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CALCULUS MADE EASY



What one fool can do, another can.

(Ancient Simian Proverb.)



PREFACE TO THE SECOND EDITION.

THE surprising success of this work has led the author to add a con-
siderable number of worked examples and exercises. Advantage has
also been taken to enlarge certain parts where experience showed that
further explanations would be useful.

The author acknowledges with gratitude many valuable suggestions

and letters received from teachers, students, and—critics.

October, 1914.
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PROLOGUE.

CONSIDERING how many fools can calculate, it is surprising that it
should be thought either a difficult or a tedious task for any other fool
to learn how to master the same tricks.

Some calculus-tricks are quite easy. Some are enormously difficult.
The fools who write the textbooks of advanced mathematics—and they
are mostly clever fools—seldom take the trouble to show you how easy
the easy calculations are. On the contrary, they seem to desire to
impress you with their tremendous cleverness by going about it in the
most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach
myself the difficulties, and now beg to present to my fellow fools the
parts that are not hard. Master these thoroughly, and the rest will

follow. What one fool can do, another can.



CHAPTER L.

TO DELIVER YOU FROM THE PRELIMINARY
TERRORS.

THE preliminary terror, which chokes off most fifth-form boys from
even attempting to learn how to calculate, can be abolished once for
all by simply stating what is the meaning—in common-sense terms—of
the two principal symbols that are used in calculating.

These dreadful symbols are:

(1) d which merely means “a little bit of.”

Thus dx means a little bit of x; or du means a little bit of u. Or-
dinary mathematicians think it more polite to say “an element of,”
instead of “a little bit of.” Just as you please. But you will find that
these little bits (or elements) may be considered to be indefinitely small.

(2) / which is merely a long S, and may be called (if you like) “the
sum of.”

Thus | dx means the sum of all the little bits of x; or / dt means
the sum of all the little bits of ¢. Ordinary mathematicians call this
symbol “the integral of.” Now any fool can see that if x is considered
as made up of a lot of little bits, each of which is called dzx, if you
add them all up together you get the sum of all the dx’s, (which is the
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same thing as the whole of ). The word “integral” simply means “the
whole.” If you think of the duration of time for one hour, you may (if
you like) think of it as cut up into 3600 little bits called seconds. The
whole of the 3600 little bits added up together make one hour.

When you see an expression that begins with this terrifying sym-
bol, you will henceforth know that it is put there merely to give you
instructions that you are now to perform the operation (if you can) of
totalling up all the little bits that are indicated by the symbols that
follow.

That’s all.



CHAPTER II

ON DIFFERENT DEGREES OF SMALLNESS.

WE shall find that in our processes of calculation we have to deal with
small quantities of various degrees of smallness.

We shall have also to learn under what circumstances we may con-
sider small quantities to be so minute that we may omit them from
consideration. Everything depends upon relative minuteness.

Before we fix any rules let us think of some familiar cases. There
are 60 minutes in the hour, 24 hours in the day, 7 days in the week.
There are therefore 1440 minutes in the day and 10080 minutes in the
week.

Obviously 1 minute is a very small quantity of time compared with
a whole week. Indeed, our forefathers considered it small as com-
pared with an hour, and called it “one minute,” meaning a minute
fraction—mnamely one sixtieth—of an hour. When they came to re-
quire still smaller subdivisions of time, they divided each minute into
60 still smaller parts, which, in Queen Elizabeth’s days, they called
“second minutes” (i.e. small quantities of the second order of minute-
ness). Nowadays we call these small quantities of the second order of
smallness “seconds.” But few people know why they are so called.

Now if one minute is so small as compared with a whole day, how
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much smaller by comparison is one second!

Again, think of a farthing as compared with a sovereign: it is barely

worth more than ﬁ part. A farthing more or less is of precious little

importance compared with a sovereign: it may certainly be regarded

as a small quantity. But compare a farthing with £1000: relatively to

1
1000

farthing would be to a sovereign. Even a golden sovereign is relatively

this greater sum, the farthing is of no more importance than of a
a negligible quantity in the wealth of a millionaire.

Now if we fix upon any numerical fraction as constituting the pro-
portion which for any purpose we call relatively small, we can easily

state other fractions of a higher degree of smallness. Thus if, for the

L L
’ 60 60

small fraction of a small fraction) may be regarded as a small quantity

purpose of time be called a small fraction, then — of % (being a

of the second order of smallness.*

Or, if for any purpose we were to take 1 per cent. (i.e. ﬁ) as a

small fraction, then 1 per cent. of 1 per cent. (i.e. would be a

1
10,000)

small fraction of the second order of smallness; and would be

T000.000
a small fraction of the third order of smallness, being 1 per cent. of
1 per cent. of 1 per cent.

Lastly, suppose that for some very precise purpose we should regard
1,00—(1),000 as “small.” Thus, if a first-rate chronometer is not to lose
or gain more than half a minute in a year, it must keep time with
an accuracy of 1 part in 1,051,200. Now if, for such a purpose, we

*The mathematicians talk about the second order of “magnitude” (i.e. great-
ness) when they really mean second order of smallness. This is very confusing to

beginners.
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regard or one millionth) as a small quantity, then

1
To00000 Of
or one trillionth) will be a small quantity

o505 (
1,000,000
that is

of the second order of smallness, and may be utterly disregarded, by
comparison.

Then we see that the smaller a small quantity itself is, the more
negligible does the corresponding small quantity of the second order
become. Hence we know that in all cases we are justified in neglecting
the small quantities of the second—or third (or higher)—orders, if only
we take the small quantity of the first order small enough in itself.

But, it must be remembered, that small quantities if they occur in
our expressions as factors multiplied by some other factor, may become
important if the other factor is itself large. Even a farthing becomes
important if only it is multiplied by a few hundred.

Now in the calculus we write dz for a little bit of x. These things
such as dz, and du, and dy, are called “differentials,” the differential
of x, or of u, or of y, as the case may be. [You read them as dee-eks,
or dee-you, or dee-wy.| If dz be a small bit of x, and relatively small of
itself, it does not follow that such quantities as x - dzx, or 2% dx, or a® dx
are negligible. But dx x dr would be negligible, being a small quantity
of the second order.

A very simple example will serve as illustration.

Let us think of x as a quantity that can grow by a small amount so
as to become x + dx, where dx is the small increment added by growth.
The square of this is #? + 2z - dr + (dz)?>. The second term is not
negligible because it is a first-order quantity; while the third term is of

the second order of smallness, being a bit of, a bit of x2. Thus if we
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took dr to mean numerically, say, &5 of x, then the second term would

be = of 2%, whereas the third term would be m of 22. This last term

is clearly less important than the second. But if we go further and take
dx to mean only 10100 of x, then the second term will be m of 2, while

the third term will be only m of z2.

