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PREFACE

The theory of equations is not only a necessity in the subsequent mathe-
matical courses and their applications, but furnishes an illuminating sequel to
geometry, algebra and analytic geometry. Moreover, it develops anew and in
greater detail various fundamental ideas of calculus for the simple, but impor-
tant, case of polynomials. The theory of equations therefore affords a useful
supplement to differential calculus whether taken subsequently or simultane-
ously.

It was to meet the numerous needs of the student in regard to his earlier and
future mathematical courses that the present book was planned with great care
and after wide consultation. It differs essentially from the author’s Elementary
Theory of Equations, both in regard to omissions and additions, and since it
is addressed to younger students and may be used parallel with a course in
differential calculus. Simpler and more detailed proofs are now employed.
The exercises are simpler, more numerous, of greater variety, and involve more
practical applications.

This book throws important light on various elementary topics. For ex-
ample, an alert student of geometry who has learned how to bisect any angle
is apt to ask if every angle can be trisected with ruler and compasses and if
not, why not. After learning how to construct regular polygons of 3, 4, 5, 6,
8 and 10 sides, he will be inquisitive about the missing ones of 7 and 9 sides.
The teacher will be in a comfortable position if he knows the facts and what
is involved in the simplest discussion to date of these questions, as given in
Chapter III. Other chapters throw needed light on various topics of algebra. In
particular, the theory of graphs is presented in Chapter V in a more scientific
and practical manner than was possible in algebra and analytic geometry.

There is developed a method of computing a real root of an equation with
minimum labor and with certainty as to the accuracy of all the decimals ob-
tained. We first find by Horner’s method successive transformed equations
whose number is half of the desired number of significant figures of the root.
The final equation is reduced to a linear equation by applying to the con-
stant term the correction computed from the omitted terms of the second and
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higher degrees, and the work is completed by abridged division. The method
combines speed with control of accuracy.

Newton’s method, which is presented from both the graphical and the
numerical standpoints, has the advantage of being applicable also to equations
which are not algebraic; it is applied in detail to various such equations.

In order to locate or isolate the real roots of an equation we may employ a
graph, provided it be constructed scientifically, or the theorems of Descartes,
Sturm, and Budan, which are usually neither stated, nor proved, correctly.

The long chapter on determinants is independent of the earlier chapters.
The theory of a general system of linear equations is here presented also from
the standpoint of matrices.

For valuable suggestions made after reading the preliminary manuscript of
this book, the author is greatly indebted to Professor Bussey of the University
of Minnesota, Professor Roever of Washington University, Professor Kempner
of the University of Illinois, and Professor Young of the University of Chicago.
The revised manuscript was much improved after it was read critically by
Professor Curtiss of Northwestern University. The author’s thanks are due
also to Professor Dresden of the University of Wisconsin for various useful
suggestions on the proof-sheets.

Chicago, 1921.
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First Course in

The Theory of Equations

CHAPTER I
Complex Numbers

1. Square Roots. If p is a positive real number, the symbol √p is used to
denote the positive square root of p. It is most easily computed by logarithms.

We shall express the square roots of negative numbers in terms of the
symbol i such that the relation i2 = −1 holds. Consequently we denote the
roots of x2 = −1 by i and −i. The roots of x2 = −4 are written in the form
±2i in preference to ±

√
−4. In general, if p is positive, the roots of x2 = −p

are written in the form ±√pi in preference to ±
√
−p.

The square of either root is thus (
√
p)2i2 = −p. Had we used the less desirable

notation ±
√
−p for the roots of x2 = −p, we might be tempted to find the square of

either root by multiplying together the values under the radical sign and conclude
erroneously that √

−p
√
−p =

√
p2 = +p.

To prevent such errors we use √p i and not
√
−p.

2. Complex Numbers. If a and b are any two real numbers and i2 = −1,
a + bi is called a complex number1 and a − bi its conjugate. Either is said to
be zero if a = b = 0. Two complex numbers a + bi and c + di are said to be
equal if and only if a = c and b = d. In particular, a + bi = 0 if and only if
a = b = 0. If b 6= 0, a + bi is said to be imaginary. In particular, bi is called a
pure imaginary.

1Complex numbers are essentially couples of real numbers. For a treatment from this
standpoint and a treatment based upon vectors, see the author’s Elementary Theory of
Equations, p. 21, p. 18.
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Addition of complex numbers is defined by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

The inverse operation to addition is called subtraction, and consists in finding
a complex number z such that

(c+ di) + z = a+ bi.

In notation and value, z is

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

Multiplication is defined by

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i,

and hence is performed as in formal algebra with a subsequent reduction by
means of i2 = −1. For example,

(a+ bi)(a− bi) = a2 − b2i2 = a2 + b2.

Division is defined as the operation which is inverse to multiplication, and
consists in finding a complex number q such that (a+bi)q = e+fi. Multiplying
each member by a− bi, we find that q is, in notation and value,

e+ fi

a+ bi
=

(e+ fi)(a− bi)
a2 + b2

=
ae+ bf

a2 + b2
+
af − be
a2 + b2

i.

Since a2 + b2 = 0 implies a = b = 0 when a and b are real, we conclude that
division except by zero is possible and unique.

EXERCISES

Express as complex numbers

1.
√
−9. 2.

√
4.

3. (
√

25 +
√
−25)

√
−16. 4. −2

3 .

5. 8 + 2
√

3. 6. 3 +
√
−5

2 +
√
−1

. 7. 3 + 5i
2− 3i

. 8. a+ bi

a− bi
.

9. Prove that the sum of two conjugate complex numbers is real and that their
difference is a pure imaginary.
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10. Prove that the conjugate of the sum of two complex numbers is equal to the
sum of their conjugates. Does the result hold true if each word sum is replaced by
the word difference?

11. Prove that the conjugate of the product (or quotient) of two complex numbers
is equal to the product (or quotient) of their conjugates.

12. Prove that, if the product of two complex numbers is zero, at least one of
them is zero.

13. Find two pairs of real numbers x, y for which

(x+ yi)2 = −7 + 24i.

As in Ex. 13, express as complex numbers the square roots of

14. −11 + 60i. 15. 5− 12i. 16. 4cd+ (2c2 − 2d2)i.

3. Cube Roots of Unity. Any complex number x whose cube is equal
to unity is called a cube root of unity. Since

x3 − 1 = (x− 1)(x2 + x+ 1),

the roots of x3 = 1 are 1 and the two numbers x for which

x2 + x+ 1 = 0, (x+ 1
2)2 = −3

4 , x+ 1
2 = ±1

2

√
3i.

Hence there are three cube roots of unity, viz.,

1, ω = −1
2 + 1

2

√
3i, ω′ = −1

2 −
1
2

√
3i.

In view of the origin of ω, we have the important relations

ω2 + ω + 1 = 0, ω3 = 1.

Since ωω′ = 1 and ω3 = 1, it follows that ω′ = ω2, ω = ω′2.

4. Geometrical Representation of Complex Numbers. Using rect-
angular axes of coördinates, OX and OY , we represent the complex number
a+ bi by the point A having the coördinates a, b (Fig. 1).
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O

A

X

Y

θ
a

b
r

Fig. 1

The positive number r =
√
a2 + b2 giving

the length of OA is called the modulus (or
absolute value) of a+bi. The angle θ = XOA,
measured counter-clockwise from OX to OA,
is called the amplitude (or argument) of a+
bi. Thus cos θ = a/r, sin θ = b/r, whence

(1) a+ bi = r(cos θ + i sin θ).

The second member is called the trigonometric form of a+ bi.
For the amplitude we may select, instead of θ, any of the angles θ ± 360◦,

θ ± 720◦, etc.
Two complex numbers are equal if and only if their moduli are equal and

an amplitude of the one is equal to an amplitude of the other.

1

ω

ω2

O

1
2

1
2

√
3 1

Fig. 2

120 ◦

24
0
◦

For example, the cube roots of unity are 1 and

ω = −1
2 + 1

2

√
3i

= cos 120◦ + i sin 120◦,

ω2 = −1
2 −

1
2

√
3i

= cos 240◦ + i sin 240◦,

and are represented by the points marked 1, ω, ω2

at the vertices of an equilateral triangle inscribed
in a circle of radius unity and center at the ori-
gin O (Fig. 2). The indicated amplitudes of ω
and ω2 are 120◦ and 240◦ respectively, while the
modulus of each is 1.

The modulus of −3 is 3 and its amplitude is 180◦ or 180◦ plus or minus the
product of 360◦ by any positive whole number.

5. Product of Complex Numbers. By actual multiplication,[
r(cos θ + i sin θ)

][
r′(cosα+ i sinα)

]
= rr′

[
(cos θ cosα− sin θ sinα) + i(sin θ cosα+ cos θ sinα)

]
= rr′

[
cos(θ + α) + i sin(θ + α)], by trigonometry.

Hence the modulus of the product of two complex numbers is equal to the prod-
uct of their moduli, while the amplitude of the product is equal to the sum of
their amplitudes.

For example, the square of ω = cos 120◦ + i sin 120◦ has the modulus 1 and
the amplitude 120◦ + 120◦ and hence is ω2 = cos 240◦ + i sin 240◦. Again, the
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product of ω and ω2 has the modulus 1 and the amplitude 120◦ + 240◦ and hence
is cos 360◦ + i sin 360◦, which reduces to 1. This agrees with the known fact that
ω3 = 1.

Taking r = r′ = 1 in the above relation, we obtain the useful formula

(2) (cos θ + i sin θ)(cosα+ i sinα) = cos(θ + α) + i sin(θ + α).

6. Quotient of Complex Numbers. Taking α = β − θ in (2) and di-
viding the members of the resulting equation by cos θ + i sin θ, we get

cosβ + i sinβ
cos θ + i sin θ

= cos(β − θ) + i sin(β − θ).

Hence the amplitude of the quotient of R(cosβ+i sinβ) by r(cos θ+i sin θ) is equal
to the difference β− θ of their amplitudes, while the modulus of the quotient is
equal to the quotient R/r of their moduli.

The case β = 0 gives the useful formula

1
cos θ + i sin θ

= cos θ − i sin θ.

7. De Moivre’s Theorem. If n is any positive whole number,

(3) (cos θ + i sin θ)n = cosnθ + i sinnθ.

This relation is evidently true when n = 1, and when n = 2 it follows from
formula (2) with α = θ. To proceed by mathematical induction, suppose that
our relation has been established for the values 1, 2, . . . ,m of n. We can then
prove that it holds also for the next value m + 1 of n. For, by hypothesis, we
have

(cos θ + i sin θ)m = cosmθ + i sinmθ.

Multiply each member by cos θ + i sin θ, and for the product on the right sub-
stitute its value from (2) with α = mθ. Thus

(cos θ + i sin θ)m+1 = (cos θ + i sin θ)(cosmθ + i sinmθ),

= cos(θ +mθ) + i sin(θ +mθ),

which proves (3) when n = m+ 1. Hence the induction is complete.
Examples are furnished by the results at the end of §5:

(cos 120◦ + i sin 120◦)2 = cos 240◦ + i sin 240◦,

(cos 120◦ + i sin 120◦)3 = cos 360◦ + i sin 360◦.
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8. Cube Roots. To find the cube roots of a complex number, we first
express the number in its trigonometric form. For example,

4
√

2 + 4
√

2i = 8(cos 45◦ + i sin 45◦).

If it has a cube root which is a complex number, the latter is expressible in
the trigonometric form

(4) r(cos θ + i sin θ).

The cube of the latter, which is found by means of (3), must be equal to the
proposed number, so that

r3(cos 3θ + i sin 3θ) = 8(cos 45◦ + i sin 45◦).

The moduli r3 and 8 must be equal, so that the positive real number r is
equal to 2. Furthermore, 3θ and 45◦ have equal cosines and equal sines, and
hence differ by an integral multiple of 360◦. Hence 3θ = 45◦ + k · 360◦, or
θ = 15◦ + k · 120◦, where k is an integer.2 Substituting this value of θ and the
value 2 of r in (4), we get the desired cube roots. The values 0, 1, 2 of k give
the distinct results

R1 = 2(cos 15◦ +i sin 15◦),

R2 = 2(cos 135◦+i sin 135◦),

R3 = 2(cos 255◦+i sin 255◦).

Each new integral value of k leads to a result which is equal to R1, R2

or R3. In fact, from k = 3 we obtain R1, from k = 4 we obtain R2, from k = 5
we obtain R3, from k = 6 we obtain R1 again, and so on periodically.

EXERCISES

1. Verify that R2 = ωR1, R3 = ω2R1. Verify that R1 is a cube root of
8(cos 45◦ + i sin 45◦) by cubing R1 and applying De Moivre’s theorem. Why are
the new expressions for R2 and R3 evidently also cube roots?

2. Find the three cube roots of −27; those of −i; those of ω.

3. Find the two square roots of i; those of −i; those of ω.

4. Prove that the numbers cos θ+ i sin θ and no others are represented by points
on the circle of radius unity whose center is the origin.

2Here, as elsewhere when the contrary is not specified, zero and negative as well as
positive whole numbers are included under the term “integer.”
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5. If a+bi and c+di are represented by the points A and C in Fig. 3, prove that
their sum is represented by the fourth vertex S of the parallelogram two of whose
sides are OA and OC. Hence show that the modulus of the sum of two complex
numbers is equal to or less than the sum of their moduli, and is equal to or greater
than the difference of their moduli.

X

Y

O
EF H

G

S

A

C

Fig. 3
XU

O

A
C

P

Fig. 4

6. Let r and r′ be the moduli and θ and α the amplitudes of two complex
numbers represented by the points A and C in Fig. 4. Let U be the point on the
x-axis one unit to the right of the origin O. Construct triangle OCP similar to
triangle OUA and similarly placed, so that corresponding sides are OC and OU,CP
and UA, OP and OA, while the vertices O, C, P are in the same order (clockwise or
counter-clockwise) as the corresponding vertices O, U , A. Prove that P represents
the product (§5) of the complex numbers represented by A and C.

7. If a + bi and e + fi are represented by the points A and S in Fig. 3, prove
that the complex number obtained by subtracting a+ bi from e+ fi is represented
by the point C. Hence show that the absolute value of the difference of two complex
numbers is equal to or less than the sum of their absolute values, and is equal to or
greater than the difference of their absolute values.

8. By modifying Ex. 6, show how to construct geometrically the quotient of two
complex numbers.

9. nth Roots. As illustrated in §8, it is evident that the nth roots of
any complex number ρ(cosA + i sinA) are the products of the nth roots of
cosA+ i sinA by the positive real nth root of the positive real number ρ (which
may be found by logarithms).

Let an nth root of cosA+ i sinA be of the form

(4) r(cos θ + i sin θ).

Then, by De Moivre’s theorem,

rn(cosnθ + i sinnθ) = cosA+ i sinA.
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The moduli rn and 1 must be equal, so that the positive real number r is
equal to 1. Since nθ and A have equal sines and equal cosines, they differ by
an integral multiple of 360◦. Hence nθ = A + k · 360◦, where k is an integer.
Substituting the resulting value of θ and the value 1 of r in (4), we get

(5) cos
(
A+ k · 360◦

n

)
+ i sin

(
A+ k · 360◦

n

)
.

For each integral value of k, (5) is an answer since its nth power reduces to
cosA + i sinA by DeMoivre’s theorem. Next, the value n of k gives the same
answer as the value 0 of k; the value n + 1 of k gives the same answer as the
value 1 of k; and in general the value n + m of k gives the same answer as
the value m of k. Hence we may restrict attention to the values 0, 1, . . . , n− 1
of k. Finally, the answers (5) given by these values 0, 1, . . . , n − 1 of k are all
distinct, since they are represented by points whose distance from the origin
is the modulus 1 and whose amplitudes are

A

n
,

A

n
+

360◦

n
,

A

n
+

2 · 360◦

n
, . . . ,

A

n
+

(n− 1)360◦

n
,

so that these n points are equally spaced points on a circle of radius unity.
Special cases are noted at the end of §10. Hence any complex number different
from zero has exactly n distinct complex nth roots.

10. Roots of Unity. The trigonometric form of 1 is cos 0◦+i sin 0◦. Hence
by §9 with A = 0, the n distinct nth roots of unity are

(6) cos
2kπ
n

+ i sin
2kπ
n

(k = 0, 1, . . . , n− 1),

where now the angles are measured in radians (an angle of 180 degrees being
equal to π radians, where π = 3.1416, approximately). For k = 0, (6) reduces
to 1, which is an evident nth root of unity. For k = 1, (6) is

(7) R = cos
2π
n

+ i sin
2π
n
.

By De Moivre’s theorem, the general number (6) is equal to the kth power
of R. Hence the n distinct nth roots of unity are

(8) R, R2, R3, . . . , Rn−1, Rn = 1.

As a special case of the final remark in §9, the n complex numbers (6), and
therefore the numbers (8), are represented geometrically by the vertices of a
regular polygon of n sides inscribed in the circle of radius unity and center at
the origin with one vertex on the positive x-axis.



§11.] PRIMITIVE ROOTS OF UNITY 9

O
1

i

−1

−i
Fig. 5

For n = 3, the numbers (8) are ω, ω2, 1, which are
represented in Fig. 2 by the vertices of an equilateral tri-
angle.

For n = 4, R = cosπ/2+i sinπ/2 = i. The four fourth
roots of unity (8) are i, i2 = −1, i3 = −i, i4 = 1, which
are represented by the vertices of a square inscribed in a
circle of radius unity and center at the origin O (Fig. 5).

EXERCISES

1. Simplify the trigonometric forms (6) of the four fourth roots of unity. Check
the result by factoring x4 − 1.

2. For n = 6, show that R = −ω2. The sixth roots of unity are the three cube
roots of unity and their negatives. Check by factoring x6 − 1.

3. From the point representing a + bi, how do you obtain that representing
−(a+ bi)? Hence derive from Fig. 2 and Ex. 2 the points representing the six sixth
roots of unity. Obtain this result another way.

4. Find the five fifth roots of −1.

5. Obtain the trigonometric forms of the nine ninth roots of unity. Which of
them are cube roots of unity?

6. Which powers of a ninth root (7) of unity are cube roots of unity?

11. Primitive nth Roots of Unity. An nth root of unity is called
primitive if n is the smallest positive integral exponent of a power of it that
is equal to unity. Thus ρ is a primitive nth root of unity if and only if ρn = 1
and ρl 6= 1 for all positive integers l < n.

Since only the last one of the numbers (8) is equal to unity, the number R,
defined by (7), is a primitive nth root of unity. We have shown that the
powers (8) of R give all of the nth roots of unity. Which of these powers of R
are primitive nth roots of unity?

For n = 4, the powers (8) of R = i were seen to be

i1 = i, i2 = −1, i3 = −i, i4 = 1.

The first and third are primitive fourth roots of unity, and their exponents 1 and 3
are relatively prime to 4, i.e., each has no divisor > 1 in common with 4. But the
second and fourth are not primitive fourth roots of unity (since the square of −1
and the first power of 1 are equal to unity), and their exponents 2 and 4 have the
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divisor 2 in common with n = 4. These facts illustrate and prove the next theorem
for the case n = 4.

Theorem. The primitive nth roots of unity are those of the numbers (8)
whose exponents are relatively prime to n.

Proof. If k and n have a common divisor d (d > 1), Rk is not a primitive
nth root of unity, since

(Rk)
n
d = (Rn)

k
d = 1,

and the exponent n/d is a positive integer less than n.
But if k and n are relatively prime, i.e., have no common divisor > 1, Rk

is a primitive nth root of unity. To prove this, we must show that (Rk)l 6= 1 if
l is a positive integer < n. By De Moivre’s theorem,

Rkl = cos
2klπ
n

+ i sin
2klπ
n

.

If this were equal to unity, 2klπ/n would be a multiple of 2π, and hence kl a
multiple of n. Since k is relatively prime to n, the second factor l would be a
multiple of n, whereas 0 < l < n.

EXERCISES

1. Show that the primitive cube roots of unity are ω and ω2.

2. For R given by (7), prove that the primitive nth roots of unity are (i) for
n = 6, R, R5; (ii) for n = 8, R, R3, R5, R7; (iii) for n = 12, R, R5, R7, R11.

3. When n is a prime, prove that any nth root of unity, other than 1, is primitive.

4. Let R be a primitive nth root (7) of unity, where n is a product of two
different primes p and q. Show that R, . . . , Rn are primitive with the exception
of Rp, R2p, . . . , Rqp, whose qth powers are unity, and Rq, R2q, . . . , Rpq, whose pth
powers are unity. These two sets of exceptions have only Rpq in common. Hence
there are exactly pq − p− q + 1 primitive nth roots of unity.

5. Find the number of primitive nth roots of unity if n is a square of a prime p.

6. Extend Ex. 4 to the case in which n is a product of three distinct primes.

7. If R is a primitive 15th root (7) of unity, verify that R3, R6, R9, R12 are the
primitive fifth roots of unity, and R5 and R10 are the primitive cube roots of unity.
Show that their eight products by pairs give all the primitive 15th roots of unity.

8. If ρ is any primitive nth root of unity, prove that ρ, ρ2, . . . , ρn are distinct
and give all the nth roots of unity. Of these show that ρk is a primitive nth root of
unity if and only if k is relatively prime to n.
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9. Show that the six primitive 18th roots of unity are the negatives of the
primitive ninth roots of unity.





CHAPTER II
Elementary Theorems on the Roots of an Equation

12. Quadratic Equation. If a, b, c are given numbers, a 6= 0,

(1) ax2 + bx+ c = 0 (a 6= 0)

is called a quadratic equation or equation of the second degree. The reader
is familiar with the following method of solution by “completing the square.”
Multiply the terms of the equation by 4a, and transpose the constant term;
then

4a2x2 + 4abx = −4ac.

Adding b2 to complete the square, we get

(2ax+ b)2 = ∆, ∆ = b2 − 4ac,

(2) x1 =
−b+

√
∆

2a
x2 =

−b−
√

∆
2a

By addition and multiplication, we find that

(3) x1 + x2 =
−b
a
, x1x2 =

c

a
.

Hence for all values of the variable x,

(4) a(x− x1)(x− x2) ≡ ax2 − a(x1 + x2)x+ ax1x2 ≡ ax2 + bx+ c,

the sign ≡ being used instead of = since these functions of x are identically
equal, i.e., the coefficients of like powers of x are the same. We speak of
a(x − x1)(x − x2) as the factored form of the quadratic function ax2 + bx + c,
and of x− x1 and x− x2 as its linear factors.

In (4) we assign to x the values x1 and x2 in turn, and see that

0 = ax2
1 + bx1 + c, 0 = ax2

2 + bx2 + c.
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Hence the values (2) are actually the roots of equation (1).
We call ∆ = b2 − 4ac the discriminant of the function ax2 + bx + c or of

the corresponding equation (1). If ∆ = 0, the roots (2) are evidently equal,
so that, by (4), ax2 + bx + c is the square of

√
a(x − x1), and conversely. We

thus obtain the useful result that ax2 + bx + c is a perfect square (of a linear
function of x) if and only if b2 = 4ac ( i.e., if its discriminant is zero).

Consider a real quadratic equation, i.e., one whose coefficients a, b, c are
all real numbers. Then if ∆ is positive, the two roots (2) are real. But if ∆ is
negative, the roots are conjugate imaginaries (§2).

When the coefficients of a quadratic equation (1) are any complex numbers,
∆ has two complex square roots (§9), so that the roots (2) of (1) are complex
numbers, which need not be conjugate.

For example, the discriminant of x2−2x+c is ∆ = 4(1−c). If c = 1, then ∆ = 0
and x2 − 2x+ 1 ≡ (x− 1)2 is a perfect square, and the roots 1, 1 of x2 − 2x+ 1 = 0
are equal. If c = 0, ∆ = 4 is positive and the roots 0 and 2 of x2−2x ≡ x(x−2) = 0
are real. If c = 2, ∆ = −4 is negative and the roots 1±

√
−1 of x2 − 2x+ 2 = 0 are

conjugate complex numbers. The roots of x2− x+ 1 + i = 0 are i and 1− i, and are
not conjugate.

13. Integral Rational Function, Polynomial. If n is a positive integer
and c0, c1, . . . , cn are constants (real or imaginary),

f(x) ≡ c0xn + c1x
n−1 + · · ·+ cn−1x+ cn

is called a polynomial in x of degree n, or also an integral rational function of x
of degree n. It is given the abbreviated notation f(x), just as the logarithm of
x+ 2 is written log(x+ 2).

If c0 6= 0, f(x) = 0 is an equation of degree n. If n = 3, it is often called a
cubic equation; and, if n = 4, a quartic equation. For brevity, we often speak
of an equation all of whose coefficients are real as a real equation.

14. The Remainder Theorem. If a polynomial f(x) be divided by x−c
until a remainder independent of x is obtained, this remainder is equal to f(c),
which is the value of f(x) when x = c.

Denote the remainder by r and the quotient by q(x). Since the dividend
is f(x) and the divisor is x− c, we have

f(x) ≡ (x− c)q(x) + r,

identically in x. Taking x = c, we obtain f(c) = r.
If r = 0, the division is exact. Hence we have proved also the following

useful theorem.
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The Factor Theorem. If f(c) is zero, the polynomial f(x) has the
factor x− c. In other words, if c is a root of f(x) = 0, x− c is a factor of f(x).

For example, 2 is a root of x3 − 8 = 0, so that x − 2 is a factor of x3 − 8.
Another illustration is furnished by formula (4).

EXERCISES

Without actual division find the remainder when

1. x4 − 3x2 − x− 6 is divided by x+ 3.

2. x3 − 3x2 + 6x− 5 is divided by x− 3.

Without actual division show that

3. 18x10 + 19x5 + 1 is divisible by x+ 1.

4. 2x4 − x3 − 6x2 + 4x− 8 is divisible by x− 2 and x+ 2.

5. x4 − 3x3 + 3x2 − 3x+ 2 is divisible by x− 1 and x− 2.

6. r3 − 1, r4 − 1, r5 − 1 are divisible by r − 1.

7. By performing the indicated multiplication, verify that

rn − 1 ≡ (r − 1)(rn−1 + rn−2 + · · ·+ r + 1).

8. In the last identity replace r by x/y, multiply by yn, and derive

xn − yn ≡ (x− y)(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1).

9. In the identity of Exercise 8 replace y by −y, and derive

xn + yn ≡ (x+ y)(xn−1 − xn−2y + · · · − xyn−2 + yn−1), n odd;

xn − yn ≡ (x+ y)(xn−1 − xn−2y + · · ·+ xyn−2 − yn−1), n even.

Verify by the Factor Theorem that x+ y is a factor.

10. If a, ar, ar2, . . . , arn−1 are n numbers in geometrical progression (the ratio
of any term to the preceding being a constant r 6= 1), prove by Exercise 7 that their
sum is equal to

a(rn − 1)
r − 1

.
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11. At the end of each of n years a man deposits in a savings bank a dollars.
With annual compound interest at 4%, show that his account at the end of n years
will be

a

.04
{

(1.04)n − 1
}

dollars. Hint: The final deposit draws no interest; the prior deposit will amount
to a(1.04) dollars; the deposit preceding that will amount to a(1.04)2 dollars, etc.
Hence apply Exercise 10 for r = 1.04.

15. Synthetic Division. The labor of computing the value of a polyno-
mial in x for an assigned value of x may be shortened by a simple device. To
find the value of

x4 + 3x3 − 2x− 5

for x = 2, note that x4 = x · x3 = 2x3, so that the sum of the first two terms
of the polynomial is 5x3. To 5x3 = 5 · 22x we add the next term −2x and
obtain 18x or 36. Combining 36 with the final term −5, we obtain the desired
value 31.

This computation may be arranged systematically as follows. After sup-
plying zero coefficients of missing powers of x, we write the coefficients in a
line, ignoring the powers of x.

1 3 0 −2 −5 2
2 10 20 36

1 5 10 18 31

First we bring down the first coefficient 1. Then we multiply it by the given
value 2 and enter the product 2 directly under the second coefficient 3, add
and write the sum 5 below. Similarly, we enter the product of 5 by 2 under the
third coefficient 0, add and write the sum 10 below; etc. The final number 31
in the third line is the value of the polynomial when x = 2. The remaining
numbers in this third line are the coefficients, in their proper order, of the
quotient

x3 + 5x2 + 10x+ 18,

which would be obtained by the ordinary long division of the given polynomial
by x− 2.

We shall now prove that this process, called synthetic division, enables us
to find the quotient and remainder when any polynomial f(x) is divided by
x− c. Write

f(x) ≡ a0x
n + a1x

n−1 + · · ·+ an,
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and let the constant remainder be r and the quotient be

q(x) ≡ b0xn−1 + b1x
n−2 + · · ·+ bn−1.

By comparing the coefficients of f(x) with those in

(x− c)q(x) + r ≡ b0xn + (b1 − cb0)xn−1

+ (b2 − cb1)xn−2 + · · ·+ (bn−1 − cbn−2)x+ r − cbn−1,

we obtain relations which become, after transposition of terms,

b0 = a0, b1 = a1 + cb0, b2 = a2 + cb1, . . . , bn−1 = an−1 + cbn−2, r = an + cbn−1.

The steps in the work of computing the b’s may be tabulated as follows:

a0 a1 a2 · · · an−1 an c

cb0 cb1 · · · cbn−2 cbn−1

b0 b1 b2 · · · bn−1, r

In the second space below a0 we write b0 (which is equal to a0). We multiply
b0 by c and enter the product directly under a1, add and write the sum b1
below it. Next we multiply b1 by c and enter the product directly under a2,
add and write the sum b2 below it; etc.

EXERCISES

Work each of the following exercises by synthetic division.

1. Divide x3 + 3x2 − 2x− 5 by x− 2.

2. Divide 2x5 − x3 + 2x− 1 by x+ 2.

3. Divide x3 + 6x2 + 10x− 1 by x− 0.09.

4. Find the quotient of x3−5x2−2x+24 by x−4, and then divide the quotient
by x− 3. What are the roots of x3 − 5x2 − 2x+ 24 = 0?

5. Given that x4 − 2x3 − 7x2 + 8x + 12 = 0 has the roots −1 and 2, find the
quadratic equation whose roots are the remaining two roots of the given equation,
and find these roots.

6. If x4 − 2x3 − 12x2 + 10x+ 3 = 0 has the roots 1 and −3, find the remaining
two roots.

7. Find the quotient of 2x4 − x3 − 6x2 + 4x− 8 by x2 − 4.

8. Find the quotient of x4 − 3x3 + 3x2 − 3x+ 2 by x2 − 3x+ 2.

9. Solve Exercises 1, 2, 3, 6, 7 of §14 by synthetic division.
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16. Factored Form of a Polynomial. Consider a polynomial

f(x) ≡ c0xn + c1x
n−1 + · · ·+ cn (c0 6= 0),

whose leading coefficient c0 is not zero. If f(x) = 0 has the root α1, which may
be any complex number, the Factor Theorem shows that f(x) has the factor
x− α1, so that

f(x) ≡ (x− α1)Q(x), Q(x) ≡ c0xn−1 + c′1x
n−2 + · · ·+ c′α−1.

If Q(x) = 0 has the root α2, then

Q(x) ≡ (x− α2)Q1(x), f(x) ≡ (x− α1)(x− α2)Q1(x).

If Q1(x) = 0 has the root α3, etc., we finally get

(5) f(x) ≡ c0(x− α1)(x− α2) · · · (x− αn).

We shall deduce several important conclusions from the preceding discus-
sion. First, suppose that the equation f(x) = 0 of degree n is known to
have n distinct roots α1, . . . , αn. In f(x) ≡ (x − α1)Q(x) take x = α2; then
0 = (α2−α1)Q(α2), whence Q(α2) = 0 and Q(x) = 0 has the root α2. Similarly,
Q1(x) = 0 has the root α3, etc. Thus all of the assumptions (each introduced
by an “if”) made in the above discussion have been justified and we have the
conclusion (5). Hence if an equation f(x) = 0 of degree n has n distinct roots
α1, . . . , αn, f(x) can be expressed in the factored form (5).

It follows readily that the equation can not have a root α different from
α1, . . . , αn. For, if it did, the left member of (5) is zero when x = α and hence
one of the factors of the right member must then be zero, say α−αj = 0, whence
the root α is equal to αj . We have now proved the following important result.

Theorem. An equation of degree n cannot have more than n distinct
roots.

17. Multiple Roots.1 Equalities may occur among the α’s in (5). Sup-
pose that exactly m1 of the α’s (including α1) are equal to α1; that α2 6= α1,
while exactly m2 of the α’s are equal to α2; etc. Then (5) becomes

(6) f(x) ≡ c0(x− α1)m1(x− α2)m2 · · · (x− αk)mk , m1 +m2 + · · ·+mk = n,

where α1, . . . , αk are distinct. We then call α1 a root of multiplicity m1 of
f(x) = 0, α2 a root of multiplicity m2, etc. In other words, α1 is a root of

1Multiple roots are treated by calculus in §58.



§19.] FUNDAMENTAL THEOREM OF ALGEBRA 19

multiplicity m1 of f(x) = 0 if f(x) is exactly divisible by (x−α1)m1 , but is not
divisible by (x − α1)m1+1. We call α1 also an m1-fold root. In the particular
cases m1 = 1, 2, and 3, we also speak of α1 as a simple root, double root, and
triple root, respectively. For example, 4 is a simple root, 3 a double root, −2 a
triple root, and 6 a root of multiplicity 4 (or a 4-fold root) of the equation

7(x− 4)(x− 3)2(x+ 2)3(x− 6)4 = 0

of degree 10 which has no further root. This example illustrates the next
theorem, which follows from (6) exactly as the theorem in §16 followed from (5).

Theorem. An equation of degree n cannot have more than n roots, a
root of multiplicity m being counted as m roots.

18. Identical Polynomials. If two polynomials in x,

a0x
n + a1x

n−1 + · · ·+ an, b0x
n + b1x

n−1 + · · ·+ bn,

each of degree n, are equal in value for more than n distinct values of x, they
are term by term identical, i.e., a0 = b0, a1 = b1, . . . , an = bn.

For, taking their difference and writing c0 = a0 − b0, . . . , cn = an − bn, we
have

c0x
n + c1x

n−1 + · · ·+ cn = 0

for more than n distinct values of x. If c0 6= 0, we would have a contradiction
with the theorem in §16. Hence c0 = 0. If c1 6= 0, we would have a contradiction
with the same theorem with n replaced by n − 1. Hence c1 = 0, etc. Thus
a0 = b0, a1 = b1, etc.

EXERCISES

1. Find a cubic equation having the roots 0, 1, 2.

2. Find a quartic equation having the roots ±1, ±2.

3. Find a quartic equation having the two double roots 3 and −3.

4. Find a quartic equation having the root 2 and the triple root 1.

5. What is the condition that ax2 + bx+ c = 0 shall have a double root?

6. If a0x
n + · · ·+an = 0 has more than n distinct roots, each coefficient is zero.

7. Why is there a single answer to each of Exercises 1–4, if the coefficient of
the highest power of the unknown be taken equal to unity? State and answer the
corresponding general question.
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19. The Fundamental Theorem of Algebra. Every algebraic equa-
tion with complex coefficients has a complex (real or imaginary) root.

This theorem, which is proved in the Appendix, implies that every equation
of degree n has exactly n roots if a root of multiplicity m be counted as m roots.
In other words, every integral rational function of degree n is a product of
n linear factors. For, in §16, equations f(x) = 0, Q(x) = 0, Q1(x) = 0, . . . each
has a root, so that (5) and (6) hold.

20. Relations between the Roots and the Coefficients. In §12 we
found the sum and the product of the two roots of any quadratic equation and
then deduced the factored form of the equation. We now apply the reverse
process to any equation

f(x) ≡ c0xn + c1x
n−1 + · · ·+ cn = 0 (c0 6= 0),(7)

whose factored form is

f(x) ≡ c0(x− α1)(x− α2) · · · (x− αn).(8)

Our next step is to find the expanded form of this product. The following
special products may be found by actual multiplication:

(x− α1)(x− α2) ≡ x2 − (α1 + α2)x+ α1α2,

(x− α1)(x− α2)(x− α3) ≡ x3 − (α1 + α2 + α3)x2

+ (α1α2 + α1α3 + α2α3)x− α1α2α3.

These identities are the cases n = 2 and n = 3 of the following general formula:

(9) (x− α1)(x− α2) · · · (x− αn) ≡ xn − (α1 + · · ·+ αn)xn−1

+ (α1α2 + α1α3 + α2α3 + · · ·+ αn−1αn)xn−2

− (α1α2α3 + α1α2α4 + · · ·+ αn−2αn−1αn)xn−3

+ · · ·+ (−1)nα1α2 · · ·αn,

the quantities in parentheses being described in the theorem below. If we
multiply each member of (9) by x−αn+1, it is not much trouble to verify that
the resulting identity can be derived from (9) by changing n into n+ 1, so that
(9) is proved true by mathematical induction. Hence the quotient of (7) by c0
is term by term identical with (9), so that

(10)

α1 + α2 + · · ·+ αn = −c1/c0,
α1α2 + α1α3 + α2α3 + · · ·+ αn−1αn = c2/c0,

α1α2α3 + α1α2α4 + · · ·+ αn−2αn−1αn = −c3/c0,
...

α1α2 · · ·αn−1αn = (−1)ncn/c0.
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These results may be expressed in the following words:

Theorem. If α1, . . . , αn are the roots of equation (7), the sum of the roots
is equal to −c1/c0, the sum of the products of the roots taken two at a time
is equal to c2/c0, the sum of the products of the roots taken three at a time is
equal to −c3/c0, etc.; finally, the product of all the roots is equal to (−1)ncn/c0.

Since we may divide the terms of our equation (7) by c0, the essential part
of our theorem is contained in the following simpler statement:

Corollary. In an equation in x of degree n, in which the coefficient
of xn is unity, the sum of the n roots is equal to the negative of the coefficient
of xn−1, the sum of the products of the roots two at a time is equal to the
coefficient of xn−2, etc.; finally the product of all the roots is equal to the
constant term or its negative, according as n is even or odd.

For example, in a cubic equation having the roots 2, 2, 5, and having unity as
the coefficient of x3, the coefficient of x is 2 · 2 + 2 · 5 + 2 · 5 = 24.

EXERCISES

1. Find a cubic equation having the roots 1, 2, 3.

2. Find a quartic equation having the double roots 2 and −2.

3. Solve x4 − 6x3 + 13x2 − 12x+ 4 = 0, which has two double roots.

4. Prove that one root of x3 + px2 + qx+ r = 0 is the negative of another root
if and only if r = pq.

5. Solve 4x3−16x2−9x+36 = 0, given that one root is the negative of another.

6. Solve x3 − 9x2 + 23x− 15 = 0, given that one root is the triple of another.

7. Solve x4 − 6x3 + 12x2 − 10x+ 3 = 0, which has a triple root.

8. Solve x3− 14x2− 84x+ 216 = 0, whose roots are in geometrical progression,
i.e., with a common ratio r [say m/r, m, mr].

9. Solve x3 − 3x2 − 13x + 15 = 0, whose roots are in arithmetical progression,
i.e., with a common difference d [say m− d, m, m+ d].

10. Solve x4 − 2x3 − 21x2 + 22x + 40 = 0, whose roots are in arithmetical pro-
gression. [Denote them by c − 3b, c − b, c + b, c + 3b, with the common difference
2b].

11. Find a quadratic equation whose roots are the squares of the roots of x2 −
px+ q = 0.
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12. Find a quadratic equation whose roots are the cubes of the roots of x2−px+
q = 0. Hint: α3 + β3 = (α+ β)3 − 3αβ(α+ β).

13. If α and β are the roots of x2− px+ q = 0, find an equation whose roots are
(i) α2/β; and β2/α; (ii) α3β and αβ3; (iii) α+ 1/β and β + 1/α.

14. Find a necessary and sufficient condition that the roots, taken in some order,
of x3 + px2 + qx+ r = 0 shall be in geometrical progression.

15. Solve x3 − 28x+ 48 = 0, given that two roots differ by 2.

21. Imaginary Roots occur in Pairs. The two roots of a real quadratic
equation whose discriminant is negative are conjugate imaginaries (§12). This
fact illustrates the following useful result.

Theorem. If an algebraic equation with real coefficients has the root a+
bi, where a and b are real and b 6= 0, it has also the root a− bi.

Let the equation be f(x) = 0 and divide f(x) by

(11) (x− a)2 + b2 ≡ (x− a− bi)(x− a+ bi)

until we reach a remainder rx+ s whose degree in x is less than the degree of
the divisor. Since the coefficients of the dividend and divisor are all real, those
of the quotient Q(x) and remainder are real. We have

f(x) ≡ Q(x)
{

(x− a)2 + b2
}

+ rx+ s,

identically in x. This identity is true in particular when x = a+ bi, so that

0 = r(a+ bi) + s = ra+ s+ rbi.

Since all of the letters, other than i, denote real numbers, we have (§2) ra+s =
0, rb = 0. But b 6= 0. Hence r = 0, and then s = 0. Hence f(x) is exactly
divisible by the function (11), so that f(x) = 0 has the root a− bi.

The theorem may be applied to the real quotient Q(x). We obtain the

Corollary. If a real algebraic equation has an imaginary root of mul-
tiplicity m, the conjugate imaginary of this root is a root of multiplicity m.

Counting a root of multiplicity m as m roots, we see that a real equation
cannot have an odd number of imaginary roots. Hence by §19, a real equation
of odd degree has at least one real root.

