGE

Right triangle, b2 = c×m; a2 = c× n 197
p2 = m× n 197

b2 : a2 = m : n 198
b2 : c2 :: m : c 198
a2 + b2 = c2 199

Any triangle, a2 = b2 + c2 ± 2c×m 200,201
Altitude of triangle on side a,

h =
2

a

√
s(s− a)(s− b)(s− c) 219

Median of triangle on side a,

m = 1
2

√
2(b2 + c2)− a2 220

Bisector of triangle on side a,

t =
2

b+ c

√
bcs(s− a) 221

Radius of circumscribed circle,

R =
abc

4
√
s(s− a)(s− b)(s− c)

222

Circumference of circle, C = 2πR 270
“ “ C = πD 270

Areas.
Rectangle, S = b× h 229
Square, S = b2 229
Parallelogram, S = b× h 230
Triangle, S = 1

2
b× h 231

“ S =
√
s(s− a)(s− b)(s− c) 254

“ S =
abc

4R
254

Equilateral triangle, S =
a2

4

√
3 253

Trapezoid, S = 1
2
h(b+ b′) 232

Regular polygon, S = 1
2
r × P 270

Circle, S = 1
2
R× C 272

“ S = πR2 272
Sector, S = 1

2
R× arc 271
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Abbreviations 6
Alternation 170
Altitude of parallelogram 52

“ of trapezoid 52
“ of triangle 34

Analysis 4
Angle 10

“ acute 12
“ at centre of

regular polygon 260
“ central 90
“ exterior of triangle 33
“ inscribed in circle 90
“ inscribed in segment 90
“ oblique 12
“ obtuse 12
“ reflex 12
“ right 11
“ salient 61
“ straight 11
“ vertical 34

Angles, adjacent 11,33
“ alternate-exterior 28
“ alternate-interior 28
“ complementary 14
“ conjugate 13
“ exterior 28
“ exterior-interior 28
“ interior 28
“ supplementary 14

PAGE

“ supplementary-adjacent 18
“ vertical 14

Antecedents 168
Apothem 260
Arc 90
Area 226
Axiom 4

“ of parallel lines 26
Axioms of straight lines 8

“ general 6
Axis of symmetry 65

Base of isosceles triangle 34
“ of parallelogram 51
“ of triangle 34

Bases of trapezoid 52
Bisector 11

Centre of circle 89
“ of regular polygon 260
“ of symmetry 65

Chord 90
Circle 89

“ circumscribed 91
“ inscribed 91

Circles, concentric 91
“ escribed 153

Circum-centre of triangle 151
Circumference 89
Commensurable 109
Complement 14
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Composition 171
Conclusion 4
Concurrent lines 77
Congruent figures 7
Consequents 168
Constant 111
Construction 4
Continued proportion 168
Continuity, Principle of 127
Contradictory of a theorem 4
Converse of a theorem 5,94
Convex curve 266
Curved surface 7

Decagon 62
Diagonal 52,61
Diameter 89
Dimensions 1
Distance 8,24
Division 172
Dodecagon 62
Duality, Principle of 39

Equal figures 7
Equimultiples 176
Equivalent figures 7,226
Ex-centres of triangle 153
Extreme and mean ratio 213
Extremes 168

Figure, curvilinear 7
“ geometrical 3
“ plane 7
“ rectilinear 7

Foot of perpendicular 11

PAGE

Fourth proportional 168

Geometrical solid 2,2
Geometry 3
Geometry, Plane 3

“ Solid 3

Harmonic division 180
Heptagon 62
Hexagon 62
Homologous angles 35,62

“ lines 183
“ sides 35,62

Hypotenuse 34
Hypothesis 4

In-centre of triangle 152
Incommensurable ratio 110
Intersection 1
Inversion 170
Isoperimetric figures 282

Legs of right triangle 34
“ of trapezoid 52

Limit 111
Line 1,2,3

“ curved 7
“ of centres 106
“ straight 7

Lines, oblique 12
“ parallel 26
“ perpendicular 11

Major arc 90
Maximum 282
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Mean proportional 168
Means 168
Median of trapezoid 52
Minimum 282
Minor arc 90

Negative quantities 127
Numerical measure 109

Octagon 62
Opposite of a theorem 5
Origin 8

Parallel lines 26
Parallelogram 51
Pentagon 62
Pentagram 295
Perigon 13
Perimeter 33,61
Perpendicular bisector 49
Perpendicular lines 11
Pi (π) 269
Plane 1,7
Point 1,2

“ of contact 89
“ of tangency 89

Polygon 61
“ angles of 61
“ circumscribed 91
“ concave 61
“ convex 61
“ equiangular 61
“ equilateral 61
“ inscribed 91
“ regular 258

PAGE

Polygons mut. equiangular 62
“ mutually equilateral 62

Positive quantities 127
Postulate 4
Projection 201
Proof 3
Proportion 168
Proposition 4

Quadrant 90
Quadrilateral 51,62
Radius of regular polygon 260
Ratio 109
Ratio of similitude 183
Reciprocity, Principle of 39
Rectangle 51
Rhomboid 51
Rhombus 51

Scholium 4
Secant 89,204
Sector 90
Segment of circle 90

“ of line 8
Semicircle 90
Semicircumference 90
Sides of an angle 10

“ of polygon 61
“ of triangle 33

Similar arcs 270
“ figures 7
“ polygons 183
“ sectors 270
“ segments 270
“ triangles 184
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Square 51
Superposition 10
Supplement 14
Surface 1,2,2
Symbols 6
Symmetry 65

Tangent 89,106
“ common external 106
“ common internal 106

Terms of a proportion 168
Theorem 4
Third proportional 168
Transversal 27
Trapezium 51
Trapezoid 51

“ isosceles 52
Triangle 33,62

“ equiangular 34
“ equilateral 34
“ isosceles 34
“ obtuse 34
“ right 34
“ scalene 34
“ altitudes of 34
“ angles of 33
“ bisectors of 35
“ medians of 35
“ vertices of 33

Variable 111
Vertex of angle 10

“ of triangle 34
Vertices of polygon 61
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