T

Fic. 1.

Geometrically this may be depicted as follows: Draw a square
(Fig. 1) the side of which we will take to represent z. Now suppose
the square to grow by having a bit dxr added to its size each way.
The enlarged square is made up of the original square z?, the two
rectangles at the top and on the right, each of which is of area z - dx
(or together 2x - dx), and the little square at the top right-hand corner
which is (dz)?. In Fig. 2 we have taken dzr as quite a big fraction
of x—about % But suppose we had taken it only m—about the
thickness of an inked line drawn with a fine pen. Then the little corner
square will have an area of only m of 22, and be practically invisible.
Clearly (dx)? is negligible if only we consider the increment dz to be
itself small enough.

Let us consider a simile.
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T dx T -dx (dx)Q
dx dx
x T 72 x-dx
x dx
Fic. 2. FiGc. 3.

Suppose a millionaire were to say to his secretary: next week I will
give you a small fraction of any money that comes in to me. Suppose
that the secretary were to say to his boy: I will give you a small fraction
of what I get. Suppose the fraction in each case to be ﬁ part. Now
if Mr. Millionaire received during the next week £1000, the secretary
would receive £10 and the boy 2 shillings. Ten pounds would be a
small quantity compared with £1000; but two shillings is a small small
quantity indeed, of a very secondary order. But what would be the
disproportion if the fraction, instead of being lé—o, had been settled at
ﬁ part? Then, while Mr. Millionaire got his £1000, Mr. Secretary
would get only £1, and the boy less than one farthing!

The witty Dean Swift* once wrote:

*On Poetry: a Rhapsody (p. 20), printed 1733—usually misquoted.
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“So, Nat’ralists observe, a Flea

“Hath smaller Fleas that on him prey.
“And these have smaller Fleas to bite ’em,
“And so proceed ad infinitum.”

An ox might worry about a flea of ordinary size—a small creature of
the first order of smallness. But he would probably not trouble himself
about a flea’s flea; being of the second order of smallness, it would be
negligible. Even a gross of fleas’ fleas would not be of much account to

the ox.



CHAPTER IIIL

ON RELATIVE GROWINGS.

ALL through the calculus we are dealing with quantities that are grow-
ing, and with rates of growth. We classify all quantities into two classes:
constants and wvariables. Those which we regard as of fixed value, and
call constants, we generally denote algebraically by letters from the be-
ginning of the alphabet, such as a, b, or ¢; while those which we consider
as capable of growing, or (as mathematicians say) of “varying,” we de-
note by letters from the end of the alphabet, such as x, y, z, u, v, w,
or sometimes t.

Moreover, we are usually dealing with more than one variable at
once, and thinking of the way in which one variable depends on the
other: for instance, we think of the way in which the height reached
by a projectile depends on the time of attaining that height. Or we
are asked to consider a rectangle of given area, and to enquire how any
increase in the length of it will compel a corresponding decrease in the
breadth of it. Or we think of the way in which any variation in the
slope of a ladder will cause the height that it reaches, to vary.

Suppose we have got two such variables that depend one on the
other. An alteration in one will bring about an alteration in the other,

because of this dependence. Let us call one of the variables z, and the
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other that depends on it y.

Suppose we make x to vary, that is to say, we either alter it or
imagine it to be altered, by adding to it a bit which we call dz. We are
thus causing = to become x + dx. Then, because = has been altered,
y will have altered also, and will have become y + dy. Here the bit dy
may be in some cases positive, in others negative; and it won’t (except

by a miracle) be the same size as dz.

Take two examples.
(1) Let « and y be respectively the base and the height of a right-
angled triangle (Fig. 4), of which the slope of the other side is fixed

dy
Yy Yy
%30°
M
€ dx
Fia. 4.

at 30°. If we suppose this triangle to expand and yet keep its angles
the same as at first, then, when the base grows so as to become z + dx,
the height becomes y 4+ dy. Here, increasing z results in an increase
of y. The little triangle, the height of which is dy, and the base of which
is dx, is similar to the original triangle; and it is obvious that the value

of the ratio d_y is the same as that of the ratio 2. As the angle is 30°
x x

it will be seen that here
dy

1
de  1.73



ON RELATIVE GROWINGS 11

(2) Let z represent, in Fig. 5, the horizontal distance, from a wall,

of the bottom end of a ladder, AB, of fixed length; and let y be the

B

T

Fic. 5.

height it reaches up the wall. Now y clearly depends on z. It is easy to
see that, if we pull the bottom end A a bit further from the wall, the
top end B will come down a little lower. Let us state this in scientific
language. If we increase x to x + dx, then y will become y — dy; that is,
when x receives a positive increment, the increment which results to y
is negative.

Yes, but how much? Suppose the ladder was so long that when the
bottom end A was 19 inches from the wall the top end B reached just
15 feet from the ground. Now, if you were to pull the bottom end out
1 inch more, how much would the top end come down? Put it all into
inches: x = 19 inches, y = 180 inches. Now the increment of x which

we call dz, is 1 inch: or x 4+ dx = 20 inches.
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How much will y be diminished? The new height will be y — dy. If
we work out the height by Euclid 1. 47, then we shall be able to find
how much dy will be. The length of the ladder is

v/ (180)2 + (19)2 = 181 inches.
Clearly then, the new height, which is y — dy, will be such that

(y — dy)* = (181)% — (20)* = 32761 — 400 = 32361,
y — dy = V32361 = 179.89 inches.

Now y is 180, so that dy is 180 — 179.89 = 0.11 inch.

So we see that making dr an increase of 1 inch has resulted in
making dy a decrease of 0.11 inch.

And the ratio of dy to dxr may be stated thus:

dy 011

dr 1

It is also easy to see that (except in one particular position) dy will
be of a different size from dzx.

Now right through the differential calculus we are hunting, hunting,
hunting for a curious thing, a mere ratio, namely, the proportion which
dy bears to dr when both of them are indefinitely small.

It should be noted here that we can only find this ratio Z_Z when
y and z are related to each other in some way, so that whenever x varies
y does vary also. For instance, in the first example just taken, if the
base x of the triangle be made longer, the height y of the triangle

becomes greater also, and in the second example, if the distance x of

the foot of the ladder from the wall be made to increase, the height y
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reached by the ladder decreases in a corresponding manner, slowly at
first, but more and more rapidly as x becomes greater. In these cases
the relation between x and y is perfectly definite, it can be expressed

mathematically, being Y — tan30° and 22 + y? = [? (where [ is the
T

length of the ladder) respectively, and % has the meaning we found in
each case.