Of the n linear factors of a real integral rational function of degree n (§19),
those having imaginary coefficients may be paired as in (11). Hence every
integral rational function with real coefficients can be expressed as a product of
real linear and real quadratic factors.
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EXERCISES

1. Solve x3 − 3x2 − 6x− 20 = 0, one root being −1 +
√
−3.

2. Solve x4 − 4x3 + 5x2 − 2x− 2 = 0, one root being 1− i.

3. Find a cubic equation with real coefficients two of whose roots are 1 and
3 + 2i.

4. If a real cubic equation x3 − 6x2 + · · · = 0 has the root 1 +
√
−5, what are

the remaining roots? Find the complete equation.

5. If an equation with rational coefficients has a root a+
√
b, where a and b are

rational, but
√
b is irrational, prove that it has the root a −

√
b. [Use the method

of §21.]

6. Solve x4 − 4x3 + 4x− 1 = 0, one root being 2 +
√

3.

7. Solve x3 − (4 +
√

3)x2 + (5 + 4
√

3)x− 5
√

3 = 0, having the root
√

3.

8. Solve the equation in Ex. 7, given that it has the root 2 + i.

9. Find a cubic equation with rational coefficients having the roots 1
2 ,

1
2 +
√

2.

10. Given that x4 − 2x3 − 5x2 − 6x + 2 = 0 has the root 2 −
√

3, find another
root and by means of the sum and the product of the four roots deduce, without
division, the quadratic equation satisfied by the remaining two roots.

11. Granted that a certain cubic equation has the root 2 and no real root different
from 2, does it have two imaginary roots?

12. Granted that a certain quartic equation has the roots 2±3i, and no imaginary
roots different from them, does it have two real roots?

13. By means of the proof of Ex. 5, may we conclude as at the end of §21
that every integral rational function with rational coefficients can be expressed as a
product of linear and quadratic factors with rational coefficients?

22. Upper Limit to the Real Roots. Any number which exceeds all
real roots of a real equation is called an upper limit to the real roots. We shall
prove two theorems which enable us to find readily upper limits to the real
roots. For some equations Theorem I gives a better (smaller) upper limit than
Theorem II; for other equations, the reverse is true. Evidently any positive
number is an upper limit to the real roots of an equation having no negative
coefficients.
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Theorem I. If, in a real equation

f(x) ≡ a0x
n + a1x

n−1 + · · ·+ an = 0 (a0 > 0),

the first negative coefficient is preceded by k coefficients which are positive or
zero, and if G denotes the greatest of the numerical values of the negative
coefficients, then each real root is less than 1 + k

√
G/a0.

For example, in x5 + 4x4 − 7x2 − 40x+ 1 = 0, G = 40 and k = 3 since we must
supply the coefficient zero to the missing power x3. Thus the theorem asserts that
each root is less than 1 + 3

√
40 and therefore less than 4.42. Hence 4.42 is an upper

limit to the roots.
Proof. For positive values of x, f(x) will be reduced in value or remain

unchanged if we omit the terms a1x
n−1, . . . , ak−1x

n−k+1 (which are positive or
zero), and if we change each later coefficient ak, . . . , an to −G. Hence

f(x) = a0x
n −G(xn−k + xn−k−1 + · · ·+ x+ 1).

But, by Ex. 7 of §14,

xn−k + · · ·+ x+ 1 ≡ xn−k+1 − 1
x− 1

,

if x 6= 1. Furthermore,

a0x
n −G

(
xn−k+1 − 1

x− 1

)
≡ xn−k+1{a0x

k−1(x− 1)−G}+G

x− 1
.

Hence, if x > 1,

f(x) >
xn−k+1

{
a0x

k−1(x− 1)−G
}

x− 1
,

f(x) >
xn−k+1

{
a0(x− 1)k −G

}
x− 1

.

Thus, for x > 1, f(x) > 0 and x is not a root if a0(x − 1)k − G = 0, which is
true if x = 1 + k

√
G/a0.

23. Another Upper Limit to the Roots.
Theorem II. If, in a real algebraic equation in which the coefficient of the

highest power of the unknown is positive, the numerical value of each negative
coefficient be divided by the sum of all the positive coefficients which precede
it, the greatest quotient so obtained increased by unity is an upper limit to the
roots.
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For the example in §22, the quotients are 7/(1+4) and 40/5, so that Theorem II
asserts that 1 + 8 or 9 is an upper limit to the roots. Theorem I gave the better
upper limit 4.42. But for x3 + 8x2− 9x+ c2 = 0, Theorem I gives the upper limit 4,
while Theorem II gives the better upper limit 2.

We first give the proof for the case of the equation

f(x) ≡ p4x
4 − p3x

3 + p2x
2 − p1x+ p0 = 0

in which each pi is positive. In view of the identities

x4 ≡ (x− 1)(x3 + x2 + x+ 1) + 1, x2 ≡ (x− 1)(x+ 1) + 1,

f(x) is equal to the sum of the terms

p4(x− 1)x3 + p4(x− 1)x2 + p4(x− 1)x+ p4(x− 1) + p4,

− p3x
3 +p2(x− 1)x+ p2(x− 1) + p2,

− p1x + p0.

If x > 1, negative terms occur only in the first and third columns, while the sum of
the terms in each of these two columns will be = 0 if

p4(x− 1)− p3 = 0, (p4 + p2)(x− 1)− p1 = 0.

Hence f(x) > 0 and x is not a root if

x = 1 +
p3

p4
, x = 1 +

p1

p4 + p2
.

This proves the theorem for the present equation.
Next, let f(x) be modified by changing its constant term to −p0. We modify the

above proof by employing the sum (p4+p2)x−p0 of all the terms in the corresponding
last two columns. This sum will be > 0 if x > p0/(p4 + p2), which is true if

x = 1 +
p0

p4 + p2
.

To extend this method of proof to the general case

f(x) ≡ anxn + · · ·+ a0 (an > 0),

we have only to employ suitable general notations. Let the negative coefficients
be ak1 , . . . , akt

, where k1 > k2 > · · · > kt. For each positive integer m which is
5 n and distinct from k1, . . . , kt, we replace xm by the equal value

d(xm−1 + xm−2 + · · ·+ x+ 1) + 1

where d ≡ x− 1. Let F (x) denote the polynomial in x, with coefficients involv-
ing d, which is obtained from f(x) by these replacements. Let x > 1, so that
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d is positive. Thus the terms aki
xki are the only negative quantities occurring

in F (x). If ki > 0, the terms of F (x) which involve explicitly the power xki are
aki

xki and the amdxki for the various positive coefficients am which precede aki
.

The sum of these terms will be = 0 if aki
+ d

∑
am = 0, i.e., if

x = 1 +
−aki∑
am

.

There is an additional case if kt = 0, i.e., if a0 is negative. Then the terms
of F (x) not involving x explicitly are a0 and the am(d + 1) for the various
positive coefficients am. Their sum, a0 + x

∑
am, will be > 0 if

x >
−a0∑
am

,

which is true if
x = 1 +

−a0∑
am

.

EXERCISES

Apply the methods of both §22 and §23 to find an upper limit to the roots of

1. 4x5 − 8x4 + 22x3 + 98x2 − 73x+ 5 = 0.

2. x4 − 5x3 + 7x2 − 8x+ 1 = 0.

3. x7 + 3x6 − 4x5 + 5x4 − 6x3 − 7x2 − 8 = 0.

4. x7 + 2x5 + 4x4 − 8x2 − 32 = 0.

5. A lower limit to the negative roots of f(x) = 0 may be found by applying our
theorems to f(−x) = 0, i.e., to the equation derived from f(x) = 0 by replacing x
by −x. Find a lower limit to the negative roots in Exs. 2, 3, 4.

6. Prove that every real root of a real equation f(x) = 0 is less than 1 + g/a0 if
a0 > 0, where g denotes the greatest of the numerical values of a1, . . . , an. Hint: if
x > 0,

a0x
n + a1x

n−1 + · · · = a0x
n − g(xn−1 + · · ·+ x+ 1).

Proceed as in §22 with k = 1.

7. Prove that 1 + g ÷ |a0| is an upper limit for the moduli of all complex roots
of any equation f(x) = 0 with complex coefficients, where g is the greatest of the
values |a1|, . . . , |an|, and |a| denotes the modulus of a. Hint: use Ex. 5 of §8.
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24. Integral Roots. For an equation all of whose coefficients are inte-
gers, any integral root is an exact divisor of the constant term.

For, if x is an integer such that

(12) a0x
n + · · ·+ an−1x+ an = 0,

where the a’s are all integers, then, by transposing terms, we obtain

x(−a0x
n−1 − · · · − an−1) = an.

Thus x is an exact divisor of an since the quotient is the integer given by the
quantity in parenthesis.

Example 1. Find all the integral roots of

x3 + x2 − 3x+ 9 = 0.

Solution. The exact divisors of the constant term 9 are ±1, ±3, ±9. By trial,
no one of ±1, 3 is a root. Next, we find that −3 is a root by synthetic division (§15):

1 1 −3 9 −3
−3 6 −9

1 −2 3 0

Hence the quotient is x2 − 2x + 3, which is zero for x = 1 ±
√
−2. Thus −3 is

the only integral root.
When the constant term has numerous exact divisors, some device may

simplify the application of the theorem.
Example 2.2 Find all the integral roots of

y3 + 12y2 − 32y − 256 = 0.

Solution. Since all the terms except y3 are divisible by 2, an integral root y
must be divisible by 2. Since all the terms except y3 are now divisible by 24, we
have y = 4z, where z is an integer. Removing the factor 26 from the equation in z,
we obtain

z3 + 3z2 − 2z − 4 = 0.

An integral root must divide the constant term 4. Hence, if there are any integral
roots, they occur among the numbers ±1, ±2, ±4. By trial, −1 is found to be a
root:

1 3 −2 −4 −1
−1 −2 4

1 2 −4 0

2This problem is needed for the solution (§48) of a certain quartic equation.
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Hence the quotient is z2 + 2z− 4, which is zero for z = −1±
√

5. Thus y = 4z = −4
is the only integral root of the proposed equation.

EXERCISES

Find all the integral roots of

1. x3 + 8x2 + 13x+ 6 = 0. 2. x3 − 5x2 − 2x+ 24 = 0.

3. x3 − 10x2 + 27x− 18 = 0. 4. x4 + 4x3 + 8x+ 32 = 0.

5. The equation in Ex. 4 of §23.

25. Newton’s Method for Integral Roots. In §24 we proved that an
integral root x of equation (12) having integral coefficients must be an exact
divisor of an. Similarly, if we transpose all but the last two terms of (12), we
see that an−1x + an must be divisible by x2, and hence an−1 + an/x divisible
by x. By transposing all but the last three terms of (12), we see that their sum
must be divisible by x3, and hence an−2 + (an−1 + an/x)/x divisible by x. We
thus obtain a series of conditions of divisibility which an integral root must
satisfy. The final sum a0 + a1/x + · · · must not merely be divisible by x, but
be actually zero, since it is the quotient of the function (12) by xn.

In practice, we must test in turn the various divisors x of an. If a chosen x
is not a root, that fact will be disclosed by one of the conditions mentioned.
Newton’s method is quicker than synthetic division since it usually detects
early and throws out wrong guesses as to a root, whereas in synthetic division
the decision comes only at the final step.

For example, the divisor −3 of the constant term of

(13) f(x) ≡ x4 − 9x3 + 24x2 − 23x+ 15 = 0

is not a root since −23 + 15/(−3) = −28 is not divisible by −3. To show that none
of the tests fails for 3, so that 3 is a root, we may arrange the work systematically
as follows:

(14)
1 −9 24 −23 15 3
−1 6 −6 5 (divisor)

0 −3 18 −18

First we divide the final coefficient 15 by 3, place the quotient 5 directly under the
coefficient −23, and add. Next, we divide this sum −18 by 3, place the quotient −6
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directly under the coefficient 24, and add. After two more such steps we obtain the
sum zero, so that 3 is a root.

It is instructive to obtain the preceding process by suitably modifying synthetic
division. First, we replace x by 1/y in (13), multiply each term by y4, and obtain

15y4 − 23y3 + 24y2 − 9y + 1 = 0.

We may test this for the root y = 1
3 , which corresponds to the root x = 3 of (13),

by ordinary synthetic division:

15 −23 24 −9 1 1
3

5 −6 6 −1 (multiplier)
15 −18 18 −3 0

The coefficients in the last two lines (after omitting 15) are the same as those of the
last two lines in (14) read in reverse order. This should be the case since we have
here multiplied the same numbers by 1

3 that we divided by 3 in (14). The numbers
in the present third line are the coefficients of the quotient (§15). Since we equate
the quotient to zero for the applications, we may replace these coefficients by the
numbers in the second line which are the products of the former numbers by 1

3 . The
numbers in the second line of (14) are the negatives of the coefficients of the quotient
of f(x) by x− 3.

Example. Find all the integral roots of equation (13).

Solution. For a negative value of x, each term is positive. Hence all the real
roots are positive. By §23, 10 is an upper limit to the roots. By §24, any integral
root is an exact divisor of the constant term 15. Hence the integral roots, if any,
occur among the numbers 1, 3, 5. Since f(1) = 8, 1 is not a root. By (14), 3 is
a root. Proceeding similarly with the quotient by x − 3, whose coefficients are the
negatives of the numbers in the second line of (14), we find that 5 is a root.

EXERCISES

1. Solve Exs. 1–4 of §24 by Newton’s method.

2. Prove that, in extending the process (14) to the general equation (12), we
may employ the final equations in §15 with r = 0 and write

a0 a1 a2 . . . an−2 an−1 an c
−b0 −b1 −b2 . . . −bn−2 −bn−1 (divisor)

0 −cb0 −cb1 . . . −cbn−3 −cbn−2

Here the quotient, −bn−1, of an by c is placed directly under an−1, and added to it
to yield the sum −cbn−2, etc.
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26. Another Method for Integral Roots. An integral divisor d of the
constant term is not a root if d −m is not a divisor of f(m), where m is any
chosen integer. For, if d is a root of f(x) = 0, then

f(x) ≡ (x− d)Q(x),

where Q(x) is a polynomial having integral coefficients (§15). Hence f(m) =
(m− d)q, where q is the integer Q(m).

In the example of §25, take d = 15, m = 1. Since f(1) = 8 is not divisible by
15− 1 = 14, 15 is not an integral root.

Consider the more difficult example

f(x) ≡ x3 − 20x2 + 164x− 400 = 0,

whose constant term has many divisors. There is evidently no negative root, while
21 is an upper limit to the roots. The positive divisors less than 21 of 400 = 2452 are
d = 1, 2, 4, 8, 16, 5, 10, 20. First, takem = 1 and note that f(1) = −255 = −3·5·17.
The corresponding values of d− 1 are 0, 1, 3, 7, 15, 4, 9, 19; of these, 7, 4, 9, 19 are
not divisors of f(1), so that d = 8, 5, 10 and 20 are not roots. Next, take m = 2
and note that f(2) = −144 is not divisible by 16 − 2 = 14. Hence 16 is not a root.
Incidentally, d = 1 and d = 2 were excluded since f(d) 6= 0. There remains only
d = 4, which is a root.

In case there are numerous divisors within the limits to the roots, it is
usually a waste of time to list all these divisors. For, if a divisor is found to
be a root, it is preferable to employ henceforth the quotient, as was done in
the example in §25.

EXERCISES

Find all the integral roots of

1. x4 − 2x3 − 21x2 + 22x+ 40 = 0.

2. y3 − 9y2 − 24y + 216 = 0.

3. x4 − 23x3 + 187x2 − 653x+ 936 = 0.

4. x5 + 47x4 + 423x3 + 140x2 + 1213x− 420 = 0.

5. x5 − 34x3 + 29x2 + 212x− 300 = 0.
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27. Rational Roots. If an equation with integral coefficients

(15) c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn = 0

has the rational root a/b, where a and b are integers without a common divisor
> 1, then a is an exact divisor of cn, and b is an exact divisor of c0.

Insert the value a/b of x and multiply all terms of the equation by bn. We
obtain

c0a
n + c1a

n−1b+ · · ·+ cn−1ab
n−1 + cnb

n = 0.

Since a divides all the terms preceding the last term, it divides that term. But
a has no divisor in common with bn; hence a divides cn. Similarly, b divides
all the terms after the first term and hence divides c0.

Example. Find all the rational roots of

2x3 − 7x2 + 10x− 6 = 0.

Solution. By the theorem, the denominator of any rational root x is a divisor
of 2. Hence y = 2x is an integer. Multiplying the terms of our equation by 4, we
obtain

y3 − 7y2 + 20y − 24 = 0.

There is evidently no negative root. By either of the tests in §§22, 23, an upper limit
to the positive roots of our equation in x is 1 + 7/2, so that y < 9. Hence the only
possible values of an integral root y are 1, 2, 3, 4, 6, 8. Since 1 and 2 are not roots,
we try 3:

1 −7 20 −24 3
−1 4 −8

0 −3 12

Hence 3 is a root and the remaining roots satisfy the equation y2 − 4y + 8 = 0 and
are 2± 2i. Thus the only rational root of the proposed equation is x = 3/2.

If c0 = 1, then b = ±1 and a/b is an integer. Hence we have the

Corollary. Any rational root of an equation with integral coefficients,
that of the highest power of the unknown being unity, is an integer.

Given any equation with integral coefficients

a0y
n + a1y

n−1 + · · ·+ an = 0,

we multiply each term by a0
n−1, write a0y = x, and obtain an equation (15)

with integral coefficients, in which the coefficient c0 of xn is now unity. By the
Corollary, each rational root x is an integer. Hence we need only find all the
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integral roots x and divide them by a0 to obtain all the rational roots y of the
proposed equation.

Frequently it is sufficient (and of course simpler) to set ky = x, where k is
a suitably chosen integer less than a0.

EXERCISES

Find all of the rational roots of

1. y4 − 40
3 y

3 + 130
3 y2 − 40y + 9 = 0. 2. 6y3 − 11y2 + 6y − 1 = 0.

3. 108y3 − 270y2 − 42y + 1 = 0. [Use k = 6.]

4. 32y3 − 6y − 1 = 0. [Use the least k.]

5. 96y3 − 16y2 − 6y + 1 = 0. 6. 24y3 − 2y2 − 5y + 1 = 0.

7. y3 − 1
2y

2 − 2y + 1 = 0. 8. y3 − 2
3y

2 + 3y − 2 = 0.

9. Solve Exs. 2–6 by replacing y by 1/x.

Find the equations whose roots are the products of 6 by the roots of

10. y2 − 2y − 1
3 = 0. 11. y3 − 1

2y
2 − 1

3y + 1
4 = 0.



CHAPTER III
Constructions with Ruler and Compasses

28. Impossible Constructions. We shall prove that it is not possible,
by the methods of Euclidean geometry, to trisect all angles, or to construct
a regular polygon of 7 or 9 sides. The proof, which is beyond the scope
of elementary geometry, is based on principles of the theory of equations.
Moreover, the discussion will show that a regular polygon of 17 sides can be
constructed with ruler and compasses, a fact not suspected during the twenty
centuries from Euclid to Gauss.

29. Graphical Solution of a Quadratic Equation. If a and b are
constructible, and

x2 − ax+ b = 0(1)

O

C

B

Q

MN
D

T X

Fig. 6

has real coefficients and real roots,
the roots can be constructed with
ruler and compasses as follows. Draw
a circle having as a diameter the
line BQ joining the points B = (0, 1)
and Q = (a, b) in Fig. 6. Then the
abscissas ON and OM of the points
of intersection of this circle with the
x-axis are the roots of (1).

For, the center of the circle is(
a/2, (b + 1)/2

)
; the square of BQ is

a2 + (b− 1)2; hence the equation of the circle is(
x− a

2

)2
+
(
y − b+ 1

2

)2

=
a2 + (b− 1)2

4
.

This is found to reduce to (1) when y = 0, which proves the theorem.
When the circle is tangent to the x-axis, so thatM and N coincide, the two

roots are equal. When the circle does not cut the x-axis, or when Q coincides
with B, the roots are imaginary.
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Another construction follows from §30.

EXERCISES

Solve graphically:

1. x2 − 5x+ 4 = 0. 2. x2 + 5x+ 4 = 0. 3. x2 + 5x− 4 = 0.

4. x2 − 5x− 4 = 0. 5. x2 − 4x+ 4 = 0. 6. x2 − 3x+ 4 = 0.

30. Analytic Criterion for Constructibility. The first step in our
consideration of a problem proposed for construction consists in formulating
the problem analytically. In some instances elementary algebra suffices for this
formulation. For example, in the ancient problem of the duplication of a cube,
we take as a unit of length a side of the given cube, and seek the length x of
a side of another cube whose volume is double that of the given cube; hence

(2) x3 = 2.

But usually it is convenient to employ analytic geometry as in §29; a point
is determined by its coordinates x and y with reference to fixed rectangular
axes; a straight line is determined by an equation of the first degree, a circle
by one of the second degree, in the coordinates of the general point on it.
Hence we are concerned with certain numbers, some being the coordinates of
points, others being the coefficients of equations, and still others expressing
lengths, areas or volumes. These numbers may be said to define analytically
the various geometric elements involved.

Criterion. A proposed construction is possible by ruler and compasses
if and only if the numbers which define analytically the desired geometric ele-
ments can be derived from those defining the given elements by a finite number
of rational operations and extractions of real square roots.

In §29 we were given the numbers a and b, and constructed lines of lengths

1
2(a±

√
a2 − 4b).

Proof. First, we grant the condition stated in the criterion and prove
that the construction is possible with ruler and compasses. For, a rational
function of given quantities is obtained from them by additions, subtractions,
multiplications, and divisions. The construction of the sum or difference of
two segments is obvious. The construction, by means of parallel lines, of a
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segment whose length p is equal to the product a · b of the lengths of two given
segments is shown in Fig. 7; that for the quotient q = a/b in Fig. 8. Finally,
a segment of length s =

√
n may be constructed, as in Fig. 9, by drawing a

semicircle on a diameter composed of two segments of lengths 1 and n, and
then drawing a perpendicular to the diameter at the point which separates the
two segments. Or we may construct a root of x2 − n = 0 by §29.

1 b

a

p = a · b

Fig. 7
1 q = a/b

b

a

Fig. 8
1 n

s

Fig. 9
Second, suppose that the proposed construction is possible with ruler and

compasses. The straight lines and circles drawn in making the construction are
located by means of points either initially given or obtained as the intersections
of two straight lines, a straight line and a circle, or two circles. Since the axes
of coordinates are at our choice, we may assume that the y-axis is not parallel
to any of the straight lines employed in the construction. Then the equation
of any one of our lines is

(3) y = mx+ b.

Let y = m′x+b′ be the equation of another of our lines which intersects (3).
The coordinates of their point of intersection are

x =
b′ − b
m−m′

, y =
mb′ −m′b
m−m′

,

which are rational functions of the coefficients of the equations of the two lines.
Suppose that a line (3) intersects the circle

(x− c)2 + (y − d)2 = r2,

with the center (c, d) and radius r. To find the coordinates of the points of
intersection, we eliminate y between the equations and obtain a quadratic
equation for x. Thus x (and hence also mx + b or y) involves no irrationality
other than a real square root, besides real irrationalities present in m, b, c,
d, r.
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Finally, the intersections of two circles are given by the intersections of one
of them with their common chord, so that this case reduces to the preceding.

For example, a side of a regular pentagon inscribed in a circle of radius unity is
(Ex. 2 of §37)

(4) s = 1
2

√
10− 2

√
5,

which is a number of the type mentioned in the criterion. Hence a regular pentagon
can be constructed by ruler and compasses (see the example above quoted).

31. Cubic Equations with a Constructible Root. We saw that the
problem of the duplication of a cube led to a cubic equation (2). We shall later
show that each of the problems, to trisect an angle, and to construct regular
polygons of 7 and 9 sides with ruler and compasses, leads to a cubic equation.
We shall be in a position to treat all of these problems as soon as we have
proved the following general result.

Theorem. It is not possible to construct with ruler and compasses a line
whose length is a root or the negative of a root of a cubic equation with rational
coefficients having no rational root.

Suppose that x1 is a root of

(5) x3 + αx2 + βx+ γ = 0 (α, β, γ rational)

such that a line of length x1 or −x1 can be constructed with ruler and com-
passes; we shall prove that one of the roots of (5) is rational. We have only to
discuss the case in which x1 is irrational.

By the criterion in §30, since the given numbers in this problem are α, β, γ,
all rational, x1 can be obtained by a finite number of rational operations and
extractions of real square roots, performed upon rational numbers or numbers
derived from them by such operations. Thus x1 involves one or more real
square roots, but no further irrationalities.

As in the case of (4), there may be superimposed radicals. Such a two-story
radical which is not expressible as a rational function, with rational coefficients,
of a finite number of square roots of positive rational numbers is said to be a
radical of order 2. In general, an n-story radical is said to be of order n if it
is not expressible as a rational function, with rational coefficients, of radicals
each with fewer than n superimposed radicals, the innermost ones affecting
positive rational numbers.

We agree to simplify x1 by making all possible replacements of certain
types that are sufficiently illustrated by the following numerical examples.
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If x1 involves
√

3,
√

5, and
√

15, we agree to replace
√

15 by
√

3 ·
√

5. If
x1 = s− 7t, where s is given by (4) and

t = 1
2

√
10 + 2

√
5,

so that st =
√

5, we agree to write x1 in the form s− 7
√

5/s, which involves a
single radical of order 2 and no new radical of lower order. Finally, we agree
to replace

√
4− 2

√
3 by its simpler form

√
3− 1.

After all possible simplifications of these types have been made, the result-
ing expressions have the following properties (to be cited as our agreements):
no one of the radicals of highest order n in x1 is equal to a rational function,
with rational coefficients, of the remaining radicals of order n and the radicals
of lower orders, while no one of the radicals of order n− 1 is equal to a ratio-
nal function of the remaining radicals of order n− 1 and the radicals of lower
orders, etc.

Let
√
k be a radical of highest order n in x1. Then

x1 =
a+ b

√
k

c+ d
√
k
,

where a, b, c, d do not involve
√
k, but may involve other radicals. If d = 0,

then c 6= 0 and we write e for a/c, f for b/c, and get

x1 = e+ f
√
k, (f 6= 0)(6)

where neither e nor f involves
√
k. If d 6= 0, we derive (6) by multiplying the

numerator and denominator of the fraction for x1 by c−d
√
k, which is not zero

since
√
k = c/d would contradict our above agreements.

By hypothesis, (6) is a root of equation (5). After expanding the powers
and replacing the square of

√
k by k, we see that

(7) (e+ f
√
k)3 + α(e+ f

√
k)2 + β(e+ f

√
k) + γ = A+B

√
k,

where A and B are certain polynomials in e, f , k and the rational numbers
α, β, γ. Thus A + B

√
k = 0. If B 6= 0,

√
k = −A/B is a rational function,

with rational coefficients, of the radicals, other than
√
k, in x1, contrary to our

agreements. Hence B = 0 and therefore A = 0.
When e−f

√
k is substituted for x in the cubic function (5), the result is the

left member of (7) with
√
k replaced by −

√
k, and hence the result is A−B

√
k.

But A = B = 0. This shows that

(8) x2 = e− f
√
k
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is a new root of our cubic equation. Since the sum of the three roots is equal
to −α by §20, the third root is

(9) x3 = −α− x1 − x2 = −α− 2e.

Now α is rational. If also e is rational, x3 is a rational root and we have
reached our goal. We next make the assumption that e is irrational and show
that it leads to a contradiction. Since e is a component part of the constructible
root (6), its only irrationalities are square roots. Let

√
s be one of the radicals of

highest order in e. By the argument which led to (6), we may write e = e′+f ′
√
s,

whence, by (9),

x3 = g + h
√
s, (h 6= 0)(9′)

where neither g nor h involves
√
s. Then by the argument which led to (8),

g − h
√
s is a root, different from x3, of our cubic equation, and hence is equal

to x1 or x2 since there are only three roots (§16). Thus

g − h
√
s = e± f

√
k.

By definition,
√
s is one of the radicals occurring in e. Also, by (9′), every

radical occurring in g or h occurs in x3 and hence in e = 1
2(−α − x3), by (9),

α being rational. Hence
√
k is expressible rationally in terms of the remaining

radicals occurring in e and f , and hence in x1, whose value is given by (6).
But this contradicts one of our agreements.

32. Trisection of an Angle. For a given angle A, we can construct with
ruler and compasses a line of length cosA or − cosA, namely the adjacent leg
of a right triangle, with hypotenuse unity, formed by dropping a perpendicular
from a point in one side of A to the other, produced if necessary. If it were
possible to trisect angle A, i.e., construct the angle A/3 with ruler and com-
passes, we could as before construct a line whose length is ± cos(A/3). Hence if
we show that this last cannot be done when the only given geometric elements
are the angle A and a line of unit length, we shall have proved that the angle A
cannot be trisected. We shall give the proof for A = 120◦.

We employ the trigonometric identity

cosA = 4 cos3
A

3
− 3 cos

A

3
.

Multiply each term by 2 and write x for 2 cos(A/3). Thus

(10) x3 − 3x = 2 cosA.
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For A = 120◦, cosA = −1
2 and (10) becomes

(11) x3 − 3x+ 1 = 0.

Any rational root is an integer (§27) which is an exact divisor of the con-
stant term (§24). By trial, neither +1 nor −1 is a root. Hence (11) has no
rational root. Hence (§31) it is not possible to trisect all angles with ruler and
compasses.

Certain angles, like 90◦, 180◦, can be trisected. When A = 180◦, the equation
(10) becomes x3 − 3x = −2 and has the rational root x = 1. It is the rationality of
a root which accounts for the possibility of trisecting this special angle 180◦.

33. Regular Polygon of 9 Sides, Duplication of a Cube. Since angle
120◦ cannot be trisected with ruler and compasses (§32), angle 40◦ cannot be
so constructed in terms of angle 120◦ and the line of unit length as the given
geometric elements. Since the former of these elements and its cosine are
constructible when the latter is given, we may take the line of unit length as
the only given element. In a regular polygon of 9 sides, the angle subtended
at the center by one side is 1

9 · 360◦ = 40◦. Hence a regular polygon of 9 sides
cannot be constructed with ruler and compasses. Here, as in similar subsequent
statements where the given elements are not specified, the only such element
is the line of unit length.

A rational root of x3 = 2 is an integer (§27) which is an exact divisor
of 2. The cubes of ±1 and ±2 are distinct from 2. Hence there is no rational
root. Hence (§§30, 31) it is not possible to duplicate a cube with ruler and
compasses.

34. Regular Polygon of 7 Sides. If we could construct with ruler and
compasses an angle B containing 360/7 degrees, we could so construct a line
of length x = 2 cosB. Since 7B = 360◦, cos 3B = cos 4B. But

2 cos 3B = 2(4 cos3B − 3 cosB) = x3 − 3x,

2 cos 4B = 2(2 cos2 2B − 1) = 4(2 cos2B − 1)2 − 2 = (x2 − 2)2 − 2.

Hence
0 = x4 − 4x2 + 2− (x3 − 3x) = (x− 2)(x3 + x2 − 2x− 1).

But x = 2 would give cosB = 1, whereas B is acute. Hence

(12) x3 + x2 − 2x− 1 = 0.

Since this has no rational root, it is impossible to construct a regular polygon
of 7 sides with ruler and compasses.
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35. Regular Polygon of 7 Sides and Roots of Unity. If

R = cos
2π
7

+ i sin
2π
7
,

we saw in §10 that R, R2, R3, R4, R5, R6, R7 = 1 give all the roots of y7 = 1
and are complex numbers represented by the vertices of a regular polygon
of 7 sides inscribed in a circle of radius unity and center at the origin of
coordinates. By §6,

1
R

= cos
2π
7
− i sin

2π
7
, R+

1
R

= 2 cos
2π
7
.

We saw in §34 that 2 cos(2π/7) is one of the roots of the cubic equation (12).
This equation can be derived in a new manner by utilizing the preceding
remarks on 7th roots of unity. Our purpose is not primarily to derive (12)
again, but to illustrate some principles necessary in the general theory of the
construction of regular polygons.

Removing from y7 − 1 the factor y − 1, we get

(13) y6 + y5 + y4 + y3 + y2 + y + 1 = 0,

whose roots are R, R2, . . . , R6. Since we know that R+ 1/R is one of the roots
of the cubic equation (12), it is a natural step to make the substitution

(14) y +
1
y

= x

in (13). After dividing its terms by y3, we have

(13′)
(
y3 +

1
y3

)
+
(
y2 +

1
y2

)
+
(
y +

1
y

)
+ 1 = 0.

By squaring and cubing the members of (14), we see that

(15) y2 +
1
y2

= x2 − 2, y3 +
1
y3

= x3 − 3x.

Substituting these values in (13′), we obtain

(12) x3 + x2 − 2x− 1 = 0.

That is, the substitution (14) converts equation (13) into (12).
If in (14) we assign to y the six values R, . . . , R6, we obtain only three

distinct values of x:

(16) x1 = R+
1
R

= R+R6, x2 = R2+
1
R2

= R2+R5, x3 = R3+
1
R3

= R3+R4.
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In order to illustrate a general method of the theory of regular polygons,
we start with the preceding sums of the six roots in pairs and find the cubic
equation having these sums as its roots. For this purpose we need to calculate

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3.

First, by (16),
x1 + x2 + x3 = R+R2 + · · ·+R6 = −1,

since R, . . . , R6 are the roots of (13). Similarly,

x1x2 + x1x3 + x2x3 = 2(R+R2 + · · ·+R6) = −2,

x1x2x3 = 2 +R+R2 + · · ·+R6 = 1.

Consequently (§20), the cubic having x1, x2, x3 as roots is (12).

36. Reciprocal Equations. Any algebraic equation such that the recip-
rocal of each root is itself a root of the same multiplicity is called a reciprocal
equation.

The equation y7 − 1 = 0 is a reciprocal equation, since if r is any root, 1/r
is evidently also a root. Since (13) has the same roots as this equation, with the
exception of unity which is its own reciprocal, (13) is also a reciprocal equation.

If r is any root 6= 0 of any equation

f(y) ≡ yn + · · ·+ c = 0,

1/r is a root of f(1/y) = 0 and hence of

ynf

(
1
y

)
≡ 1 + · · ·+ cyn = 0.

If the former is a reciprocal equation, it has also the root 1/r, so that every
root of the former is a root of the latter equation. Hence, by §18, the left
member of the latter is identical with cf(y). Equating the constant terms, we
have c2 = 1, c = ±1. Hence

(17) ynf

(
1
y

)
≡ ±f(y).

Thus if piyn−i is a term of f(y), also ±piyi is a term. Hence

(18′) f(y) ≡ yn ± 1 + p1(yn−1 ± y) + p2(yn−2 ± y2) + · · · .

If n is odd, n = 2t + 1, the final term is pt(yt+1 ± yt), and y ± 1 is a factor
of f(y). In view of (17), the quotient

Q(y) ≡ f(y)
y ± 1
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has the property that

yn−1Q

(
1
y

)
≡ Q(y).

Comparing this with (17), which implied (18′), we see that Q(y) = 0 is a
reciprocal equation of the type

(18) y2t + 1 + c1(y2t−1 + y) + c2(y2t−2 + y2) + · · ·+ ct−1(yt+1 + yt−1) + cty
t = 0.

If n is even, n = 2t, and if the upper sign holds in (17), then (18′) is of the
form (18). Next, let the lower sign hold in (17). Since a term pty

t would imply a
term −ptyt, we have pt = 0. The final term in (18′) is therefore pt−1(yt+1−yt−1).
Hence f(y) has the factor y2 − 1. The quotient q(y) ≡ f(y)/(y2 − 1) has the
property that

yn−2q

(
1
y

)
≡ q(y).

Comparing this with (17) as before, we see that q(y) = 0 is of the form (18)
where now 2t = n−2. Hence, at least after removing one or both of the factors
y ± 1, any reciprocal equation may be given the form (18).

The method by which (13) was reduced to a cubic equation may be used
to reduce any equation (18) to an equation in x of half the degree. First, we
divide the terms of (18) by yt and obtain(

yt +
1
yt

)
+ c1

(
yt−1 +

1
yt−1

)
+ · · ·+ ct−1

(
y +

1
y

)
+ ct = 0.

Next, we perform the substitution (14) by either of the following methods: We
may make use of the relation

yk +
1
yk

= x

(
yk−1 +

1
yk−1

)
−
(
yk−2 +

1
yk−2

)

to compute the values of yk+1/yk in terms of x, starting with the special cases
(14) and (15). For example,

y4 +
1
y4

= x

(
y3 +

1
y3

)
−
(
y2 +

1
y2

)
= x(x3 − 3x)− (x2 − 2) = x4 − 4x2 + 2.

Or we may employ the explicit formula (19) of §107 for the sum yk + 1/yk of
the kth powers of the roots y and 1/y of y2 − xy + 1 = 0.
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37. Regular Polygon of 9 Sides and Roots of Unity. If

R = cos
2π
9

+ i sin
2π
9
,

the powers R, R2, R4, R5, R7, R8, are the primitive ninth roots of unity (§11).
They are therefore the roots of

(19) y9 − 1
y3 − 1

= y6 + y3 + 1 = 0.

Dividing the terms of this reciprocal equation by y3 and applying the second
relation (15), we obtain our former cubic equation (11).

EXERCISES

1. Show by (16) that the roots of (12) are 2 cos 2π/7, 2 cos 4π/7, 2 cos 6π/7.
2. The imaginary fifth roots of unity satisfy

y4 + y3 + y2 + y + 1 = 0, which by the substi-
tution (14) becomes x2 + x − 1 = 0. It has the
root

R+
1
R

= 2 cos
2π
5

=
1
2

(
√

5− 1).

In a circle of radius unity and center O draw two
perpendicular diameters AOA′, BOB′. With the
middle point M of OA′ as center and radius MB
draw a circle cutting OA at C (Fig. 10). Show
that OC and BC are the sides s10 and s5 of the
inscribed regular decagon and pentagon respec-
tively. Hints:

A A′

B

B′

MC O

Fig. 10

MB = 1
2

√
5, OC = 1

2(
√

5− 1), BC =
√

1 +OC2 = 1
2

√
10− 2

√
5,

s10 = 2 sin 18◦ = 2 cos
2π
5

= OC,

s5
2 = (2 sin 36◦)2 = 2

(
1− cos

2π
5

)
=

1
4

(10− 2
√

5), s5 = BC.

3. If R is a root of (19) verify as at the end of §35 that R + R8, R2 + R7, and
R4 +R5 are the roots of (11).

4. Hence show that the roots of (11) are 2 cos 2π/9, 2 cos 4π/9, 2 cos 8π/9.

5. Reduce y11 = 1 to an equation of degree 5 in x.
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6. Solve y5 − 7y4 + y3 − y2 + 7y − 1 = 0 by radicals. [One root is 1.]

7. After finding so easily in Chapter I the trigonometric forms of the complex
roots of unity, why do we now go to so much additional trouble to find them alge-
braically?

8. Prove that every real root of x4 + ax2 + b = 0 can be constructed with ruler
and compasses, given lines of lengths a and b.

9. Show that the real roots of x3−px−q = 0 are the abscissas of the intersections
of the parabola y = x2 and the circle through the origin with the center (1

2q,
1
2 + 1

2p).

Prove that it is impossible, with ruler and compasses:

10. To construct a straight line representing the distance from the circular base
of a hemisphere to the parallel plane which bisects the hemisphere.

11. To construct lines representing the lengths of the edges of an existing rect-
angular parallelopiped having a diagonal of length 5, surface area 24, and volume 1,
2, 3, or 5.

12. To trisect an angle whose cosine is 1
2 ,

1
3 ,

1
4 ,

1
8 or p/q, where p and q (q > 1)

are integers without a common factor, and q is not divisible by a cube.

Prove algebraically that it is possible, with ruler and compasses:

13. To trisect an angle whose cosine is (4a3 − 3ab2)/b3, where the integer a is
numerically less than the integer b; for example, cos−1 11/16 if a = −1, b = 4.

14. To construct the legs of a right triangle, given its area and hypotenuse.

15. To construct the third side of a triangle, given two sides and its area.

16. To locate the point P on the side BC = 1 of a given square ABCD such that
the straight line AP cuts DC produced at a point Q for which the length of PQ is
a given number g. Show that y = BP is a root of a reciprocal quartic equation, and
solve it when g = 10.

38. The Periods of Roots of Unity. Before taking up the regular
polygon of 17 sides, we first explain another method of finding the pairs of
imaginary seventh roots of unity R and R6, R2 and R5, R3 and R4, employed
in (16). To this end we seek a positive integer g such that the six roots can be
arranged in the order

(20) R, Rg, Rg
2
, Rg

3
, Rg

4
, Rg

5
,
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where each term is the gth power of its predecessor. Trying g = 2, we find that
the fourth term would then be R8 = R. Hence g 6= 2. Trying g = 3, we obtain

(21) R, R3, R2, R6, R4, R5,

where each term is the cube of its predecessor.
To define three periods, each of two terms,

(16′) R+R6, R2 +R5, R3 +R4,

we select the first term R of (21) and the third term R6 after it and add them,
then the second term R3 and the third term R4 after it, and finally R2 and
the third term R5 after it.