If, while x is, as before, the distance of the foot of the ladder from
the wall, y is, instead of the height reached, the horizontal length of
the wall, or the number of bricks in it, or the number of years since it
was built, any change in x would naturally cause no change whatever
in y; in this case % has no meaning whatever, and it is not possible
to find an expression for it. Whenever we use differentials dx, dy,
dz, etc., the existence of some kind of relation between x, y, z, etc., is
implied, and this relation is called a “function” in z, y, z, etc.; the two
expressions given above, for instance, namely ¥ tan 30° and 2% +y? =
[2, are functions of x and y. Such expressiong contain implicitly (that
is, contain without distinctly showing it) the means of expressing either

x in terms of y or y in terms of x, and for this reason they are called

implicit functions in x and y; they can be respectively put into the

forms
y=xtan30° or xz = i
tan 30°
and y=vVI2—x2 or x=+1%>—1y>

These last expressions state explicitly (that is, distinctly) the value
of x in terms of y, or of y in terms of x, and they are for this reason

called explicit functions of x or y. For example 2? +3 = 2y — 7 is an



CALCULUS MADE EASY 14

%2+ 10

2
function of x) or x = /2y — 10 (explicit function of y). We see that

an explicit function in z, y, 2, etc., is simply something the value of

implicit function in z and y; it may be written y = (explicit

which changes when x, vy, z, etc., are changing, either one at the time
or several together. Because of this, the value of the explicit function
is called the dependent variable, as it depends on the value of the other
variable quantities in the function; these other variables are called the
independent variables because their value is not determined from the
value assumed by the function. For example, if u = 2?sinf,  and 6
are the independent variables, and u is the dependent variable.

Sometimes the exact relation between several quantities z, y, 2 ei-
ther is not known or it is not convenient to state it; it is only known,
or convenient to state, that there is some sort of relation between these
variables, so that one cannot alter either x or y or z singly without
affecting the other quantities; the existence of a function in =z, y, 2
is then indicated by the notation F'(z,y,z) (implicit function) or by
r=F(y,z), y=F(x,z) or z= F(x,y) (explicit function). Sometimes
the letter f or ¢ is used instead of F', so that y = F(z), y = f(x) and
y = ¢(x) all mean the same thing, namely, that the value of y depends
on the value of x in some way which is not stated.

We call the ratio Z—z “the differential coefficient of y with respect
to x.” It is a solemn scientific name for this very simple thing. But
we are not going to be frightened by solemn names, when the things
themselves are so easy. Instead of being frightened we will simply pro-
nounce a brief curse on the stupidity of giving long crack-jaw names;

and, having relieved our minds, will go on to the simple thing itself,
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namely the ratio Z—i

In ordinary algebra which you learned at school, you were always
hunting after some unknown quantity which you called x or y; or some-
times there were two unknown quantities to be hunted for simultane-
ously. You have now to learn to go hunting in a new way; the fox being
now neither x nor y. Instead of this you have to hunt for this curious
cub called Z—i The process of finding the value of Z—i is called “dif-
ferentiating.” But, remember, what is wanted is the value of this ratio
when both dy and dx are themselves indefinitely small. The true value
of the differential coefficient is that to which it approximates in the
limiting case when each of them is considered as infinitesimally minute.

Let us now learn how to go in quest of d_y
x
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NOTE TO CHAPTER III.
How to read Differentials.

It will never do to fall into the schoolboy error of thinking that dx
means d times x, for d is not a factor—it means “an element of” or “a
bit of” whatever follows. One reads dz thus: “dee-eks.”

In case the reader has no one to guide him in such matters it may
here be simply said that one reads differential coefficients in the follow-

ing way. The differential coefficient

d
d_y is read “dee-wy by dee-eks,” or “dee-wy over dee-eks.”
x
du : ¢ 7
So also — is read “dee-you by dee-tee.

dt

Second differential coefficients will be met with later on. They are
like this:
2

d
d—‘z; which is read “dee-two-wy over dee-eks-squared,”
x

and it means that the operation of differentiating y with respect to x
has been (or has to be) performed twice over.

Another way of indicating that a function has been differentiated is
by putting an accent to the symbol of the function. Thus if y = F(z),
which means that y is some unspecified function of x (see p. 13), we may

d(F(x))
d

original function F'(z) has been differentiated twice over with respect

write F'(x) instead of . Similarly, F”(z) will mean that the

to z.



CHAPTER IV.

SIMPLEST CASES.

Now let us see how, on first principles, we can differentiate some simple

algebraical expression.

Case 1.

Let us begin with the simple expression y = 2?. Now remember
that the fundamental notion about the calculus is the idea of growing.
Mathematicians call it varying. Now as y and z? are equal to one
another, it is clear that if  grows, 2% will also grow. And if 2% grows,
then y will also grow. What we have got to find out is the proportion
between the growing of y and the growing of x. In other words our task
is tg find out the ratio between dy and dx, or, in brief, to find the value
of %

Let x, then, grow a little bit bigger and become z + dx; similarly,
y will grow a bit bigger and will become y+dy. Then, clearly, it will still
be true that the enlarged y will be equal to the square of the enlarged x.

Writing this down, we have:

y+dy = (v + dx)*
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Doing the squaring we get:

y+dy = 2%+ 2z - dr + (dx)*.

What does (dz)? mean? Remember that dz meant a bit—a little
bit—of z. Then (dz)* will mean a little bit of a little bit of z; that
is, as explained above (p. 4), it is a small quantity of the second order
of smallness. It may therefore be discarded as quite inconsiderable in

comparison with the other terms. Leaving it out, we then have:
y+dy = x* + 2z - du.

Now y = z%; so let us subtract this from the equation and we have
left

dy = 2x - dzx.

Dividing across by dx, we find

dy
dr
Now this* is what we set out to find. The ratio of the growing of y

2x.

to the growing of x is, in the case before us, found to be 2.

d
*N.B.—This ratio d—y is the result of differentiating y with respect to z. Dif-
x
ferentiating means finding the differential coefficient. Suppose we had some other
function of z, as, for example, u = 722 +3. Then if we were told to differentiate this
. du ) . d(Tz? +3)
with respect to z, we should have to find e or, what is the same thing, —
x x
On the other hand, we may have a case in which time was the independent variable
(see p. 14), such as this: y = b+ %at? Then, if we were told to differentiate it, that

means we must find its differential coefficient with respect to t. So that then our

d d(b+ Lat?
business would be to try to find d—i, that is, to find (TQQ).
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Numerical example.

Suppose x = 100 and .". y = 10,000. Then let x grow till it becomes
101 (that is, let dv = 1). Then the enlarged y will be 101 x 101 =
10,201. But if we agree that we may ignore small quantities of the
second order, 1 may be rejected as compared with 10, 000; so we may
round off the enlarged y to 10, 200. y has grown from 10, 000 to 10, 200;
the bit added on is dy, which is therefore 200.

d 200
d_y =75 = 200. According to the algebra-working of the previous
x
d
paragraph, we find %Y _ 9¢. And so it is; for z = 100 and 2z = 200.

dx
But, you will say, we neglected a whole unit.

Well, try again, making dz a still smaller bit.
Try dx = 1—10. Then z 4+ dz = 100.1, and

(x +dx)* = 100.1 x 100.1 = 10, 020.01.

Now the last figure 1 is only one-millionth part of the 10,000, and
is utterly negligible; so we may take 10,020 without the little decimal
dy 20

at the end. And this makes dy = 20; and w01l 200, which is
x .

still the same as 2x.

Case 2.
Try differentiating y = 22 in the same way.
We let y grow to y 4+ dy, while x grows to x + dx.

Then we have
y+dy = (v + dz)>.

Doing the cubing we obtain

y+dy = 2* + 32 - dv + 3x(dz)? + (dz)>.
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Now we know that we may neglect small quantities of the second
and third orders; since, when dy and dx are both made indefinitely
small, (dr)? and (dz)® will become indefinitely smaller by comparison.
So, regarding them as negligible, we have left:

y+dy =2 + 327 - da.

But y = 2%; and, subtracting this, we have:

dy = 32% - dx,
dy
d -2 = 322
an I T
Case 3.

Try differentiating y = 2*. Starting as before by letting both y and x

grow a bit, we have:
y+dy = (v + dz)*.
Working out the raising to the fourth power, we get

y+dy = 2t + 42® dv + 62 (dw)? + 4o (dz)® + (dz)*.

Then striking out the terms containing all the higher powers of dz,

as being negligible by comparison, we have

y+dy = x* + 423 du.

4

Subtracting the original y = x*, we have left

dy = 42° dx,

dy_

43,
dx *

and
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Now all these cases are quite easy. Let us collect the results to see if
we can infer any general rule. Put them in two columns, the values of y

d
in one and the corresponding values found for d_y in the other: thus

x
dy
Yo dx
x? 2z
a3 32
x? 43

Just look at these results: the operation of differentiating appears
to have had the effect of diminishing the power of = by 1 (for example
in the last case reducing z* to #3), and at the same time multiplying by
a number (the same number in fact which originally appeared as the
power). Now, when you have once seen this, you might easily conjecture
how the others will run. You would expect that differentiating 2% would
give 5z, or differentiating 2° would give 62°. If you hesitate, try one
of these, and see whether the conjecture comes right.

Try y = 2°.

Then y+dy = (v + dz)®
= 2° + 5xt dx + 1023 (dx)* + 102%(dx)?
+ 5x(dx)* + (dr)°.

Neglecting all the terms containing small quantities of the higher

orders, we have left

y+dy = 2° + 5zt dx,
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and subtracting y = 2° leaves us
dy = 5x* de,
dy 4
whence —= = bx", exactly as we supposed.

dr

Following out logically our observation, we should conclude that if
we want to deal with any higher power,—call it n—we could tackle it

in the same way.
Let y=a",

then, we should expect to find that

dy
AN (VS
I nw
For example, let n = 8, then y = 2% and differentiating it would
. dy -
give —— = 8z'.
dx

And, indeed, the rule that differentiating x™ gives as the result nz" !

is true for all cases where n is a whole number and positive. [Expanding
(x + dx)™ by the binomial theorem will at once show this.] But the
question whether it is true for cases where n has negative or fractional

values requires further consideration.

Case of a negative power.

Let y = 272. Then proceed as before:

y+dy = (v +dx) >

-2
= g2 (1+d—$> .
x
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Expanding this by the binomial theorem (see p. 137), we get

2dr 224+ 1) [dz\?
=372 [1 — * + ( + ) (_x) — etc.]
x 1 x2 T

=272 207 dr + 32 *(dr)* — 407" (dz)? + etc.

So, neglecting the small quantities of higher orders of smallness, we
have:

y+dy=a"2—2273 dx.

Subtracting the original y = 272, we find

dy = —2x3dux,
dy -3
— =-2

dz v

And this is still in accordance with the rule inferred above.

Case of a fractional power.

Let y = 3. Then, as before,

—Jr+ = _Z + terms with higher

2x  8uxyr

powers of dzx.

Subtracting the original y = x%, and neglecting higher powers we
have left:
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d 1
and d—y = 595’%. Agreeing with the general rule.
x

Summary. Let us see how far we have got. We have arrived at the
following rule: To differentiate ™, multiply by the power and reduce

the power by one, so giving us na" ! as the result.

Ezercises I (See p. 252 for Answers.)
Differentiate the following:

(1) y= ot 2) y=o
(3) y=a> (4) u=t>1

Vu (6) y = Va5
fﬁ (8) y=2a"
G w0 y- T

You have now learned how to differentiate powers of x. How easy it

(5) =z

(7)

9) y

18!



CHAPTER V.

NEXT STAGE. WHAT TO DO WITH CONSTANTS.

IN our equations we have regarded x as growing, and as a result of x
being made to grow y also changed its value and grew. We usually
think of x as a quantity that we can vary; and, regarding the variation
of x as a sort of cause, we consider the resulting variation of y as an
effect. In other words, we regard the value of y as depending on that
of . Both x and y are variables, but x is the one that we operate upon,
and y is the “dependent variable.” In all the preceding chapter we have
been trying to find out rules for the proportion which the dependent
variation in y bears to the variation independently made in z.

Our next step is to find out what effect on the process of differenti-
ating is caused by the presence of constants, that is, of numbers which

don’t change when x or y change their values.

Added Constants.

Let us begin with some simple case of an added constant, thus:
Let y =2+ 5.

Just as before, let us suppose x to grow to x+dx and y to grow to y+dy.
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Then: y+dy=(z+dx)*+5
= 2° + 32 dx + 3x(dz)? + (dv)® + 5.

Neglecting the small quantities of higher orders, this becomes
y+dy = 2° + 32° - dv + 5.

Subtract the original y = 2® + 5, and we have left:

dy = 32° dx.
dy 2
— =3x".
dx .