We may also define two periods, each of three terms,

z1 = R+R2 +R4, z2 = R3 +R6 +R5,

by taking alternate terms in (21).
Since z1 + z2 = −1, z1z2 = 3 + R + · · · + R6 = 2, z1 and z2 are the roots of

z2 + z + 2 = 0. Then R, R2, R4 are the roots of w3 − z1w2 + z2w − 1 = 0.

39. Regular Polygon of 17 Sides. Let R be a root 6= 1 of x17 = 1.
Then

R17 − 1
R− 1

= R16 +R15 + · · ·+R+ 1 = 0.

As in §38, we may take g = 3 and arrange the roots R, . . . , R16 so that each is
the cube of its predecessor:

R, R3, R9, R10, R13, R5, R15, R11, R16, R14, R8, R7, R4, R12, R2, R6.

Taking alternate terms, we get the two periods, each of eight terms,

y1 = R+R9 +R13 +R15 +R16 +R8 +R4 +R2,

y2 = R3 +R10 +R5 +R11 +R14 +R7 +R12 +R6.

Hence y1 + y2 = −1. We find that y1y2 = 4(R+ · · ·+R16) = −4. Thus

(22) y1, y2 satisfy y2 + y − 4 = 0.

Taking alternate terms in y1, we obtain the two periods

z1 = R+R13 +R16 +R4, z2 = R9 +R15 +R8 +R2.
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Taking alternate terms in y2, we get the two periods

w1 = R3 +R5 +R14 +R12, w2 = R10 +R11 +R7 +R6.

Thus z1 + z2 = y1, w1 + w2 = y2. We find that z1z2 = w1w2 = −1. Hence

z1, z2 satisfy z2 − y1z − 1 = 0,(23)
w1, w2 satisfy w2 − y2w − 1 = 0.(24)

Taking alternate terms in z1, we obtain the periods

v1 = R+R16, v2 = R13 +R4.

Now, v1 + v2 = z1, v1v2 = w1. Hence

v1, v2 satisfy v2 − z1v + w1 = 0,(25)
R, R16 satisfy ρ2 − v1ρ+ 1 = 0.(26)

Hence we can find R by solving a series of quadratic equations. Which of
the sixteen values of R we shall thus obtain depends upon which root of (22)
is called y1 and which y2, and similarly in (23)–(26). We shall now show what
choice is to be made in each such case in order that we shall finally get the
value of the particular root

R = cos
2π
17

+ i sin
2π
17
.

Then
1
R

= cos
2π
17
− i sin

2π
17
, v1 = R +

1
R

= 2 cos
2π
17
,

R4 = cos
8π
17

+ i sin
8π
17
, v2 = R4+

1
R4

= 2 cos
8π
17
.

Hence v1 > v2 > 0, and therefore z1 = v1 + v2 > 0. Similarly,

w1 = R3 +
1
R3

+R5 +
1
R5

= 2 cos
6π
17

+ 2 cos
10π
17

= 2 cos
6π
17
− 2 cos

7π
17

> 0,

y2 = 2 cos
6π
17

+ 2 cos
10π
17

+ 2 cos
12π
17

+ 2 cos
14π
17

< 0,

since only the first cosine in y2 is positive and it is numerically less than the
third. But y1y2 = −4. Hence y1 > 0. Thus (22)–(24) give

y1 = 1
2(
√

17− 1), y2 = 1
2(−
√

17− 1),

z1 = 1
2y1 +

√
1 + 1

4y
2
1, w1 = 1

2y2 +
√

1 + 1
4y

2
2.
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We may readily construct segments of these lengths. Evidently
√

17 is the
length of the hypotenuse of a right triangle whose legs are of lengths 1 and 4,
while for the radical in z1 we employ legs of lengths 1 and 1

2y1. We thus obtain
segments representing the coefficients of the quadratic equation (25). Its roots
may be constructed as in §29. The larger root is

v1 = 2 cos
2π
17
.

Hence we can construct angle 2π/17 with ruler and compasses, and therefore
a regular polygon of 17 sides.

40. Construction of a Regular Polygon of 17 Sides. In a circle
of radius unity, construct two perpendicular diameters AB, CD, and draw
tangents at A, D, which intersect at S (Fig. 11). Find the point E in AS for
which AE = 1

4AS, by means of two bisections. Then

AE = 1
4 , OE = 1

4

√
17.

Let the circle with center E and radius OE cut AS at F and F ′. Then

AF = EF − EA = OE − 1
4 = 1

2y1,

AF ′ = EF ′ + EA = OE + 1
4 = −1

2y2,

OF =
√
OA2 +AF 2 =

√
1 + 1

4y
2
1, OF ′ =

√
1 + 1

4y
2
2.

Let the circle with center F and radius FO cut AS at H, outside of F ′F ; that
with center F ′ and radius F ′O cut AS at H ′ between F ′ and F . Then

AH = AF + FH = AF +OF = 1
2y1 +

√
1 + 1

4y
2
1 = z1,

AH ′ = F ′H ′ − F ′A = OF ′ −AF ′ = w1.

Fig. 11
A

B

C
D

M
N L

P

O

F ′ S E A H ′ F H

Q

T
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It remains to construct the roots of equation (25). This will be done as
in §29. Draw HTQ parallel to AO and intersecting OC produced at T . Make
TQ = AH ′. Draw a circle having as diameter the line BQ joining B = (0, 1)
with Q = (z1, w1). The abscissas ON and OM of the intersections of this
circle with the x-axis OT are the roots of (25). Hence the larger root v1 is
OM = 2 cos(2π/17).

Let the perpendicular bisector LP of OM cut the initial circle of unit radius
at P . Then

cosLOP = OL = cos
2π
17
, LOP =

2π
17
.

Hence the chord CP is a side of the inscribed regular polygon of 17 sides,
constructed with ruler and compasses.

41. Regular Polygon of n Sides. If n be a prime such that n − 1 is
a power 2h of 2 (as is the case when n = 3, 5, 17), the n − 1 imaginary nth
roots of unity can be separated into 2 sets each of 2h−1 roots, each of these
sets subdivided into 2 sets each of 2h−2 roots, etc., until we reach the pairs R,
1/R and R2, 1/R2, etc., and in fact1 in such a manner that we have a series of
quadratic equations, the coefficients of any one of which depend only upon the
roots of quadratic equations preceding it in the series. Note that this was the
case for n = 17 and for n = 5. It is in this manner that it can be proved that
the roots of xn = 1 can be found in terms of square roots, so that a regular
polygon of n sides can be inscribed by ruler and compasses, provided n be a
prime of the form 2h + 1.

If n be a product of distinct primes of this form, or 2k times such a product
(for example, n = 15, 30 or 6), or if n = 2m (m > 1), it follows readily (see
Ex. 1 below) that we can inscribe with ruler and compasses a regular polygon
of n sides. But this is impossible for all other values of n.

EXERCISES

1. If a and b are relatively prime numbers, so that their greatest common divisor
is unity, we can find integers c and d such that ac + bd = 1. Show that, if regular
polygons of a and b sides can be constructed and hence angles 2π/a and 2π/b, a
regular polygon of a · b sides can be derived.

2. If p = 2h + 1 is a prime, h is a power of 2. For h = 20, 21, 22, 23, the values
of p are 3, 5, 17, 257 and are primes. [Show that h cannot have an odd factor other
than unity.]

1See the author’s article “Constructions with ruler and compasses; regular polygons,” in
Monographs on Topics of Modern Mathematics, Longmans, Green and Co., 1911, p. 374.
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3. For 13th roots of unity find the least g (§38), write out the three periods each
of four terms, and find the cubic equation having them as roots.

4. For the primitive ninth roots of unity find the least g and write out the three
periods each of two terms.

Solve the following reciprocal equations:

5. y4 + 4y3 − 3y2 + 4y + 1 = 0. 6. y5 − 4y4 + y3 + y2 − 4y + 1 = 0.

7. 2y6−5y5 +4y4−4y2 +5y−2 = 0. 8. y5 + 1 = 31(y + 1)5.





CHAPTER IV
Solution of Cubic and Quartic Equations; Their Discriminants

42. Reduced Cubic Equation. If, in the general cubic equation

(1) x3 + bx2 + cx+ d = 0,

we set x = y − b/3, we obtain the reduced cubic equation

(2) y3 + py + q = 0,

lacking the square of the unknown y, where

(3) p = c− b2

3
, q = d− bc

3
+

2b3

27
.

After finding the roots y1, y2, y3 of (2), we shall know the roots of (1):

(4) x1 = y1 −
b

3
, x2 = y2 −

b

3
, x3 = y3 −

b

3
.

43. Algebraic Solution of the Reduced Cubic Equation. We shall
employ the method which is essentially the same as that given by Vieta in 1591.
We make the substitution

(5) y = z − p

3z

in (2) and obtain

z3 − p3

27z3
+ q = 0,

since the terms in z cancel, and likewise the terms in 1/z. Thus

(6) z6 + qz3 − p3

27
= 0.

Solving this as a quadratic equation for z3, we obtain

(7) z3 = −q
2
±
√
R, R =

(p
3

)3
+
(q

2

)2
.
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By §8, any number has three cube roots, two of which are the products of
the remaining one by the imaginary cube roots of unity:

(8) ω = −1
2 + 1

2

√
3i, ω2 = −1

2 −
1
2

√
3i.

We can choose particular cube roots

(9) A = 3

√
−q

2
+
√
R, B = 3

√
−q

2
−
√
R,

such that AB = −p/3, since the product of the numbers under the cube root
radicals is equal to (−p/3)3. Hence the six values of z are

A, ωA, ω2A, B, ωB, ω2B.

These can be paired so that the product of the two in each pair is −p/3:

AB = −p
3
, ωA · ω2B = −p

3
, ω2A · ωB = −p

3
.

Hence with any root z is paired a root equal to −p/(3z). By (5), the sum of
the two is a value of y. Hence the three values of y are

(10) y1 = A+B, y2 = ωA+ ω2B, y3 = ω2A+ ωB.

It is easy to verify that these numbers are actually roots of (2). For example,
since ω3 = 1, the cube of y2 is

A3 +B3 + 3ωA2B + 3ω2AB2 = −q − p(ωA+ ω2B) = −q − py2,

by (9) and AB = −p/3.
The numbers (10) are known as Cardan’s formulas for the roots of a reduced

cubic equation (2). The expression A + B for a root was first published by
Cardan in his Ars Magna of 1545, although he had obtained it from Tartaglia
under promise of secrecy.

Example. Solve y3 − 15y − 126 = 0.

Solution. The substitution (5) is here y = z + 5/z. We get

z6 − 126z3 + 125 = 0, z3 = 1 or 125.

The pairs of values of z whose product is 5 are 1 and 5, ω and 5ω2, ω2 and 5ω. Their
sums 6, ω + 5ω2, and ω2 + 5ω give the three roots.

EXERCISES

Solve the equations:
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1. y3 − 18y + 35 = 0. 2. x3 + 6x2 + 3x+ 18 = 0.

3. y3 − 2y + 4 = 0. 4. 28x3 + 9x2 − 1 = 0.

44. Discriminant. The product of the squares of the differences of the
roots of any equation in which the coefficient of the highest power of the
unknown is unity shall be called the discriminant of the equation. For the
reduced cubic (2), the discriminant is

(11) (y1 − y2)2(y1 − y3)2(y2 − y3)2 = −4p3 − 27q2,

a result which should be memorized in view of its important applications. It
is proved by means of (10) and ω3 = 1, ω2 + ω + 1 = 0, as follows:

y1 − y2 = (1− ω)(A− ω2B), y1 − y3 = (1− ω2)(A− ωB),

y2 − y3 = (ω − ω2)(A−B),

(1− ω)(1− ω2) = 3, ω − ω2 =
√

3i.

Since 1, ω, ω2 are the cube roots of unity,

(x− 1)(x− ω)(x− ω2) ≡ x3 − 1,

identically in x. Taking x = A/B, we see that

(A−B)(A− ωB)(A− ω2B) = A3 −B3 = 2
√
R,

by (9). Hence
(y1 − y2)(y1 − y3)(y2 − y3) = 6

√
3
√
Ri.

Squaring, we get (11), since −108R = −4p3−27q2 by (7). For later use, we note
that the discriminant of the reduced cubic is equal to −108R.

The discriminant ∆ of the general cubic (1) is equal to the discriminant of
the corresponding reduced cubic (2). For, by (4),

x1 − x2 = y1 − y2, x1 − x3 = y1 − y3, x2 − x3 = y2 − y3.

Inserting in (11) the values of p and q given by (3), we get

(12) ∆ = 18bcd− 4b3d+ b2c2 − 4c3 − 27d2.

It is sometimes convenient to employ a cubic equation

(13) ax3 + bx2 + cx+ d = 0 (a 6= 0),

in which the coefficient of x3 has not been made unity by division. The product P of
the squares of the differences of its roots is evidently derived from (12) by replacing
b, c, d by b/a, c/a, d/a. Hence

(14) a4P = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

This expression (and not P itself) is called the discriminant of (13).
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45. Number of Real Roots of a Cubic Equation. A cubic equation
with real coefficients has three distinct real roots if its discriminant ∆ is posi-
tive, a single real root and two conjugate imaginary roots if ∆ is negative, and
at least two equal real roots if ∆ is zero.

If the roots x1, x2, x3 are all real and distinct, the square of the difference
of any two is positive and hence ∆ is positive.

If x1 and x2 are conjugate imaginaries and hence x3 is real (§21), (x1−x2)2

is negative. Since x1−x3 and x2−x3 are conjugate imaginaries, their product
is positive. Hence ∆ is negative.

If x1 = x2, ∆ is zero. If x2 were imaginary, its conjugate would be equal
to x3 by §21, and x2, x3 would be the roots of a real quadratic equation.
The remaining factor x− x1 of the cubic would have real coefficients, whereas
x1 = x2 is imaginary. Hence the equal roots must be real.

Our theorem now follows from these three results by formal logic. For
example, if ∆ is positive, the roots are all real and distinct, since otherwise
either two would be imaginary and ∆ would be negative, or two would be
equal and ∆ would be zero.

EXERCISES

Compute the discriminant and find the number of real roots of

1. y3 − 2y − 4 = 0. 2. y3 − 15y + 4 = 0.

3. y3 − 27y + 54 = 0. 4. x3 + 4x2 − 11x+ 6 = 0.

5. Show by means of §21 that a double root of a real cubic is real.

46. Irreducible Case. When the roots of a real cubic equation are all
real and distinct, the discriminant ∆ is positive and R = −∆/108 is negative,
so that Cardan’s formulas present the values of the roots in a form involving
cube roots of imaginaries. This is called the irreducible case since it may be
shown that a cube root of a general complex number cannot be expressed in
the form a + bi, where a and b involve only real radicals.1 While we cannot
always find these cube roots algebraically, we have learned how to find them
trigonometrically (§8).

Example. Solve the cubic equation (2) when p = −12, q = −8
√

2.

1Author’s Elementary Theory of Equations, pp. 35, 36.
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Solution. By (7), R = −32 Hence formulas (9) become

A =
3

√
4
√

2 + 4
√

2i, B =
3

√
4
√

2− 4
√

2i.

The values of A were found in §8. The values of B are evidently the conjugate
imaginaries of the values of A. Hence the roots are

4 cos 15◦, 4 cos 135◦, 4 cos 255◦.

EXERCISES

1. Solve y3 − 15y + 4 = 0. 2. Solve y3 − 2y − 1 = 0.

3. Solve y3 − 7y + 7 = 0. 4. Solve x3 + 3x2 − 2x− 5 = 0.

5. Solve x3 + x2 − 2x− 1 = 0. 6. Solve x3 + 4x2 − 7 = 0.

47. Trigonometric Solution of a Cubic Equation with ∆ > 0. When
the roots of a real cubic equation are all real, i.e., if R is negative, they can be
computed simultaneously by means of a table of cosines with much less labor
than required by Cardan’s formulas. To this end we write the trigonometric
identity

cos 3A = 4 cos3A− 3 cosA

in the form
z3 − 3

4z −
1
4 cos 3A = 0 (z = cosA).

In the given cubic y3 + py + q = 0 take y = nz; then

z3 +
p

n2
z +

q

n3
= 0,

which will be identical with the former equation in z if

n =
√
−4

3p, cos 3A = −1
2q ÷

√
−p3/27.

Since R = p3/27 + q2/4 is negative, p must be negative, so that n is real and
the value of cos 3A is real and numerically less than unity. Hence we can find
3A from a table of cosines. The three values of z are then

cosA, cos(A+ 120◦), cos(A+ 240◦).

Multiplying these by n, we obtain the three roots y correct to a number of
decimal places which depends on the tables used.
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EXERCISES

1. For y3 − 2y − 1 = 0, show that n2 = 8/3, cos 3A =
√

27/32, 3A = 23◦17′0′′,
cosA = 0.99084, cos(A + 120◦) = −0.61237, cos(A + 240◦) = −0.37847, and that
the roots y are 1.61804, −1, −0.61804.

2. Solve Exs. 1, 3, 4, 5, 6 of §46 by trigonometry.

48. Ferrari’s Solution of the Quartic Equation. The general quartic
equation

(15) x4 + bx3 + cx2 + dx+ e = 0,

or equation of degree four, becomes after transposition of terms

x4 + bx3 = −cx2 − dx− e.

The left member contains two of the terms of the square of x2 + 1
2bx. Hence

by completing the square, we get

(x2 + 1
2bx)2 = (1

4b
2 − c)x2 − dx− e.

Adding (x2 + 1
2bx)y + 1

4y
2 to each member, we obtain

(16) (x2 + 1
2bx+ 1

2y)2 = (1
4b

2 − c+ y)x2 + (1
2by − d)x+ 1

4y
2 − e.

The second member is a perfect square of a linear function of x if and only if
its discriminant is zero (§12):

(1
2by − d)2 − 4(1

4b
2 − c+ y)(1

4y
2 − e) = 0,

which may be written in the form

(17) y3 − cy2 + (bd− 4e)y − b2e+ 4ce− d2 = 0.

Choose any root y of this resolvent cubic equation (17). Then the right
member of (16) is the square of a linear function, say mx+ n. Thus

(18) x2 + 1
2bx+ 1

2y = mx+ n or x2 + 1
2bx+ 1

2y = −mx− n.

The roots of these quadratic equations are the four roots of (16) and hence
of the equivalent equation (15). This method of solution is due to Ferrari
(1522–1565).

Example. Solve x4 + 2x3 − 12x2 − 10x+ 3 = 0.
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Solution. Here b = 2, c = −12, d = −10, e = 3. Hence (17) becomes

y3 + 12y2 − 32y − 256 = 0,

which by Ex. 2 of §24 has the root y = −4. Our quartic may be written in the form

(x2 + x)2 = 13x2 + 10x− 3.

Adding (x2 + x)(−4) + 4 to each member, we get

(x2 + x− 2)2 = 9x2 + 6x+ 1 = (3x+ 1)2,

x2 + x− 2 = ±(3x+ 1), x2 − 2x− 3 = 0 or x2 + 4x− 1 = 0,

whose roots are 3, −1, −2±
√

5. As a check, note that the sum of the roots is −2.

EXERCISES

1. Solve x4 − 8x3 + 9x2 + 8x− 10 = 0. Note that (17) is (y − 9)(y2 − 24) = 0.

2. Solve x4 − 2x3 − 7x2 + 8x + 12 = 0. Since the right member of (16) is
(8 + y)(x2 − x) + 1

4y
2 − 12, use y = −8.

3. Solve x4 − 3x2 + 6x− 2 = 0.

4. Solve x4 − 2x2 − 8x− 3 = 0.

5. Solve x4 − 10x2 − 20x− 16 = 0.

49. Roots of the Resolvent Cubic Equation. Let y1 be the root y
which was employed in §48. Let x1 and x2 be the roots of the first quadratic
equation (18), and x3 and x4 the roots of the second. Then

x1x2 = 1
2y1 − n, x3x4 = 1

2y1 + n, x1x2 + x3x4 = y1.

If, instead of y1, another root y2 or y3 of the resolvent cubic (17) had been
employed in §48, quadratic equations different from (18) would have been
obtained, such, however, that their four roots are x1, x2, x3, x4, paired in a
new manner. The root which is paired with x1 is x2 or x3 or x4. It is now
plausible that the values of the three y’s are

(19) y1 = x1x2 + x3x4, y2 = x1x3 + x2x4, y3 = x1x4 + x2x3.
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To give a more formal proof that the y’s given by (19) are the roots of (17),
we employ (§20)

x1 + x2 + x3 + x4 = −b, x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −d,
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = c, x1x2x3x4 = e.

From these four relations we conclude that

y1 + y2 + y3 = c,

y1y2 + y1y3 + y2y3 = (x1 + x2 + x3 + x4)(x1x2x3 + · · ·+ x2x3x4)− 4x1x2x3x4

= bd− 4e,

y1y2y3 = (x1x2x3 + · · · )2 + x1x2x3x4
{

(x1 + · · · )2 − 4(x1x2 + · · · )
}

= d2 + e(b2 − 4c).

Hence (§20) y1, y2, y3 are the roots of the cubic equation (17).

50. Discriminant. The discriminant ∆ of the quartic equation (15) is
defined to be the product of the squares of the differences of its roots:

∆ = (x1 − x2)2(x1 − x3)2(x1 − x4)2(x2 − x3)2(x2 − x4)2(x3 − x4)2.

The fact that ∆ is equal to the discriminant of the resolvent cubic equa-
tion (17) follows at once from (19), by which

y1 − y2 = (x1 − x4)(x2 − x3), y1 − y3 = (x1 − x3)(x2 − x4),

y2 − y3 = (x1 − x2)(x3 − x4), (y1 − y2)2(y1 − y3)2(y2 − y3)2 = ∆.

Hence (§44) ∆ is equal to the discriminant −4p3 − 27q2 of the reduced cubic
Y 3 + pY + q = 0, obtained from (17) by setting y = Y + c/3. Thus

(20) p = bd− 4e− 1
3c

2, q = −b2e+ 1
3bcd+ 8

3ce− d
2 − 2

27c
3.

Theorem. The discriminant of any quartic equation (15) is equal to the
discriminant of its resolvent cubic equation and therefore is equal to the dis-
criminant −4p3 − 27q2 of the corresponding reduced cubic Y 3 + pY + q = 0,
whose coefficients have the values (20).
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EXERCISES

1. Find the discriminant of x4−3x3+x2+3x−2 = 0 and show that the equation
has a multiple root.

2. Show by its discriminant that x4 − 8x3 + 22x2 − 24x+ 9 = 0 has a multiple
root.

3. If a real quartic equation has two pairs of conjugate imaginary roots, show
that its discriminant ∆ is positive. Hence prove that, if ∆ < 0, there are exactly
two real roots.

4. Hence show that x4− 3x3 + 3x2− 3x+ 2 = 0 has two real and two imaginary
roots.

51. Descartes’ Solution of the Quartic Equation. Replacing x by
z − b/4 in the general quartic (15), we obtain the reduced quartic equation

(21) z4 + qz2 + rz + s = 0,

lacking the term with z3. We shall prove that we can express the left member
of (21) as the product of two quadratic factors

(z2 + 2kz + l)(z2 − 2kz +m) = z4 + (l +m− 4k2)z2 + 2k(m− l)z + lm.

The conditions are

l +m− 4k2 = q, 2k(m− l) = r, lm = s.

If k 6= 0, the first two give

2l = q + 4k2 − r

2k
, 2m = q + 4k2 +

r

2k
.

Inserting these values in 2l · 2m = 4s, we obtain

(22) 64k6 + 32qk4 + 4(q2 − 4s)k2 − r2 = 0.

The latter may be solved as a cubic equation for k2. Any root k2 6= 0 gives a
pair of quadratic factors of (21):

(23) z2 ± 2kz + 1
2q + 2k2 ∓ r

4k
.

The four roots of these two quadratic functions are the four roots of (21). This
method of Descartes (1596–1650) therefore succeeds unless every root of (22)
is zero, whence q = s = r = 0, so that (12) is the trivial equation z4 = 0.

For example, consider z4 − 3z2 + 6z − 2 = 0. Then (22) becomes

64k6 − 3 · 32k4 + 4 · 17k2 − 36 = 0.

The value k2 = 1 gives the factors z2 + 2z − 1, z2 − 2z + 2. Equating these to zero,
we find the four roots −1±

√
2, 1±

√
−1.
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52. Symmetrical Form of Descartes’ Solution. To obtain this sym-
metrical form, we use all three roots k2

1, k2
2, k2

3 of (22). Then

k2
1 + k2

2 + k2
3 = −1

2q, k2
1k

2
2k

2
3 =

r2

64
.

It is at our choice as to which square root of k2
1 is denoted by +k1 and which

by −k1, and likewise as to ±k2, ±k3. For our purposes any choice of these
signs is suitable provided the choice give

(24) k1k2k3 = −r
8
.

Let k1 6= 0. The quadratic function (23) is zero for k = k1 if

(z ± k1)2 = −q
2
− k2

1 ±
r

4k1
= k2

2 + k2
3 ∓

8k1k2k3

4k1
= (k2 ∓ k3)2.

Hence the four roots of the quartic equation (21) are

(25) k1 + k2 + k3, k1 − k2 − k3, −k1 + k2 − k3, −k1 − k2 + k3.

EXERCISES

1. Solve Exs. 4, 5 of §48 by the method of Descartes.

2. By writing y1, y2, y3 for the roots k2
1, k2

2, k2
3 of

(26) 64y3 + 32qy2 + 4(q2 − 4s)y − r2 = 0,

show that the four roots of (21) are the values of

(27) z =
√
y1 +

√
y2 +

√
y3

for all combinations of the square roots for which

(28)
√
y1 ·
√
y2 ·
√
y3 = −r

8
.

3. Euler (1707–1783) solved (21) by assuming that it has a root of the form (27).
Square (27), transpose the terms free of radicals, square again, replace the last factor
of 8
√
y1y2y3 (

√
y1+
√
y2+
√
y3) by z, and identify the resulting quartic in z with (21).

Show that y1, y2, y3 are the roots of (26) and that relation (28) holds.

4. Find the six differences of the roots (25) and verify that the discriminant ∆
of (21) is equal to the quotient of the discriminant of (26) by 46.
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5. In the theory of the inflexion points of a plane cubic curve there occurs the
equation

z4 − Sz2 − 4
3Tz −

1
12S

2 = 0.

Show that (26) now becomes(
y − S

6

)3

= C, C ≡
(
T

6

)2

−
(
S

6

)3

,

and that the roots of the quartic equation are

±
√

1
6S + 3

√
C ±

√
1
6S + ω

3
√
C ±

√
1
6S + ω2 3

√
C,

where ω is an imaginary cube root of unity and the signs are to be chosen so that
the product of the three summands is equal to +1

6T .

MISCELLANEOUS EXERCISES

1. Find the coordinates of the single real point of intersection of the parabola
y = x2 and the hyperbola xy − 4x+ y + 6 = 0.

2. Show that the abscissas of the points of intersection of y = x2 and ax2−xy+
y2 − x− (a+ 5)y − 6 = 0 are the roots of x4 − x3 − 5x2 − x− 6 = 0. Compute the
discriminant of the latter and show that only two of the four points of intersection
are real.

3. Find the coordinates of the two real points in Ex. 2.

4. A right prism of height h has a square base whose side is b and whose diagonal
is therefore b

√
2. If v denotes the volume and d a diagonal of the prism, v = hb2

and d2 = h2 + (b
√

2)2. Multiply the last equation by h and replace hb2 by v. Hence
h3 − d2h+ 2v = 0. Its discriminant is zero if d = 3

√
3, v = 27; find h.

5. Find the admissible values of h in Ex. 4 when d = 12, v = 332.5.

6. Find a necessary and sufficient condition that quartic equation (15) shall
have one root the negative of another root.

Hint: (x1 + x2)(x3 + x4) = q − y1. Hence substitute q for y in (17).

7. In the study of parabolic orbits occurs the equation

tan 1
2v + 1

3 tan3 1
2v = t.

Prove that there is a single real root and that it has the same sign as t.

8. In the problem of three astronomical bodies occurs the equation x3+ax+2 =
0. Prove that it has three real roots if and only if a 5 −3.





CHAPTER V
The Graph of an Equation

53. Use of Graphs in the Theory of Equations. To find geometri-
cally the real roots of a real equation f(x) = 0, we construct a graph of y = f(x)
and measure the distances from the origin O to the intersections of the graph
and the x-axis, whose equation is y = 0.

×(−1, 4)

×(0,−3)

×(1,−8)

×(2,−11)
×

(3,−12)

×(4,−11)

×(5,−8)

×(6,−3)

×(7, 4)

4

11

O

P

Q

Y

X

Fig. 12

For example to find geometrically the
real roots of

(1) x2 − 6x− 3 = 0,

we equate the left member to y and make a
graph of

(1′) y = x2 − 6x− 3.

We obtain the parabola in Fig. 12. Of the
points shown, P has the abscissa x = OQ = 4
and the ordinate y = −QP = −11. From the
points of intersection of y = 0 (the x-axis
OX) with the parabola, we obtain the ap-
proximate values 6.46 and −0.46 of the roots
of (1).

EXERCISES

1. Find graphically the real roots of x2 − 6x+ 7 = 0.

Hint: For each x, y = x2 − 6x + 7 exceeds the y in (1′) by 10, so that the new
graph is obtained by shifting the parabola in Fig. 12 upward 10 units, leaving the
axes OX and OY unchanged. What amounts to the same thing, but is simpler to
do, we leave the parabola and OY unchanged, and move the axis OX downward
10 units.

2. Discuss graphically the reality of the roots of x2 − 6x+ 12 = 0.

3. Find graphically the roots of x2 − 6x+ 9 = 0.
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×

×

×

×O
1

Fig. 13

54. Caution in Plotting. If the example set were

(2) y = 8x4 − 14x3 − 9x2 + 11x− 2,

one might use successive integral values of x, obtain the
points (−2, 180), (−1, 0), (0,−2), (1,−6), (2, 0), (3, 220), all
but the first and last of which are shown (by crosses) in
Fig. 13, and be tempted to conclude that the graph is a
U-shaped curve approximately like that in Fig. 12 and that
there are just two real roots, −1 and 2, of

(2′) 8x4 − 14x3 − 9x2 + 11x− 2 = 0.

But both of these conclusions would be false. In fact, the
graph is a W-shaped curve (Fig. 13) and the additional
real roots are 1

4 and 1
2 .

This example shows that it is often necessary to employ
also values of x which are not integers. The purpose of
the example was, however, not to point out this obvious
fact, but rather to emphasize the chance of serious error
in sketching a curve through a number of points, however

numerous. The true curve between two points below the x-axis may not cross
the x-axis, or may have a peak and actually cross the x-axis twice, or may be
an M-shaped curve crossing it four times, etc.

O
X

Y

M ′

M

Fig. 14

For example, the graph (Fig. 14) of

(3) y = x3 + 4x2 − 11

crosses the x-axis only once; but this fact cannot be
established by a graph located by a number of points,
however numerous, whose abscissas are chosen at ran-
dom.

We shall find that correct conclusions regarding the
number of real roots may be deduced from a graph
whose bend points (§55) have been located.

55. Bend Points. A point (like M or M ′ in
Fig. 14) is called a bend point of the graph of y = f(x)
if the tangent to the graph at that point is horizontal
and if all of the adjacent points of the graph lie below
the tangent or all above the tangent. The first, but
not the second, condition is satisfied by the point O of
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X

Y

O

Fig. 15

X

Y

O
x h

y

Y − y

P

Q

Fig. 16

the graph of y = x3 given in Fig. 15 (see §57). In the
language of the calculus, f(x) has a (relative) maximum or minimum value at
the abscissa of a bend point on the graph of y = f(x).

Let P = (x, y) and Q = (x + h, Y ) be two points on the graph, sketched in
Fig. 16, of y = f(x). By the slope of a straight line is meant the tangent of the
angle between the line and the x-axis, measured counter-clockwise from the
latter. In Fig. 16, the slope of the straight line PQ is

(4) Y − y
h

=
f(x+ h)− f(x)

h
.

For equation (3), f(x) = x3 + 4x2 − 11. Hence

f(x+ h) = (x+ h)3 + 4(x+ h)2 − 11

= x3 + 4x2 − 11 + (3x2 + 8x)h+ (3x+ 4)h2 + h3.

The slope (4) of the secant PQ is therefore here

3x2 + 8x+ (3x+ 4)h+ h2.

Now let the point Q move along the graph toward P . Then h approaches the
value zero and the secant PQ approaches the tangent at P . The slope of the
tangent at P is therefore the corresponding limit 3x2 + 8x of the preceding
expression. We call 3x2 + 8x the derivative of x3 + 4x2 − 11.

In particular, if P is a bend point, the slope of the (horizontal) tangent
at P is zero, whence 3x2 + 8x = 0, x = 0 or x = −8

3 . Equation (3) gives the
corresponding values of y. The resulting points

M = (0,−11), M ′ = (−8
3 ,−

41
27)
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are easily shown to be bend points. Indeed, for x > 0 and for x between −4
and 0, x2(x+ 4) is positive, and hence f(x) > −11 for such values of x, so that
the function (3) has a relative minimum at x = 0. Similarly, there is a relative
maximum at x = −8

3 . We may also employ the general method of §59 to show
that M and M ′ are bend points. Since these bend points are both below the
x-axis we are now certain that the graph crosses the x-axis only once.

The use of the bend points insures greater accuracy to the graph than the
use of dozens of points whose abscissas are taken at random.

56. Derivatives. We shall now find the slope of the tangent to the graph
of y = f(x), where f(x) is any polynomial

(5) f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

We need the expansion of f(x+ h) in powers of x. By the binomial theorem,

a0(x+ h)n = a0x
n + na0x

n−1h+
n(n− 1)

2
a0x

n−2h2 + · · · ,

a1(x+ h)n−1 = a1x
n−1 + (n− 1)a1x

n−2h+
(n− 1)(n− 2)

2
a1x

n−3h2 + · · · ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an−2(x+ h)2 = an−2x

2 + 2an−2xh+ an−2h
2,

an−1(x+ h) = an−1x+ an−1h,

an = an.

The sum of the left members is evidently f(x + h). On the right, the sum of
the first terms (i.e., those free of h) is f(x). The sum of the coefficients of h
is denoted by f ′(x), the sum of the coefficients of 1

2h
2 is denoted by f ′′(x), . . . ,

the sum of the coefficients of
hk

1 · 2 · · · k
is denoted by f (k)(x). Thus

f ′(x) = na0x
n−1 + (n− 1)a1x

n−2 + · · ·+ 2an−2x+ an−1,(6)
f ′′(x) = n(n− 1)a0x

n−2 + (n− 1)(n− 2)a1x
n−3 + · · ·+ 2an−2,(7)

etc. Hence we have

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
h2

1 · 2
+ f ′′′(x)

h3

1 · 2 · 3
(8)

+ · · ·+ f (r)(x)
hr

r!
+ · · ·+ f (n)(x)

hn

n!
,
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where r! is the symbol, read r factorial, for the product 1 ·2 ·3 · · · (r−1)r. Here
r is a positive integer, but we include the case r = 0 by the definition, 0! = 1.

This formula (8) is known as Taylor’s theorem for the present case of a
polynomial f(x) of degree n. We call f ′(x) the (first) derivative of f(x), and
f ′′(x) the second derivative of f(x), etc. Concerning the fact that f ′′(x) is equal
to the first derivative of f ′(x) and that, in general, the kth derivative f (k)(x)
of f(x) is equal to the first derivative of f (k−1)(x), see Exs. 6–9 of the next set.

In view of (8), the limit of (4) as h approaches zero is f ′(x). Hence f ′(x) is
the slope of the tangent to the graph of y = f(x) at the point (x, y).

In (5) and (6), let every a be zero except a0. Thus the derivative of a0x
n is

na0x
n−1, and hence is obtained by multiplying the given term by its exponent n

and then diminishing its exponent by unity. For example, the derivative of 2x3

is 6x2.
Moreover, the derivative of f(x) is equal to the sum of the derivatives of

its separate terms. Thus the derivative of x3 + 4x2 − 11 is 3x2 + 8x, as found
also in §55.

EXERCISES

1. Show that the slope of the tangent to y = 8x3 − 22x2 + 13x − 2 at (x, y) is
24x2 − 44x+ 13, and that the bend points are (0.37, 0.203), (1.46,−5.03), approxi-
mately. Draw the graph.

2. Prove that the bend points of y = x3−2x−5 are (.82,−6.09), (−.82, −3.91),
approximately. Draw the graph and locate the real roots.

3. Find the bend points of y = x3 + 6x2 + 8x+ 8. Locate the real roots.

4. Locate the real roots of f(x) = x4 + x3 − x− 2 = 0.

Hints: The abscissas of the bend points are the roots of f ′(x) = 4x3 + 3x2 − 1 = 0.
The bend points of y = f ′(x) are (0,−1) and (−1

2 ,−
3
4), so that f ′(x) = 0 has a

single real root (it is just less than 1
2). The single bend point of y = f(x) is (1

2 ,−
37
16),

approximately.

5. Locate the real roots of x6 − 7x4 − 3x2 + 7 = 0.

6. Prove that f ′′(x), given by (7), is equal to the first derivative of f ′(x).

7. If f(x) = f1(x) + f2(x), prove that the kth derivative of f is equal to the
sum of the kth derivatives of f1 and f2. Use (8).

8. Prove that f (k)(x) is equal to the first derivative of f (k−1)(x). Hint: prove
this for f = axm; then prove that it is true for f = f1 + f2 if true for f1 and f2.
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9. Find the third derivative of x6 + 5x4 by forming successive first derivatives;
also that of 2x5 − 7x3 + x.

10. Prove that if g and k are polynomials in x, the derivative of gk is g′k + gk′.
Hint: multiply the members of g(x + h) = g(x) + g′(x)h + · · · and k(x + h) =
k(x) + k′(x)h+ · · · and use (8) for f = gk.

57. Horizontal Tangents. If (x, y) is a bend point of the graph of y =
f(x), then, by definition, the slope of the tangent at (x, y) is zero. Hence (§56),
the abscissa x is a root of f ′(x) = 0. In Exs. 1–5 of the preceding set, it
was true that, conversely, any real root of f ′(x) = 0 is the abscissa of a bend
point. However, this is not always the case. We shall now consider in detail
an example illustrating this fact. The example is the one merely mentioned
in §55 to indicate the need of the second requirement made in our definition
of a bend point.

The graph (Fig. 15) of y = x3 has no bend point since x3 increases when
x increases. Nevertheless, the derivative 3x2 of x3 is zero for the real value
x = 0. The tangent to the curve at (0, 0) is the horizontal line y = 0. It may be
thought of as the limiting position of a secant through O which meets the curve
in two further points, seen to be equidistant from O. When one, and hence
also the other, of the latter points approaches O, the secant approaches the
position of tangency. In this sense the tangent at O is said to meet the curve
in three coincident points, their abscissas being the three coinciding roots of
x3 = 0. In the language of §17, x3 = 0 has the triple root x = 0. The subject of
bend points, to which we recur in §59, has thus led us to a digression on the
important subject of multiple roots.

58. Multiple Roots. In (8) replace x by α, and h by x− α. Then

f(x) = f(α) + f ′(α)(x− α) + f ′′(α)
(x− α)2

1 · 2
+ f ′′′(α)

(x− α)3

1 · 2 · 3
+ · · ·(9)

+ f (m−1)(α)
(x− α)m−1

(m− 1)!
+ f (m)(α)

(x− α)m

m!
+ · · · .

By definition (§17) α is a root of f(x) = 0 of multiplicity m if f(x) is exactly
divisible by (x−α)m, but not by (x−α)m+1. Hence α is a root of multiplicity m
of f(x) = 0 if and only if

(10) f(α) = 0, f ′(α) = 0, f ′′(α) = 0, . . . , f (m−1)(α) = 0, f (m)(α) 6= 0.

For example, x4 + 2x3 = 0 has the triple root x = 0 since 0 is a root, and since
the first and second derivatives 4x3 + 6x2 and 12x2 + 12x are zero for x = 0, while
the third derivative 24x+ 12 is not zero for x = 0.



§58.] MULTIPLE ROOTS 69

If in (9) we replace f by f ′ and hence f (k) by f (k+1), or if we differentiate
every term with respect to x, we see by either method that

(11) f ′(x) = f ′(α) + f ′′(α)(x− α) + · · ·+ f (m−1)(α)
(x− α)m−2

(m− 2)!

+ f (m)(α)
(x− α)m−1

(m− 1)!
+ · · · .

Let f(x) and f ′(x) have the common factor (x−α)m−1, but not the common
factor (x − α)m, where m > 1. Since (11) has the factor (x − α)m−1, we have
f ′(α) = 0, . . . , f (m−1)(α) = 0. Since also f(x) has the factor x − α, evidently
f(α) = 0. Then, by (9), f(x) has the factor (x− α)m, which, by hypothesis, is
not also a factor of f ′(x). Hence, in (11), f (m)(α) 6= 0. Thus, by (10), α is a
root of f(x) = 0 of multiplicity m.

Conversely, let α be a root of f(x) = 0 of multiplicity m. Then relations (10)
hold, and hence, by (11), f ′(x) is divisible by (x−α)m−1, but not by (x−α)m.
Thus f(x) and f ′(x) have the common factor (x−α)m−1, but not the common
factor (x− α)m.

We have now proved the following useful result.