So the 5 has quite disappeared. It added nothing to the growth
of , and does not enter into the differential coefficient. If we had put 7,
or 700, or any other number, instead of 5, it would have disappeared.
So if we take the letter a, or b, or ¢ to represent any constant, it will
simply disappear when we differentiate.

If the additional constant had been of negative value, such as

—5 or —b, it would equally have disappeared.

Multiplied Constants.
Take as a simple experiment this case:
Let y = 722
Then on proceeding as before we get:
y+dy = 7(z + dx)?
= 7{2® + 27 - dv + (dz)*}
= T2% + 142 - dw + 7(dx)*.



WHAT TO DO WITH CONSTANTS 27

Then, subtracting the original y = 722, and neglecting the last term,

we have
dy = 14z - dx.
dy
-2 = 14x.
dx v

Let us illustrate this example by working out the graphs of the
equations y = 7% and d—y = 14z, by assigning to z a set of successive
x

values, 0, 1, 2, 3, etc., and finding the corresponding values of y and

of Z—z
These values we tabulate as follows:
x 0 1 2 3 4 5 -1 | -2 =3
Y 0 7 28 63 | 112 | 175 7 28 63
% 0 14 28 42 56 70 || —14 | —28 | —42

Now plot these values to some convenient scale, and we obtain the
two curves, Figs. 6 and 6a.

Carefully compare the two figures, and verify by inspection that
the height of the ordinate of the derived curve, Fig. 6a, is proportional
to the slope of the original curve,* Fig. 6, at the corresponding value
of x. To the left of the origin, where the original curve slopes negatively
(that is, downward from left to right) the corresponding ordinates of
the derived curve are negative.

Now if we look back at p. 18, we shall see that simply differenti-
ating 2% gives us 2x. So that the differential coefficient of 722 is just

*See p. 76 about slopes of curves.



CALCULUS MADE EASY 28

dy

|

|

|

|
L
P

| |

1 | |

* X [ !

-3 -2 -1 0 1 2 3 4

Fi1G. 6.—Graph of y = 722. Fi1G. 6a.—Graph of Z—i = 14x.

7 times as big as that of 22, If we had taken 822, the differential coeffi-
cient would have come out eight times as great as that of 2. If we put
y = ax?, we shall get

dy

— =qa X 2x.
. a T

If we had begun with y = az™, we should have had Z—y =axnz" L.

So that any mere multiplication by a constant reappéxars as a mere

multiplication when the thing is differentiated. And, what is true about

multiplication is equally true about division: for if, in the example

above, we had taken as the constant % instead of 7, we should have had
1

the same = come out in the result after differentiation.

Some Further Examples.
The following further examples, fully worked out, will enable you to

master completely the process of differentiation as applied to ordinary
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algebraical expressions, and enable you to work out by yourself the

examples given at the end of this chapter.
>3
(1) Differentiate y = % ~ 3

3
— is an added constant and vanishes (see p. 25).

We may then write at once

dy 1 5-1
AN
I 7>< X 277,
dy 5 4
or e
de 7

1
(2) Differentiate y = ay/z — 5\/5
1
The term 5\/5 vanishes, being an added constant; and as a+/z, in

. : . 1
the index form, is written az2, we have

dy 1 4. a 1
— =aX = XT2 ==Xz 2,
dx 2 2
dy a
or -
de  2y/x

(3) If ay + br = by — az + (v + y)va? — b2,
find the differential coefficient of y with respect to x.

As a rule an expression of this kind will need a little more knowledge
than we have acquired so far; it is, however, always worth while to try
whether the expression can be put in a simpler form.

First we must try to bring it into the form y = some expression
involving x only.

The expression may be written

(a—by+ (a+b)x = (x +y)Va> — b2
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Squaring, we get
(a—b)*y* + (a +b)%2* +2(a + b)(a — b)zy = (2 + y* + 22y) (a® — b?),
which simplifies to

(0= BP9 + (a+ b = (0 = 1) + (e — 1)

or [(a—=0)* = (o = b)]y* = [(a® = b*) — (a+ b)"]2?,
that is 20(b — a)y* = —2b(b + a)z*;
a+b dy a+b
h = - = .
ence Y p— bx and . p—

(4) The volume of a cylinder of radius r and height h is given by
the formula V = 7r2h. Find the rate of variation of volume with the
radius when r» = 5.5 in. and h = 20 in. If r = h, find the dimensions
of the cylinder so that a change of 1 in. in radius causes a change of
400 cub. in. in the volume.

The rate of variation of V' with regard to r is

dV
% = 27T7"h.

If » = 5.5 in. and h = 20 in. this becomes 690.8. It means
that a change of radius of 1 inch will cause a change of volume of
690.8 cub. inch. This can be easily verified, for the volumes with
r =25 and r = 6 are 1570 cub. in. and 2260.8 cub. in. respectively, and
2260.8 — 1570 = 690.8.

Also, if

d /4
r = h, i =27 =400 and r=h= 200 = 7.98 in.
dr 2m
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(5) The reading 6 of a Féry’s Radiation pyrometer is related to the
Centigrade temperature ¢ of the observed body by the relation

g (Y
0, \t;/) "’

where 6, is the reading corresponding to a known temperature ¢; of the
observed body.

Compare the sensitiveness of the pyrometer at temperatures
800° C., 1000° C., 1200° C., given that it read 25 when the temperature
was 1000° C.

The sensitiveness is the rate of variation of the reading with the

do
temperature, that is e The formula may be written

0 = ﬁt4 — ﬁ
t‘f 10004’
and we have
do  100t° t?

dt — 1000% — 10,000, 000,000

do
When t = 800, 1000 and 1200, we get i 0.0512, 0.1 and 0.1728
respectively.
The sensitiveness is approximately doubled from 800° to 1000°, and

becomes three-quarters as great again up to 1200°.

FEzercises II.  (See p. 252 for Answers.)
Differentiate the following:

(1) y = ax® + 6. (2) y= 1322 — c.
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3) y=1222 + c3 4) y = 23

y y

5) u=22"1 (6) y = 1.18£2 + 22.4.
C

Make up some other examples for yourself, and try your hand at

differentiating them.

(7) If [, and [y be the lengths of a rod of iron at the temperatures
t° C. and 0° C. respectively, then [; = [5(140.000012¢). Find the change
of length of the rod per degree Centigrade.

(8) It has been found that if ¢ be the candle power of an incandes-
cent electric lamp, and V' be the voltage, ¢ = aV?, where a and b are

constants.

Find the rate of change of the candle power with the voltage, and
calculate the change of candle power per volt at 80, 100 and 120 volts

in the case of a lamp for which a = 0.5 x 107!% and b = 6.
(9) The frequency n of vibration of a string of diameter D, length L
and specific gravity o, stretched with a force T', is given by

1 gl

ST

Find the rate of change of the frequency when D, L, o and T are

varied singly.

(10) The greatest external pressure P which a tube can support with-

out collapsing is given by

2F 3
P=(—")—
(1—02) D3’
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where E and o are constants, t is the thickness of the tube and D is

its diameter. (This formula assumes that 4¢ is small compared to D.)

Compare the rate at which P varies for a small change of thickness

and for a small change of diameter taking place separately.

(11) Find, from first principles, the rate at which the following vary

with respect to a change in radius:

a) the circumference of a circle of radius r;

b) the area of a circle of radius r;

c¢) the lateral area of a cone of slant dimension /;

e) the area of a sphere of radius r;

(
(
(
(
(
(

)
)
)
d) the volume of a cone of radius r and height h;
)
)

f

the volume of a sphere of radius r.

(12) The length L of an iron rod at the temperature 7" being given by
L =1;[140.000012(T —t)], where l; is the length at the temperature ¢,
find the rate of variation of the diameter D of an iron tyre suitable for

being shrunk on a wheel, when the temperature T" varies.



CHAPTER VL

SUMS, DIFFERENCES, PRODUCTS AND
QUOTIENTS.

WE have learned how to differentiate simple algebraical functions such

4 and we have now to consider how to tackle the sum

as 2 + c or ax
of two or more functions.

For instance, let
y = (2% +¢) + (az* +);

d
what will its d—y be? How are we to go to work on this new job?
x

The answer to this question is quite simple: just differentiate them,

one after the other, thus:

d
% = 2 + daz®. (Ans.)

If you have any doubt whether this is right, try a more general case,
working it by first principles. And this is the way:.

Let y = u+wv, where u is any function of z, and v any other function
of z. Then, letting x increase to x + dx, y will increase to y + dy; and
u will increase to u + du; and v to v + dv.

And we shall have:

y+dy =u+du+v+dv.
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Subtracting the original y = u + v, we get
dy = du + dv,

and dividing through by dx, we get:
dy du dv
dv dr dx
This justifies the procedure. You differentiate each function sep-
arately and add the results. So if now we take the example of the
preceding paragraph, and put in the values of the two functions, we
shall have, using the notation shown (p. 16),
dy  d(z*+c) N d(az* + )
dr dz dx
=2 + daz®,

exactly as before.
If there were three functions of x, which we may call u, v and w, so

that

Yy=u-+v+w;

dy du dv dw

th LA Tk R

o dr  dx + dx + dx
As for subtraction, it follows at once; for if the function v had itself
had a negative sign, its differential coefficient would also be negative;

so that by differentiating

Yy=u-—uv,

dy du dv
hould get == - —.
we should ge T = dn  da
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But when we come to do with Products, the thing is not quite so
simple.

Suppose we were asked to differentiate the expression
_ (2 4
y = (2" +c) x (az” +b),

what are we to do? The result will certainly not be 2x x 4ax?; for it
is easy to see that neither ¢ x az*, nor 22 x b, would have been taken
into that product.

Now there are two ways in which we may go to work.

First way. Do the multiplying first, and, having worked it out, then
differentiate.

Accordingly, we multiply together 22 + ¢ and axz* + b.

This gives ax® + acz® + bx? + be.

Now differentiate, and we get:

d
& Gaxr® + dacx® + 2bx.
dx

Second way. Go back to first principles, and consider the equation
Y =u X v,

where u is one function of x, and v is any other function of x. Then, if
x grows to be x + dz; and y to y + dy; and u becomes u + du, and v

becomes v + dv, we shall have:

y+dy = (u+du) x (v + dv)
=u-v+u-dv+v-du+du-dv.
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Now du - dv is a small quantity of the second order of smallness, and

therefore in the limit may be discarded, leaving

y+dy=u-v+u-dv+wv-du.

Then, subtracting the original y = u - v, we have left
dy =u-dv+v-du;

and, dividing through by dx, we get the result:
dy dv du

=U—+vV—.

dx dx dx

This shows that our instructions will be as follows: To differentiate
the product of two functions, multiply each function by the differential
coefficient of the other, and add together the two products so obtained.

You should note that this process amounts to the following: Treat u
as constant while you differentiate v; then treat v as constant while you
differentiate u; and the whole differential coefficient Z—i will be the sum
of these two treatments.

Now, having found this rule, apply it to the concrete example which
was considered above.

We want to differentiate the product
(2% +¢) x (ax* +b).

Call (2% + ¢) = u; and (az* +b) = v.
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Then, by the general rule just established, we may write:

d d(ax* +b d(x?
d_y:(x2+c)—(a$d+ )+(ax4+b)—(xd+c)
x x x
= (2* + ¢) 4az® + (az* +b) 27
= daz® + dacz® + 2ax° + 2bx,
Z;_y = 6az® + daca® + 2bzx,
x

exactly as before.

Lastly, we have to differentiate quotients.

: : ba® +c o
Think of this example, y = — Ta In such a case it is no use to
2 +a

try to work out the division beforehand, because 22 + a will not divide

into bx® + ¢, neither have they any common factor. So there is nothing
for it but to go back to first principles, and find a rule.
So we will put

U
y=-
v

where u and v are two different functions of the independent variable x.

Then, when x becomes x + dz, y will become y+ dy; and u will become

u ~+ du; and v will become v + dv. So then
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Now perform the algebraic division, thus:

v+ dv |u+ du 9+d—u—u'2dv
v v v
u - dv
u +
v
du_u-dv
v
du - d
du + v v
v
u-dv  du-dv
v v

As both these remainders are small quantities of the second order,
they may be neglected, and the division may stop here, since any further
remainders would be of still smaller magnitudes.

So we have got:

v du  u-dv
y+dy:;+——

I

V2

which may be written
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u
Now subtract the original y = —, and we have left:
v

v-du—u-dv‘

b=
du dv
V— — U —
whence dy _ “de dv :
dx 02

This gives us our instructions as to how to differentiate a quotient
of two functions. Multiply the divisor function by the differential coef-
ficient of the dividend function; then multiply the dividend function by
the differential coefficient of the divisor function; and subtract. Lastly

divide by the square of the divisor function.

5
Going back to our example y = bz i C,
T +a
write b’ +c = u;
and 4 a=v.
Then
d(bz® + c) d(z?® + a)
2 aor- T 5 ar- T a)
dy _ (% + a) T (bz° + ¢) o
dx (22 +a)?
(2% + a)(5ba?) — (ba® + ¢)(2)
(22 + a)? ’
d ba® brt — 2
dy _ 3bx” 4 Sabx cT (Answer.)

do (22 4+ a)?
The working out of quotients is often tedious, but there is nothing
difficult about it.