Theorem. If f(x) and f ′(x) have a greatest common divisor g(x) in-
volving x, a root of g(x) = 0 of multiplicity m − 1 is a root of f(x) = 0 of
multiplicity m, and conversely any root of f(x) = 0 of multiplicity m is a root
of g(x) = 0 of multiplicity m− 1.

In view of this theorem, the problem of finding all the multiple roots of
f(x) = 0 and the multiplicity of each multiple root is reduced to the problem
of finding the roots of g(x) = 0 and the multiplicity of each.

For example, let f(x) = x3 − 2x2 − 4x+ 8. Then

f ′(x) = 3x2 − 4x− 4, 9f(x) = f ′(x)(3x− 2)− 32(x− 2).

Since x − 2 is a factor of f ′(x), it may be taken to be the greatest common divisor
of f(x) and f ′(x), the choice of the constant factor c in c(x−2) being here immaterial.
Hence 2 is a double root of f(x) = 0, while the remaining root −2 is a simple root.

EXERCISES

1. Prove that x3 − 7x2 + 15x− 9 = 0 has a double root.

2. Show that x4 − 8x2 + 16 = 0 has two double roots.

3. Prove that x4 − 6x2 − 8x− 3 = 0 has a triple root.

4. Test x4 − 8x3 + 22x2 − 24x+ 9 = 0 for multiple roots.
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5. Test x3 − 6x2 + 11x− 6 = 0 for multiple roots.

6. Test x4 − 9x3 + 9x2 + 81x− 162 = 0 for multiple roots.

59. Ordinary and Inflexion Tangents. The equation of the straight
line through the point (α, β) with the slope s is y − β = s(x − α). The slope
of the tangent to the graph of y = f(x) at the point (α, β) on it is s = f ′(α)
by §56. Also, β = f(α). Hence the equation of the tangent is

(12) y = f(α) + f ′(α)(x− α).

By subtracting the members of this equation from the corresponding mem-
bers of equation (9), we see that the abscissas x of the points of intersection
of the graph of y = f(x) with its tangent satisfy the equation

f ′′(α)
(x− α)2

2!
+ f ′′′(α)

(x− α)3

3!
+ · · ·+ f (m−1)(α)

(x− α)m−1

(m− 1)!

+ f (m)(α)
(x− α)m

m!
+ · · · = 0.

Here the term containing f (m−1)(α) must evidently be suppressed if m = 2,
since the term containing f (m)(α) then coincides with the first term.

If α is a root of multiplicity m of this equation, i.e., if the left member is
divisible by (x − α)m, but not by (x − α)m+1, the point (α, β) is counted as
m coincident points of intersection of the curve with its tangent (just as in the
case of y = x3 and its tangent y = 0 in §57). This will be the case if and only
if

(13) f ′′(α) = 0, f ′′′(α) = 0, . . . , f (m−1)(α) = 0, f (m)(α) 6= 0,

in which m > 1 and, as explained above, only the final relation f ′′(α) 6= 0 is
retained if m = 2. If m = 3, the conditions are f ′′(α) = 0, f (3)(α) 6= 0.

For example, if f(x) = x4 and α = 0, then f ′′(0) = f ′′′(0) = 0, f (4)(0) = 24 6= 0,
so that m = 4. The graph of y = x4 is a U-shaped curve, whose intersection with the
tangent (the x-axis) at (0, 0) is counted as four coincident points of intersection.

Given f(x) and α, we can find, as in the preceding example, the value of m
for which relations (13) hold. We then apply the

Theorem. If m is even (m > 0), the points of the curve in the vicinity
of the point of tangency (α, β) are all on the same side of the tangent, which
is then called an ordinary tangent. But if m is odd (m > 1), the curve
crosses the tangent at the point of tangency (α, β), and this point is called an
inflexion point, while the tangent is called an inflexion tangent.
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For example, in Fig. 15, OX is an inflexion tangent, while the tangent at any
point except O is an ordinary tangent. In Figs. 18, 19, 20, the tangents at the
points marked by crosses are ordinary tangents, but the tangent at the point midway
between them and on the y-axis is an inflexion tangent.

To simplify the proof, we first take as new axes lines parallel to the old axes
and intersecting at (α, β). In other words, we set x− α = X, y − β = Y , where
X, Y are the coordinates of (x, y) referred to the new axes. Since β = f(α), the
tangent (12) becomes Y = f ′(α)X, while, by (9), y = f(x) = β+f ′(α)(x−α)+· · ·
becomes

Y = f ′(α)X + f ′′(α)
X2

2
+ · · · = f ′(α)X + f (m)(α)

Xm

m!
+ · · · ,

after omitting terms which are zero by (13).

X X-Axis

y

y

Y − y

(X,Y )
(x, y)

O
θ

Fig. 17

x

x

x-A
xis

Y
-A

xi
s

y
-A

xi
sTo simplify further the algebraic work,

we pass to oblique axes,1 the new y-axis
coinciding with the Y -axis, while the new
x-axis is the tangent, the angle between
which and the X-axis is designated by θ.
Then

tan θ = f ′(α).

By Fig. 17,

X = x cos θ, Y − y = f ′(α)X.

Hence when expressed in terms of the
new coordinates x, y, the tangent is y = 0,
while the equation (14) of the curve becomes

y = cxm + dxm+1 + · · · , c =
f (m)(α) cosm θ

m!
6= 0.

For x sufficiently small numerically, whether positive or negative, the sum
of the terms after cxm is insignificant in comparison with cxm, so that y has
the same sign as cxm (§64). Hence, if m is even, the points of the curve in
the vicinity of the origin and on both sides of it are all on the same side of
the x-axis, i.e., the tangent. But, if m is odd, the points with small positive
abscissas x lie on one side of the x-axis and those with numerically small
negative abscissas lie on the opposite side.

Our transformations of coordinates changed the equations of the curve and
of its tangent, but did not change the curve itself and its tangent. Hence our
theorem is proved.

1Since the earlier x, y do not occur in (14) and the new equation of the tangent, we shall
designate the final coordinates by x, y without confusion.
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By our theorem, α is the abscissa of an inflexion point of the graph of
y = f(x) if and only if conditions (13) hold with m odd (m > 1). These
conditions include neither f(α) = 0 nor f ′(α) = 0, in contrast with (10). In the
theory of equations we are primarily interested in the abscissas α of only those
points of inflexion whose inflexion tangents are horizontal, and are interested
in them, because we must exclude such roots α of f ′(x) = 0 when seeking the
abscissas of bend points, which are the important points for our purposes. A
point on the graph at which the tangent is both horizontal and an ordinary
tangent is a bend point by the definition in §55. Hence if we apply our theorem
to the special case f ′(α) = 0, we obtain the following

Criterion. Any root α of f ′(x) = 0 is the abscissa of a bend point of
the graph of y = f(x) or of a point with a horizontal inflexion tangent according
as the value of m for which relations (13) hold is even or odd.

For example, if f(x) = x4, then α = 0 and m = 4, so that (0, 0) is a bend point
of the U-shaped graph of y = x4. If f(x) = x3, then α = 0 and m = 3, so that
(0, 0) is a point with a horizontal inflexion tangent (OX in Fig. 15) of the graph of
y = x3.

EXERCISES

1. If f(x) = 3x5 + 5x3 + 4, the only real root of f ′(x) = 0 is x = 0. Show
that (0, 4) is an inflexion point, and thus that there is no bend point and hence that
f(x) = 0 has a single real root.

2. Prove that x3 − 3x2 + 3x+ c = 0 has an inflexion point, but no bend point.

3. Show that x5 − 10x3 − 20x2 − 15x + c = 0 has two bend points and no
horizontal inflexion tangents.

4. Prove that 3x5−40x3+240x+c = 0 has no bend point, but has two horizontal
inflexion tangents.

5. Prove that any function x3−3αx2 + · · · of the third degree can be written in
the form f(x) = (x−α)3 + ax+ b. The straight line having the equation y = ax+ b
meets the graph of y = f(x) in three coincident points with the abscissa α and hence
is an inflexion tangent. If we take new axes of coordinates parallel to the old and
intersecting at the new origin (α, 0), i.e., if we make the transformation x = X + α,
y = Y , of coordinates, we see that the equation f(x) = 0 becomes a reduced cubic
equation X3 + pX + q = 0 (§42).

6. Find the inflexion tangent to y = x3 + 6x2−3x+ 1 and transform x3 + 6x2−
3x+ 1 = 0 into a reduced cubic equation.
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60. Real Roots of a Real Cubic Equation. It suffices to consider

f(x) = x3 − 3lx+ q (l 6= 0),

in view of Ex. 5 above. Then f ′ = 3(x2 − l), f ′′ = 6x. If l < 0, there is no bend
point and the cubic equation f(x) = 0 has a single real root. If l > 0, there are
two bend points

(
√
l, q − 2l

√
l), (−

√
l, q + 2l

√
l),

which are shown by crosses in Figs. 18–20 for the graph of y = f(x) in the three
possible cases specified by the inequalities shown below the figures. For a large
positive x, the term x3 in f(x) predominates, so that the graph contains a point
high up in the first quadrant, thence extends downward to the right-hand bend
point, then ascends to the left-hand bend point, and finally descends. As a
check, the graph contains a point far down in the third quadrant, since for x
negative, but sufficiently large numerically, the term x3 predominates and the
sign of y is negative.

×

×

O X

Y

q = 2l
√
l

Fig. 18

q 5 −2l
√
l
×

× O X

Y

Fig. 19

×

×

O X

Y

−2l
√
l < q < 2l

√
l

Fig. 20

If the equality sign holds in Fig. 18
or Fig. 19, a necessary and sufficient
condition for which is q2 = 4l3, one of
the bend points is on the x-axis, and the
cubic equation has a double root. The
inequalities in Fig. 20 hold if and only
if q2 < 4l3, which implies that l > 0.
Hence x3−3lx+ q = 0 has three distinct
real roots if and only if q2 < 4l3, a single
real root if and only if q2 > 4l3, a double root (necessarily real) if and only if
q2 = 4l3 and l 6= 0, and a triple root if q2 = 4l3 = 0.

EXERCISES

Find the bend points, sketch the graph, and find the number of real roots of
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1. x3 + 2x− 4 = 0.

2. x3 − 7x+ 7 = 0.

3. x3 − 2x− 1 = 0.

4. x3 + 6x2 − 3x+ 1 = 0.

5. Prove that the inflexion point of y = x3 − 3lx+ q is (0, q).

6. Show that the theorem in the text is equivalent to that in §45.

7. Prove that, if m and n are positive odd integers and m > n, xm+pxn+q = 0
has no bend point and hence has a single real root if p > 0; but, if p < 0, it has just
two bend points which are on the same side or opposite sides of the x-axis according
as (np

m

)m
+
(

nq

m− n

)m−n
is positive or negative, so that the number of real roots is 1 or 3 in the respective
cases.

8. Draw the graph of y = x4 − x2. By finding its intersections with the line
y = mx+ b, solve x4 − x2 −mx− b = 0.

9. Prove that, if p and q are positive, x2m − px2n + q = 0 has four distinct real
roots, two pairs of equal roots, or no real root, according as

(np
m

)m
−
(

nq

m− n

)m−n
> 0, = 0, or < 0.

10. Prove that no straight line crosses the graph of y = f(x) in more than n points
if the degree n of the real polynomial f(x) exceeds unity. [Apply §16.] This fact
serves as a check on the accuracy of a graph.

61. Definition of Continuity of a Polynomial. Hitherto we have
located certain points of the graph of y = f(x), where f(x) is a polynomial
in x with real coefficients, and taken the liberty to join them by a continuous
curve.

A polynomial f(x) with real coefficients shall be called continuous at x = a,
where a is a real constant, if the difference

D = f(a+ h)− f(a)

is numerically less than any assigned positive number p for all real values of h
sufficiently small numerically.
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62. Any Polynomial f(x) with real Coefficients is continuous at
x = a, where a is any real Constant. Taylor’s formula (8) gives

D = f ′(a)h+
f ′′(a)
1 · 2

h2 + · · ·+ f (n)(a)
1 · 2 · · ·n

hn.

This polynomial is a special case of

F = a1h+ a2h
2 + · · ·+ anh

n.

We shall prove that, if a1, . . . , an are all real, F is numerically less than any
assigned positive number p for all real values of h sufficiently small numerically.
Denote by g the greatest numerical value of a1, . . . , an. If h is numerically less
than k, where k < 1, we see that F is numerically less than

g(k + k2 + · · ·+ kn) < g
k

1− k
< p, if k < p

p+ g
.

Hence a real polynomial f(x) is continuous at every real value of x. But the
function tanx is not continuous at x = 90◦ (§63).

63. Root between a and b if f(a) and f(b) have opposite Signs. If
the coefficients of a polynomial f(x) are real and if a and b are real numbers
such that f(a) and f(b) have opposite signs, the equation f(x) = 0 has at least
one real root between a and b; in fact, an odd number of such roots, if an m-fold
root is counted as m roots.

×

×

O
π

a
b

π
2

Fig. 21

The only argument2 given here (other than that in
Ex. 5 below) is one based upon geometrical intuition. We
are stating that, if the points(

a, f(a)
)
,

(
b, f(b)

)
lie on opposite sides of the x-axis, the graph of y = f(x)
crosses the x-axis once, or an odd number of times, be-
tween the vertical lines through these two points. Indeed,
the part of the graph between these verticals is a contin-
uous curve having one and only one point on each inter-
mediate vertical line, since the function has a single value
for each value of x.

This would not follow for the graph of y2 = x, which
is a parabola with the x-axis as its axis. It may not cross

2An arithmetical proof based upon a refined theory of irrational numbers is given in
Weber’s Lehrbuch der Algebra, ed. 2, vol. 1, p. 123.
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the x-axis between the two initial vertical lines, but cross at a point to the left
of each.

A like theorem does not hold for f(x) = tanx, when x is measured in radians
and 0 < a < π/2 < b < π, since tanx is not continuous at x = π/2. When t

increases from a to π/2, tanx increases without limit. When x decreases from
b to π/2, tanx decreases without limit. There is no root between a and b of
tanx = 0.

EXERCISES

1. Prove that 8x3− 4x2− 18x+ 9 = 0 has a root between 0 and 1, one between
1 and 2, and one between −2 and −1.

2. Prove that 16x4− 24x2 + 16x− 3 = 0 has a triple root between 0 and 1, and
a simple root between −2 and −1.

3. Prove that if a < b < c · · · < l, and α, β, . . . , λ are positive, these quantities
being all real,

α

x− a
+

β

x− b
+

γ

x− c
+ · · ·+ λ

x− l
+ t = 0

has a real root between a and b, one between b and c, . . . one between k and l, and
if t is negative one greater than l, but if t is positive one less than a.

4. Verify that the equation in Ex. 3 has no imaginary root by substituting r+si
and r − si in turn for x, and subtracting the results.

5. Admitting that an equation f(x) ≡ xn + · · · = 0 with real coefficients has
n roots, show algebraically that there is a real root between a and b if f(a) and f(b)
have opposite signs. Note that a pair of conjugate imaginary roots c ± di are the
roots of

(x− c)2 + d2 = 0

and that this quadratic function is positive if x is real. Hence if x1, . . . , xr are the
real roots and

φ(x) ≡ (x− x1) · · · (x− xr),

then φ(a) and φ(b) have opposite signs. Thus a− xi and b− xi have opposite signs
for at least one real root xi. (Lagrange.)
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64. Sign of a Polynomial. Given a polynomial

f(x) = a0x
n + a1x

n−1 + · · ·+ an (a0 6= 0)

with real coefficients, we can find a positive number P such that f(x) has the
same sign as a0x

n when x > P . In fact,

f(x) = xn(a0 + φ), φ =
a1

x
+
a2

x2
+ · · ·+ an

xn
.

By the result in §62, the numerical value of φ is less than that of a0 when
1/x is positive and less than a sufficiently small positive number, say 1/P , and
hence when x > P . Then a0 + φ has the same sign as a0, and hence f(x) the
same sign as a0x

n.
The last result holds also when x is a negative number sufficiently large

numerically. For, if we set x = −X, the former case shows that f(−X) has the
same sign as (−1)na0X

n when X is a sufficiently large positive number.
We shall therefore say briefly that, for x = +∞, f(x) has the same sign

as a0; while, for x = −∞, f(x) has the same sign as a0 if n is even, but the
sign opposite to a0 if n is odd.

EXERCISES

1. Prove that x3 + ax2 + bx − 4 = 0 has a positive real root [use x = 0 and
x = +∞].

2. Prove that x3 + ax2 + bx + 4 = 0 has a negative real root [use x = 0 and
x = −∞].

3. Prove that if a0 > 0 and n is odd, a0x
n + · · ·+ an = 0 has a real root of sign

opposite to the sign of an [use x = −∞, 0, +∞].

4. Prove that x4 + ax3 + bx2 + cx− 4 = 0 has a positive and a negative root.

5. Show that any equation of even degree n in which the coefficient of xn and
the constant term are of opposite signs has a positive and a negative root.

65. Rolle’s Theorem. Between two consecutive real roots a and b of
f(x) = 0, there is an odd number of real roots of f ′(x) = 0, a root of multiplic-
ity m being counted as m roots.

Let

f(x) ≡ (x− a)r(x− b)sQ(x), a < b,
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where Q(x) is a polynomial divisible by neither x − a nor x − b. Then by the
rule for the derivative of a product (§56, Ex. 10),

(x− a)(x− b)f ′(x)
f(x)

≡ r(x− b) + s(x− a) + (x− a)(x− b)Q
′(x)

Q(x)
.

The second member has the value r(a−b) < 0 for x = a and the value s(b−a) > 0
for x = b, and hence vanishes an odd number of times between a and b (§63).
But, in the left member, (x−a)(x−b) and f(x) remain of constant sign between
a and b, since f(x) = 0 has no root between a and b. Hence f ′(x) vanishes an
odd number of times.

Corollary. Between two consecutive real roots α and β of f ′(x) = 0
there occurs at most one real root of f(x) = 0.

For, if there were two such real roots a and b of f(x) = 0, the theorem shows
that f ′(x) = 0 would have a real root between a and b and hence between α

and β, contrary to hypothesis.
Applying also §63 we obtain the

Criterion. If α and β are consecutive real roots of f ′(x) = 0, then
f(x) = 0 has a single real root between α and β if f(α) and f(β) have opposite
signs, but no root if they have like signs. At most one real root of f(x) = 0
is greater than the greatest real root of f ′(x) = 0, and at most one real root of
f(x) = 0 is less than the least real root of f ′(x) = 0.

If f(α) = 0 for our root α of f ′(x) = 0, α is a multiple root of f(x) = 0 and
it would be removed before the criterion is applied.

Example. For f(x) = 3x5 − 25x3 + 60x− 20,

1
15f
′(x) = x4 − 5x2 + 4 = (x2 − 1)(x2 − 4).

Hence the roots of f ′(x) = 0 are ±1, ±2. Now

f(−∞) = −∞, f(−2) = −36, f(−1) = −58, f(1) = 18, f(2) = −4, f(+∞) = +∞.

Hence there is a single real root in each of the intervals

(−1, 1), (1, 2), (2,+∞),

and two imaginary roots. The three real roots are positive.
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EXERCISES

1. Prove that x5 − 5x+ 2 = 0 has 1 negative, 2 positive and 2 imaginary roots.

2. Prove that x6 + x− 1 = 0 has 1 negative, 1 positive and 4 imaginary roots.

3. Show that x5 − 3x3 + 2x2 − 5 = 0 has two imaginary roots, and a real root
in each of the intervals (−2,−1.5), (−1.5,−1), (1, 2).

4. Prove that 4x5 − 3x4 − 2x2 + 4x− 10 = 0 has a single real root.

5. Show that, if f (k)(x) = 0 has imaginary roots, f(x) = 0 has imaginary roots.

6. Derive Rolle’s theorem from the fact that there is an odd number of bend
points between a and b, the abscissa of each being a root of f ′(x) = 0 of odd
multiplicity, while the abscissa of an inflexion point with a horizontal tangent is a
root of f ′(x) = 0 of even multiplicity.





CHAPTER VI
Isolation of the Real Roots of a Real Equation

66. Purpose and Methods of Isolating the Real Roots. In the
next chapter we shall explain processes of computing the real roots of a given
real equation to any assigned number of decimal places. Each such method
requires some preliminary information concerning the root to be computed.
For example, it would be sufficient to know that the root is between 4 and 5,
provided there be no other root between the same limits. But in the contrary
case, narrower limits are necessary, such as 4 and 4.3, with the further fact
that only one root is between these new limits. Then that root is said to be
isolated.

If an equation has a single positive root and a single negative root, the real roots
are isolated, since there is a single root between −∞ and 0, and a single one between
0 and +∞. However, for the practical purpose of their computation, we shall need
narrower limits, sufficient to fix the first significant figure of each root, for example
−40 and −30, or 20 and 30.

We may isolate the real roots of f(x) = 0 by means of the graph of y = f(x).
But to obtain a reliable graph, we saw in Chapter V that we must employ the
bend points, whose abscissas occur among the roots of f ′(x) = 0. Since the
latter equation is of degree n − 1 when f(x) = 0 is of degree n, this method
is usually impracticable when n exceeds 3. The method based on Rolle’s
theorem (§65) is open to the same objection.

The most effective method is that due to Sturm (§68). We shall, however,
begin with Descartes’ rule of signs since it is so easily applied. Unfortunately
it rarely tells us the exact number of real roots.

67. Descartes’ Rule of Signs. Two consecutive terms of a real poly-
nomial or equation are said to present a variation of sign if their coefficients
have unlike signs. By the variations of sign of a real polynomial or equation
we mean all the variations presented by consecutive terms.

Thus, in x5 − 2x3 − 4x2 + 3 = 0, the first two terms present a variation of sign,
and likewise the last two terms. The number of variations of sign of the equation is
two.
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Descartes’ Rule The number of positive real roots of an equation with
real coefficients is either equal to the number of its variations of sign or is less
than that number by a positive even integer. A root of multiplicity m is here
counted as m roots.

For example, x6 − 3x2 + x+ 1 = 0 has either two or no positive roots, the exact
number not being found. But 3x3 − x− 1 = 0 has exactly one positive root, which
is a simple root.

Descartes’ rule will be derived in §73 as a corollary to Budan’s theorem.
The following elementary proof1 was communicated to the author by Professor
D. R. Curtiss.

Consider any real polynomial

f(x) ≡ a0x
n + a1x

n−1 + · · ·+ alx
n−l (a0 6= 0, al 6= 0).

Let r be a positive real number. By actual multiplication,

F (x) ≡ (x− r)f(x) ≡ A0x
n+1 +A1x

n + · · ·+Al+1x
n−l,

where

A0 = a0, A1 = a1 − ra0, A2 = a2 − ra1, . . . , Al = al − ral−1, Al+1 = −ral.

In f(x) let ak1 be the first non-vanishing coefficient of different sign from a0,
let ak2 be the first non-vanishing coefficient following ak1 and of the same sign
as a0, etc., the last such term, akv , being either al or of the same sign as al.
Evidently v is the number of variations of sign of f(x).

For example, if f(x) ≡ 2x6 +3x5−4x4−6x3 +7x, we have v = 2, ak1 = a2 = −4,
ak2 = a5 = 7. Note that a4 = 0 since x2 is absent.

The numbers A0, Ak1 , . . . , Akv , Al+1 are all different from zero and have
the same signs as a0, ak1 , . . . , akv ,−al, respectively. This is obviously true for
A0 = a0 and Al+1 = −ral. Next, Aki

is the sum of the non-vanishing number
aki

and the number −raki−1, which is either zero or else of the same sign as
aki

since aki−1 is either zero or of opposite sign to aki
. Hence the sum Aki

is
not zero and has the same sign as aki

.
By hypothesis, each of the numbers a0, ak1 , . . . , akv after the first is of op-

posite sign to its predecessor, while −al is of opposite sign to akv . Hence each
term after the first in the sequence A0, Ak1 , . . . , Akv , Al+1 is of opposite sign to
its predecessor. Thus these terms present v+1 variations of sign. We conclude
that F (x) has at least one more variation of sign than f(x). But we may go
further and prove the following

1The proofs given in college algebras are mere verifications of special cases.
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Lemma. The number of variations of sign of F (x) is equal to that of f(x)
increased by some positive odd integer.

For, the sequence A0, A1, . . . , Ak1 has an odd number of variations of sign
since its first and last terms are of opposite sign; and similarly for the v se-
quences

Ak1 , Ak1+1, . . . , Ak2 ;
. . . . . . . . . . . . . . . . .

Akv , Akv+1, . . . , Al+1.

The total number of variations of sign of the entire sequence A0, A1, . . . , Al+1

is evidently the sum of the numbers of variations of sign for the v + 1 partial
sequences indicated above, and is thus the sum of v + 1 positive odd integers.
Since each such odd integer may be expressed as 1 plus 0 or a positive even
integer, the sum mentioned is equal to v + 1 plus 0 or a positive even integer,
i.e., to v plus a positive odd integer.

To prove Descartes’ rule of signs, consider first the case in which f(x) = 0
has no positive real roots, i.e., no real root between 0 and +∞. Then f(0) and
f(∞) are of the same sign (§63), and hence the first and last coefficients of
f(x) are of the same sign.2 Thus f(x) has either no variations of sign or an
even number of them, as Descartes’ rule requires.

Next, let f(x) = 0 have the positive real roots r1, . . . , rk and no others. A
root of multiplicity m occurs here m times, so that the r’s need not be distinct.
Then

f(x) ≡ (x− r1) · · · (x− rk)φ(x),

where φ(x) is a polynomial with real coefficients such that φ(x) = 0 has no
positive real roots. We saw in the preceding paragraph that φ(x) has either
no variations of sign or an even number of them. By the Lemma, the product
(x − rk)φ(x) has as the number of its variations of sign the number for φ(x)
increased by a positive odd integer. Similarly when we introduce each new
factor x− ri. Hence the number of variations of sign of the final product f(x)
is equal to that of φ(x) increased by k positive odd integers, i.e., by k plus 0
or a positive even integer. Since φ(x) has either no variations of sign or an
even number of them, the number of variations of sign of f(x) is k plus 0 or a
positive even integer, a result equivalent to our statement of Descartes’ rule.

If −p is a negative root of f(x) = 0, then p is a positive root of f(−x) = 0.
Hence we obtain the

Corollary. The number of negative roots of f(x) = 0 is either equal
to the number of variations of sign of f(−x) or is less than that number by a
positive even integer.

2In case f(x) has a factor xn−l, we use the polynomial f(x)/xn−l instead of f(x) in this
argument.
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For example, x4 + 3x3 + x− 1 = 0 has a single negative root, which is a simple
root, since x4 − 3x3 − x− 1 = 0 has a single positive root.

As indicated in Exs. 10, 11 below, Descartes’ rule may be used to isolate
the roots.

EXERCISES

Prove by Descartes’ rule the statements in Exs. 1–8, 12, 15.

1. An equation all of whose coefficients are of like sign has no positive root.
Why is this self-evident?

2. There is no negative root of an equation, like x5 − 2x4 − 3x2 + 7x − 5 = 0,
in which the coefficients of the odd powers of x are of like sign, and the coefficients
of the even powers (including the constant term) are of the opposite sign. Verify by
taking x = −p, where p is positive.

3. x3 + a2x+ b2 = 0 has two imaginary roots if b 6= 0.

4. For n even, xn − 1 = 0 has only two real roots.

5. For n odd, xn − 1 = 0 has only one real root.

6. For n even, xn + 1 = 0 has no real root; for n odd, only one.

7. x4 + 12x2 + 5x− 9 = 0 has just two imaginary roots.

8. x4 + a2x2 + b2x− c2 = 0 (c 6= 0) has just two imaginary roots.

9. Descartes’ rule enables us to find the exact number of positive roots only
when all the coefficients are of like sign or when

f(x) = xn + p1x
n−1 + · · ·+ pn−sx

s − pn−s+1x
s−1 − · · · − pn = 0,

each pi being = 0. Without using that rule, show that the latter equation has one
and only one positive root r. Hints: There is a positive root r by §63 (a = 0, b =∞).
Denote by P (x) the quotient of the sum of the positive terms by xs, and by −N(x)
that of the negative terms. Then N(x) is a sum of powers of 1/x with positive
coefficients.

If x > r, P (x) > P (r), N(x) < N(r), f(x) > 0;
If x < r, P (x) < P (r), N(x) > N(r), f(x) < 0.

10. Prove that we obtain an upper limit to the number of real roots of f(x) = 0
between a and b, if we set

x =
a+ by

1 + y

(
∴ y =

x− a
b− x

)
,

multiply by (1 + y)n, and apply Descartes’ rule to the resulting equation in y.
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11. Show by the method of Ex. 10 that there is a single root between 2 and 4 of
x3 + x2 − 17x+ 15 = 0. Here we have 27y3 + 3y2 − 23y − 7 = 0.

12. In the astronomical problem of three bodies occurs the equation

r5 + (3− µ)r4 + (3− 2µ)r3 − µr2 − 2µr − µ = 0,

where 0 < µ < 1. Why is there a single positive real root?

13. Prove that x5 + x3 − x2 + 2x − 3 = 0 has four imaginary roots by applying
Descartes’ rule to the equation in y whose roots are the squares of the roots of the
former. Transpose the odd powers, square each new member, and replace x2 by y.

14. As in Ex. 13 prove that x3 + x2 + 8x+ 6 = 0 has imaginary roots.

15. If a real equation f(x) = 0 of degree n has n real roots, the number of
positive roots is exactly equal to the number V of variations of sign. Hint: consider
also f(−x).

16. Show that x3−x2 +2x+1 = 0 has no positive root. Hint: multiply by x+1.

68. Sturm’s Method. Let f(x) = 0 be an equation with real coefficients,
and f ′(x) the first derivative of f(x). The first step of the usual process of
finding the greatest common divisor of f(x) and f ′(x), if it exists, consists in
dividing f by f ′ until we obtain a remainder r(x), whose degree is less than that
of f ′. Then, if q1 is the quotient, we have f = q1f

′ + r. Instead of dividing f ′
by r, as in the greatest common divisor process, and proceeding further in that
manner, we write f2 = −r, divide f ′ by f2, and denote by f3 the remainder
with its sign changed. Thus

f = q1f
′ − f2, f ′ = q2f2 − f3, f2 = q3f3 − f4, . . . .

The latter equations, in which each remainder is exhibited as the negative
of a polynomial fi, yield a modified process, just as effective as the usual
process, of finding the greatest common divisor G of f(x) and f ′(x) if it exists.

Suppose that −f4 is the first constant remainder. If f4 = 0, then f3 = G,
since f3 divides f2 and hence also f ′ and f (as shown by using our above
equations in reverse order); while, conversely, any common divisor of f and f ′
divides f2 and hence also f3.

But if f4 is a constant 6= 0, f and f ′ have no common divisor involving x.
This case arises if and only if f(x) = 0 has no multiple root (§58), and is the
only case considered in §§69–71.

Before stating Sturm’s theorem in general, we shall state it for a numerical
case and illustrate its use.
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Example. f(x) = x3 + 4x2 − 7. Then f ′ = 3x2 + 8x,

f = (1
3x+ 4

9)f ′ − f2, f2≡ 32
9 x+ 7,

f ′ = (27
32x+ 603

1024)f2 − f3, f3= 4221
1024 .

For3 x = 1, the signs of f , f ′, f2, f3, are − + + + , showing a single variation
of consecutive signs. For x = 2, the signs are + + + + , showing no variation of
sign. Sturm’s theorem states that there is a single real root between 1 and 2. For
x = −∞, the signs are − + − + , showing 3 variations of sign. The theorem states
that there are 3− 1 = 2 real roots between −∞ and 1. Similarly,

x Signs Variations
−1 − − + + 1
−2 + − − + 2
−3 + + − + 2
−4 − + − + 3

Hence there is a single real root between −2 and −1, and a single one between −4
and −3. Each real root has now been isolated since we have found two numbers such
that a single real root lies between these two numbers or is equal to one of them.

Some of the preceding computation was unnecessary. After isolating a root
between −2 and −1, we know that the remaining root is isolated between −∞
and −2. But before we can compute it by Horner’s method, we need closer limits
for it. For that purpose it is unnecessary to find the signs of all four functions, but
merely the sign of f (§63).

69. Sturm’s Theorem. Let f(x) = 0 be an equation with real coeffi-
cients and without multiple roots. Modify the usual process of seeking the
greatest common divisor of f(x) and its first derivative4 f1(x) by exhibiting
each remainder as the negative of a polynomial fi:

(1) f = q1f1 − f2, f1 = q2f2 − f3, f2 = q3f3 − f4, . . . , fn−2 = qn−1fn−1 − fn,

where5 fn is a constant 6= 0. If a and b are real numbers, a < b, neither a root
of f(x) = 0, the number of real roots of f(x) = 0 between a and b is equal to
the excess of the number of variations of sign of

(2) f(x), f1(x), f2(x), . . . , fn−1(x), fn

3Before going further, check that the preceding relations hold when x = 1 by inserting
the computed values of f , f ′, f2 for x = 1. Experience shows that most students make some
error in finding f2, f3, . . . , so that checking is essential.

4The notation f1 instead of the usual f ′, and similarly f0 instead of f , is used to regularize
the notation of all the f ’s, and enables us to write any one of the equations (1) in the single
notation (3).

5If the division process did not yield ultimately a constant remainder 6= 0, f and f1
would have a common factor involving x, and hence f(x) = 0 a multiple root.
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for x = a over the number of variations of sign for x = b. Terms which vanish
are to be dropped out before counting the variations of sign.

For brevity, let Vx denote the number of variations of sign of the numbers (2)
when x is a particular real number not a root of f(x) = 0.

First, if x1 and x2 are real numbers such that no one of the continuous
functions (2) vanishes for a value of x between x1 and x2 or for x = x1 or
x = x2, the values of any one of these functions for x = x1 and x = x2 are both
positive or both negative (§63), and therefore Vx1 = Vx2 .

Second, let ρ be a root of fi(x) = 0, where 1 5 i < n. Then

(3) fi−1(x) = qifi(x)− fi+1(x)

and the equations (1) following this one show that fi−1(x) and fi(x) have
no common divisor involving x (since it would divide the constant fn). By
hypothesis, fi(x) has the factor x− ρ. Hence fi−1(x) does not have this factor
x− ρ. Thus, by (3),

fi−1(ρ) = −fi+1(ρ) 6= 0.

Hence, if p is a sufficiently small positive number, the values of

fi−1(x), fi(x), fi+1(x)

for x = ρ − p show just one variation of sign, since the first and third values
are of opposite sign, and for x = ρ + p show just one variation of sign, and
therefore show no change in the number of variations of sign for the two values
of x.

It follows from the first and second cases that Vα = Vβ if α and β are real
numbers for neither of which any one of the functions (2) vanishes and such
that no root of f(x) = 0 lies between α and β.

Third, let r be a root of f(x) = 0. By Taylor’s theorem (8) of §56,

f(r − p) = −pf ′(r) + 1
2p

2f ′′(r)− · · · ,
f(r + p) = pf ′(r) + 1

2p
2f ′′(r) + · · · .

If p is a sufficiently small positive number, each of these polynomials in p has
the same sign as its first term. For, after removing the factor p, we obtain
a quotient of the form a0 + s, where s = a1p + a2p

2 + · · · is numerically less
than a0 for all values of p sufficiently small (§62). Hence if f ′(r) is positive,
f(r−p) is negative and f(r+p) is positive, so that the terms f(x), f1(x) ≡ f ′(x)
have the signs − + for x = r − p and the signs + + for x = r + p. If f ′(r) is
negative, these signs are + − and − − respectively. In each case, f(x), f1(x)
show one more variation of sign for x = r − p than for x = r + p. Evidently p
may be chosen so small that no one of the functions f1(x), . . . , fn vanishes for
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either x = r − p or x = r + p, and such that f1(x) does not vanish for a value
of x between r−p and r+p, so that f(x) = 0 has the single real root r between
these limits (§65). Hence by the first and second cases, f1, . . . , fn show the
same number of variations of sign for x = r − p as for x = r + p. Thus, for the
entire series of functions (2), we have

(4) Vr−p − Vr+p = 1.

The real roots of f(x) = 0 within the main interval from a to b (i.e., the
aggregate of numbers between a and b) separate it into intervals. By the
earlier result, Vx has the same value for all numbers in the same interval. By
the present result (4), the value Vx in any interval exceeds the value for the next
interval by unity. Hence Va exceeds Vb by the number of real roots between a

and b.

Corollary. If a < b, then Va = Vb.
A violation of this Corollary usually indicates an error in the computation

of Sturm’s functions (2).

EXERCISES

Isolate by Sturm’s theorem the real roots of

1. x3 + 2x+ 20 = 0. 2. x3 + x− 3 = 0.

70. Simplifications of Sturm’s Functions. In order to avoid fractions,
we may first multiply f(x) by a positive constant before dividing it by by f1(x),
and similarly multiply f1 by a positive constant before dividing it by f2, etc.
Moreover, we may remove from any fi any factor ki which is either a positive
constant or a polynomial in x positive for6 a 5 x 5 b, and use the remaining
factor Fi as the next divisor.

To prove that Sturm’s theorem remains true when these modified functions
f , F1, . . . , Fm are employed in place of functions (2), consider the equations
replacing (1):

f1 = k1F1, c2f = q1F1 − k2F2, c3F1 = q2F2 − k3F3,

c4F2 = q3F3 − k4F4, . . . , cmFm−2 = qm−1Fm−1 − kmFm,

6Usually we would require that ki be positive for all values of x, since we usually wish
to employ the limits −∞ and +∞.
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in which c2, c3, . . . are positive constants and Fm is a constant 6= 0. A common
divisor (involving x) of Fi−1 and Fi would divide Fi−2, . . . , F2, F1, f , f1, whereas
f(x) = 0 has no multiple roots. Hence if ρ is a root of Fi(x) = 0, then Fi−1(ρ) 6= 0
and

ci+1Fi−1(ρ) = −ki+1(ρ)Fi+1(ρ), ci+1 > 0, ki+1(ρ) > 0.

Thus Fi−1 and Fi+1 have opposite signs for x = ρ. We proceed as in §69.

Example 1. If f(x) = x3 + 6x− 10, f1 = 3(x2 + 2) is always positive. Hence
we may employ f and F1 = 1. For x = −∞, there is one variation of sign; for
x = +∞, no variation. Hence there is a single real root; it lies between 1 and 2.

Example 2. If f(x) = 2x4 − 13x2 − 10x− 19, we may take

f1 = 4x3 − 13x− 5.

Then
2f = xf1 − f2, f2 = 13x2 + 15x+ 38 = 13(x+ 15

26)2 + 1751
52 .

Since f2 is always positive, we need go no further (we may take F2 = 1). For
x = −∞, the signs are + − + ; for x = +∞, + + + . Hence there are two real
roots. The signs for x = 0 are − − + . Hence one real root is positive and the other
negative.

EXERCISES

Isolate by Sturm’s theorem the real roots of

1. x3 + 3x2 − 2x− 5 = 0. 2. x4 + 12x2 + 5x− 9 = 0.

3. x3 − 7x− 7 = 0. 4. 3x4 − 6x2 + 8x− 3 = 0.

5. x6 + 6x5 − 30x2 − 12x− 9 = 0 [stop with f2].

6. x4 − 8x3 + 25x2 − 36x+ 8 = 0.

7. For f = x3 + px+ q (p 6= 0), show that f1 = 3x2 + p, f2 = −2px− 3q,

4p2f1 = (−6px+ 9q)f2 − f3, f3 = −4p3 − 27q2,

so that f3 is the discriminant ∆ (§44). Let [p] denote the sign of p. Then the signs
of f , f1, f2, f3 are

− + + [p] [∆] for x = −∞,
+ + − [p] [∆] for x = +∞.

For ∆ negative there is a single real root. For ∆ positive and therefore p negative,
there are three distinct real roots. For ∆ = 0, f2 is a divisor of f1 and f , so that
x = −3q/(2p) is a double root.
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8. Prove that if one of Sturm’s functions has p imaginary roots, the initial
equation has at least p imaginary roots.

9. State Sturm’s theorem so as to include the possibility of a, or b, or both a
and b being roots of f(x) = 0.

71. Sturm’s Functions for a Quartic Equation. For the reduced
quartic equation f(z) = 0,

(5)


f = z4 + qz2 + rz + s,

f1 = 4z3 + 2qz + r,

f2 = −2qz2 − 3rz − 4s.

Let q 6= 0 and divide q2f1 by f2. The negative of the remainder is

(6) f3 = Lz − 12rs− rq2, L = 8qs− 2q3 − 9r2.

Let L 6= 0. Then f4 is a constant which is zero if and only if f = 0 has multiple
roots, i.e., if its discriminant ∆ is zero. We therefore desire f4 expressed as a
multiple of ∆. By §50,

(7) ∆ = −4P 3 − 27Q2, P = −4s− q2

3
, Q = 8

3qs− r
2 − 2

27q
3.

We may employ P and Q to eliminate

(8) 4s = −P − q2

3
, r2 = −Q− 2

3qP −
8
27q

3.

We divide L2f2 by

(9) f3 = Lz + 3rP, L = 9Q+ 4qP.

The negative of the remainder7 is

(10) 18r2qP 2 − 9r2LP + 4sL2 = q2∆.

The left member is easily reduced to q2∆. Inserting the values (8) and replacing
L2 by L(9Q+ 4qP ), we get

−18qQP 2 − 12q2P 3 − 16
3 q

4P 2 + 2qP 2L+ 4
3q

3PL− 3q2QL.