Some further examples fully worked out are given hereafter.
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a a? a?
1) Differentiate y = —a3 — —z + —.
(1) 1eren1aey2b2x bx+bz
Being a constant, Z—Z vanishes, and we have
@:gx?)xx:”_l—ajxle‘l
der b2 b '
But z'7! = 2% = 1; so we get:
dy 3a , d*
= ==z - —.
de b2 b
3b<
(2) Differentiate y = 2aVvbx3 — va _ 2V ab.
x

Putting z in the index form, we get

Yy = 2av/ba? — 3bax™t — 2v/ab.

Now
d
d—y = 2a\/l_) X % X x%—l — 3()\3/5 % (_1) x x—l—l;
T
d 3b
or, Y 3avbr + \2/5,
dx €T
/1 44
(3) Differentiate z = 1.8/ — — —= — 27°.

02 0
This may be written: z = 1.8 0=% —4.4075 — 27°.

The 27° vanishes, and we have

dz 2 1
%ZI.SX—§X931—4.4X(—é)05

dZ 5 6

— =—-1260"340.880"5;

or, 0 +0.88675;

d=_ 088 12
o g5 Vo5

or,

41
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(4) Differentiate v = (3t* — 1.2¢ + 1).
A direct way of doing this will be explained later (see p. 66); but
we can nevertheless manage it now without any difficulty.

Developing the cube, we get
v =27t% — 32.4¢5 4 39.96t* — 23.328¢3 + 13.32t> — 3.6t + 1;

hence

d
d—: = 162t° — 162t* + 159.84¢% — 69.984¢% + 26.64t — 3.6.

(5) Differentiate y = (22 — 3)(z + 1)2.

dy d[(z + 1)(z +1)] o d(2z — 3)
%—(293—3) o + (z+1) T
= (2x — 3) (x+1)%+(x+1)%

+(z+1) —d@zx_ 3)

=2+ 1)[(2x =3)+ (z+1)] =2(z + 1)(3z — 2);

or, more simply, multiply out and then differentiate.

(6) Differentiate y = 0.5z (x — 3).

dy
dx

0.5 {x?’d@—_?’) d("’“j)}

—3)2=7
dx (@ ) dx
=0.5[2° + (z — 3) x 32%] = 22" — 4.52°.

Same remarks as for preceding example.

(7) Differentiate w = (9 + %) <\/§ + %)
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This may be written

w=(0+671)(02 +072).

dw L dOT 073 d(0+67Y)
= (0+07)(E072 — 3073 + (07 +072)(1 -0

5

0
(9% + 0% _ 93 — 9‘%) + (9% + 02 — 05 — 0~2)

1) 1)

This, again, could be obtained more simply by multiplying the two
factors first, and differentiating afterwards. This is not, however, always
possible; see, for instance, p. 170, example 8, in which the rule for
differentiating a product must be used.

a
8) Differentiate y = :
(8) Differentiate y 1+ av + o’z

(1l + az? + a’r)

dy (1+ax%+a2x)><0—a

_ dz
dr (1+ ay/x + a’x)?
a(%ax_% + a?)
(1+ az? + a?z)?
22
(9) Differentiate y = a1
dy (@*+1)2x—2’>x2x 2
dv (z2 +1)2 (24 1)

a++x
a—/z

(10) Differentiate y =
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1
2
In the indexed form, y = ara

a— X2
1y 1 1y, 1.1
dy (a—x2)(3272 (a—l—:m)( 3772) a—1x?+a+ 2

dx (a T2 )2 Q(Q—IEQ)QI? !

hence

1—a\%f_2

11) Differentiate = ——.
( ) 1+ a\2/t_3
1-— at%
Now 6 = )
1+ at%

6 (1+at?)(—2at™3) — (1 —atd) x 3at?
dt (1+at3)?

Ba V1T — \[—9a\f

6(1 + av/t3)?

(12) A reservoir of square cross-section has sides sloping at an angle

of 45° with the vertical. The side of the bottom is 200 feet. Find an

expression for the quantity pouring in or out when the depth of water
varies by 1 foot; hence find, in gallons, the quantity withdrawn hourly
when the depth is reduced from 14 to 10 feet in 24 hours.

The volume of a frustum of pyramid of height H, and of bases A
and a, is V = §<A +a++v/Aa). Tt is easily seen that, the slope being
45°, if the depth be h, the length of the side of the square surface of
the water is 200 + 2h feet, so that the volume of water is

h 4h3
5[2002 + (200 + 2h)? + 200(200 + 2h)] = 40, 000h + 400h* + 5
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av
= 40, 000 + 800k +4h? = cubic feet per foot of depth variation.
The mean level from 14 to 10 feet is 12 feet, when h = 12, % =

50,176 cubic feet.

Gallons per hour corresponding to a change of depth of 4 ft. in
4 % 50,176 x 6.25

24 hours = o = 52,267 gallons.
(13) The absolute pressure, in atmospheres, P, of saturated steam
40 +t\°
at the temperature t° C. is given by Dulong as being P = TT))

as long as t is above 80°. Find the rate of variation of the pressure with
the temperature at 100° C.
Expand the numerator by the binomial theorem (see p. 137).

P (40° 4+ 5 x 40 + 10 x 40%t% + 10 x 40%> + 5 x 40t* + £°);

= 140

. dP 1
ence — =———————
N0 T 537,824 % 10

(5 x 40" + 20 x 403t + 30 x 402> + 20 x 40t + 5t*),

when ¢t = 100 this becomes 0.036 atmosphere per degree Centigrade

change of temperature.

FEzercises III.  (See the Answers on p. 253.)

(1) Differentiate

2 3

(a) u=142x+ SR + -
Ix2 1x2x3

(b) y=ax®+bx +c. (c)y=(x+a)
(@) y= (& + )’
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dw
dt
(3) Find the differential coefficient of

(2) If w = at — $bt?, find

y = (z4++v=1) x (x —V/-1).
(4) Differentiate
y = (197x — 342%) x (7 + 22z — 832°).
da

dy
(6) Differentiate y = 1.3709x x (112.6 + 45.202z%).

(5) fz=(y+3) x (y+5), find

Find the differential coefficients of

2¢ + 3 14 x+ 222 4 323
(7) y= : (8) y= .
3x+2 1+ 2+ 222
ar +b "+ a
9 = . 10 = )

(11) The temperature t of the filament of an incandescent electric
lamp is connected to the current passing through the lamp by the re-
lation

C=a+0bt+ct’
Find an expression giving the variation of the current corresponding
to a variation of temperature.