7Found directly by the Remainder Theorem (§14) by inserting the root z = −3rP/L of
f3 = 0 into L2f2.
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Replacing L by its value (9), we get q2∆. Hence we may take

(11) f4 = ∆.

Hence if qL∆ 6= 0, we may take (5), (9), (11) as Sturm’s functions.
Denote the sign of q by [q]. The signs of Sturm’s functions are

+ − −[q] −[L] [∆] for x = −∞,
+ + −[q] [L] [∆] for x = +∞.

First, let ∆ > 0. If q is negative and L is positive, the signs are + − + − +
and + + + + + , so that there are four real roots. In each of the remaining
three cases for q and L, there are two variations of sign in either of the two
series and hence there is no real root.

Next, let ∆ < 0. In each of the three cases in which q and L are not both
positive, there are three variations of sign in the first series and one variation
in the second, and hence just two real roots. If q and L are both positive, the
number of variations is 1 in the first series and 3 in the second, so that this
case is excluded by the Corollary to Sturm’s theorem. To give a direct proof,
note that, by the value of L in (6), L > 0, q > 0 imply 4s > q2, i.e., s > 0, and
hence, by (7), P is negative, so that each term of (10) is = 0, whence ∆ > 0.

Hence, if qL∆ 6= 0, there are four distinct real roots if and only if ∆ and L
are positive, and q negative; two distinct real and two imaginary roots if and
only if ∆ is negative.

Combining this result with that in Ex. 4 below, we obtain the

Theorem. If the discriminant ∆ of z4 +qz2 +rz+s = 0 is negative, there
are two distinct real roots and two imaginary roots; if ∆ > 0, q < 0, L > 0,
four distinct real roots; if ∆ > 0 and either q = 0 or L 5 0, no real roots. Here
L = 8qs− 2q3 − 9r2.

Our discussion furnished also the series of Sturm functions, which may be
used in isolating the roots.

EXERCISES

1. If q∆ 6= 0, L = 0, then f3 = 3rP is not zero (there being no multiple root)
and its sign is immaterial in determining the number of real roots. Prove that there
are just two real roots if q < 0, and none if q > 0. By (10), q has the same sign as ∆.

2. If r∆ 6= 0, q = 0, obtain −f3 by substituting z = −4s/(3r) in f1. Show that
we may take f3 = r∆ and that there are just two real roots if ∆ < 0, and no real
roots if ∆ > 0.
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3. If ∆ 6= 0, q = r = 0, prove that there are just two real roots if ∆ < 0, and
no real roots if ∆ > 0. Since ∆ = 256s3, check by solving z4 + s = 0.

4. If ∆ 6= 0, qL = 0, there are just two real roots if ∆ < 0, and no real roots if
∆ > 0. [Combine the results in Exs. 1–3.]

5. Apply the theorem to Exs. 2, 4, 6 of §70.

6. Isolate the real roots of Exs. 3, 4, 5 of §48.

72. Sturm’s Theorem for the Case of Multiple Roots. We might
remove the multiple roots by dividing f(x) by8 fn(x), the greatest common
divisor of f(x) and f1 = f ′(x); but this would involve considerable work, besides
wasting the valuable information in hand. As before, we suppose f(a) and f(b)
different from zero. We have equations (1) in which fn is now not a constant.

The difference Va − Vb is the number of real roots between a and b, each
multiple root being counted only once.

If ρ is a root of fi(x) = 0, but not a multiple root of f(x) = 0, then fi−1(ρ)
is not zero. For, if it were zero, x − ρ would by (1) be a common factor of f
and f1. We may now proceed as in the second case in §69.

The third case requires a modified proof only when r is a multiple root.
Let r be a root of multiplicity m, m = 2. Then f(r), f ′(r), . . . , f (m−1)(r) are
zero and, by Taylor’s theorem,

f(r + p) =
pm

1 · 2 · · ·m
f (m)(r) + · · · ,

f ′(r + p) =
pm−1

1 · 2 · · · (m− 1)
f (m)(r) + · · · .

These have like signs if p is a positive number so small that the signs of the
polynomials are those of their first terms. Similarly, f(r − p) and f ′(r − p)
have opposite signs. Hence f and f1 show one more variation of sign for
x = r − p than for x = r + p. Now (x − r)m−1 is a factor of f and f1 and
hence, by (1), of f2, . . . , fn. Let their quotients by this factor be φ, φ1, . . . , φn.
Then equations (1) hold after the f ′s are replaced by the φ’s. Taking p so
small that φ1(x) = 0 has no root between r − p and r + p, we see by the first
and second cases in §69 that φ1, . . . , φn show the same number of variations
of sign for x = r − p as for x = r + p. The same is true for f1, . . . , fn since
the products of φ1, . . . , φn by (x − r)m−1 have for a given x the same signs as
φ1, . . . , φn or the same signs as −φ1, . . . ,−φn. But the latter series evidently
shows the same number of variations of sign as φ1, . . . , φn. Hence (4) is proved
and consequently the present theorem.

8The degree of f(x) is not n, nor was it necessarily n in §69.
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EXERCISES

1. For f = x4 − 8x2 + 16, prove that F1 = x3 − 4x, F2 = x2 − 4, F1 = xF2.
Hence n = 2. Verify that V−∞ = 2, V∞ = 0, and that there are just two real roots,
each a double root.

Discuss similarly the following equations.

2. x4−5x3+9x2−7x+
2 = 0.

3. x4+2x3−3x2−4x+
4 = 0.

4. x4−x2−2x+2 = 0.

73. Budan’s Theorem. Let a and b be real numbers, a < b, neither9 a
root of f(x) = 0, an equation of degree n with real coefficients. Let Va denote
the number of variations of sign of

(12) f(x), f ′(x), f ′′(x), . . . , f (n)(x)

for x = a, after vanishing terms have been deleted. Then Va − Vb is either the
number of real roots of f(x) = 0 between a and b or exceeds the number of those
roots by a positive even integer. A root of multiplicity m is here counted as
m roots.

For example, if f(x) = x3 − 7x− 7, then f ′ = 3x2 − 7, f ′′ = 6x, f ′′′ = 6. Their
values for x = 3, 4, −2, −1 are tabulated below.

x f f ′ f ′′ f ′′′ Variations
3 −1 20 18 6 1
4 29 41 24 6 0
−2 −1 5 −12 6 3
−1 −1 −4 −6 6 1

Hence the theorem shows that there is a single real root between 3 and 4, and two or
no real roots between −2 and −1. The theorem does not tell us the exact number of
roots between the latter limits. To decide this ambiguity, note that f(−3/2) = +1/8,
so that there is a single real root between −2 and −1.5, and a single one between
−1.5 and −1.

The proof is quite simple if no term of the series (12) vanishes for x = a

or for x = b and if no two consecutive terms vanish for the same value of x
between a and b. Indeed, if no one of the terms vanishes for x1 5 x 5 x2, then

9In case a or b is a root of f(x) = 0, the theorem holds if we count the number of roots
> a and 5 b. This inclusive theorem has been proved, by means of Rolle’s theorem, by
A. Hurwitz, Mathematische Annalen, Vol. 71, 1912, p. 584, who extended Budan’s theorem
from the case of a polynomial to a function f(x) which is real and regular for a 5 x < b.
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Vx1 = Vx2 , since any term has the same sign for x = x1 as for x = x2. Next,
let r be a root of f (i)(x) = 0, a < r < b. By hypothesis, the first derivative
f (i+1)(x) of f (i)(x) is not zero for x = r. As in the third step (now actually
the case i = 0) in §69, f (i)(x) and f (i+1)(x) show one more variation of sign for
x = r− p than for x = r+ p, where p is a sufficiently small positive number. If
i > 0, f (i) is preceded by a term f (i−1) in (12). By hypothesis, f (i−1)(x) 6= 0
for x = r and hence has the same sign for x = r − p and x = r + p when p

is sufficiently small. For these values of x, f (i)(x) has opposite signs. Hence
f (i−1) and f (i) show one more or one less variation of sign for x = r − p than
for x = r + p, so that f (i−1), f (i), f (i+1) show two more variations or the same
number of variations of sign.

Next, let no term of the series (12) vanish for x = a or for x = b, but let
several successive terms

(13) f (i)(x), f (i+1)(x), . . . , f (i+j−1)(x)

all vanish for a value r of x between a and b, while f (i+j)(r) is not zero, but is
say positive.10 Let I1 be the interval between r − p and r, and I2 the interval
between r and r+ p. Let the positive number p be so small that no one of the
functions (13) or f (i+j)(x) is zero in these intervals, so that the last function
remains positive. Hence f (i+j−1)(x) increases with x (since its derivative is
positive) and is therefore negative in I1 and positive in I2. Thus f (i+j−2)(x)
decreases in I1 and increases in I2 and hence is positive in each interval. In
this manner we may verify the signs in the following table:

f (i) f (i+1) f (i+2) . . . f (i+j−3) f (i+j−2) f (i+j−1) f (i+j)

I1 (−)j (−)j−1 (−)j−2 . . . − + − +
I2 + + + . . . + + + +

Hence these functions show j variations of sign in I1 and none in I2.
If i > 0, the first term of (13) is preceded by a function f (i−1)(x) which is

not zero for x = r, and hence not zero in I1 or I2 if p is sufficiently small. If j
is even, the signs of f (i−1) and f (i) are + + or − + in both I1 and I2, showing
no loss in the number of variations of sign. If j is odd, their signs are

I1 + −
or

− −

I2 + + − +

so that there is a loss or gain of a single variation of sign. Hence

f (i−1), f (i), f (i+1) . . . , f (i+j)

10If negative, all signs in the table below are to be changed; but the conclusion holds.
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show a loss of j variations of sign if j is even, and a loss of j ± 1 if j is odd,
and hence always a loss of an even number = 0 of variations of sign.

If i = 0, f (i) ≡ f has r as a j-fold root and the functions in the table show
j more variations of sign for x = r − p than for x = r + p.

Thus, when no one of the functions (12) vanishes for x = a or for x = b, the
theorem follows as at the end of §69 (with unity replaced by the multiplicity
of a root).

Finally, let one of the functions (12), other than f(x) itself, vanish for x = a

or for x = b. If δ is a sufficiently small positive number, all of the N roots of
f(x) = 0 between a and b lie between a+ δ and b− δ, and for the latter values
no one of the functions (12) is zero. By the above proof,

Va+δ − Vb−δ = N + 2t,

Va − Va+δ = 2j, Vb−δ − Vb = 2s,

where t, j, s are integers = 0. Hence Va − Vb = N + 2(t+ j + s).
Descartes’ rule of signs (§67) is a corollary to Budan’s theorem. Consider

any equation with real coefficients

f(x) ≡ a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0,

having an 6= 0. For x = 0 the functions (12) have the same signs as

an, an−1, . . . , a1, a0.

Hence V0 is equal to the number V of variations of sign of f(x).
For x = +∞, the functions all have the same sign, which is that of a0. Thus

V0 − V∞ = V is either the number of positive roots or exceeds that number by
a positive even integer. Finally, Descartes’ rule holds if an = 0, as shown by
removing the factors x.

EXERCISES

Isolate by Budan’s theorem the real roots of

1. x3 − x2 − 2x+ 1 = 0. 2. x3 + 3x2 − 2x− 5 = 0.

3. Prove that if f(a) 6= 0, Va equals the number of real roots > a or exceeds
that number by an even integer.

4. Prove that there is no root greater than a number making each of the func-
tions (12) positive, if the leading coefficient of f(x) is positive. (Newton.)

5. Hence verify that x4 − 4x3 − 3x+ 23 = 0 has no root > 4.

6. Show that x4 − 4x3 + x2 + 6x+ 2 = 0 has no root > 3.





CHAPTER VII
Solution of Numerical Equations

74. Horner’s Method.1 After we have isolated a real root of a real
equation by one of the methods in Chapter VI, we can compute the root to
any desired number of decimal places either by Horner’s method, which is
available only for polynomial equations, or by Newton’s method (§75), which
is applicable also to logarithmic, trigonometric, and other equations.

To find the root between 2 and 3 of

(1) x3 − 2x− 5 = 0,

set x = 2 + p. Direct substitution gives the transformed equation for p:

(2) p3 + 6p2 + 10p− 1 = 0.

The method just used is laborious especially for equations of high degree. We
next explain a simpler method. Since p = x− 2,

x3 − 2x− 5 ≡ (x− 2)3 + 6(x− 2)2 + 10(x− 2)− 1,

identically in x. Hence −1 is the remainder obtained when the given polynomial
x3 − 2x− 5 is divided by x− 2. By inspection, the quotient Q is equal to

(x− 2)2 + 6(x− 2) + 10.

Hence 10 is the remainder obtained when Q is divided by x − 2. The new
quotient is equal to (x − 2) + 6, and another division gives the remainder 6.
Hence to find the coefficients 6, 10, −1 of the terms following p3 in the trans-
formed equation (2), we have only to divide the given polynomial x3 − 2x− 5
by x − 2, the quotient Q by x − 2, etc., and take the remainders in reverse
order. However, when this work is performed by synthetic division (§15) as

1W. G. Horner, London Philosophical Transactions, 1819. Earlier (1804) by P. Ruffini.
See Bulletin American Math. Society, May, 1911.
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tabulated below, no reversal of order is necessary, since the coefficients then
appear on the page in their desired order.

1 0 −2 −5 2
2 4 4

1 2 2 −1
2 8

1 4 10
2

1 6

Thus 1, 6, 10, −1 are the coefficients of the desired equation (2).
To obtain an approximation to the decimal p, we ignore for the moment

the terms involving p3 and p2; then by 10p−1 = 0, p = 0.1. But this value is too
large since the terms ignored are all positive. For p = 0.09, the polynomial in (2)
is found to be negative, while for p = 0.1 it was just seen to be positive. Hence
p = 0.09 + h, where h is of the denomination thousandths. The coefficients 1,
6.27, . . . of the transformed equation for h appear in heavy type just under the
first zigzag line in the following scheme:

1 6 10 −1 0.09
0.09 0.5481 0.949329

1 6.09 10.5481 −0.050671
0.09 0.5562

1 6.18 11.1043 0.05
11.10.09

1 6.27 =0.004
0.004 0.025096 0.044517584

1 6.274 11.129396 −0.006153416
0.004 0.025112

1 6.278 11.154508
0.004

1 6.282

Hence x = 2.094 + t, where t is a root of

t3 + 6.282t2 + 11.154508t− 0.006153416 = 0.

By the last two terms, t is between 0.0005 and 0.0006. Then the value of
C ≡ t3 + 6.282t2 is found to lie between 0.00000157 and 0.00000227. Hence we
may ignore C provided the constant term be reduced by an amount between
these limits. Whichever of the two limits we use, we obtain the same dividend
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below correct to 6 decimal places.

1
x

1.
x

1
x

54508 0.006151 0.000551= t

5577

574
558

16
11

5

Since the quotient is 0.0005+, only two decimal places of the divisor are used,
except to see by inspection how much is to be carried when making the first
multiplication. Hence we mark a cross above the figure 5 in the hundredths
place of the divisor and use only 11.15. Before making the multiplication by the
second significant figure 5 of the quotient t, we mark a cross over the figure 1 in
the tenths place of the divisor and hence use only 11.1. Thus x = 2.0945514+,
with doubt only as to whether the last figure should be 4 or 5.

If we require a greater number of decimal places, it is not necessary to go
back and construct a new transformed equation from the equation in t. We
have only to revise our preceding dividend on the basis of our present better
value of t. We now know that t is between 0.000551 and 0.000552. To compute
the new value of the correction C, in which we may evidently ignore t3, we use
logarithms.

log 5.51 = .74115 log 5.52 = .74194
∴ log 5.512 = 1.48230 ∴ log 5.522 = 1.48388

log 6.282 = .79810 log 6.282 = .79810

log 190.72 = 2.28040 log 191.42 = 2.28198

Hence C is between 0.000001907 and 0.000001915. Whichever of the two limits
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we use, we obtain the same new dividend below correct to 8 decimal places.

1
x

1.
x

1
x

5
x

4
x

508 0.00615150 0.00055148
557725

57425
55773

1652
1115

537
446

91
89

2

Hence, finally, x = 2.094551482, with doubt only as to the last figure.

EXERCISES

(The number of transformations made by synthetic division should be about half
the number of significant figures desired for a root.)

By one of the methods in Chapter VI, isolate each real root of the following
equations, and compute each real root to 5 decimal places.

1. x3 + 2x+ 20 = 0. 2. x3 + 3x2 − 2x− 5 = 0.

3. x3 + x2 − 2x− 1 = 0. 4. x4+4x3−17.5x2−18x+58.5 = 0.

5. x4 − 11, 727x+ 40, 385 = 0. 6. x3 = 10.

Find to 7 decimal places all the real roots of

7. x3 + 4x2 − 7 = 0. 8. x3 − 7x− 7 = 0.

Find to 8 decimal places

9. The root between 2 and 3 of x3 − x− 9 = 0 (make only 3 transformations).

10. The real cube root of 7.976.

11. The abscissa of the real point of intersection of the conics y = x2, xy + x +
3y − 6 = 0.
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12. Find to 3 decimal places the abscissas of the points of intersection of x2+y2 =
9, y = x2 − x.

13. A sphere two feet in diameter is formed of a kind of wood a cubic foot of
which weighs two-thirds as much as a cubic foot of water (i.e., the specific gravity of
the wood is 2/3). Find to four significant figures the depth h to which the floating
sphere will sink in water.

Hints: The volume of a sphere of radius r is 4
3πr

3. Hence our sphere whose radius
is 1 foot weighs as much as 4

3π ·
2
3 cubic feet of water. The volume of the submerged

portion of the sphere is πh2(r − 1
3h) cubic feet. Since this is also the volume of the

displaced water, its value for r = 1 must equal 4
3π ·

2
3 . Hence h

3 − 3h2 + 8
3 = 0.

14. If the specific gravity of cork is 1/4, find to four significant figures how far a
cork sphere two feet in diameter will sink in water.

15. Compute cos 20◦ to four decimal places by use of

cos 3A = 4 cos3A− 3 cosA, cos 60◦ = 1
2 .

16. Three intersecting edges of a rectangular parallelopiped are of lengths 6, 8,
and 10 feet. If the volume is increased by 300 cubic feet by equal elongations of the
edges, find the elongation to three decimal places.

17. Given that the volume of a right circular cylinder is απ and the total area of
its surface is 2βπ, prove that the radius r of its base is a root of r3 − βr + α = 0.
If α = 56, β = 28, find to four decimal places the two positive roots r. The
corresponding altitude is α/r2.

18. What rate of interest is implied in an offer to sell a house for $2700 cash, or
in annual installments each of $1000 payable 1, 2, and 3 years from date?

Hint: The amount of $2700 with interest for 3 years should be equal to the sum of
the first payment with interest for 2 years, the amount of the second payment with
interest for 1 year, and the third payment. Hence if r is the rate of interest and we
write x for 1 + r, we have

2700x3 = 1000x2 + 1000x+ 1000.

19. Find the rate of interest implied in an offer to sell a house for $3500 cash, or
in annual installments each of $1000 payable 1, 2, 3, and 4 years from date.

20. Find the rate of interest implied in an offer to sell a house for $3500 cash, or
$4000 payable in annual installments each of $1000, the first payable now.
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75. Newton’s Method. Prior to 1676, Newton2 had already found the
root between 2 and 3 of equation (1). He replaced x by 2 + p and obtained (2).
Since p is a decimal, he neglected the terms in p3 and p2, and hence obtained
p = 0.1, approximately. Replacing p by 0.1 + q in (2), he obtained

q3 + 6.3q2 + 11.23q + 0.061 = 0.

Dividing −0.061 by 11.23, he obtained −0.0054 as the approximate value of q.
Neglecting q3 and replacing q by −0.0054 + r, he obtained

6.3r2 + 11.16196r + 0.000541708 = 0.

Dropping 6.3r2, he found r and hence

x = 2 + 0.1− 0.0054− 0.00004853 = 2.09455147,

of which all figures but the last are correct (§74). But the method will not
often lead so quickly to so accurate a value of the root.

Newton used the close approximation 0.1 to p, in spite of the fact that this
value exceeds the root p and hence led to a negative correction at the next
step. This is in contrast with Horner’s method in which each correction is
positive, so that each approximation must be chosen less than the root, as 0.09
for p.

Newton’s method may be presented in the following general form, which
is applicable to any equation f(x) = 0, whether f(x) is a polynomial or not.
Given an approximate value a of a real root, we can usually find a closer
approximation a + h to the root by neglecting the powers h2, h3, . . . of the
small number h in Taylor’s formula (§56)

f(a+ h) = f(a) + f ′(a)h+ f ′′(a)
h2

2
+ · · ·

and hence by taking

f(a) + f ′(a)h = 0, h =
−f(a)
f ′(a)

.

We then repeat the process with a1 = a+ h in place of the former a.
Thus in Newton’s example, f(x) = x3 − 2x− 5, we have, for a = 2,

h =
−f(2)
f ′(2)

=
1
10
, a1 = a+ h = 2.1,

h1 =
−f(2.1)
f ′(2.1)

=
−0.061
11.23

= −0.0054 . . . .

2Isaac Newton, Opuscula, I, 1794, p. 10, p. 37.
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76. Graphical Discussion of Newton’s Method. Using rectangular
coördinates, consider the graph of y = f(x) and the point P on it with the
abscissa OQ = a (Fig. 22). Let the tangent at P meet the x-axis at T and let

O Q T T1

P1

a h S X

Y

P

P2

Fig. 22

α
β

Fig. 23
the graph meet the x-axis at S. Take h = QT , the subtangent. Then

QP = f(a), f ′(a) = tanXTP =
−f(a)
h

,

h =
−f(a)
f ′(a)

.

In the graph in Fig. 22, OT = a+ h is a better approximation to the root OS
than OQ = a. The next step (indicated by dotted lines) gives a still better
approximation OT1.

If, however, we had begun with the abscissa a of a point P1 in Fig. 22
near a bend point, the subtangent would be very large and the method would
probably fail to give a better approximation. Failure is certain if we use a
point P2 such that a single bend point lies between it and S.

We are concerned with the approximation to a root previously isolated as
the only real root between two given numbers α and β. These should be chosen
so nearly equal that f ′(x) = 0 has no real root between α and β, and hence
f(x) = y has no bend point between α and β. Further, if f ′′(x) = 0 has a root
between our limits, our graph will have an inflexion point with an abscissa
between α and β, and the method will likely fail (Fig. 23).

Let, therefore, neither f ′(x) nor f ′′(x) vanish between α and β. Since f ′′
preserves its sign in the interval from α to β, while f changes in sign, f ′′ and f
will have the same sign for one end point. According as the abscissa of this
point is α or β, we take a = α or a = β for the first step of Newton’s process.
In fact, the tangent at one of the end points meets the x-axis at a point T with
an abscissa within the interval from α to β. If f ′(x) is positive in the interval,
so that the tangent makes an acute angle with the x-axis, we have Fig. 24 or
Fig. 25; if f ′ is negative, Fig. 26 or Fig. 22.
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α

A

β

B

T
c

Fig. 24

α
β

T

Fig. 25

A

α

B

βT
c

Fig. 26

In Newton’s example, the graph between the points with the abscissas α = 2 and
β = 3 is of the type in Fig. 24, but more nearly like a vertical straight line. In view
of this feature of the graph, we may safely take a = α, as did Newton, although our
general procedure would be to take a = β. The next step, however, accords with our
present process; we have α = 2, β = 2.1 in Fig. 24 and hence we now take a = β,
getting

0.061
11.23

= 0.0054

as the subtangent, and hence 2.1− 0.0054 as the approximate root.
If we have secured (as in Fig. 24 or Fig. 26) a better upper limit to the

root than β, we may take the abscissa c of the intersection of the chord AB

with the x-axis as a better lower limit than α. By similar triangles,

−f(α) : c− α = f(β) : β − c,

whence

(3) c =
αf(β)− βf(α)
f(β)− f(α)

.

This method of finding the value of c intermediate to α and β is called the
method of interpolation (regula falsi).

In Newton’s example, α = 2, β = 2.1,

f(α) = −1, f(β) = 0.061, c = 2.0942.

The advantage of having c at each step is that we know a close limit of the
error made in the approximation to the root.

We may combine the various possible cases discussed into one:
If f(x) = 0 has a single real root between α and β, and f ′(x) = 0, f ′′(x) = 0

have no real root between α and β, and if we designate by β that one of the
numbers α and β for which f(β) and f ′′(β) have the same sign, then the root
lies in the narrower interval from c to β− f(β)/f ′(β), where c is given by (3).
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It is possible to prove3 this theorem algebraically and to show that by
repeated applications of it we can obtain two limits α′, β′ between which the
root lies, such that α′−β′ is numerically less than any assigned positive number.
Hence the root can be found in this manner to any desired accuracy.

Example. f(x) = x3 − 2x2 − 2, α = 21
4 , β = 21

2 . Then

f(α) = −47
64 , f(β) = 9

8 .

Neither of the roots 0, 4/3 of f ′(x) = 0 lies between α and β, so that f(x) = 0 has
a single real root between these limits (§65). Nor is the root 2

3 of f ′′(x) = 0 within
these limits. The conditions of the theorem are therefore satisfied. For α < x < β,
the graph is of the type in Fig. 24. We find that approximately

c = 559
238 = 2.3487, β1 = β − f(β)

f ′(β)
= 2.3714,

β1 −
f(β1)
f ′(β1)

= 2.3597.

For x = 2.3593, f(x) = −0.00003. We therefore have the root to four decimal places.
For a = 2.3593,

f ′(a) = 7.2620, a− f(a)
f ′(a)

= 2.3593041,

which is the value of the root correct to 7 decimal places. We at once verify that the
result is greater than the root in view of our work and Fig. 24, while if we change
the final digit from 1 to 0, f(x) is negative.

EXERCISES

1. For f(x) = x4 + x3 − 3x2 − x − 4, show by Descartes’ rule of signs that
f ′(x) = 0 and f ′′(x) = 0 each have a single positive root and that neither has a root
between 1 and 2. Which of the values 1 and 2 should be taken as β?

2. When seeking a root between 2 and 3 of x3 − x− 9 = 0, which value should
be taken as β?

3Weber’s Algebra, 2d ed., I, pp. 380–382; Kleines Lehrbuch der Algebra, 1912, p. 163.
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77. Systematic Computation of Roots by Newton’s Method. By
way of illustration we shall compute to 7 decimal places a positive root of

f(x) = x4 + x3 − 3x2 − x− 4 = 0.

Since f(1) = −6, f(2) = 6, there is a real root between 1 and 2. Since

f ′(x) = 4x3 + 3x2 − 6x− 1, f ′(1) = 0, f ′(2) = 31,

the graph of y = f(x) is approximately horizontal near (1,−6) and approxi-
mately vertical near (2, 6). Hence the root is much nearer to 2 than to 1. Thus
in applying Newton’s method we employ a = 2 as the first approximation to
the root. The correction h is then

h =
−f(2)
f ′(2)

=
−6
31

= −0.2 . . . .

The work of performing the substitutions x = 2 + d, d = −0.2 + e, . . . , to find
the transformed equations satisfied by d, e, . . . , is done by synthetic division,
exactly as in Horner’s method, except that some of the multipliers are now
negative: see Table 1, page 107.

The root is 2 − 0.2 − 0.04 + 0.000302 = 1.760302, in which the last figure
is in slight doubt. Indeed, it can be proved that if the final fraction g, when
expressed as a decimal, has k zeros between the decimal point and the first
significant figure, the division may be safely carried to 2k decimal places. In
our example k = 3, so that we retained 6 decimal places in g.

To proceed independently of this rule, we note that g is obviously between
0.00030 and 0.00031. Then the value of g4 + 8.04g3 + 20.8656g2 is found to lie
between 0.000001878 and 0.000002006. Whichever of these limits we use as a
correction by which to reduce the constant term, we obtain the same dividend
below correct to 6 decimal places.

x

1
x

9.
x

5
x

39904 0.005896 0.0003017
005862

34
20

14
14

Hence the root is 1.7603017 to 7 decimal places.
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1 1 −3 −1 −4 2
2 6 6 10

1 3 3 5 6

2 10 26
1 5 13 31

2 14
1 7 27

2
1 9 −0.2

−0.2 −1.76 −5.048 −5.1904

8.8 25.24 25.952 0.8096

−0.2 −1.72 −4.704
8.6 23.52 21.248

−0.2 −1.68
8.4 21.84 −0.8096

21.248−0.2
1 8.2 = −0.04

−0.04 −0.3264 −0.860544 −0.81549824
8.16 21.5136 20.387456 −0.00589824

−0.04 −0.3248 −0.847552
8.12 21.1888 19.539904

−0.04 −0.3232
8.08 20.8656

−0.04
1 8.04 g =

0.005898
19.54

= .000302

Table 1.
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EXERCISES

1. Find to 8 decimal places the root between 2 and 3 of x3 − x− 9 = 0.

2. Find to 7 decimal places the root between 2 and 3 of x3 − 2x2 − 2 = 0.

3. Find the real cube root of 7.976 to 6 decimal places.

4. Explain by Taylor’s expansion of f(2 + d) why the values of

f(2), f ′(2), 1
2f
′′(2),

1
2 · 3

f ′′′(2),
1

2 · 3 · 4
f ′′′′(2)

are in reverse order the coefficients of the transformed equation

d4 + 9d3 + 27d2 + 31d+ 6 = 0,

obtained in the Example in the text, and printed in heavy type.

5. The method commonly used to find the positive square root of n by a com-
puting machine consists in dividing n by an assumed approximate value a of the
square root and taking half the sum of a and the quotient as a better approxima-
tion. Show that the latter agrees with the value of a+h given by applying Newton’s
method to f(x) = x2 − n.

78. Newton’s Method for Functions not Polynomials.
Example 1. Find the angle x at the center of a circle subtended by a chord

which cuts off a segment whose area is one-eighth of that of the circle.

Solution. If x is measured in radians and if r is the radius, the area of the
segment is equal to the left member of

1
2r

2(x− sinx) = 1
8πr

2,

whence
x− sinx = 1

4π.

By means of a graph of y = sinx and the straight line represented by y = x − 1
4π,

we see that the abscissa of their point of intersection is approximately 1.78 radians
or 102◦. Thus a = 102◦ is a first approximation to the root of

f(x) ≡ x− sinx− 1
4π = 0.

By Newton’s method a better approximation is a+ h, where4

h =
−f(a)
f ′(a)

=
−a+ sin a+ 1

4π

1− cos a
.

4The derivative of sinx is cosx. We need the limit of

sin(x+ 2k)− sinx
2k

≡
2 cos 1

2 (2x+ 2k) sin 1
2 (2k)

2k
≡ cos(x+ k) sin k

k

as 2k approaches zero. Since the ratio of sin k to k approaches 1, the limit is cosx.
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sin 102◦ = 0.9781
1
4(3.1416) = 0.7854

1.7635

102◦ = 1.7802 radians
− 0.0167

cos 102◦ = −0.2079
1− cos 102◦ = 1.2079

h =
−0.0167
1.2079

= −0.0138

a1 = a+ h = 1.7664

h1 =
−f(a1)
f ′(a1)

=
−1.7664 + 0.9809 + 0.7854

1.1944
= −0.0001.

Hence x = a1 + h1 = 1.7663 radians, or 101◦12′.

Example 2.5 Solve x− log x = 7, the logarithm being to base 10.

Solution. Evidently x exceeds 7 by a positive decimal which is the value
of log x. Hence in a table of common logarithms, we seek a number x between 7
and 8 whose logarithm coincides approximately with the decimal part of x. We read
off the values in the second column.

x log x x− log x
7.897 0.89746 6.99954
7.898 0.89752 7.00048

By the final column the ratio of interpolation is 46/94. Hence x = 7.8975 to four
decimal places.

Example 3. Solve 2x− log x = 7, the logarithm being to base 10.

Solution. Evidently x is a little less than 4. A table of common logarithms
shows at once that a fair approximation to x is a = 3.8. Write

f(x) ≡ 2x− log x− 7, log x = M loge x, M = 0.4343.

By calculus, the derivative of loge x is 1/x. Hence

f ′(x) = 2− M

x
, f ′(a) = 2− 0.1143 = 1.8857,

f(a) = 0.6− log 3.8 = 0.6− 0.57978 = 0.02022,

−h =
f(a)
f ′(a)

= 0.0107, a1 = a+ h = 3.7893,

f(a1) = 0.000041, f(3.7892) = −0.000148.
148
189
× 0.0001 = 0.000078, x = 3.789278.

All figures of x are correct as shown by Vega’s table of logarithms to 10 places.

5This Ex. 2, which should be contrasted with Ex. 3, is solved by interpolation since that
method is simpler than Newton’s method in this special case.
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EXERCISES

Find the angle x at the center of a circle subtended by a chord which cuts off a
segment whose ratio to the circle is

1. 1
4 . 2. 3

8 .

When the logarithms are to base 10,

3. Solve 2x− log x = 9. 4. Solve 3x− log x = 9.

5. Find the angle just > 15◦ for which 1
2 sinx+ sin 2x = 0.64.

6. Find the angle just > 72◦ for which x− 1
2 sinx = 1

4π.

7. Find all solutions of Ex. 5 by replacing sin 2x by 2 sinx cosx, squaring, and
solving the quartic equation for cosx.

8. Solve similarly sinx+ sin 2x = 1.2.

9. Find x to 6 decimal places in sinx = x− 2.

10. Find x to 5 decimal places in x = 3 loge x.

79. Imaginary Roots. To find the imaginary roots x+yi of an equation
f(z) = 0 with real coefficients, expand f(x+ yi) by Taylor’s theorem; we get

f(x) + f ′(x)yi− f ′′(x)
y2

1 · 2
− f ′′′(x)

y3i

1 · 2 · 3
+ · · · = 0.

Since x and y are to be real, and y 6= 0,

(4)


f(x)− f ′′(x)

y2

1 · 2
+ f ′′′′(x)

y4

1 · 2 · 3 · 4
− · · · = 0,

f ′(x)− f ′′′(x)
y2

1 · 2 · 3
+ f (5)(x)

y4

5!
− · · · = 0.

In the Example and Exercises below, f(z) is of degree 4 or less. Then the
second equation (4) is linear in y2. Substituting the resulting value of y2 in
the first equation (4), we obtain an equation E(x) = 0, whose real roots may
be found by one of the preceding methods. If the degree of f(z) exceeds 4, we
may find E(x) = 0 by eliminating y2 between the two equations (4) by one of
the methods to be explained in Chapter X.

Example. For f(z) = z4 − z + 1, equations (4) are

x4 − x+ 1− 6x2y2 + y4 = 0, 4x3 − 1− 4xy2 = 0.
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Thus

y2 = x2 − 1
4x
, −4x6 + x2 +

1
16

= 0.

The cubic equation in x2 has the single real root

x2 = 0.528727, x = ±0.72714.

Then y2 = 0.184912 or 0.87254, and

z = x+ yi = 0.72714± 0.43001i, −0.72714± 0.93409i.

EXERCISES

Find the imaginary roots of

1. z3 − 2z − 5 = 0. 2. 28z3 + 9z2 − 1 = 0.

3. z4 − 3z2 − 6z = 2. 4. z4 − 4z3 + 11z2 − 14z + 10 = 0.

5. z4 − 4z3 + 9z2 − 16z + 20 = 0. Hint:

E(x) ≡ x(x− 2)(16x4 − 64x3 + 136x2 − 144x+ 65) = 0,

and the last factor becomes (w2 + 1)(w2 + 9) for 2x = w + 2.

Note. If we know a real root r of a cubic equation f(z) = 0, we may remove
the factor z − r and solve the resulting quadratic equation. When, as usual, r
involves several decimal places, this method is laborious and unsatisfactory. But
we may utilize a device, explained in the author’s Elementary Theory of Equations,
pp. 119–121, §§6, 7. As there explained, a similar device may be used when we know
two real roots of a quartic equation.
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MISCELLANEOUS EXERCISES

(Give answers to 6 decimal places, unless the contrary is stated.)

1. What arc of a circle is double its chord?

2. What arc of a circle is double the distance from the center of the circle to
the chord of the arc?

3. If A and B are the points of contact of two tangents to a circle of radius
unity from a point P without it, and if arc AB is equal to PA, find the length of
the arc.

4. Find the angle at the center of a circle of a sector which is bisected by its
chord.

5. Find the radius of the smallest hollow iron sphere, with air exhausted, which
will float in water if its shell is 1 inch thick and the specific gravity of iron is 7.5.

6. From one end of a diameter of a circle draw a chord which bisects the semi-
circle.

7. The equation x tanx = c occurs in the theory of vibrating strings. Its ap-
proximate solutions may be found from the graphs y = cotx, y = x/c. Find x when
c = 1.

8. The equation tanx = x occurs in the study of the vibrations of air in a
spherical cavity. From an approximate solution x1 = 1.5π, we obtain successively
better approximations x2 = tan−1 x1 = 1.4334π, x3 = tan−1 x2, . . . . Find the first
three solutions to 4 decimal places.

9. Find to 3 decimal places the first five solutions of

tanx =
2x

2− x2
,

which occurs in the theory of vibrations in a conical pipe.

10. 4τx3 − (3x− 1)2 = 0 arises in the study of the isothermals of a gas. Find its
roots when (i) τ = 0.002 and (ii) τ = 0.99.

11. Solve xx = 100.

12. Solve x = 10 log x.

13. Solve x+ log x = x log x.

14. Solve Kepler’s equation M = x − e sinx when M = 332◦28′54.8′′, e =
14◦3′20′′.
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15. In what time would a sum of money at 6% interest compounded annually
amount to as much as the same sum at simple interest at 8%?

16. In a semicircle of diameter x is inscribed a quadrilateral with sides a, b, c, x;
then x3 − (a2 + b2 + c2)x− 2abc = 0 (I. Newton). Given a = 2, b = 3, c = 4, find x.

17. What rate of interest is implied in an offer to sell a house for $9000 cash, or
$1000 down and $3000 at the end of each year for three years?





CHAPTER VIII
Determinants; Systems of Linear Equations

80. Solution of Two Linear Equations by Determinants of Order 2.
Assume that there is a pair of numbers x and y for which

(1)
{
a1x+ b1y = k1,

a2x+ b2y = k2.

Multiply the members of the first equation by b2 and those of the second
equation by −b1, and add the resulting equations. We get

(a1b2 − a2b1)x = k1b2 − k2b1.

Employing the respective multipliers −a2 and a1, we get

(a1b2 − a2b1)y = a1k2 − a2k1.

The common multiplier of x and y is

(2) a1b2 − a2b1,

and is denoted by the symbol

(2′)
∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ,
which is called a determinant of the second order, and also called the deter-
minant of the coefficients of x and y in equations (1). The results above may
now be written in the form

(3)
∣∣∣∣a1 b1
a2 b2

∣∣∣∣x =
∣∣∣∣k1 b1
k2 b2

∣∣∣∣ , ∣∣∣∣a1 b1
a2 b2

∣∣∣∣ y =
∣∣∣∣a1 k1

a2 k2

∣∣∣∣ .
We shall call k1 and k2 the known terms of our equations (1). Hence, if D is the
determinant of the coefficients of the unknowns, the product of D by any one
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of the unknowns is equal to the determinant obtained from D by substituting
the known terms in place of the coefficients of that unknown.

If D 6= 0, relations (3) uniquely determine values of x and y:

x =
k1b2 − k2b1

D
, y =

a1k2 − a2k1

D
,

and these values satisfy equations (1); for example,

a1x+ b1y =
(a1b2 − a2b1)k1

D
= k1.

Hence our equations (1) have been solved by determinants when D 6= 0. We
shall treat in §96 the more troublesome case in which D = 0.

Example. For 2x− 3y = −4, 6x− 2y = 2, we have∣∣∣∣2 −3
6 −2

∣∣∣∣x =
∣∣∣∣−4 −3

2 −2

∣∣∣∣ , 14x = 14, x = 1,

14y =
∣∣∣∣ 2 −4

6 2

∣∣∣∣ = 28, y = 2.

EXERCISES

Solve by determinants the following systems of equations:

1. 8x− y = 34,
x+ 8y = 53.

2. 3x+ 4y = 10,
4x+ y = 9.

3. ax+ by = a2,

bx− ay = ab.

81. Solution of Three Linear Equations by Determinants of Or-
der 3. Consider a system of three linear equations

(4)
a1x+ b1y + c1z = k1,

a2x+ b2y + c2z = k2,

a3x+ b3y + c3z = k3.

Multiply the members of the first, second and third equations by

(5) b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1,

respectively, and add the resulting equations. We obtain an equation in which
the coefficients of y and z are found to be zero, while the coefficient of x is

(6) a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1.
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Such an expression is called a determinant of the third order and denoted by
the symbol

(6′)

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ .
The nine numbers a1, . . . , c3 are called the elements of the determinant.

In the symbol these elements lie in three (horizontal) rows, and also in three
(vertical) columns. Thus a2, b2, c2 are the elements of the second row, while
the three c’s are the elements of the third column.

The equation (free of y and z), obtained above, may now be written as∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣x =

∣∣∣∣∣∣
k1 b1 c1
k2 b2 c2
k3 b3 c3

∣∣∣∣∣∣ ,
since the right member was the sum of the products of the expressions (5) by
k1, k2, k3, and hence may be derived from (6) by replacing the a’s by the k’s.
Thus the theorem of §80 holds here as regards the unknown x. We shall later
prove, without the laborious computations just employed, that the theorem
holds for all three unknowns.

82. The Signs of the Terms of a Determinant of Order 3. In the
six terms of our determinant (6), the letters a, b, c were always written in this
sequence, while the subscripts are the six possible arrangements of the numbers
1, 2, 3. The first term a1b2c3 shall be called the diagonal term, since it is the
product of the elements in the main diagonal running from the upper left-hand
corner to the lower right-hand corner of the symbol (6′) for the determinant.
The subscripts in the term −a1b3c2 are derived from those of the diagonal
term by interchanging 2 and 3, and the minus sign is to be associated with the
fact that an odd number (here one) of interchanges of subscripts were used.
To obtain the arrangement 2, 3, 1 of the subscripts in the term +a2b3c1 from
the natural order 1, 2, 3 (in the diagonal term), we may first interchange 1
and 2, obtaining the arrangement 2, 1, 3, and then interchange 1 and 3; an
even number (two) of interchanges of subscripts were used and the sign of the
term is plus.

While the arrangement 1, 3, 2 was obtained from 1, 2, 3 by one interchange
(2, 3), we may obtain it by applying in succession the three interchanges (1, 2),
(1, 3), (1, 2), and in many new ways. To show that the number of interchanges
which will produce the final arrangement 1, 3, 2 is odd in every case, note that
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each of the three possible interchanges, viz., (1, 2), (1, 3), and (2, 3), changes
the sign of the product

P = (x1 − x2)(x1 − x3)(x2 − x3),

where the x’s are arbitrary variables. Thus a succession of k interchanges
yields P or −P according as k is even or odd. Starting with the arrangement
1, 2, 3 and applying k successive interchanges, suppose that we obtain the final
arrangement 1, 3, 2. But if in P we replace the subscripts 1, 2, 3 by 1, 3, 2,
respectively, i.e., if we interchange 2 and 3, we obtain −P . Hence k is odd. We
have therefore proved the following rule of signs:

Although the arrangement r, s, t of the subscripts in any term ±arbsct
of the determinant may be obtained from the arrangement 1, 2, 3 by various
successions of interchanges, the number of these interchanges is either always
an even number and then the sign of the term is plus or always an odd number
and then the sign of the term is minus.

EXERCISES

Apply the rule of signs to all terms of

1. Determinant (6). 2. Determinant a1b2 − a2b1.

83. Number of Interchanges always Even or always Odd. We now
extend the result in §82 to the case of n variables x1, . . . , xn. The product of
all of their differences xi − xj (i < j) is

P = (x1 − x2)(x1 − x3) · · ·(x1 − xn)

· (x2 − x3) · · ·(x2 − xn)
...
·(xn−1 − xn).

Interchange any two subscripts i and j. The factors which involve neither i
nor j are unaltered. The factor (xi − xj) involving both is changed in sign.
The remaining factors may be paired to form the products

±(xi − xk)(xj − xk) (k = 1, . . . , n; k 6= i, k 6= j).

Such a product is unaltered. Hence P is changed in sign.
Suppose that an arrangement i1, i2, . . . , in can be obtained from 1, 2, . . . ,

n by using m successive interchanges and also by t successive interchanges.
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Make these interchanges on the subscripts in P ; the resulting functions are
equal to (−1)mP and (−1)tP , respectively. But the resulting functions are
identical since either can be obtained at one step from P by replacing the
subscript 1 by i1, 2 by i2, . . . , n by in. Hence

(−1)mP ≡ (−1)tP,

so that m and t are both even or both odd.
Thus if the same arrangement is derived from 1, 2, . . . , n by m successive

interchanges as by t successive interchanges, then m and t are both even or
both odd.

84. Definition of a Determinant of Order n. We define a determinant
of order 4 to be

(7)

∣∣∣∣∣∣∣∣∣
a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣∣ =
∑
(24)

±aqbrcsdt,

where q, r, s, t is any one of the 24 arrangements of 1, 2, 3, 4, and the sign of the
corresponding term is + or − according as an even or odd number of inter-
changes are needed to derive this arrangement q, r, s, t from 1, 2, 3, 4. Although
different numbers of interchanges will produce the same arrangement q, r, s, t
from 1, 2, 3, 4, these numbers are all even or all odd, as just proved, so that the
sign is fully determined.

We have seen that the analogous definitions of determinants of orders 2
and 3 lead to our earlier expressions (2) and (6).

We will have no difficulty in extending the definition to a determinant of
general order n as soon as we decide upon a proper notation for the n2 elements.
The subscripts 1, 2, . . . , n may be used as before to specify the rows. But the
alphabet does not contain n letters with which to specify the columns. The use
of e′, e′′, . . . , e(n) for this purpose would conflict with the notation for derivatives
and besides be very awkward when exponents are used. It is customary in
mathematical journals and scientific books (a custom not always followed in
introductory text books, to the distinct disadvantage of the reader) to denote
the n letters used to distinguish the n columns by e1, e2, . . . , en (or some other
letter with the same subscripts) and to prefix (but see §85) such a subscript
by the new subscript indicating the row. The symbol for the determinant is
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therefore

(8) D =

∣∣∣∣∣∣∣∣∣
e11 e12 · · · e1n
e21 e22 · · · e2n
. . . . . . . . . . . . . .

en1 en2 · · · enn

∣∣∣∣∣∣∣∣∣ .
By definition this shall mean the sum of the n(n− 1) · · · 2 · 1 terms

(9) (−1)iei11ei22 · · · einn

in which i1, i2, . . . , in is an arrangement of 1, 2, . . . , n, derived from 1, 2, . . . , n by
i interchanges. Any term (9) of the determinant (8) is, apart from sign, the
product of n factors, one and only one from each column, and one and only
one from each row.

For example, if we take n = 4 and write aj , bj , cj , dj for ej1, ej2, ej3, ej4, the
symbol (8) becomes (7) and the general term (9) becomes the general term
(−1)iai1bi2ci3di4 of the second member of (7).

EXERCISES

1. Find the six terms involving a2 in the determinant (7).

2. What are the signs of a3b5c2d1e4, a5b4c3d2e1 in a determinant of order five?

3. Show that the arrangement 4, 1, 3, 2 may be obtained from 1, 2, 3, 4 by use of
the two successive interchanges (1, 4), (1, 2), and also by use of the four successive
interchanges (1, 4), (1, 3), (1, 2), (2, 3).

4. Write out the six terms of (8) for n = 3, rearrange the factors of each term so
that the new first subscripts shall be in the order 1, 2, 3, and verify that the resulting
six terms are those of the determinant D′ in §85 for n = 3.

85. Interchange of Rows and Columns. Any determinant is not al-
tered in value if in its symbol we replace the elements of the first, second,
. . . , nth rows by the elements which formerly appeared in the same order in the
first, second, . . . , nth columns, or briefly if we interchange the corresponding
rows and columns. For example,∣∣∣∣a b

c d

∣∣∣∣ = ad− bc =
∣∣∣∣a c

b d

∣∣∣∣ .
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We are to prove that the determinant D given by (8) is equal to

D′ =

∣∣∣∣∣∣∣∣∣
e11 e21 · · · en1

e12 e22 · · · en2

. . . . . . . . . . . . . .

e1n e2n · · · enn

∣∣∣∣∣∣∣∣∣ .

If we give to D′ a more familiar aspect by writing eik = aki for each element
so that, as in (8), the row subscript precedes instead of follows the column
subscript, the definition of the determinant in terms of the a’s gives D′ in
terms of the e’s as the sum of all expressions

(−1)ie1k1e2k2 · · · enkn ,

in which k1, k2, . . . , kn is an arrangement of 1, 2, . . . , n, derived from the latter
sequence by i interchanges.

As for the terms of D, without altering (9), we may rearrange its factors
so that the first subscripts shall appear in the order 1, 2, . . . , n, and obtain

(−1)ie1k1e2k2 · · · enkn .

This can be done by performing in reverse order the i successive interchanges of
the letters e corresponding to the i successive interchanges which were used to
derive the arrangement i1, i2, . . . , in of the first subscripts from the arrangement
1, 2, . . . , n. Thus the new second subscripts k1, . . . , kn are derived from the old
second subscripts 1, . . . , n by i interchanges. The resulting signed product is
therefore a term of D′. Hence D = D′.

86. Interchange of Two Columns. A determinant is merely changed
in sign by the interchange of any two of its columns. For example,

D =
∣∣∣∣a b

c d

∣∣∣∣ = ad− bc, ∆ =
∣∣∣∣b a

d c

∣∣∣∣ = bc− ad = −D.

Let ∆ be the determinant derived from (8) by the interchange of the rth
and sth columns. The terms of ∆ are therefore obtained from the terms (9)
of D by interchanging r and s in the series of second subscripts. Interchange
the rth and sth letters e to restore the second subscripts to their natural order.
Since the first subscripts have undergone an interchange, the negative of any
term of ∆ is a term of D, and ∆ = −D.
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87. Interchange of Two Rows. A determinant D is merely changed in
sign by the interchange of any two rows.

Let ∆ be the determinant obtained from D by interchanging the rth and
sth rows. By interchanging the rows and columns in D and in ∆, we get two
determinants D′ and ∆′, either of which may be derived from the other by the
interchange of the rth and sth columns. Hence, by §§85, 86,

∆ = ∆′ = −D′ = −D.

88. Two Rows or Two Columns Alike. A determinant is zero if any
two of its rows or any two of its columns are alike.

For, by the interchange of the two like rows or two like columns, the deter-
minant is evidently unaltered, and yet must change in sign by §§86, 87. Hence
D = −D, D = 0.

EXERCISES

1. Prove that the equation of the straight line determined by the two distinct
points (x1, y1) and (x2, y2) is ∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0.

2. Show that ∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a2 c2 b2
a1 c1 b1
a3 c3 b3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a3 a1 a2

b3 b1 b2
c3 c1 c2

∣∣∣∣∣∣ .
By use of the Factor Theorem (§14) and the diagonal term, prove that

3. ∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ = (b− a)(c− a)(c− b).

4. ∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n

. . . . . . . . . . . . . . . . .

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣
=

n∏
i,j=1
i>j

(xi − xj).

This is known as the determinant of Vandermonde, who discussed it in 1770. The
symbol on the right means the product of all factors of the type indicated.
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5. Prove that a skew-symmetric determinant of odd order is zero:

∣∣∣∣∣∣
0 a b
−a 0 c
−b −c 0

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣∣∣
0 a b c d
−a 0 e f g
−b −e 0 h j
−c −f −h 0 k
−d −g −j −k 0

∣∣∣∣∣∣∣∣∣∣
= 0.

89. Minors. The determinant of order n − 1 obtained by erasing (or
covering up) the row and column crossing at a given element of a determinant
of order n is called the minor of that element.

For example, in the determinant (6′) of order 3, the minors of b1, b2, b3 are
respectively

B1 =
∣∣∣∣a2 c2
a3 c3

∣∣∣∣ , B2 =
∣∣∣∣a1 c1
a3 c3

∣∣∣∣ , B3 =
∣∣∣∣a1 c1
a2 c2

∣∣∣∣ .
Again, (6′) is the minor of d4 in the determinant of order 4 given by (7).

90. Expansion According to the Elements of a Row or Column.
In

(6′) D =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ ,
denote the minor of any element by the corresponding capital letter, so that
b1 has the minor B1, b3 has the minor B3, etc., as in §89. We shall prove that

D = a1A1 − b1B1 + c1C1, D = a1A1 − a2A2 + a3A3,

D = −a2A2 + b2B2 − c2C2, D = −b1B1 + b2B2 − b3B3,

D = a3A3 − b3B3 + c3C3, D = c1C1 − c2C2 + c3C3.

The three relations at the left (or right) are expressed in words by saying that
a determinant D of the third order may be expanded according to the elements
of the first, second or third row (or column). To obtain the expansion, we
multiply each element of the row (or column) by the minor of the element,
prefix the proper sign to the product, and add the signed products. The signs
are alternately + and −, as in the diagram

+ − +
− + −
+ − +
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For example, by expansion according to the second column,∣∣∣∣∣∣
1 4 5
2 0 3
3 0 9

∣∣∣∣∣∣ = −4
∣∣∣∣2 3
3 9

∣∣∣∣ = −4× 9 = −36.

Similarly the value of the determinant (7) of order 4 may be found by expansion
according to the elements of the fourth column:

−d1

∣∣∣∣∣∣
a2 b2 c2
a3 b3 c3
a4 b4 c4

∣∣∣∣∣∣+ d2

∣∣∣∣∣∣
a1 b1 c1
a3 b3 c3
a4 b4 c4

∣∣∣∣∣∣− d3

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a4 b4 c4

∣∣∣∣∣∣+ d4

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ .
We shall now prove that any determinant D of order n may be expanded

according to the elements of any row or any column.
Let Eij denote the minor of eij in D, given by (8), so that Eij is obtained

by erasing the ith row and jth column of D.
(i) We first prove that

(10) D = e11E11 − e21E21 + e31E31 − · · ·+ (−1)n−1en1En1,

so that D may be expanded according to the elements of its first column.
By (9) the terms of D having the factor e11 are of the form

(−1)ie11ei22 · · · einn,

where 1, i2, . . . , in is an arrangement of 1, 2, . . . , n, obtained from the latter by
i interchanges, so that i2, . . . , in is an arrangement of 2, . . . , n, derived from the
latter by i interchanges. After removing from each term the common factor e11

and adding the quotients, we obtain a sum which, by definition, is the value of
the determinant E11 of order n−1. Hence the terms of D having the factor e11

may all be combined into e11E11, which is the first part of (10).
We next prove that the terms of D having the factor e21 may be combined

into −e21E21, which is the second part of (10). For, if ∆ be the determinant
obtained from D by interchanging its first and second rows, the result just
proved shows that the terms of ∆ having the factor e21 may be combined into
the product of e21 by the minor∣∣∣∣∣∣∣∣∣

e12 e13 · · · e1n
e32 e33 · · · e3n
. . . . . . . . . . . . . .

en2 en3 · · · enn

∣∣∣∣∣∣∣∣∣
of e21 in ∆. Now this minor is identical with the minor E21 of e21 in D. But
∆ = −D (§87). Hence the terms of D having the factor e21 may be combined
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into −e21E21. Similarly, the terms of D having the factor e31 may be combined
into e31E31, etc., as in (10).

(ii) We next prove that D may be expanded according to the elements of
its kth column (k > 1):

(11) D =
n∑
j=1

(−1)j+kejkEjk.

Consider the determinant δ derived from D by moving the kth column over
the earlier columns until it becomes the new first column. Since this may be
done by k − 1 interchanges of adjacent columns, δ = (−1)k−1D. The minors
of the elements e1k, . . . , enk in the first column of δ are evidently the minors
E1k, . . . , Enk of e1k, . . . , enk in D. Hence, by (10),

δ = e1kE1k − e2kE2k + · · ·+ (−1)n−1enkEnk =
n∑
j=1

(−1)j+1ejkEjk.

Thus D = (−1)k−1δ has the desired value (11).
(iii) Finally, D may be expanded according to the elements of its kth row:

D =
n∑
j=1

(−1)j+kekjEkj .

In fact, by Case (ii), the latter is the expansion of the equal determinant D′
in §85 according to the elements of its kth column.

91. Removal of Factors. A common factor of all of the elements of the
same row or same column of a determinant may be divided out of the elements
and placed as a factor before the new determinant.

In other words, if all of the elements of a row or column are divided by n,
the value of the determinant is divided by n. For example,

∣∣∣∣na1 nb1
a2 b2

∣∣∣∣ = n

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ,
∣∣∣∣∣∣
a1 nb1 c1
a2 nb2 c2
a3 nb3 c3

∣∣∣∣∣∣ = n

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ .
Proof is made by expanding the determinants according to the elements of

the row or column in question and noting that the minors are the same for the
two determinants. Thus the second equation is equivalent to

−(nb1)B1 + (nb2)B2 − (nb3)B3 = n(−b1B1 + b2B2 − b3B3),

where Bi denotes the minor of bi in the final determinant.
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EXERCISES

1.

∣∣∣∣∣∣
3a 3b 3c
5a 5b 5c
d e f

∣∣∣∣∣∣ = 0. 2.

∣∣∣∣∣∣
2r l 3r
2s m 3s
2t n 3t

∣∣∣∣∣∣ = 0.

Expand by the shortest method and evaluate

3.

∣∣∣∣∣∣
2 7 3
5 9 8
0 3 0

∣∣∣∣∣∣. 4.

∣∣∣∣∣∣
5 7 0
6 8 0
3 9 4

∣∣∣∣∣∣.

5.

∣∣∣∣∣∣∣∣
a b c d
a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣ = abcd(a− b)(a− c)(a− d)(b− c)(b− d)(c− d).

92. Sum of Determinants. A determinant having a1 + q1, a2 + q2, . . .

as the elements of a column is equal to the sum of the determinant having a1,
a2, . . . as the elements of the corresponding column and the determinant having
q1, q2, . . . as the elements of that column, while the elements of the remaining
columns of each determinant are the same as in the given determinant.

For example,

∣∣∣∣∣∣
a1 + q1 b1 c1
a2 + q2 b2 c2
a3 + q3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣+

∣∣∣∣∣∣
q1 b1 c1
q2 b2 c2
q3 b3 c3

∣∣∣∣∣∣ .
To prove the theorem we have only to expand the three determinants ac-

cording to the elements of the column in question (the first column in the
example) and note that the minors are the same for all three determinants.
Hence a1 + q1 is multiplied by the same minor that a1 and q1 are multiplied
by separately, and similarly for a2 + q2, etc.

The similar theorem concerning the splitting of the elements of any row
into two parts is proved by expanding the three determinants according to the
elements of the row in question. For example,

∣∣∣∣a+ r b+ s

c d

∣∣∣∣ =
∣∣∣∣a b

c d

∣∣∣∣+
∣∣∣∣r s

c d

∣∣∣∣ .
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93. Addition of Columns or Rows. A determinant is not changed in
value if we add to the elements of any column the products of the corresponding
elements of another column by the same arbitrary number.

Let a1, a2, . . . be the elements to which we add the products of the elements
b1, b2, . . . by n. We apply §92 with q1 = nb1, q2 = nb2, . . . . Thus the modified
determinant is equal to the sum of the initial determinant and a determinant
having b1, b2, . . . in one column and nb1, nb2, . . . in another column. But (§91)
the latter determinant is equal to the product of n by a determinant with two
columns alike and hence is zero (§88). For example,∣∣∣∣∣∣

a1 + nb1 b1 c1
a2 + nb2 b2 c2
a3 + nb3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣+ n

∣∣∣∣∣∣
b1 b1 c1
b2 b2 c2
b3 b3 c3

∣∣∣∣∣∣ ,
and the last determinant is zero.

Similarly, a determinant is not changed in value if we add to the elements
of any row the products of the corresponding elements of another row by the
same arbitrary number.

For example, ∣∣∣∣a+ nc b+ nd
c d

∣∣∣∣ =
∣∣∣∣a b
c d

∣∣∣∣+ n

∣∣∣∣c d
c d

∣∣∣∣ =
∣∣∣∣a b
c d

∣∣∣∣ .
Example. Evaluate the first determinant below.∣∣∣∣∣∣

1 −2 1
1 2 3
6 4 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 1
1 8 3
6 10 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 0 1
−2 8 3

3 10 3

∣∣∣∣∣∣ =
∣∣∣∣−2 8

3 10

∣∣∣∣ = −44.

Solution. First we add to the elements of the second column the products of
the elements of the last column by 2. In the resulting second determinant, we add
to the elements of the first column the products of the elements of the third column
by −1. Finally, we expand the resulting third determinant according to the elements
of its first row.

EXERCISES

1. Prove that ∣∣∣∣∣∣
b+ c c+ a a+ b
b1 + c1 c1 + a1 a1 + b1
b2 + c2 c2 + a2 a2 + b2

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
a b c
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
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By reducing to a determinant of order 3, etc., prove that

2.

∣∣∣∣∣∣∣∣
1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣ = (a− b)(a− c)(a− d)(b− c)(b− d)(c− d).

3.

∣∣∣∣∣∣∣∣
2 −1 3 −2
1 7 1 −1
3 5 −5 3
4 −3 2 −1

∣∣∣∣∣∣∣∣ = −42. 4.

∣∣∣∣∣∣∣∣
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣∣∣∣∣∣∣∣ = 1.

94. System of n Linear Equations in n Unknowns with D 6= 0. In

(12)
a11x1 + a12x2 + · · ·+ a1nxn = k1,

. . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · ·+ annxn = kn,

let D denote the determinant of the coefficients of the n unknowns:

D =

∣∣∣∣∣∣
a11 a12 · · · a1n

. . . . . . . . . . . . . .

an1 an2 · · · ann

∣∣∣∣∣∣ .
Then

Dx1 =

∣∣∣∣∣∣
a11x1 a12 · · · a1n

. . . . . . . . . . . . . . .
an1x1 an2 · · · ann

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11x1 + a12x2 + · · ·+ a1nxn a12 · · · a1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · ·+ annxn an2 · · · ann

∣∣∣∣∣∣ ,
where the second determinant was derived from the first by adding to the
elements of the first column the products of the corresponding elements of the
second column by x2, etc., and finally the products of the elements of the last
column by xn. The elements of the new first column are equal to k1, . . . , kn
by (12). In this manner, we find that

(13) Dx1 = K1, Dx2 = K2, . . . , Dxn = Kn,

in which Ki is derived from D by substituting k1, . . . , kn for the elements
a1i, . . . , ani of the ith column of D, whence

K1 =

∣∣∣∣∣∣
k1 a12 · · · a1n

. . . . . . . . . . . . .

kn an2 · · · ann

∣∣∣∣∣∣ , . . . Kn =

∣∣∣∣∣∣
a11 · · · a1n−1 k1

. . . . . . . . . . . . . . .

an1 · · · ann−1 kn

∣∣∣∣∣∣ .
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If D 6= 0, the unique values of x1, . . . , xn determined by division from (13)
actually satisfy equations (12). For instance, the first equation is satisfied since

k1D − a11K1 − a12K2 − · · · − a1nKn =

∣∣∣∣∣∣∣∣∣∣∣

k1 a11 a12 · · · a1n

k1 a11 a12 · · · a1n

k2 a21 a22 · · · a2n

. . . . . . . . . . . . . . . . .

kn an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
,

as shown by expansion according to the elements of the first row; and the
determinant is zero, having two rows alike.

Theorem. If D denotes the determinant of the coefficients of the n un-
knowns in a system of n linear equations, the product of D by any one of
the unknowns is equal to the determinant obtained from D by substituting the
known terms in place of the coefficients of that unknown. If D 6= 0, we obtain
the unique values of the unknowns by division by D.

We have therefore given a complete proof of the results stated and illus-
trated in §80, §81. Another proof is suggested in Ex. 7 below. The theorem
was discovered by induction in 1750 by G. Cramer.

EXERCISES

Solve by determinants the following systems of equations (reducing each deter-
minant to one having zero as the value of every element but one in a row or column,
as in the example in §93).

1. x+ y + z = 11,
2x− 6y − z = 0,
3x+ 4y + 2z = 0.

2. x+ y + z = 0,
x+ 2y + 3z = −1,
x+ 3y + 6z = 0.

3. x− 2y + z = 12,
x+ 2y + 3z = 48,

6x+ 4y + 3z = 84.

4. 3x− 2y = 7,
3y − 2z = 6,
3z − 2x = −1.

5. x+ y + z + w = 1,
x+ 2y + 3z + 4w = 11,
x+ 3y + 6z + 10w = 26,
x+ 4y + 10z + 20w = 47.

6. 2x− y + 3z − 2w = 4,
x+ 7y + z − w = 2,

3x+ 5y − 5z + 3w = 0,
4x− 3y + 2z − w = 5.
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7. Prove the first relation (13) by multiplying the members of the first equa-
tion (12) by A11, those of the second equation by −A21, . . . , those of the nth equation
by (−1)n−1An1, and adding, where Aij by denotes the minor of aij in D. Hint: The
resulting coefficient of x2 is the expansion, according to the elements of its first
column, of a determinant derived from D by replacing a11 by a12, . . . , an1 by an2.

95. Rank of a Determinant. If we erase from a determinant D of
order n all but r rows and all but r columns, we obtain a determinant of
order r called an r-rowed minor of D. In particular, any element is regarded
as a one-rowed minor, and D itself is regarded as an n-rowed minor.

If a determinant D of order n is not zero, it is said to be of rank n. If,
for 0 < r < n, some r-rowed minor of D is not zero, while every (r + 1)-rowed
minor is zero, D is said to be of rank r. It is said to be of rank zero if every
element is zero.

For example, a determinant D of order 3 is of rank 3 if D 6= 0; of rank 2 if D = 0,
but some two-rowed minor is not zero; of rank 1 if every two-rowed minor is zero,
but some element is not zero. Again, every three-rowed minor of∣∣∣∣∣∣∣∣

a b c d
e f g h
a b c d
e f g h

∣∣∣∣∣∣∣∣
is zero since two pairs of its rows are alike. Hence it is of rank 2 if some two-rowed
minor is not zero. But it is of rank 1 if a, b, c, d are not all zero and are proportional
to e, f, g, h, since all two-rowed minors are then zero.

96. System of n Linear Equations in n Unknowns with D = 0.
We shall now discuss the equations (12) for the troublesome case (previously
ignored) in which the determinant D of the coefficients of the unknowns is
zero. In view of (13), the given equations are evidently inconsistent if any one
of the determinants K1, . . . ,Kn is not zero. But if D and these K’s are all zero,
our former results (13) give us no information concerning the unknowns xi,
and we resort to the following

Theorem. Let the determinant D of the coefficients of the unknowns
in equations (12) be of rank r, r < n. If the determinants K obtained from
the (r + 1)-rowed minors of D by replacing the elements of any column by the
corresponding known terms ki are not all zero, the equations are inconsistent.
But if these determinants K are all zero, the r equations involving the elements
of a non-vanishing r-rowed minor of D determine uniquely r of the unknowns
as linear functions of the remaining n − r unknowns, which are independent
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variables, and the expressions for these r unknowns satisfy also the remaining
n− r equations.

Consider for example the three equations (4) in the unknowns x, y, z. Five cases
arise:

(α) D of rank 3, i.e., D 6= 0.

(β) D of rank 2 (i.e., D = 0, but some two-rowed minor 6= 0), and

K1 =

∣∣∣∣∣∣
k1 b1 c1
k2 b2 c2
k3 b3 c3

∣∣∣∣∣∣ , K2 =

∣∣∣∣∣∣
a1 k1 c1
a2 k2 c2
a3 k3 c3

∣∣∣∣∣∣ , K3 =

∣∣∣∣∣∣
a1 b1 k1

a2 b2 k2

a3 b3 k3

∣∣∣∣∣∣
not all zero.

(γ) D of rank 2 and K1, K2, K3 all zero.

(δ) D of rank 1 (i.e., every two-rowed minor = 0, but some element 6= 0), and∣∣∣∣ai ki
aj kj

∣∣∣∣ , ∣∣∣∣bi ki
bj kj

∣∣∣∣ , ∣∣∣∣ci ki
cj kj

∣∣∣∣ (i, j chosen from 1, 2, 3)

not all zero; there are nine such determinants K.

(ε) D of rank 1, and all nine of the two-rowed determinants K zero.

In case (α) the equations have a single set of solutions (§94). In cases (β) and (δ)
there is no set of solutions. For (β) the proof follows from (13). In case (γ) one of the
equations is a linear combination of the other two; for example, if a1b2 − a2b1 6= 0,
the first two equations determine x and y as linear functions of z (as shown by
transposing the terms in z and solving the resulting equations for x and y), and the
resulting values of x and y satisfy the third equation identically as to z. Finally,
in case (ε), two of the equations are obtained by multiplying the remaining one by
constants.

The reader acquainted with the elements of solid analytic geometry will see that
the planes represented by the three equations have the following relations:

(α) The three planes intersect in a single point.

(β) Two of the planes intersect in a line parallel to the third plane.

(γ) The three planes intersect in a common line.

(δ) The three planes are parallel and not all coincident.

(ε) The three planes coincide.
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The remarks preceding our theorem furnish an illustration (the case r =
n− 1) of the following

Lemma 1. If every (r+1)-rowed minor M formed from certain r+1 rows
of D is zero, the corresponding r + 1 equations (12) are inconsistent provided
there is a non-vanishing determinant K formed from any M by replacing the
elements of any column by the corresponding known terms ki.

For concreteness,1 let the rows in question be the first r + 1 and let

K =

∣∣∣∣∣∣
a11 · · · a1r k1

. . . . . . . . . . . . . . . . . .

ar+11 · · · ar+1r kr+1

∣∣∣∣∣∣ 6= 0.

Let d1, . . . , dr+1 be the minors of k1, . . . , kr+1 in K. Multiply the first r + 1
equations (12) by d1, −d2, . . . , (−1)rdr+1, respectively, and add. The right
member of the resulting equation is the expansion of ±K. The coefficient of xs
is the expansion of

±

∣∣∣∣∣∣
a11 · · · a1r a1s

. . . . . . . . . . . . . . . . . . .

ar+11 · · · ar+1r ar+1s

∣∣∣∣∣∣
and is zero, being an M if s > r, and having two columns identical if s 5 r.
Hence 0 = ±K. Thus if K 6= 0, the equations are inconsistent.

Lemma 2. If all of the determinants M and K in Lemma 1 are zero, but
an r-rowed minor of an M is not zero, one of the corresponding r+1 equations
is a linear combination of the remaining r equations.

As before let the r + 1 rows in question be the first r + 1. Let the non-
vanishing r-rowed minor be

(14) dr+1 =

∣∣∣∣∣∣
a11 · · · a1r

. . . . . . . . . .

ar1 · · · arr

∣∣∣∣∣∣ 6= 0.

Let the functions obtained by transposing the terms ki in (12) be

Li ≡ ai1x1 + ai2x2 + · · ·+ ainxn − ki.

By the multiplication made in the proof of Lemma 1,

d1L1 − d2L2 + · · ·+ (−1)rdr+1Lr+1 = ∓K = 0.

Hence Lr+1 is a linear combination of L1, . . . , Lr.
1All other cases may be reduced to this one by rearranging the n equations and relabelling

the unknowns (replacing x3 by the new x1, for example).
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The first part of the theorem is true by Lemma 1. The second part is
readily proved by means of Lemma 2. Let (14) be the non-vanishing r-rowed
minor of D. For s > r, the sth equation is a linear combination of the first
r equations, and hence is satisfied by any set of solutions of the latter. In
the latter transpose the terms involving xr+1, . . . , xn. Since the determinant of
the coefficients of x1, . . . , xr is not zero, §94 shows that x1, . . . , xr are uniquely
determined linear functions of xr+1, . . . , xn (which enter from the new right
members).

EXERCISES

Apply the theorem to the following four systems of equations and check the
conclusions:

1. 2x+ y + 3z = 1,
4x+ 2y − z = −3,
2x+ y − 4z = −4.

2. 2x+ y + 3z = 1,
4x+ 2y − z = 3,
2x+ y − 4z = 4.

3. x− 3y + 4z = 1,
4x− 12y + 16z = 3,
3x− 9y + 12z = 3.

4. x− 3y + 4z = 1,
4x− 12y + 16z = 4,
3x− 9y + 12z = 3.

5. Discuss the system

ax+ y + z = a− 3,
x+ ay + z = −2,
x+ y + az = −2,

when (i) a = 1; (ii) a = −2; (iii) a 6= 1, −2, obtaining the simplest forms of the
unknowns.

6. Discuss the system

x+ y + z = 1,
ax+ by + cz = k,

a2x+ b2y + c2z = k2,

when (i) a, b, c are distinct; (ii) a = b 6= c; (iii) a = b = c.
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97. Homogeneous Linear Equations. When the known terms k1,
. . . , kn in (12) are all zero, the equations are called homogeneous. The de-
terminants K are now all zero, so that the n homogeneous equations are never
inconsistent. This is also evident from the fact that they have the set of solu-
tions x1 = 0, . . . , xn = 0. By (13), there is no further set of solutions if D 6= 0.
If D = 0, there are further sets of solutions. This is shown by the theorem
of §96 which now takes the following simpler form.

If the determinant D of the coefficients of n linear homogeneous equations
in n unknowns is of rank r, r < n, the r equations involving the elements of
a non-vanishing r-rowed minor of D determine uniquely r of the unknowns
as linear functions of the remaining n − r unknowns, which are independent
variables, and the expressions for these r unknowns satisfy also the remaining
n− r equations.

The particular case mentioned is the much used theorem:
A necessary and sufficient condition that n linear homogeneous equations

in n unknowns shall have a set of solutions, other than the trivial one in which
each unknown is zero, is that the determinant of the coefficients be zero.

EXERCISES

Discuss the following systems of equations:

1. x+ y + 3z = 0,
x+ 2y + 2z = 0,
x+ 5y − z = 0.

2. 2x− y + 4z = 0,
x+ 3y − 2z = 0,
x− 11y + 14z = 0.

3. x− 3y + 4z = 0,
4x− 12y + 16z = 0,
3x− 9y + 12z = 0.

4. 6x+ 4y + 3z − 84w = 0,
x+ 2y + 3z − 48w = 0,
x− 2y + z − 12w = 0,

4x+ 4y − z − 24w = 0.

5. 2x+ 3y − 4z + 5w = 0,
3x+ 5y − z + 2w = 0,
7x+ 11y − 9z + 12w = 0,
3x+ 4y − 11z + 13w = 0.
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98. System of m Linear Equations in n Unknowns. The case m < n

may be treated by means of the lemmas in §96. If m > n, we select any n of the
equations and apply to them the theorems of §§94, 96. If they are found to be
inconsistent, the entire system is evidently inconsistent. But if the n equations
are consistent, and if r is the rank of the determinant of their coefficients, we
obtain r of the unknowns expressed as linear functions of the remaining n− r
unknowns. Substituting these values of these r unknowns in the remaining
equations, we obtain a system of m − n linear equations in n − r unknowns.
Treating this system in the same manner, we ultimately either find that the
proposed m equations are consistent and obtain the general set of solutions,
or find that they are inconsistent. To decide in advance whether the former
or latter of these cases will arise, we have only to find the maximum order r
of a non-vanishing r-rowed determinant formed from the coefficients of the
unknowns, taken in the regular order in which they occur in the equations,
and ascertain whether or not the corresponding (r+1)-rowed determinants K,
formed as in §96, are all zero.

The last result may be expressed simply by employing the terminology
of matrices. The system of coefficients of the unknowns in any set of linear
equations

(15)
a11x1 + · · ·+ a1nxn = k1,

. . . . . . . . . . . . . . . . . . . .

am1x1 + · · ·+ amnxn = km,

arranged as they occur in the equations, is called the matrix of the coefficients,
and is denoted by

A =

 a11 a12 · · · a1n

. . . . . . . . . . . . . . .

am1 am2 · · · amn

 .

By annexing the column composed of the known terms ki we obtain the so-
called augmented matrix

B =

 a11 a12 · · · a1n k1

. . . . . . . . . . . . . . . . . . .

am1 am2 · · · amn km

 .

The definitions of an r-rowed minor (determinant) of a matrix and of the
rank of a matrix are entirely analogous to the definitions in §95.

In view of Lemma 1 in §96, our equations (15) are inconsistent if B is of
rank r + 1 and A is of rank 5 r. By Lemma 2, if A and B are both of rank r,
all of our equations are linear combinations of r of them. Noting also that the
rank r of A cannot exceed the rank of B, since every minor of A is a minor
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of B, and hence a non-vanishing r-rowed minor of A is a minor of B, so that
the rank of B is not less than r, we have the following

Theorem. A system of m linear equations in n unknowns is consistent
if and only if the rank of the matrix of the coefficients of the unknowns is equal
to the rank of the augmented matrix. If the rank of both matrices is r, certain
r of the equations determine uniquely r of the unknowns as linear functions
of the remaining n − r unknowns, which are independent variables, and the
expressions for these r unknowns satisfy also the remaining m− r equations.

When m = n + 1, B has an m-rowed minor called the determinant of the
square matrix B. If this determinant is not zero, B is of rank m. Since A has
no m-rowed minor, its rank is less than m. Hence we obtain the

Corollary. Any system of n + 1 linear equations in n unknowns is
inconsistent if the determinant of the augmented matrix is not zero.

EXERCISES

Discuss the following systems of equations:

1. 2x+ y + 3z = 1,
4x+ 2y − z = −3,
2x+ y − 4z = −4,

10x+ 5y − 6z = −10.

2. 2x− y + 3z = 2,
x+ 7y + z = 1,

3x+ 5y − 5z = a,

4x− 3y + 2z = 1.

3. 4x− y + z = 5,
2x− 3y + 5z = 1,
x+ y − 2z = 2,

5x − z = 2.

4. 4x− 5y = 2,
2x+ 3y = 12,

10x− 7y = 16.

5. Prove the Corollary by multiplying the known terms by xn+1 = 1 and apply-
ing §97 with n replaced by n+ 1.

6. Prove that if the matrix of the coefficients of any system of linear homoge-
neous equations in n unknowns is of rank r, the values of certain n−r of the unknowns
may be assigned at pleasure and the others will then be uniquely determined and
satisfy all of the equations.
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99. Complementary Minors. The determinant

(16) D =

∣∣∣∣∣∣∣∣∣
a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣∣
is said to have the two-rowed complementary minors

M =
∣∣∣∣a1 b1
a3 b3

∣∣∣∣ , M ′ =
∣∣∣∣c2 d2

c4 d4

∣∣∣∣ ,
since either is obtained by erasing from D all the rows and columns having an
element which occurs in the other.

In general, if we erase from a determinant D of order n all but r rows and
all but r columns, we obtain a determinant M of order r called an r-rowed
minor of D. But if we had erased from D the r rows and r columns previously
kept, we would have obtained an (n − r)-rowed minor of D called the minor
complementary to M . In particular, any element is regarded as a one-rowed
minor and is complementary to its minor (of order n− 1).

100. Laplace’s Development by Columns. Any determinant D is
equal to the sum of all the signed products ±MM ′, where M is an r-rowed
minor having its elements in the first r columns of D, and M ′ is the minor
complementary to M , while the sign is + or − according as an even or odd
number of interchanges of rows of D will bring M into the position occupied by
the minor M1 whose elements lie in the first r rows and first r columns of D.

For r = 1, this development becomes the known expansion of D according to the
elements of the first column (§90); here M1 = e11.

If r = 2 and D is the determinant (16),

D =
∣∣∣∣a1 b1
a2 b2

∣∣∣∣ · ∣∣∣∣c3 d3

c4 d4

∣∣∣∣− ∣∣∣∣a1 b1
a3 b3

∣∣∣∣ · ∣∣∣∣c2 d2

c4 d4

∣∣∣∣+
∣∣∣∣a1 b1
a4 b4

∣∣∣∣ · ∣∣∣∣c2 d2

c3 d3

∣∣∣∣
+
∣∣∣∣a2 b2
a3 b3

∣∣∣∣ · ∣∣∣∣c1 d1

c4 d4

∣∣∣∣− ∣∣∣∣a2 b2
a4 b4

∣∣∣∣ · ∣∣∣∣c1 d1

c3 d3

∣∣∣∣+
∣∣∣∣a3 b3
a4 b4

∣∣∣∣ · ∣∣∣∣c1 d1

c2 d2

∣∣∣∣ .
The first product in the development is M1M

′
1; the second product is −MM ′ (in

the notations of §99), and the sign is minus since the interchange of the second and
third rows of D brings thisM into the position ofM1. The sign of the third product
in the development is plus since two interchanges of rows of D bring the first factor
into the position of M1.
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If D is the determinant (8), then

M1 =

∣∣∣∣∣∣
e11 · · · e1r
. . . . . . . . .

er1 · · · err

∣∣∣∣∣∣ , M ′1 =

∣∣∣∣∣∣
er+1r+1 · · · er+1n

. . . . . . . . . . . . . . .

enr+1 · · · enn

∣∣∣∣∣∣ .
Any term of the product M1M

′
1 is of the type

(17) (−1)iei11ei22 · · · eirr · (−1)jeir+1r+1 · · · einn,

where i1, . . . , ir is an arrangement of 1, . . . , r derived from 1, . . . , r by i inter-
changes, while ir+1, . . . , in is an arrangement of r + 1, . . . , n derived by j in-
terchanges. Hence i1, . . . , in is an arrangement of 1, . . . , n derived by i + j

interchanges, so that the product (17) is a term of D with the proper sign.
It now follows from §87 that any term of any of the products ±MM ′ men-

tioned in the theorem is a term of D. Clearly we do not obtain twice in this
manner the same term of D.

Conversely, any term t of D occurs in one of the products ±MM ′. Indeed,
t contains as factors r elements from the first r columns of D, no two being in
the same row, and the product of these is, except perhaps as to sign, a term of
some minor M . Thus t is a term of MM ′ or of −MM ′. In view of the earlier
discussion, the sign of t is that of the corresponding term in ±MM ′, where the
latter sign is given by the theorem.

101. Laplace’s Development by Rows. There is a Laplace develop-
ment of D in which the r-rowed minors M have their elements in the first
r rows of D, instead of in the first r columns as in §100. To prove this, we
have only to apply §100 to the equal determinant obtained by interchanging
the rows and columns of D.

There are more general (but less used) Laplace developments in which the
r-rowed minors M have their elements in any chosen r columns (or rows) of D.
It is simpler to apply the earlier developments to the determinant ±D having
the elements of the chosen r columns (or rows) in the new first r columns (or
rows).

EXERCISES

1. Prove that ∣∣∣∣∣∣∣∣
a b c d
e f g h
0 0 j k
0 0 l m

∣∣∣∣∣∣∣∣ =
∣∣∣∣a b
e f

∣∣∣∣ · ∣∣∣∣j k
l m

∣∣∣∣ .
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2. By employing 2-rowed minors from the first two rows, show that

1
2

∣∣∣∣∣∣∣∣
a b c d
e f g h
a b c d
e f g h

∣∣∣∣∣∣∣∣ =
∣∣∣∣a b
e f

∣∣∣∣ · ∣∣∣∣c d
g h

∣∣∣∣− ∣∣∣∣a c
e g

∣∣∣∣ · ∣∣∣∣b d
f h

∣∣∣∣+
∣∣∣∣a d
e h

∣∣∣∣ · ∣∣∣∣b c
f g

∣∣∣∣ = 0.

3. By employing 2-rowed minors from the first two columns of the 4-rowed
determinant in Ex. 2, show that the products in Laplace’s development cancel.

102. Product of Determinants. The product of two determinants of
the same order is equal to a determinant of like order in which the element
of the rth row and cth column is the sum of the products of the elements of
the rth row of the first determinant by the corresponding elements of the cth
column of the second determinant.

For example,

(18)
∣∣∣∣a b
c d

∣∣∣∣ · ∣∣∣∣e f
g h

∣∣∣∣ =
∣∣∣∣ae+ bg af + bh
ce+ dg cf + dh

∣∣∣∣ .
While for brevity we shall give the proof for determinants of order 3, the

method is seen to apply to determinants of any order. By Laplace’s develop-
ment with r = 3 (§101), we have

(19)

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 0 0 0
a2 b2 c2 0 0 0
a3 b3 c3 0 0 0
−1 0 0 e1 f1 g1

0 −1 0 e2 f2 g2
0 0 −1 e3 f3 g3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
e1 f1 g1
e2 f2 g2
e3 f3 g3

∣∣∣∣∣∣ .

In the determinant of order 6, add to the elements of the fourth, fifth,
and sixth columns the products of the elements of the first column by e1, f1,
g1, respectively (and hence introduce zeros in place of the former elements
e1, f1, g1). Next, add to the elements of the fourth, fifth, and sixth columns
the products of the elements of the second column by e2, f2, g2, respectively.
Finally, add to the elements of the fourth, fifth, and sixth columns the products
of the elements of the third column by e3, f3, g3, respectively. The new
determinant is∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 a1e1 + b1e2 + c1e3 a1f1 + b1f2 + c1f3 a1g1 + b1g2 + c1g3
a2 b2 c2 a2e1 + b2e2 + c2e3 a2f1 + b2f2 + c2f3 a2g1 + b2g2 + c2g3
a3 b3 c3 a3e1 + b3e2 + c3e3 a3f1 + b3f2 + c3f3 a3g1 + b3g2 + c3g3
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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By Laplace’s development (or by expansion according to the elements of the
last row, etc.), this is equal to the 3-rowed minor whose elements are the long
sums. Hence this minor is equal to the product in the right member of (19).

EXERCISES

1. Prove (18) by means of §92.

2. Prove that, if si = αi + βi + γi,∣∣∣∣∣∣
1 1 1
α β γ
α2 β2 γ2

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
1 α α2

1 β β2

1 γ γ2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3 s1 s2
s1 s2 s3
s2 s3 s4

∣∣∣∣∣∣ .
3. If Ai, Bi, Ci are the minors of ai, bi, ci in the determinant D defined by the

second factor below, prove that∣∣∣∣∣∣
A1 −A2 A3

−B1 B2 −B3

C1 −C2 C3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
D 0 0
0 D 0
0 0 D

∣∣∣∣∣∣ .
Hence the first factor is equal to D2 if D 6= 0.

4. Express (a2 + b2 + c2 + d2)(e2 + f2 + g2 + h2) as a sum of four squares by
writing ∣∣∣∣ a+ bi c+ di

−c+ di a− bi

∣∣∣∣ · ∣∣∣∣ e+ fi g + hi
−g + hi e− fi

∣∣∣∣
as a determinant of order 2 similar to each factor. Hint: If k′ denotes the conjugate
of the complex number k, each of the three determinants is of the form∣∣∣∣ k l

−l′ k′

∣∣∣∣ .
MISCELLANEOUS EXERCISES

1. Solve
ax+ by + cz = k,

a2x+ b2y + c2z = k2,

a4x+ b4y + c4z = k4

by determinants for x, treating all cases.

2. In three linear homogeneous equations in four unknowns, prove that the
values of the unknowns are proportional to four determinants of order 3 formed
from the coefficients.

Factor the following determinants:
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3.

∣∣∣∣∣∣
1 a bc
1 b ca
1 c ab

∣∣∣∣∣∣. 4.

∣∣∣∣∣∣
x x2 yz
y y2 xz
z z2 xy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x2 x3 1
y2 y3 1
z2 z3 1

∣∣∣∣∣∣.
5. ∣∣∣∣∣∣

a b c
c a b
b c a

∣∣∣∣∣∣ = (a+ b+ c)(a+ bω + cω2)(a+ bω2 + cω),

where ω is an imaginary cube root of unity.

6.

∣∣∣∣∣∣∣∣
a b c d
b a d c
c d a b
d c b a

∣∣∣∣∣∣∣∣. 7.

∣∣∣∣∣∣∣∣
a b c d
d a b c
c d a b
b c d a

∣∣∣∣∣∣∣∣.
8. If the points (x1, y1), . . . , (x4, y4) lie on a circle, prove that∣∣∣∣∣∣

x2
1 + y2

1 x1 y1 1
. . . . . . . . . . . . . .
x2

4 + y2
4 x4 y4 1

∣∣∣∣∣∣ = 0.

9. Prove that ∣∣∣∣aa′ + bb′ + cc′ ea′ + fb′ + gc′

ae′ + bf ′ + cg′ ee′ + ff ′ + gg′

∣∣∣∣
=
∣∣∣∣a b
e f

∣∣∣∣ · ∣∣∣∣a′ b′

e′ f ′

∣∣∣∣+
∣∣∣∣a c
e g

∣∣∣∣ · ∣∣∣∣a′ c′

e′ g′

∣∣∣∣+
∣∣∣∣b c
f g

∣∣∣∣ · ∣∣∣∣b′ c′

f ′ g′

∣∣∣∣ .
10. Prove that the cubic equation

D(x) ≡

∣∣∣∣∣∣
a− x b c
b f − x g
c g h− x

∣∣∣∣∣∣ = 0

has only real roots. Hints:

D(x) ·D(−x) =

∣∣∣∣∣∣
a2 + b2 + c2 − x2 ab+ bf + cg ac+ bg + ch
ab+ bf + cg b2 + f2 + g2 − x2 bc+ fg + gh
ac+ bg + ch bc+ fg + gh c2 + g2 + h2 − x2

∣∣∣∣∣∣
= −x6 + x4(a2 + f2 + h2 + 2b2 + 2c2 + 2g2)− x2(D1 +D2 +D3) +D2(0),

where D3 denotes the first determinant in Ex. 9 with all accents removed and with
e = b, while D1 and D2 are analogous minors of elements in the main diagonal of
the present determinant of order 3 with x = 0. Hence the coefficient of −x2 is a
sum of squares. Since the function of degree 6 is not zero for a negative value of x2,
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D(x) = 0 has no purely imaginary root. If it had an imaginary root r + si, then
D(x + r) = 0 would have a purely imaginary root si. But D(x + r) is of the form
D(x) with a, f , h replaced by a − r, f − r, h − r. Hence D(x) = 0 has only real
roots. The method is applicable to such determinants of order n.

11. If a1, . . . , an are distinct, solve the system of equations

x1

ki − a1
+

x2

ki − a2
+ · · ·+ xn

ki − an
= 1 (i = 1, . . . , n).

Hint: Regard k1, . . . , kn as the roots of an equation of degree n in k formed from the
typical one above by substituting k for ki and clearing of fractions; write k = aj − t,
and consider the product of the roots of tn + · · · = 0. Hence find xj .

12. Solve the equation ∣∣∣∣∣∣
a+ x x x
x b+ x x
x x c+ x

∣∣∣∣∣∣ = 0.



CHAPTER IX
Symmetric Functions

103. Sigma Functions, Elementary Symmetric Functions. A ratio-
nal function of the independent variables x1, x2, . . . , xn is said to be symmetric
in them if it is unaltered by the interchange of any two of the variables. For
example,

x2
1 + x2

2 + x2
3 + 4x1 + 4x2 + 4x3

is a symmetric polynomial in x1, x2, x3; the sum of the first three terms is
denoted by Σx2

1 and the sum of the last three by 4Σx1. In general, if t is a
rational function of x1, . . . , xn,Σt denotes the sum of t and all of the distinct
functions obtained from t by permutations of the variables; such a Σ-function
(read sigma function) is symmetric in x1, . . . , xn.

For example, if there are three independent variables α, β, γ,

Σαβ = αβ + αγ + βγ, Σα2β = α2β + αβ2 + α2γ + αγ2 + β2γ + βγ2,

Σ
1
α

=
1
α

+
1
β

+
1
γ
, Σ

β

α
=
β

α
+
α

β
+
β

γ
+
γ

β
+
α

γ
+
γ

α
,

Σ
α2 + β2

αβ
=
α2 + β2

αβ
+
α2 + γ2

αγ
+
β2 + γ2

βγ
.

In particular, Σα = α+β+γ, Σαβ, and αβγ are called the three elementary
symmetric functions of α, β, γ. In general,

Σα1, Σα1α2, Σα1α2α3, . . . , Σα1α2 · · ·αn−1, α1α2 . . . αn

are the elementary symmetric functions of α1, α2, . . . , αn. In §20 they were
written out more fully and proved to be equal to −c1, c2, −c3, . . . , (−1)ncn if
α1, . . . , αn are the roots of the equation

(1) xn + c1x
n−1 + c2x

n−2 + · · ·+ cn = 0

whose leading coefficient is unity.
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EXERCISES

If α, β, γ are the roots of x3 + px2 + qx + r = 0, so that Σα = −p, Σαβ = q,
and αβγ = −r, prove that

1. (Σα)2 = Σα2 + 2Σαβ, whence Σα2 = p2 − 2q.

2. Σα · Σαβ = Σα2β + 3αβγ, whence Σα2β = 3r − pq.

3. Σα2βγ = pr.

4. Σα2β2 = (Σαβ)2 − 2αβγΣα = q2 − 2pr.

If α, β, γ, δ are the roots of x4 + px3 + qx2 + rx+ s = 0, prove that

5. Σ
1
α

=
−r
s
, Σ

1
αβ

=
q

s
, Σ

1
α2

=
r2 − 2qs

s2
.

Hint: Compute the sum, sum of the products two at a time, and sum of the squares
of the roots of the equation

1 + py + qy2 + ry3 + sy4 = 0,

obtained by replacing x by 1/y in the given quartic equation.

6. Σ
β

α
= Σα · Σ 1

α
− 4 =

pr

s
− 4.

7. Σ
α2 + β2

αβ
= Σ

β

α
.

8. Σ
βγ

α2
= Σαβ · Σ 1

α2
− Σ

β

α
=

1
s2

(qr2 − 2q2s− prs+ 4s2).

9. Σ
γ

αβ
=

3r − pq
s

.

104. Fundamental Theorem on Symmetric Functions. Any poly-
nomial symmetric in x1, . . . , xn is equal to an integral rational function, with
integral coefficients, of the elementary symmetric functions

(2) E1 = Σx1, E2 = Σx1x2, E3 = Σx1x2x3, . . . , En = x1x2 · · ·xn

and the coefficients of the given polynomial. In particular, any symmetric
polynomial with integral coefficients is equal to a polynomial in the elementary
symmetric functions with integral coefficients.

For example, if n = 2,

rx2
1 + rx2

2 + sx1 + sx2 ≡ r(E2
1 − 2E2) + sE1.
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In case r and s are integers, the resulting polynomial in E1 and E2 has integral
coefficients.

The theorem is most frequently used in the equivalent form:
Any polynomial symmetric in the roots of an equation,

xn − E1x
n−1 + E2x

n−2 − · · ·+ (−1)nEn = 0,

is equal to an integral rational function, with integral coefficients, of the coef-
ficients of the equation and the coefficients of the polynomial.

It is this precise theorem that is required in all parts of modern algebra
and the theory of numbers, where attention to the nature of the coefficients
is vital, rather than the inadequate, oft-quoted, theorem that any symmetric
function of the roots is expressible (rationally) in terms of the coefficients.

It suffices to prove the theorem for any homogeneous symmetric polyno-
mial S, i.e., one expressible as a sum of terms

h = axk11 xk22 · · ·x
kn
n

of constant total degree k = k1 + k2 + · · · + kn in the x’s. Evidently we may
assume that no two terms of S have the same set of exponents k1, . . . , kn (since
such terms may be combined into a single one). We shall say that h is higher
than the term bxl11 x

l2
2 · · ·x

ln
n if k1 > l1, or if k1 = l1, k2 > l2, or if k1 = l1, k2 = l2,

k3 > l3, . . . , so that the first one of the differences k1 − l1, k2 − l2, k3 − l3, . . .
which is not zero is positive.

We first prove that, if the above term h is the highest term of S, then

k1 = k2 = k3 · · · = kn.

For, if k1 < k2, the symmetric polynomial S would contain the term

axk21 xk12 xk33 · · ·x
kn
n ,

which is higher than h. If k2 < k3, S would contain the term

axk11 xk32 xk23 · · ·x
kn
n ,

which is higher than h, etc.
If the highest term in another homogeneous symmetric polynomial S′ is

h′ = a′xk
′
1

1 x
k′2
2 · · ·x

k′n
n ,

and that of S is h, then the highest term in their product SS′ is

hh′ = aa′xk1+k
′
1

1 · · ·xkn+k′n
n .
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Indeed, suppose that SS′ has a term, higher than hh′,

(3) cx
l1+l

′
1

1 · · ·xln+l′n
n ,

which is either a product of terms

t = bxl11 · · ·x
ln
n , t′ = b′xl

′
1
1 · · ·x

l′n
n

of S and S′ respectively, or is a sum of such products. Since (3) is higher
than hh′, the first one of the differences

l1 + l′1 − k1 − k′1, . . . , ln + l′n − kn − k′n

which is not zero is positive. But, either all of the differences l1−k1, . . . , ln−kn
are zero or the first one which is not zero is negative, since h is either identical
with t or is higher than t. Likewise for the differences l′1 − k′1, . . . , l′n − k′n. We
therefore have a contradiction.

It follows at once that the highest term in a product of any number of
homogeneous symmetric polynomials is the product of their highest terms.
Now the highest terms in E1, E2, E3, . . . , En, given by (2), are

x1, x1x2, x1x2x3, . . . , x1x2 · · ·xn,

respectively. Hence the highest term in Ea1
1 Ea2

2 · · ·E
an
n is

xa1+a2+···+an
1 xa2+···+an

2 · · ·xan
n .

Thus the highest term in

σ = aEk1−k21 Ek2−k32 · · ·Ekn−1−kn

n−1 Ekn
n

is h. Hence S1 = S − σ is a homogeneous symmetric polynomial of the same
total degree k as S and having a highest term h1 not as high as h. As before, we
form a product σ1 of the E’s whose highest term is this h1. Then S2 = S1−σ1

is a homogeneous symmetric polynomial of total degree k and with a highest
term h2 not as high as h1. We must finally reach a difference St − σt which is
identically zero. Indeed, there is only a finite number of products of powers of
x1, . . . , xn of total degree k. Among these are the parts h′, h′1, h′2, . . . of h, h1,
h2, . . . with the coefficients suppressed. Since each hi is not as high as hi−1,
the h′, h′1, h′2, . . . are all distinct. Hence there is only a finite number of hi.
Since St − σt ≡ 0,

S = σ + S1 = σ + σ1 + S2 = · · · = σ + σ1 + σ2 + · · ·+ σt.
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Hence S is a polynomial in E1, E2, . . . , En and a, b, . . . , with integral coefficients.
Example 1. If S = Σx2

1x
2
2x3 and n > 4, we have

σ = E2E3 = S + 3Σx2
1x2x3x4 + 10Σx1x2x3x4x5,

S1 = S − σ = −3Σx2
1x2x3x4 − 10Σx1x2x3x4x5,

σ1 = −3E1E4 = −3(Σx2
1x2x3x4 + 5Σx1x2x3x4x5),

S2 = S1 − σ1 = 5Σx1x2x3x4x5 = 5E5,

S = σ + S1 = σ + σ1 + S2 = E2E3 − 3E1E4 + 5E5.

Example 2. If S = Σx3
1x2x3 and n > 4,

σ = E2
1E3 = E1(Σx2

1x2x3 + 4Σx1x2x3x4)

= Σx3
1x2x3 + 2Σx2

1x
2
2x3 + 3Σx2

1x2x3x4

+ 4(Σx2
1x2x3x4 + 5Σx1x2x3x4x5),

S1 = S − σ = −2Σx2
1x

2
2x3 − 7Σx2

1x2x3x4 − 20Σx1x2x3x4x5.

Take σ1 = −2E2E3 and proceed as in Ex. 1.

Example 3. By examples 1 and 2, if n > 4,

aΣx2
1x

2
2x3 + bΣx3

1x2x3 = bE2
1E3 − (3a+ b)E1E4 + (a− 2b)E2E3 + 5(a+ b)E5.

105. Rational Functions Symmetric in all but One of the Roots.
If P is a rational function of the roots of an equation f(x) = 0 of degree n and if
P is symmetric in n−1 of the roots, then P is equal to a rational function, with
integral coefficients, of the remaining root and the coefficients of f(x) and P .

For example, P = rα1 + α2
2 + α2

3 + · · ·+ α2
n is symmetric in α2, . . . , αn, and

P = rα1 + Σα2
1 − α2

1 = c21 − 2c2 + rα1 − α2
1,

if α1, . . . , αn are the roots of equation (1).
Since1 any symmetric rational function is the quotient of two symmetric

polynomials, the above theorem will follow if proved for the case in which the
words rational function are in both places replaced by polynomial.

1If N/D is symmetric in α1, α2, and the polynomials N and D have no common factor,
while N becomes N ′ and D becomes D′ when α1, α2 are interchanged, then ND′ ≡ DN ′.
Thus N divides N ′ and both are of the same degree. Hence N ′ = cN,D′ = cD, where c is
a constant. By again interchanging α1, α2, we obtain N from N ′, whence N = cN ′ = c2N ,
c2 = 1. If c = −1, we take α1 = α2 and see that N = N ′ = −N , N = 0, whence N has the
factor α1−α2. Similarly, D has the same factor, contrary to hypothesis. Hence c = +1 and
N and D are each symmetric in α1, α2.
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If α1 is the remaining root, the polynomial P is symmetric in the roots
α2, . . . , αn of f(x)/(x− α1) = 0, an equation of degree n− 1 whose coefficients
are polynomials in α1, c1, . . . , cn with integral coefficients. Hence (§104), P
is equal to a polynomial, with integral coefficients, in α1, c1, . . . , cn and the
coefficients of P .

Example. If α, β, γ are the roots of f(x) ≡ x3 + px2 + qx+ r = 0, find

Σ
α2 + β2

α+ β
=
α2 + β2

α+ β
+
α2 + γ2

α+ γ
+
β2 + γ2

β + γ
.

Solution. Since β2 + γ2 = p2 − 2q − α2, β + γ = −p− α,

Σ
α2 + β2

α+ β
= Σ

p2 − 2q − α2

−p− α
= Σ

(
α− p+

2q
α+ p

)
= −p− 3p+ 2qΣ

1
α+ p

.

But α+ p, β + p, γ + p are the roots y1, y2, y3 of the cubic equation obtained from
f(x) = 0 by the substitution x+ p = y, i.e., x = y − p. The resulting equation is

y3 − 2py2 + (p2 + q)y + r − pq = 0.

Since we desire the sum of the reciprocals of y1, y2, y3, we set y = 1/z and find the
sum of the roots z1, z2, z3 of

1− 2pz + (p2 + q)z2 + (r − pq)z3 = 0.

Hence

Σ
1

α+ p
= Σ

1
y1

= Σz1 =
p2 + q

pq − r
, Σ

α2 + β2

α+ β
=

2q2 − 2p2q + 4pr
pq − r

.

EXERCISES

[In Exs. 1–12, α, β, γ are the roots of f(x) = x3 + px2 + qx+ r = 0.]
Using βγ + α(β + γ) = q, find

1. Σ
βγ + α2

β + γ
, 2. Σ

3βγ − 2α2

β + γ − α
.

3. Why would the use of βγ = −r/α complicate Exs. 1, 2? Verify that

βγ =
−r
α

=
f(α)− r

α
= α2 + pα+ q.

4. Why would you use βγ = −r/α in finding Σ
β2 + γ2

βγ + c
?



§106.] SUMS OF LIKE POWERS OF THE ROOTS 149

5. Find Σ(β + γ)2. 6. Find Σ(α+β−γ)3. 7. Find Σ
(
β − γ
β + γ

)2

.

8. Find a necessary and sufficient condition on the coefficients that the roots, in

some order, shall be in harmonic progression. Hint: If
1
α

+
1
γ

=
2
β
, then

−3r
q
−β = 0,

and conversely. Hence the condition is(
−3r
q
− α

)(
−3r
q
− β

)(
−3r
q
− γ
)

= f

(
−3r
q

)
= 0.

9. Find the cubic equation with the roots βγ− 1
α
, αγ− 1

β
, αβ− 1

γ
. Hint: since

these are (−r − 1)/α, etc., make the substitution (−r − 1)/x = y.

Find the substitution which replaces the given cubic equation by one with the
roots

10. αβ + αγ, αβ + βγ, αγ + βγ.

11. 2α− 1
β + γ − α

, etc. 12. βγ + 3α2

β + γ − 2α
, etc.

If α, β, γ, δ are the roots of x4 + px3 + qx2 + rx+ s = 0, find

13. Σ
β2 + γ2 + δ2

β + γ + δ
. 14. Σ

βγ + βδ + γδ

β + γ + δ − 3
.

15. Prove that if y1, y2, y3 are the roots of y3 + py + q = 0, the equation with
the roots z1 = (y2 − y3)2, z2 = (y1 − y3)2, z3 = (y1 − y2)2 is

z3 + 6pz2 + 9p2z + 4p3 + 27q2 = 0.

Hints: since z1 = Σy2
1−2y2y3−y2

1 = −2p+2q/y1−y2
1, etc., we set z = −2p+2q/y−y2.

By the given equation, y2 + p + q/y = 0. Thus the desired substitution is z =
−p+ 3q/y, y = 3q/(z + p).

16. Hence find the discriminant of the reduced cubic equation.

17. If x1, . . . , xn are the roots of f(x) = 0, show that

Σ
1

x1 − c
=
−f ′(c)
f(c)

.

Hint: x1 − c = y1, . . . , xn − c = yn are the roots of

f(c+ y) = f(c) + yf ′(c) + y2( ) + · · · = 0,

as shown by Taylor’s theorem. Or we may employ (5) below for x = c.
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106. Sums of Like Powers of the Roots. If α1, . . . , αn are the roots
of

(1) f(x) ≡ xn + c1x
n−1 + c2x

n−2 + · · ·+ cn = 0,

we write s1 for Σα1, s2 for Σα2
1, and, in general,

sk = Σαk1 = αk1 + αk2 + · · ·+ αkn.

The factored form of (1) is

(4) f(x) ≡ (x− α1)(x− α2) · · · (x− αn).

The derivative f ′(x) of this product is found by multiplying the derivative
(unity) of each factor by the product of the remaining factors and adding the
results. Hence

f ′(x) = (x− α2) · · · (x− αn) + (x− α1)(x− α3) · · · (x− αn) + · · · ,

f ′(x) ≡ f(x)
x− α1

+
f(x)
x− α2

+ · · ·+ f(x)
x− αn

.(5)

If α is any root of (1), f(α) = 0 and

f(x)
x− α

=
f(x)− f(α)

x− α
=
xn − αn

x− α
+ c1

xn−1 − αn−1

x− α
+ · · ·+ cn−1

x− α
x− α

= xn−1 + αxn−2 + α2xn−3 + · · ·+ c1(xn−2 + αxn−3 + · · · )
+ c2(xn−3 + · · · ) + · · · ,

f(x)
x− α

= xn−1 + (α+ c1)xn−2 + (α2 + c1α+ c2)xn−3 + · · ·

+ (αk + c1α
k−1 + c2α

k−2 + · · ·+ ck−1α+ ck)xn−k−1 + · · · .
(6)

Taking α to be α1, . . . , αn in turn, adding the results, and applying (5), we
obtain

f ′(x) = nxn−1 + (s1 + nc1)xn−2 + (s2 + c1s1 + nc2)xn−3 + · · ·

+ (sk + c1sk−1 + c2sk−2 + · · ·+ ck−1s1 + nck)xn−k−1 + · · · .

The derivative of (1) is found at once by the rules of calculus (or by §56)
to be

f ′(x) = nxn−1 + (n− 1)c1xn−2 + (n− 2)c2xn−3 + · · ·+ (n− k)ckx
n−k−1 + · · · .

Since this expression is identical term by term with the preceding, we have

(7)
s1 + c1 = 0, s2 + c1s1 + 2c2 = 0, . . . ,

sk + c1sk−1 + c2sk−2 + · · ·+ ck−1s1 + kck = 0 (k 5 n− 1).
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We may therefore find in turn s1, s2, . . . , sn−1:

(8) s1 = −c1, s2 = c21 − 2c2, s3 = −c31 + 3c1c2 − 3c3, . . . .

To find sn, replace x in (1) by α1, . . . , αn in turn and add the resulting
equations. We get

(9) sn + c1sn−1 + c2sn−2 + · · ·+ cn−1s1 + ncn = 0.

We may combine (7) and (9) into

(10) sk + c1sk−1 + c2sk−2 + · · ·+ ck−1s1 + kck = 0 (k = 1, 2, . . . , n).

This set of formulas (10) will be referred to as Newton’s identities. The
student should be able to write them down from memory and, when writing
them, should always check the final one (9) by deriving it as above.

To derive a formula which shall enable us to compute the sk for k > n, we
multiply (1) by xk−n, take x = α1, . . . , x = αn in turn, and add the resulting
equations. We get

(11) sk + c1sk−1 + c2sk−2 + · · ·+ cnsk−n = 0 (k > n).

Instead of memorizing this formula, it is preferable to deduce it for the
particular equation for which it is needed, thus avoiding errors of substitution
as well as confusion with (10).

Example. Find sk for xn − 1 = 0.

Solution. Comparing our equation with (1), we have c1 = 0, . . . , cn−1 = 0,
cn = −1. Hence in (10) for k < n, each c is zero and sk = 0. But, for k = n, (10)
becomes sn−n = 0. We may check the latter by substituting each root α1, . . . , αn in
our given equation and adding. Finally, to find sl when l > n, multiply our equation
by xl−n. In the resulting equation xl − xl−n = 0 we substitute each root, add, and
obtain sl − sl−n = 0. Hence from sl we obtain an equal s by subtracting n from l.
After repeated subtractions, we reach a value k for which 1 5 k 5 n. Since sk = 0
or n according as k < n or k = n, it follows that sl = 0 or n according as l is not or
is divisible by n.

EXERCISES

1. For a cubic equation, s4 = c41 − 4c21c2 + 4c1c3 + 2c22.

2. For an equation of degree = 4, s4 = c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4.

3. Find s2, s3, s4, s5 for x2 − px+ q = 0.

4. Find sk for x5 − 3 = 0.

5. Find s2, s3, s6, s7 for x5 − px+ q = 0.
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107. Waring’s Formula for sk in Terms of the Coefficients. While
we have learned how to find s1, s2, s3, . . . in turn by Newton’s identities,
it is occasionally useful to know an explicit expression for sk, where k has
an arbitrary value. The formula in question is applied ordinarily only to a
quadratic equation

x2 + px+ q = 0.

Accordingly we shall treat this case in detail. If its roots are α and β, then

x2 + px+ q ≡ (x− α)(x− β).

Replace x by 1/y and multiply by y2. We get

(12) 1 + py + qy2 ≡ (1− αy)(1− βy).

Taking derivatives, we have

p+ 2qy ≡ −α(1− βy)− β(1− αy).

Change of signs and division by the members of (12) gives

(13) −p− 2qy
1 + py + qy2

≡ α

1− αy
+

β

1− βy
.

The identity in Ex. 7, §14, with n changed to k, may be written in the form

(14) 1
1− r

≡ 1 + r + r2 + · · ·+ rk−1 +
rk

1− r
.

Take r = αy and multiply the resulting terms by α; thus

α

1− αy
= α+ α2y + · · ·+ αkyk−1 +

αk+1yk

1− αy
.

Similarly,

β

1− βy
= β + β2y + · · ·+ βkyk−1 +

βk+1yk

1− βy
.

To show that on adding, and writing sk for αk + βk, we obtain (15), we need
the sum of the final fractions, which by (12) is

φyk

(1− αy)(1− βy)
=

φyk

1 + py + qy2
, φ ≡ αk+1(1− βy) + βk+1(1− αy).

Hence

(15) α

1− αy
+

β

1− βy
= s1 + s2y + · · ·+ sky

k−1 +
φyk

1 + py + qy2
,
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where the exact expression for φ is immaterial.
Next, we seek an expansion of the fraction in the left member of (13). Its

denominator will be identical with that in (14) if we choose r = −py − qy2.
Evidently (14) may be written in the compact form

1
1− r

≡
k−1∑
t=0

rt +
rk

1− r
.

Hence it becomes

1
1 + py + qy2

=
k−1∑
t=0

(−1)t(py + qy2)t +
ψyk

1 + py + qy2
,

where ψ = (−p− qy)k, although no use will be made of the particular form of
the polynomial ψ. By the binomial theorem,

(py + qy2)t =
∑ (g + h)!

g!h!
(py)g(qy2)h,

where the summation extends over all sets of integers g and h, each = 0, for
which g+h = t, while g! denotes the product of 1, 2, . . . , g if g = 1, but denotes
unity if g = 0. Hence

−p− 2qy
1 + py + qy2

= (p+ 2qy)
∑

(−1)g+h+1 (g + h)!
g!h!

pgqhyg+2h + E,(16)

E ≡ (−p− 2qy)ψyk

1 + py + qy2
,

where the summation extends over all sets of integers g and h, each = 0, for
which g + h 5 k − 1.

Since the left members of (15) and (16) are identically equal by (13), their
right members must be identical, so that the coefficients of yk−1 in them must
be equal.2 Hence the coefficient sk of yk−1 in (15) is equal to the coefficient
of yk−1 in (16), which is made up of two parts, corresponding to the two terms
of the factor p+2qy. When we use the constant term p, we must employ from

∑
in (16) the terms in which the exponent of y is equal to k−1. But when we use
the other term 2qy, we must employ from

∑
the terms in which the exponent

of y is equal to k − 2, in order to obtain the combined exponent k − 1 of y.

2In fact, the (k − 1)th derivatives of the two right members are identical, and we obtain
the indicated result by substituting y = 0 in these two derivatives and equating the results.
Note that the final terms in both (15) and (16) have y as a factor of their (k−1)th derivatives.
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Hence sk is equal to the sum of the following two parts:

p
∑

(−1)g+h+1 (g + h)!
g!h!

pgqh (g + 2h = k − 1),

2q
∑

(−1)g+h+1 (g + h)!
g!h!

pgqh (g + 2h = k − 2).

In the upper sum, write i for g+ 1, and j for h. In the lower sum, write i for g,
and j for h+ 1. Hence

sk =
∑

(−1)i+j
(i+ j − 1)!
(i− 1)!j!

piqj + 2
∑

(−1)i+j
(i+ j − 1)!
i!(j − 1)!

piqj ,

where now each summation extends over all sets of integers i and j, each = 0,
for which

(17) i+ 2j = k.

Finally, we may combine our two sums. Multiply the numerator and de-
nominator of the first fraction by i, and those of the second fraction by j.
Thus

(18) sk = k
∑

(−1)i+j
(i+ j − 1)!

i!j!
piqj ,

since the present fraction occurred first multiplied by i and second multiplied
by 2j, and, by (17), the sum of these multipliers is equal to k. Our final result
is (18), where the summation extends over all sets of integers i and j, each = 0,
satisfying (17).

If we replace i by its value k− 2j, and change the sign of p, we obtain from (18)
the result that the sum of the kth powers of the roots of x2 − px+ q = 0 is equal to

sk = k

K∑
j=0

(−1)j
(k − j − 1)!
(k − 2j)!j!

pk−2jqj(19)

= pk − kpk−2q +
k(k − 3)

1 · 2
pk−4q2 − k(k − 4)(k − 5)

1 · 2 · 3
pk−6q3 + · · · ,

where K is the largest integer not exceeding k/2.
The product of the roots is equal to q. Hence if x denotes one root, the second

root is q/x. Thus sk = xk + (q/x)k. Again, the sum of the roots is x + q/x = p.
Regard q as given and p as unknown. Hence, if c is an arbitrary constant, the
equation

(20) pk − kqpk−2 +
k(k − 3)

1 · 2
q2pk−4 − · · · = c
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is transformed by the substitution p = x+ q/x into

xk +
( q
x

)k
= c.

Hence equation (20) may be solved for p by radicals by the method employed in §43
for a cubic equation.

The above proof applies3 without essential change to any equation xn +
c1x

n−1 + · · · + cn = 0 and leads to the following formula for the sum of the
kth powers of its roots:

(21) sk = k
∑

(−1)r1+···+rn
(r1 + · · ·+ rn − 1)!

r1! · · · rn!
cr11 · · · c

rn
n ,

where the summation extends over all sets of integers r1, . . . , rn, each = 0, for
which r1 + 2r2 + 3r3 + · · · + nrn = k. This result (21) is known as Waring’s
formula and was published by him in 1762.

Example. Let n = 3, k = 4. Then r1 + 2r2 + 3r3 = 4 and

(r1, r2, r3) = (4, 0, 0), (2, 1, 0), (1, 0, 1), (0, 2, 0),

s4 = 4(
3!
4!
c41 −

2!
2!1!

c21c2 +
1!

1!1!
c1c3 +

1!
2!
c22)

= c41 − 4c21c2 + 4c1c3 + 2c22.

EXERCISES

1. For the quadratic x2 − px + q = 0 write out the expressions for s2, s3, s4,
s5 given by (19), and compare with those obtained from Newton’s identities (Ex. 3,
§106).

2. Find s4 for a quartic equation by Waring’s formula.

3. For k = 5, (20) becomes De Moivre’s quintic p5 − 5qp3 + 5q2p = c. Solve it
by radicals for p.

4. Solve (20) by radicals when k = 7.

3See the author’s Elementary Theory of Equations, pp. 72–74, where there is given also
a shorter proof by means of infinite series.
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108. Σ-functions Expressed in Terms of the Functions sk. Since we
have learned two methods of expressing the sk in terms of the coefficients, it is
desirable to learn how to express any Σ-polynomial (and hence any symmetric
function) in terms of the sk.

By performing the indicated multiplication, we find that

sasb ≡ Σαa1 · Σα
b
1 = Σαa+b1 +mΣαa1α

b
2,

where m = 1 if a 6= b, m = 2 if a = b. Transposing the first term, which is equal
to sa+b, and dividing by m, we obtain

(22) Σαa1α
b
2 =

1
m

(sasb − sa+b).

In order to compute Σα4
1α

3
2α

2
3 in terms of the sk, we form the product

Σα4
1 · Σα

3
1α

2
2 = Σα7

1α
2
2 + Σα6

1α
3
2 + Σα4

1α
3
2α

2
3.

Making three applications of (22), we get

s4(s3s2 − s5) = (s7s2 − s9) + (s6s3 − s9) + Σα4
1α

3
2α

2
3.

Hence
Σα4

1α
3
2α

2
3 = s2s3s4 − s2s7 − s3s6 − s4s5 + 2s9.

EXERCISES

For a quartic equation, express in terms of the sk and ultimately in terms of the
coefficients c1, . . . , c4:

1. Σα2
1α

2
2. 2. Σα3

1α2. 3. Σα2
1α2α3. 4. Σα2

1α
2
2α

2
3.

5. If a = b > c > 0, prove that

Σαa1α
b
2α

c
3 =

1
m

(sasbsc − sasb+c − sbsa+c − scsa+b + 2sa+b+c),

where m = 1 if a > b, m = 2 if a = b.

6. Σαa1α
b
2α

b
3 = 1

2(sas2b − sas2b − 2sbsa+b + 2sa+2b), a > b > 0.

7. Σαa1α
a
2α

a
3 = 1

6(s3a − 3sas2a + 2s3a), a > 0.



§109.] COMPUTATION OF SYMMETRIC FUNCTIONS 157

109. Computation of Symmetric Functions. The method last ex-
plained is practicable when a term of the Σ-function involves only a few dis-
tinct roots, the largeness of the exponents not introducing a difficulty in the
initial work of expressing the Σ-function in terms of the sk.

But when a term of the Σ-function involves a large number of roots with
small exponents, we resort to a method suggested by §104, which tells us
which auxiliary simpler symmetric functions should be multiplied together to
produce our Σ-function along with simpler ones.

For example, to find Σx2
1x2x3x4, when n > 4, we employ

E1E4 ≡ Σx1 · Σx1x2x3x4 = Σx2
1x2x3x4 + 5Σx1x2x3x4x5,

Σx2
1x2x3x4 = E1E4 − 5E5.

To find Σx2
1x

2
2x

2
3x4, employ E3E4 = Σx1x2x3 · Σx1x2x3x4.

When many such products of Σ-functions are to be computed, it will save time
in the long run to learn and apply the “method of leaders” explained in the author’s
Elementary Theory of Equations, pp. 64–65.

MISCELLANEOUS EXERCISES

Express in terms of the coefficients c1, . . . , cn:

1. Σα2
1α2α3. 2. Σα2

1α
2
2α3. 3. Σα2

1α
2
2α3α4. 4. Σα2

1α
2
2α

2
3.

If α, β, γ are the roots of x3 + px2 + qx+ r = 0, find a cubic equation with the
roots

5. α2, β2, γ2. 6. αβ, αγ, βγ. 7. 2
α
,

2
β
,

2
γ
.

8. α2 + β2, α2 + γ2, β2 + γ2. 9. α2 + αβ + β2, etc.

If α, β, γ, δ are the roots of x4 + px3 + qx2 + rx+ s = 0, find

10. Σ
β

α
= Σ

β + γ + δ

α
= Σ
−p− α
α

= −4− pΣ 1
α .

11. Σ
β

α2
. Use Σ

1
α
· Σβ

α
= Σ

β

α2
+ 3Σ

1
α

+ 2Σ
γ

αβ
.

12. Express Σαa1α
b
2α

c
3α

d
4 in terms of the sk when (i) a > b > c > d > 0, and

(ii) when a = b = c = d.

13. By solving the first k of Newton’s identities (10) as a system of linear equa-
tions, find an expression in the form of a determinant (i) for sk in terms of c1, . . . , ck,
and (ii) for ck in terms of s1, . . . , sk.
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14. One set of n numbers is a mere rearrangement of another set if s1, . . . , sn
have the same values for each set.



CHAPTER X
Elimination, Resultants And Discriminants

110. Elimination. If the two equations

ax+ b = 0, cx+ d = 0 (a 6= 0, c 6= 0)

are simultaneous, i.e., if x has the same value in each, then

x = − b
a

= −d
c
, R ≡ ad− bc = 0,

and conversely. Hence a necessary and sufficient condition that the equations
have a common root is R = 0. We call R the resultant (or eliminant) of the
two equations.

The result of eliminating x between the two equations might equally well
have been written in the form bc − ad = 0. But the arbitrary selection of R
as the resultant, rather than the product of R by some constant, as −1, is
a matter of more importance than is apparent at first sight. For, we seek a
definite function of the coefficients a, b, c, d of the functions ax + b, cx + d,
and not merely a property R = 0 or R 6= 0 of the corresponding equations.
Accordingly, we shall lay down the definition in §111, which, as the reader
may verify, leads to R in our present example.

Methods of elimination which seem plausible often yield not R itself, but
the product of R by an extraneous function of the coefficients. This point (il-
lustrated in §114) indicates that the subject demands a more careful treatment
than is often given.

111. Resultant of Two Polynomials in x. Let{
f(x) = a0x

m + a1x
m−1 + · · ·+ am

g(x) = b0x
n + b1x

n−1 + · · ·+ bn

(a0 6= 0),

(b0 6= 0)
(1)

be two polynomials of degrees m and n. Let α1, . . . , αm be the roots of f(x) = 0.
Since α1 is a root of g(x) = 0 only when g(α1) = 0, the two equations have a
root in common if and only if the product

g(α1)g(α2) · · · g(αm)
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is zero. This symmetric function of the roots of f(x) = 0 is of degree n in any
one root and hence is expressible as a polynomial of degree n in the elementary
symmetric functions (§104), which are equal to −a1/a0, a2/a0, . . . . To be rid
of the denominators a0, it therefore suffices to multiply our polynomial by an0 .
We therefore define

(2) R(f, g) = an0g(α1)g(α2) · · · g(αm)

to be the resultant of f and g. It equals an integral rational function of
a0, . . . , am, b0, . . . , bn with integral coefficients.

EXERCISES

1. If m = 1, n = 2, R(f, g) = b0a
2
1 − b1a0a1 + b2a

2
0.

2. If m = 2, n = 1, R(f, g) = a0(b0α1 + b1)(b0α2 + b1) = a0b
2
1 − a1b0b1 + a2b

2
0,

since
a0(α1 + α2) = −a1, a0α1α2 = a2.

3. If β1, . . . , βn are the roots of g(x) = 0, so that

g(αi) = b0(αi − β1)(αi − β2) · · · (αi − βn),

then
R(f, g) = an0b

m
0 (α1 − β1)(α1 − β2) · · · (α1 − βn)
·(α2 − β1)(α2 − β2) · · · (α2 − βn)
. . . . . . . . . . . . . . . . . . . . . . . .
·(αm − β1)(αm − β2) · · · (αm − βn).

Multiplying together the differences in each column, we see that

R(f, g) = (−1)mnbm0 f(β1)f(β2) · · · f(βn) = (−1)mnR(g, f).

4. If m = 2, n = 1, R(g, f) = b20f(−b1/b0) = a0b
2
1 − a1b0b1 + a2b

2
0, which is

equal to R(f, g) by Ex. 2. This illustrates the final result in Ex. 3.

5. If m = n = 2,

R(f, g) = a2
0b

2
0α

2
1α

2
2 + a2

0b0b1α1α2(α1 + α2)

+ a2
0b0b2(α2

1 + α2
2) + a2

0b
2
1α1α2 + a2

0b1b2(α1 + α2) + a2
0b

2
2

= b20a
2
2 − b0b1a1a2 + b0b2(a2

1 − 2a0a2) + b21a0a2 − b1b2a0a1 + a2
0b

2
2.

This equals R(g, f), since it is unaltered when the a’s and b’s are interchanged.

6. Prove by (2) that R is homogeneous and of total degree m in b0, . . . , bn; and
by Ex. 3, that R is homogeneous and of total degree n in a0, . . . , am. Show that R
has the terms an0bmn and (−1)mnbm0 a

n
m.

7. R(f, g1g2) = R(f, g1) ·R(f, g2).

8. R(f, xn) = (−1)mnR(xn, f) = (−1)mnanm.
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112. Sylvester’s Dialytic Method of Elimination.1 Let the equa-
tions

f(x) ≡ a0x
3 + a1x

2 + a2x+ a3 = 0, g(x) ≡ b0x2 + b1x+ b2 = 0

have a common root x. Multiply the first equation by x and the second by x2

and x in turn. We now have five equations

a0x
4 + a1x

3 + a2x
2 + a3x = 0,

a0x
3 + a1x

2 + a2x+ a3 = 0,

b0x
4 + b1x

3 + b2x
2 = 0,

b0x
3 + b1x

2 + b2x = 0,

b0x
2 + b1x+ b2 = 0,

which are linear and homogeneous in x4, x3, x2, x, 1. Hence (§97)

(3) F =

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0
0 a0 a1 a2 a3

b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣∣
must be zero. Next, if F = 0, there exist (§97) values which, when substituted
for x4, x3, x2, x and 1, satisfy the five equations. But why is the value for x4

the fourth power of the value for x, that for x3 the cube of the value for x,
etc.? Since the direct verification of these facts would be very laborious, we
resort to a device to show that, conversely, if F = 0 the two given equations
have a root in common.

In (3) replace a3 by a3 − z and consider the equation

(4)

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 − z 0
0 a0 a1 a2 a3 − z
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣∣
= 0.

To prove that it has the roots f(β1) and f(β2), where β1 and β2 are the roots
of g(x) = 0, we take z = f(βi) and prove that the determinant is then equal to
zero. For, if we add to the last column the products of the elements of the first
four columns by β4

i , β
3
i , β

2
i , βi, respectively, we find that all of the elements of

the new last column are zero.
1Given without proof by Sylvester, Philosophical Magazine, 1840, p. 132.
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Since (4) reduces to (3) for z = 0, it is of the form

b30z
2 + kz + F = 0,

in which the value of k is immaterial. By considering the product of the roots
of this quadratic equation, we see that

F = b30f(β1)f(β2).

Hence the Sylvester determinant F is the resultant R(g, f) and hence is the
resultant R(f, g), since mn is here even (Ex. 3, §111).

In general, if the equations are

f(x) ≡ a0x
m + · · ·+ am = 0, g(x) ≡ b0xn + · · ·+ bn = 0,

we multiply the first equation by xn−1, xn−2, . . . , x, 1, in turn, and the sec-
ond by xm−1, xm−2, . . . , x, 1, in turn. We obtain n + m equations which are
linear and homogeneous in the m + n quantities xm+n−1, . . . , x, 1. Hence the
determinant

(5) F =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . am 0 . . . . . . . . 0
0 a0 a1 a2 . . . . . am 0 . . . . 0
0 0 a0 a1 a2 . . . . . . am 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . 0 a0 a1 a2 . . . . . . . . am
b0 b1 . . . . . . . . bn 0 . . . . . . . . 0
0 b0 b1 . . . . . . . . . . . . bn . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 b0 b1 . . . . . . . . . . . . . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


n rows

m rows

is zero. It may be shown to be equal to the resultant R(f, g), whether mn is
even or odd, by the method employed in the above case m = 3, n = 2.

We may also prove as follows that if F = 0 the equations f = 0 and
g = 0 have a common root. Since F was obtained as the determinant of the
coefficients of

xn−1f, . . . , xf, f, xm−1g, . . . , xg, g,

F = 0 implies, by §96, Lemma 2, the existence of a linear relation

B0x
n−1f + · · ·+Bn−2xf +Bn−1f +A0x

m−1g + · · ·+Am−2xg +Am−1g ≡ 0,

identically in x, with constant coefficients B0, . . . , Am−1 not all zero. In other
words, βf + αg ≡ 0, where

(6) α ≡ A0x
m−1 + · · ·+Am−2x+Am−1, β ≡ B0x

n−1 + · · ·+Bn−2x+Bn−1.
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Neither α nor β is identically zero. For, if α ≡ 0, for example, then βf ≡ 0
and β ≡ 0, whereas the Ai and Bi are not all zero.

Consider the factored forms of f , g, α, β. Suppose that f and g have no
common linear factor. The highest power of each linear factor occurring in
f divides αg ≡ −βf and hence divides α. Thus f divides α, whereas f is of
higher degree than α. Hence our assumption that f = 0 and g = 0 have no
common root has led to a contradiction.

A similar idea is involved in the method of elimination due to Euler (1707–
1783). If f = 0 and g = 0 have a common root c, then f ≡ (x− c)α, −g ≡ (x− c)β,
identically in x, where α and β are polynomials in x of degrees m − 1 and n − 1,
respectively. Give them the notations (6). In the identity βf+αg ≡ 0, the coefficient
of each power of x is zero. Hence

a0B0 + b0A0 = 0
a1B0 + a0B1 + b1A0 + b0A1 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

amBn−2 + am−1Bn−1 + bnAm−2 + bn−1Am−1= 0
amBn−1 + bnAm−1= 0.

Since these m + n linear homogeneous equations in the unknowns B0, . . . , Bn−1,
A0, . . . , Am−1 have a set of solutions not all zero, the determinant of the coefficients
is zero. By interchanging the rows and columns, we obtain the determinant (5).

EXERCISES

1. For m = n = 2, show that the resultant is

R =

∣∣∣∣∣∣∣∣
a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣
Interchange the second and third rows, apply Laplace’s development, and prove that

R = (a0b2)2 − (a0b1)(a1b2),

where (a0b2) denotes a0b2 − a2b0, etc.

2. For m = n = 3, write down the resultant R and, by interchanges of rows,
derive the second determinant in

R =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0 0
0 a0 a1 a2 a3 0
0 0 a0 a1 a2 a3

b0 b1 b2 b3 0 0
0 b0 b1 b2 b3 0
0 0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
0 a0 a1 a2 a3 0
0 b0 b1 b2 b3 0
0 0 a0 a1 a2 a3

0 0 b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
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To the second determinant apply Laplace’s development, selecting minors from the
first two rows, and to the complementary minors apply a similar development. This
may be done by inspection and the following value of −R will be obtained:

(a0b1)
{

(a1b2)(a2b3)− (a1b3)2 + (a2b3)(a0b3)
}

−(a0b2)
{

(a0b2)(a2b3)− (a0b3)(a1b3)
}

+(a0b3)
{

(a0b1)(a2b3)− (a0b3)2
}
.

The third term of the first line and the first term of the last line are alike. Hence,
changing the signs,

R = (a0b3)3 − 2(a0b1)(a0b3)(a2b3)− (a0b2)(a0b3)(a1b3)

+ (a0b2)2(a2b3) + (a0b1)(a1b3)2 − (a0b1)(a1b2)(a2b3).

Other methods of simplifying Sylvester’s determinant (5) are given in §113.

113. Bézout’s Method of Elimination. When the two equations are
of the same degree, the method published by Bézout in 1764 will be clear from
the example

f ≡ a0x
3 + a1x

2 + a2x+ a3 = 0, g ≡ b0x3 + b1x
2 + b2x+ b3 = 0.

Then

(7)
a0g − b0f,

(a0x+ a1)g − (b0x+ b1)f,

(a0x
2 + a1x+ a2)g − (b0x2 + b1x+ b2)f

are equal respectively to

(a0b1)x2 + (a0b2) x+ (a0b3) = 0,

(a0b2)x2 +
{

(a0b3) + (a1b2)
}
x+ (a1b3) = 0,(8)

(a0b3)x2 + (a1b3) x+ (a2b3) = 0,

where (a0b1) = a0b1 − a1b0, etc. The determinant of the coefficients is the
negative of the resultant R(f, g). Indeed, the negative of the determinant is
easily verified to have the expansion given at the end of Ex. 2 just above.

To give a more instructive proof of the last fact, note that, by (7), equations (8)
are linear combinations of

x2f = 0, xf = 0, f = 0, x2g = 0, xg = 0, g = 0,

the latter being the equations used in Sylvester’s method of elimination. The deter-
minant of the coefficients in these six equations is the first determinant R in Ex. 2
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just above. The operations carried out to obtain equations (8) are seen to corre-
spond step for step to the following operations on determinants. To the products of
the elements of the fourth row by a0 add the products of the elements of the 1st,
2nd, 3rd, 5th, 6th rows by −b0, −b1, −b2, a1, a2 respectively [corresponding to the
formation of the third function (7)]. To the products of the elements of the fifth row
by a0 add the products of the elements of the 2nd, 3rd, 6th rows by −b0, −b1, a1

respectively [corresponding to the second function (7)]. Finally, to the products of
the elements of the sixth row by a0 add the products of the elements of the third
row by −b0 [corresponding to a0g − b0f ]. Hence

a3
0R =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 0 0
0 a0 a1 a2 a3 0
0 0 a0 a1 a2 a3

0 0 0 (a0b3) (a1b3) (a2b3)
0 0 0 (a0b2) (a0b3) + (a1b2) (a1b3)
0 0 0 (a0b1) (a0b2) (a0b3)

∣∣∣∣∣∣∣∣∣∣∣∣
,

so that R is equal to the 3-rowed minor enclosed by the dots. The method of Bézout
therefore suggests a definite process for the reduction of Sylvester’s determinant of
order 2n (when m = n) to one of order n.

Next, for equations of different degrees, consider the example

f ≡ a0x
4 + a1x

3 + a2x
2 + a3x+ a4, g ≡ b0x2 + b1x+ b2.

Then
a0x

2g − b0f, (a0x+ a1)x2g − (b0x+ b1)f

are equal respectively to

(a0b1)x3 + (a0b2)x2 − a3b0x− a4b0,

(a0b2)x3 +
{

(a1b2)− a3b0
}
x2 −

{
a3b1 + a4b0

}
x− a4b1.

The determinant of the coefficients of x3, x2, x, 1 in these two functions and xg,
g, after the first and second rows are interchanged, is the determinant of order 4
enclosed by dots in the second determinant below. Hence it is the resultant R(f, g).

As in the former example, we shall indicate the corresponding operations on
Sylvester’s determinant

R =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4 0
0 a0 a1 a2 a3 a4

b0 b1 b2 0 0 0
0 b0 b1 b2 0 0
0 0 b0 b1 b2 0
0 0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣∣∣
Multiply the elements of the third and fourth rows by a0. In the resulting determi-
nant a2

0R, add to the elements of the third row the products of the elements of the
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first, second and fourth rows by −b0, −b1, a1/a0 respectively. Add to the elements
of the fourth row the products of those of the second by −b0. We get

a2
0R =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4 0
0 a0 a1 a2 a3 a4

0 0 (a0b2) (a1b2)− a3b0 −a3b1 − a4b0 −a4b1
0 0 (a0b1) (a0b2) −a3b0 −a4b0
0 0 b0 b1 b2 0
0 0 0 b0 b1 b2

∣∣∣∣∣∣∣∣∣∣∣∣
Hence R is equal to the minor enclosed by dots.

EXERCISES

1. For m = 3, n = 2, apply to Sylvester’s determinant R exactly the same
operations as used in the last case in §113 and obtain

R =

∣∣∣∣∣∣
(a0b2) (a1b2)− a3b0 −a3b1
(a0b1) (a0b2) −a3b0
b0 b1 b2

∣∣∣∣∣∣ .
2. For m = n = 4, reduce Sylvester’s R (as in the first case in §113) to∣∣∣∣∣∣∣∣

(a0b1) (a0b2) (a0b3) (a0b4)
(a0b2) (a0b3) + (a1b2) (a0b4) + (a1b3) (a1b4)
(a0b3) (a0b4) + (a1b3) (a1b4) + (a2b3) (a2b4)
(a0b4) (a1b4) (a2b4) (a3b4)

∣∣∣∣∣∣∣∣ .
114. General Theorem on Elimination. If any method of eliminat-

ing x between two equations in x leads to a relation F = 0, where F is a
polynomial in the coefficients, then F has as a factor the true resultant of the
equations.

Some of the preceding proofs become simpler if this theorem is applied. For
example, determinant (3) is divisible by the resultant R. Since the diagonal
term of (3) is a term a2

0b
3
2 of R (Ex. 6, §111), F is identical with R.

The preceding general theorem is proved in the author’s Elementary The-
ory of Equations, pp. 152–4. We shall here merely verify the theorem in an
instructive special case. Let

f ≡ a0x
3 + a1x

2 + a2x+ a3 = 0, g ≡ b0x3 + b1x
2 + b2x+ b3 = 0

have a common root x 6= 0. Then

−b0f + a0g = (a0b1)x2 + (a0b2)x+ (a0b3),

(b3f − a3g)/x = (a0b3)x2 + (a1b3)x+ (a2b3).
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By Ex. 1 of §112, the resultant of these two quadratic functions is

F =
∣∣∣∣(a0b3) (a0b1)
(a2b3) (a0b3)

∣∣∣∣2 − ∣∣∣∣(a0b3) (a0b1)
(a1b3) (a0b2)

∣∣∣∣ · ∣∣∣∣(a1b3) (a0b2)
(a2b3) (a0b3)

∣∣∣∣ .
This is, however, not the resultant R of the cubic functions f , g. To show that
(a0b3) is an extraneous factor, note that the terms of F not having this factor
explicitly are

(a0b1)(a2b3)
{

(a0b1)(a2b3)− (a0b2)(a1b3)
}
.

The quantity in brackets is equal to −(a0b3)(a1b2), since, as in Ex. 2 of §101,

0 = 1
2

∣∣∣∣∣∣∣∣∣
a0 a1 a2 a3

b0 b1 b2 b3
a0 a1 a2 a3

b0 b1 b2 b3

∣∣∣∣∣∣∣∣∣ = (a0b1)(a2b3)− (a0b2)(a1b3) + (a0b3)(a1b2).

We now see that F = (a0b3)R, where R is given in Ex. 2 of §112. This method
of elimination therefore introduces an extraneous factor (a0b3). The student
should employ only methods of elimination (such as those due to Sylvester,
Euler, and Bézout) which have been proved to lead to the true resultant.

EXERCISES

Find the result of eliminating x and hence find all sets of common solutions of

1. x2 − y2 = 9, xy = 5y.

2. x2 + y2 = 25, x2 + 3(c− 1)x+ c(y2 − 25) = 0.

3. When x2 + ax+ b = 0 has a double root, what 3-rowed determinant is zero?

4. Find the roots of x6 + 3x4 + 32x3 + 67x2 + 32x+ 65 = 0 by §79.

115. Discriminants. Let α1, . . . , αm be the roots of

f(x) ≡ a0x
m + a1x

m−1 + · · ·+ am = 0 (a0 6= 0),(9)

so that

f(x) ≡ a0(x− α1)(x− α2) · · · (x− αm).(10)

As in §44, we define the discriminant of (9) to be

D = a2m−2
0 (α1 − α2)2(α1 − α3)2 · · · (α1 − αm)2(α2 − α3)2 · · · (αm−1 − αm)2.
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Evidently D is unaltered by the interchange of any two roots. Since the degree
in any root is 2(m− 1), the symmetric function D is equal to a polynomial in
a0, . . . , am. Indeed, a2m−2

0 is the lowest power of a0 sufficient to cancel the de-
nominators introduced by replacing Σα1 by −a1/a0, . . . , α1α2 · · ·αm by ±am/a0.
By differentiating (10), we see that

f ′(α1) = a0(α1 − α2)(α1 − α3) · · · (α1 − αm),

f ′(α2) = a0(α2 − α1)(α2 − α3) · · · (α2 − αm),

f ′(α3) = a0(α3 − α1)(α3 − α2)(α3 − α4) · · · (α3 − αm),

etc. Hence

am−1
0 f ′(α1) · · · f ′(αm) = a2m−1

0 (−1)1+2+···+m−1(α1 − α2)2 · · · (αm−1 − αm)2

= (−1)
m(m−1)

2 a0D.

By (2), the left member is the resultant of f(x), f ′(x). Hence

(11) D = (−1)
m(m−1)

2
1
a0
R(f, f ′).

EXERCISES

1. Show that the discriminant of f ≡ y3+py+q = 0 is −4p3−27q2 by evaluating
the determinant of order five for R(f, f ′).

2. Prove that the discriminant of the product of two functions is equal to the
product of their discriminants multiplied by the square of their resultant. Hint: use
the expressions in terms of the differences of the roots.

3. For a0 = 1, show that the discriminant is equal to∣∣∣∣∣∣∣∣
1 α1 α2

1 · · · αm−1
1

1 α2 α2
2 · · · αm−1

2

. . . . . . . . . . . . . . . . .
1 αm α2

m · · · αm−1
m

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
s0 s1 s2 · · · sm−1

s1 s2 s3 · · · sm
. . . . . . . . . . . . . . . . . . . . .
sm−1 sm sm+1 · · · s2m−2

∣∣∣∣∣∣∣∣
where si = αi1 + · · ·+ αim. See Ex. 4, §88; Ex. 2, §102.

4. Hence verify that the discriminant of x3 + px+ q = 0 is equal to∣∣∣∣∣∣
3 0 −2p
0 −2p −3q
−2p −3q 2p2

∣∣∣∣∣∣ = −4p3 − 27q2.
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5. By means of Ex. 1, §113, show that the discriminant of a0x
3+a1x

2+a2x+a3 =
0 is

−

∣∣∣∣∣∣
2a0a2 a1a2 + 3a0a3 2a1a3

a1 2a2 3a3

3a0 2a1 a2

∣∣∣∣∣∣ = 18a0a1a2a3 − 4a0a
3
2 − 4a3

1a3 + a2
1a

2
2 − 27a2

0a
2
3.

MISCELLANEOUS EXERCISES

1. Find the equation whose roots are the abscissas of the points of intersection
of two general conics.

2. Find a necessary and sufficient condition that

f(x) ≡ x4 + px3 + qx2 + rx+ s = 0

shall have one root the negative of another root. When this condition is satisfied,
what are the quadratic factors of f(x)? Apply to Ex. 4, §74. Hint: add and subtract
f(x) and f(−x).

3. Solve f(x) ≡ x4 − 6x3 + 13x2 − 14x + 6 = 0, given that two roots α and β
are such that 2α+ β = 5. Hint: f(x) and f(5− 2x) have a common factor.

4. Solve x3 + px + q = 0 by eliminating x between it and x2 + vx + w = y by
the greatest common divisor process, and choosing v and w so that in the resulting
cubic equation for y the coefficients of y and y2 are zero. The next to the last step
of the elimination gives x as a rational function of y. (Tschirnhausen, Acta Erudit.,
Lipsiae, II, 1683, p. 204.)

5. Find the preceding y-cubic as follows. Multiply x2 + vx + w = y by x and
replace x3 by −px− q; then multiply the resulting quadratic equation in x by x and
replace x3 by its value. The determinant of the coefficients of x2, x, 1 must vanish.

6. Eliminate y between y3 = v, x = ry + sy2, and get

x3 − 3rsvx− (r3v + s3v2) = 0.

Take s = 1 and choose r and v so that this equation shall be identical with x3 +
px+ q = 0, and hence solve the latter. (Euler, 1764.)

7. Eliminate y between y3 = v, x = f + ey + y2 and get∣∣∣∣∣∣
1 e f − x
e f − x v

f − x v ev

∣∣∣∣∣∣ = 0.

This cubic equation in x may be identified with the general cubic equation by choice
of e, f , v. Hence solve the latter.
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8. Determine r, s and v so that the resultant of

y3 = v, y =
x+ r

y + s

shall be identical with x3 + px+ q = 0. (Bézout, 1762.)

9. Show that the reduction of a cubic equation in x to the form y3 = v by the
substitution

x =
r + sy

1 + y

is not essentially different from the method of Ex. 7. [Multiply the numerator and
denominator of x by 1− y + y2.]

10. Prove that the equation whose roots are the n(n−1) differences xj−xk of the
roots of f(x) = 0 may be obtained by eliminating x between the latter and f(x+y) =
0 and deleting from the eliminant the factor yn (arising from y = xj − xj = 0). The
equation free of this factor may be obtained by eliminating x between f(x) = 0 and

{
f(x+ y)− f(x)

}
/y = f ′(x) + f ′′(x)

y

1 · 2
+ · · ·+ f (n)(x)

yn−1

1 · 2 · · ·n
= 0.

This eliminant involves only even powers of y, so that if we set y2 = z we obtain
an equation in z having as its roots the squares of the differences of the roots of
f(x) = 0. (Lagrange Résolution des équations, 1798, §8.)

11. Compute by Ex. 10 the z-equation when f(x) = x3 + px+ q.



APPENDIX

THE FUNDAMENTAL THEOREM OF ALGEBRA

Theorem. An equation of degree n with any complex coefficients

f(z) ≡ zn + a1z
n−1 + · · ·+ an = 0

has a complex (real or imaginary) root.
Write z = x+ iy where x and y are real, and similarly a1 = c1 + id1, etc. By

means of the binomial theorem, we may express any power of z in the form
X + iY . Hence

(1) f(z) = φ(x, y) + iψ(x, y),

where φ and ψ are polynomials with real coefficients.
The first proof of the fundamental theorem was given by Gauss in 1799

and simplified by him in 1849. This simplified proof consists in showing that
the two curves represented by φ(x, y) = 0 and ψ(x, y) = 0 have at least one
point (x1, y1) in common, so that z1 = x1 + iy1 is a root of f(z) = 0. This proof
is given in Chapter V of the author’s Elementary Theory of Equations.

We here give a shorter proof, the initial idea of which was suggested, but
not fully developed, by Cauchy.1

Lemma 1. a1h + a2h
2 + · · · + anh

n is less in absolute value than any
assigned positive number p for all complex values of h sufficiently small in
absolute value.

The proof differs from that of the auxiliary theorem in §62 only in reading
“in absolute value” for “numerically.”

We shall employ the notation |z| for the absolute value +
√
x2 + y2 of z =

x+ iy.
1For a history of the fundamental theorem, see Encyclopédie des sciences mathématiques,

tome I, vol. II, pp. 189–205.
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Lemma 2. Given any positive number P , we can find a positive num-
ber R such that |f(z)| > P if |z| = R.

The proof is analogous to that in §64. We have

f(z) = zn(1 +D), D ≡ a1

(
1
z

)
+ · · ·+ an

(
1
z

)n
.

Since (Ex. 5, §8) the absolute value of a sum of two complex numbers is equal
to or greater than the difference of their absolute values, we have

|f(z)| = |z|n
[
1− |D|

]
.

Let p be any assigned positive number < 1. Applying Lemma 1 with h

replaced by 1/z, we see that |D| < p if |1/z| is sufficiently small, i.e., if ρ ≡ |z|
is sufficiently large. Then

|f(z)| > ρn(1− p) = P

if ρn = P/(1− p), which is true if

ρ = n

√
P

1− p
≡ R.

This proves Lemma 2.

Lemma 3. Given a complex number a such that f(a) 6= 0, we can find a
complex number z for which |f(z)| < |f(a)|.

Write z = a+ h. By Taylor’s theorem (8) of §56,

f(a+ h) = f(a) + f ′(a)h+ · · ·+ f (r)(a) · h
r

r!
+ · · ·+ f (n)(a) · h

n

n!
.

Not all of the values f ′(a), f ′′(a), . . . are zero since f (n)(a) = n!. Let f (r)(a) be
the first one of these values which is not zero. Then

f(a+ h)
f(a)

= 1 +
f (r)(a)
f(a)

· h
r

r!
+ · · ·+ f (n)(a)

f(a)
· h

n

n!
.

Writing the second member in the simpler notation

g(h) ≡ 1 + bhr + chr+1 + · · ·+ lhn, b 6= 0,

we shall prove that a complex value of h may be found such that |g(h)| < 1.
Then the absolute value of f(z)/f(a) will be < 1 and Lemma 3 proved. To find
such a value of h, write h and b in their trigonometric forms (§4)

h = ρ(cos θ + i sin θ), b = |b|(cosβ + i sinβ).
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Then by §5, §7,

bhr = |b|ρr
{

cos(β + rθ) + i sin(β + rθ)
}
.

Since h is at our choice, ρ and angle θ are at our choice. We choose θ so that
b+ rθ = 180◦. Then the quantity in brackets reduces to −1, whence

g(h) = (1− |b|ρr) + hr(ch+ · · ·+ lhn−r).

By Lemma 1, we may choose ρ so small that

|ch+ · · ·+ lhn−r| < |b|.

By taking ρ still smaller if necessary, we may assume at the same time that
|b|ρr < 1. Then

|g(h)| < (1− |b|ρr) + ρr|b|, |g(h)| < 1.

Minimum Value of a Continuous Function. Let F (x) be any poly-
nomial with real coefficients. Among the real values of x for which 2 5 x 5 3,
there is at least one value x1 for which F (x) takes its minimum value F (x1),
i.e., for which F (x1) 5 F (x) for all real values of x such that 2 5 x 5 3. This
becomes intuitive geometrically. The portion of the graph of y = F (x) which
extends from its point with the abscissa 2 to its point with the abscissa 3 either
has a lowest point or else has several equally low points, each lower than all
the remaining points. The arithmetic proof depends upon the fact that F (x)
is continuous for each x between 2 and 3 inclusive (§62). The proof is rather
delicate and is omitted since the theorem for functions of one variable x is
mentioned here only by way of introduction to our case of functions of two
variables.

We are interested in the analogous question for

G(x, y) = φ2(x, y) + ψ2(x, y),

which, by (1), is the square of |f(z)|. As in the elements of solid analytic
geometry, consider the surface represented by Z = G(x, y) and the right circular
cylinder x2 + y2 = R2. Of the points on the first surface and on or within their
curve of intersection there is a lowest point or there are several equally low
lowest points, possibly an infinite number of them. Expressed arithmetically,
among all the pairs of real numbers x, y for which x2 + y2 5 R2, there is2 at
least one pair x1, y1 for which the polynomial G(x, y) takes a minimum value
G(x1, y1), i.e., for which G(x1, y1) 5 G(x, y) for all pairs of real numbers x, y
for which x2 + y2 5 R2.

2Harkness and Morley, Introduction to the Theory of Analytic Functions, p. 79, prove
that a real function of two variables which is continuous throughout a closed region has a
minimum value at some point of the region.
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Proof of the Fundamental Theorem. Let z′ denote any complex num-
ber for which f(z′) 6= 0. Let P denote any positive number exceeding |f(z′)|.
Determine R as in Lemma 2. In it the condition |z| = R may be interpreted
geometrically to imply that the point (x, y) representing z = x + iy is outside
or on the circle C having the equation x2 +y2 = R2. Lemma 2 thus states that,
if z is represented by any point outside or on the circle C, then |f(z)| > P .
In other words, if |f(z)| 5 P , the point representing z is inside circle C. In
particular, the point representing z′ is inside circle C.

In view of the preceding section on minimum value, we have

G(x1, y1) 5 G(x, y)

for all pairs of real numbers x, y for which x2 + y2 5 R2, where x1, y1 is one
such pair. Write z1 for x1 + iy1. Since |f(z)|2 = G(x, y), we have

|f(z1)| 5 |f(z)|

for all z’s represented by points on or within circle C. Since z′ is represented
by such a point,

(2) |f(z1)| 5 |f(z′)| < P.

This number z1 is a root of f(z) = 0. For, if f(z1) 6= 0, Lemma 3 shows
that there would exist a complex number z for which

(3) |f(z)| < |f(z1)|.

Then |f(z)| < P by (2), so that the point representing z is inside circle C, as
shown above. By the statement preceding (2),

|f(z1)| 5 |f(z)|.

But this contradicts (3). Hence the fundamental theorem is proved.
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√
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3. −1± i. 4. 1± i, 1± 2i. 5. 2± i, ±2i.
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4
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9. x/π = 0.6625, 1.891, 2.930, 3.948, 4.959.

10. (i) 0.327739, 0.339224, 1124.333037.
(ii) 0.250279, 0.894609, 1.127839.
[Set x = 1 + y, y = 1/z and solve by trigonometry.]

11. 3.597285. 12. 10, 1.371288.

13. 0.326878, 12.267305. 14. 324◦16′29.55′′.

15. 10 yr. 4 mo. 0 days. 16. 6.074674. 17. 6.13%.

Page 116

1. x = 5, y = 6. 2. x = 2, y = 1. 3. x = a, y = 0.

Page 120

1. −a2b1c3d4 + a2b1c4d3 + a2b3c1d4 − a2b3c4d1 − a2b4c1d3 + a2b4c3d1.

2. +, +.

Page 126

3. −3. 4. −8.
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Pages 129–130

1. x = −8, y = −7, z = 26. 2. x = 3, y = −5, z = 2.

3. x = 6, y = 3, z = 12. 4. x = 5, y = 4, z = 3.

5. x = −5, y = 3, z = 2, w = 1. 6. x = 1, y = z = 0, w = −1.

Page 133

1. Consistent: y = −8/7− 2x, z = 5/7 (common line).

2. Inconsistent, case (β). 3. Inconsistent (two parallel planes).

4. Consistent (single plane).

5. (i) z = −x− y − 2. (ii) inconsistent. (iii) x =
a− 1
a+ 2

, y = z =
−3
a+ 2

.

6. (i) x =
(k − b)(c− k)
(a− b)(c− a)

. (ii) y =
k − c
a− c

− x, z =
a− k
a− c

if k = a or k = c,

but inconsistent if k is different from a and c. (iii) z = 1 − x − y if k = a,
inconsistent if k 6= a.

Page 134

1. r = 2, x : y : z = −4 : 1 : 1. 2. r = 2, x : y : z = −10 : 8 : 7.

3. r = 1, two unknowns arbitrary. 4. r = 3, x : y : z : w = 6 : 3 : 12 : 1.

5. r = 2, z = −11
3 x−

19
3 y, w = −10

3 x−
17
3 y.

Page 136

1. Ranks of A and B are 2; y = −8/7− 2x, z = 5/7.

2. Consistent only when a = −225/61 and then x = − 5
61

, y =
3
61

, z =
45
61

.

3. Rank of A is 2, rank of B is 3, inconsistent.

4. A and B of rank 2, x = 3, y = 2.
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Pages 140–142

1. x =
k(b− k)(c− k)(k + b+ c)
a(b− a)(c− a)(a+ b+ c)

, if a, b, c are distinct and not zero and their

sum 6= 0. If a = b 6= c, ac 6= 0, equations are inconsistent unless k = 0, a, c,

or −a− c, and then y =
k(c− k)
a(c− a)

− x, z =
k(k − a)
c(c− a)

, x arbitrary.

3. (a− b)(b− c)(c− a). 4. (x− y)(y − z)(z − x)(xy + yz + zx).

6. (a+ b+ c+ d)(a+ b− c− d)(a− b− c+ d)(a− b+ c− d).

7. (a+ b+ c+ d)(a− b+ c− d)(a+ bi− c− di)(a− bi− c+ di).

11. xj = (k1 − aj) · · · (kn − aj)÷
n∏
s=1
s6=j

(as − aj).

12. x(ab+ ac+ bc) = −abc.

Pages 148–149

1. p4 − 3p2q + 5pr + q2

r − pq
. 2. (5p2 − 12q)(p2 − 4q)

4(p3 − 4pq + 8r)
− 13

4
p.

5. 2p2 − 2q. 6. 24r − p3.

7. 3p2q2 − 4p3r − 4q3 − 2pqr − 9r2

(r − pq)2
. 8. 27r2 − 9pqr + 2q3 = 0.

10. y = q + r/x. 11. x =
1− py
2 + 2y

.

12. y =
4x2 + px+ q

−3x− p
, see §112. 13. 2q(p3 + 2pq − r)

p2q − pr + s
− 5p, see Ex. 17.

Page 151

3. s2 = p2 − 2q,
s3 = p3 − 3pq,
s4 = p4 − 4p2q + 2q2,
s5 = p5 − 5p3q + 5pq2.

4. s5n = 5 · 3n,
sk = 0 if k is not divisible by 5.

5. All zero.
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Page 155

2. See Ex. 2, p. 136.

3. εj 5
√

1
2c+

√
Q+ ε5−j 5

√
1
2c−

√
Q, Q = 1

4c
2 − q5 (j = 0, 1, 2, 3, 4).

4. εj 7
√

1
2c+

√
Q+ ε7−j 7

√
1
2c−

√
Q, Q = 1

4c
2 − q7 (j = 0, 1, . . . , 6).

Page 156

1. c22 − 2c1c3 + 2c4. 2. c21c2 − 2c22 − c1c3 + 4c4.

3. c1c3 − 4c4. 4. c23 − 2c2c4.

Pages 157–158

1. c1c3 − 4c4 if n > 3, c1c3 if n = 3. 2. 3c1c4 − c2c3 − 5c5.

3. c2c4 − 4c1c5 + 9c6. 4. c23 − 2c2c4 + 2c1c5 − 2c6.

5. y3 − (p2 − 2q)y2 + (q2 − 2pr)y − r2 = 0.

6. y3 − qy2 + pry − r2 = 0. 7. ry3 + 2qy2 + 4py + 8 = 0.

8. Eliminate x by y = s2 − x2. 9. Use p2 − q + px = y.

10. −4 + pr/s. 11. (rs− pr2 + 2pqs)/s2.

12. (i) sasbscsd − Σsasbsc+d + 2Σsasb+c+d + Σsa+bsc+d − 6sa+b+c+d.
(ii) 1

24(s4a − 6s2as2a + 8sas3a + 3s22a − 6s4a).

13. (i)

sk = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 c1
c1 1 0 . . . 0 2c2
c2 c1 1 . . . 0 3c3
c3 c2 c1 . . . 0 4c4
. . . . . . . . . . . . . . . . . . . . . . .

ck−1 ck−2 ck−3 . . . c1 kck

∣∣∣∣∣∣∣∣∣∣∣∣∣
, s3 = −

∣∣∣∣∣∣
1 0 c1
c1 1 2c2
c2 c1 3c3

∣∣∣∣∣∣ ,
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where all but the last term in the main diagonal is 1, and all terms above
the diagonal are zero except those in the last column. If k > n, we must
take cj = 0 (j > n).

(ii)

k! ck = −

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 s1
s1 2 0 . . . 0 s2
s2 s1 3 . . . 0 s3

. . . . . . . . . . . . . . . . . . . . . . .

sk−1 sk−2 sk−3 . . . s1 sk

∣∣∣∣∣∣∣∣∣∣∣
, 3! c3 = −

∣∣∣∣∣∣
1 0 s1
s1 2 s2
s2 s1 s3

∣∣∣∣∣∣ .

Page 167

1. y2(16− y2); y = 0, x = ±3; y = ±4, x = +5.

2. (c− 1)2(y2 − 25)(y2 − 16). If c 6= 1, y = ±5, x = 0; y = ±4, x = +3.

3.

∣∣∣∣∣∣
1 a b

2 a 0
0 2 a

∣∣∣∣∣∣ = 4b− a2. 4. 2± 3i, −2± i, ±i.

Pages 169–170

2. pqr − p2s− r2 = 0, x2 + r/p, x2 + px+ ps/r.

3. 1, 3, 1± i. 11. See Ex. 15, p. 134.
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Absolute value, 4
Amplitude, 4
Argument, 4
Arithmetical progression, 21

Bézout’s eliminant, 164
Bend point, 64, 72
Budan’s theorem, 93

Cardan’s formulas, 52, 54
Complex number, 1

geometrical representation, 3, 7
trigonometric form, 4

Compound interest, 16, 101, 113
Conjugate, 1
Continuity, 74, 173
Cube root, 6, 54

of unity, 3, 4
Cubic equation, 36, 42, 49, 51, 141,

148–149, 168–170
graph of, 73
number of real roots, 54, 73, 89
reduced, 51, 72
trigonometric solution, 55

De Moivre’s
quintic, 155
theorem, 5

Derivative, 65–68, 78, 93, 108, 150
Descartes’ rule of signs, 81, 95
Determinant

of Vandermonde, 122
Determinants, 115–142, 162–170

addition of columns, 127
columns, 117
complementary minors, 137

diagonal term, 117
elements, 117
expansion, 123
interchanges, 120, 122
Laplace’s development, 137–138,
163–164

minors, 123, 130
product of, 139
rank, 130, 136
removal of factor, 125
rows, 117
signs of terms, 117–120
skew symmetric, 123
sum of, 126

Discriminant, 167–169
of cubic, 53, 73, 149
of quadratic, 14
of quartic, 58, 91

Double root, see Discriminant
Duplication of cube, 39

Elementary symmetric function, 143
Elimination, 159–170

extraneous factor, 167
Equation for differences of roots, 170

squares of differences, 149, 170
Euler’s eliminant, 163

Factor theorem, 15
Factored form, 13, 18
Fundamental theorem of algebra, 20,

171–174

Geometrical
construction, 33–49
progression, 15, 21

Graphs, 63–79
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Greatest common divisor, 69, 85

Horner’s method, 97

Identical polynomials, 19
Identity, 13
Imaginary, 1

roots, 22, 110
Inflexion, 70–72
Integral

rational function, 14, 20, 22
roots, 27–30

Interpolation, 104, 109
Interval, 88
Irreducible case, 54
Isolation of roots, 81

Linear equations
homogeneous, 134, 136
system, 115–117, 128–136

Linear factors, 13, 20
Lower limit to roots, 26

Matrix, 135
augmented, 135

Maximum, 65
Minimum, 65, 173
Modulus, 4
Multiple roots, 18, 68, 92
Multiplicity of root, 19, 22, 68

Newton’s
identities, 151
method of solution, 102–110

Number
of negative roots, 83
of roots, 18, 19, 54, 59, 77, 82–95

Order of radical, 36
Ordinate, 63

Plotting, 64
Polynomial, 14, 75

sign of, 77
Primitive root of unity, 9
Product of roots, 21
Pure imaginary, 1

Quadratic equation, 13
graphical solution, 33, 63
sum of powers of roots, 154

Quadratic function a square, 14
Quartic equation, 56–61, 90–91
Quotient by synthetic division, 16

Rational roots, 31
Real equation, 14, 22
Reciprocal equation, 41, 49
Regula falsi, 104
Regular

decagon, 43
pentagon, 43

Regular polygon, 8
7 sides, 39–40
9 sides, 39, 43
17 sides, 45–48
n sides, 48

Relations between roots and coeffi-
cients, 20

Relatively prime, 10
Remainder theorem, 14
Resolvent cubic, 56, 57
Resultant, 159–170
Rolle’s theorem, 77
Root between a and b, 77
Roots of unity, 8, 40, 43, 48, 151

periods of, 44
Roots, nth, 7

Sigma function, 143–158
Sign of polynomial, 77
Simple root, 19
Slope, 65, 67
Solution of numerical equations, 97–

113



INDEX 189

Specific gravity, 101
Square roots, 1, 34, 35, 108
Sturm’s functions, 85–92
Sum of

four squares, 140
like powers of roots, 150–158
products of roots, 21
roots, 21

Surd roots in pairs, 22
Sylvester’s eliminant, 161, 164, 165
Symbol
≡, 13
f(x), 14
|a|, 26, 171
r!, 67
f (k)(x), 67

Σ, 143
sk, 150
R(f, g), 160

Symmetric functions, 143–158
in all but one root, 147–149

Synthetic division, 16, 97–106

Tangents, 68, 70
Taylor’s theorem, 67
Transformed equation, 31, 97
Triple root, 19
Trisection of angle, 38, 44

Upper limit to roots, 23–26

Variation of sign, 81

Waring’s formula, 152
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