(12) The following formulae have been proposed to express the re-

lation between the electric resistance R of a wire at the temperature
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t° C., and the resistance R, of that same wire at 0° Centigrade, a, b, ¢

being constants.

R = Ry(1+ at + bt?).
R = Ro(1 + at + bV/1).
R = Ro(1 + at +bt*)"".

Find the rate of variation of the resistance with regard to tempera-

ture as given by each of these formulae.

(13) The electromotive-force E of a certain type of standard cell has

been found to vary with the temperature ¢ according to the relation

E = 1.4340[1 — 0.000814(¢ — 15) + 0.000007(¢ — 15)?] volts,

Find the change of electromotive-force per degree, at 15°, 20°

and 25°.

(14) The electromotive-force necessary to maintain an electric arc of
length [ with a current of intensity ¢ has been found by Mrs. Ayrton to

be

Eeatplt TR
1

where a, b, ¢, k are constants.

Find an expression for the variation of the electromotive-force
(a) with regard to the length of the arc; (b) with regard to the strength

of the current.



CHAPTER VIIL

SUCCESSIVE DIFFERENTIATION.

LET us try the effect of repeating several times over the operation of
differentiating a function (see p. 13). Begin with a concrete case.

Let y = 2°.

First differentiation, 5z

Second differentiation, 5 x 4z° = 2023,
Third differentiation, 5 x 4 x 322 = 6022
Fourth differentiation, 5 x 4 x 3 x 2z = 120z.

Fifth differentiation, 5 x4 x 3 x 2 x 1= 120.

Sixth differentiation, = 0.

There is a certain notation, with which we are already acquainted
(see p. 14), used by some writers, that is very convenient. This is
to employ the general symbol f(z) for any function of x. Here the
symbol f( ) is read as “function of,” without saying what particular
function is meant. So the statement y = f(x) merely tells us that y is
a function of x, it may be z? or az™, or cosx or any other complicated

function of z.
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The corresponding symbol for the differential coefficient is f’(x),
which is simpler to write than E This is called the “derived function”
of z.

Suppose we differentiate over again, we shall get the “second derived
function” or second differential coefficient, which is denoted by f”(x);
and so on.

Now let us generalize.
Let y = f(z) = 2™

First differentiation, f(z) =

Second differentiation,  f”(x) = n(n — 1)2" 2.

Third differentiation, f"(z) =n(n— )(n 2)x" 3
) =

Fourth differentiation,  f™(z

etc., etc.

But this is not the only way of indicating successive differentiations.

For,

if the original function be y = f(z);
d
once differentiating gives d_y = f'(x);
x
d
()
x
twice differentiating gives S = f"(x);
x
. : . d?y d*y
and this is more conveniently written as ——, or more usually —.
(dx)? dx?
3
Similarly, we may write as the result of thrice differentiating, gl
x

fl// (ﬂj) .
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Examples.

Now let us try y = f(x) = 7ot + 3.52% — %m2

+x— 2.

ji—f()_Q&ﬁ+10m¥—x+L
g%:f%m:8@¥+Mx—L

% = f"(z) = 168z + 21,

Y p(a) = 168,

£y

In a similar manner if y = ¢(x) = 3z(2? — 4),

dy

¢ (x) = . =3[z x 2z + (2* — 4) x 1] = 3(32* — 4),
o) = TV 36— 18
x) = —3 = 3 x 6w =18z,
dS
qb,//(«r) — @ — ].87
dy
¢////(x) — w —
FEzxercises IV.  (See page 253 for Answers.)
dy d?
Find 2 and 2 for the following expressions:
dx da?
_ 2 2
r+a
T x? a3 x?
—14- .
By = S T axs T Tx2xsx4

50
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(4) Find the 2nd and 3rd derived functions in the Exercises III.
(p. 45), No. 1 to No. 7, and in the Examples given (p. 40), No. 1 to
No. 7.



CHAPTER VIIIL

WHEN TIME VARIES.

SOME of the most important problems of the calculus are those where
time is the independent variable, and we have to think about the values
of some other quantity that varies when the time varies. Some things
grow larger as time goes on; some other things grow smaller. The dis-
tance that a train has got from its starting place goes on ever increasing
as time goes on. Trees grow taller as the years go by. Which is growing
at the greater rate; a plant 12 inches high which in one month becomes
14 inches high, or a tree 12 feet high which in a year becomes 14 feet
high?

In this chapter we are going to make much use of the word rate.
Nothing to do with poor-rate, or water-rate (except that even here the
word suggests a proportion—a ratio—so many pence in the pound).
Nothing to do even with birth-rate or death-rate, though these words
suggest so many births or deaths per thousand of the population. When
a motor-car whizzes by us, we say: What a terrific rate! When a
spendthrift is flinging about his money, we remark that that young
man is living at a prodigious rate. What do we mean by rate? In
both these cases we are making a mental comparison of something that

is happening, and the length of time that it takes to happen. If the
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motor-car flies past us going 10 yards per second, a simple bit of mental
arithmetic will show us that this is equivalent—while it lasts—to a rate
of 600 yards per minute, or over 20 miles per hour.

Now in what sense is it true that a speed of 10 yards per second
is the same as 600 yards per minute? Ten yards is not the same as
600 yards, nor is one second the same thing as one minute. What we
mean by saying that the rate is the same, is this: that the proportion
borne between distance passed over and time taken to pass over it, is
the same in both cases.

Take another example. A man may have only a few pounds in his
possession, and yet be able to spend money at the rate of millions
a year—provided he goes on spending money at that rate for a few
minutes only. Suppose you hand a shilling over the counter to pay
for some goods; and suppose the operation lasts exactly one second.
Then, during that brief operation, you are parting with your money
at the rate of 1 shilling per second, which is the same rate as £3 per
minute, or £180 per hour, or £4320 per day, or £1,576,800 per year!
If you have £10 in your pocket, you can go on spending money at the
rate of a million a year for just 5}1 minutes.

It is said that Sandy had not been in London above five minutes
when “bang went saxpence.” If he were to spend money at that rate
all day long, say for 12 hours, he would be spending 6 shillings an hour,
or £3. 12s. per day, or £21. 12s. a week, not counting the Sawbbath.

Now try to put some of these ideas into differential notation.

Let y in this case stand for money, and let ¢ stand for time.

If you are spending money, and the amount you spend in a short
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dy
dt

d
be written with a minus sign, as _d_g;’ because dy is a decrement, not an

time dt be called dy, the rate of spending it will be —, or rather, should

increment. But money is not a good example for the calculus, because
it generally comes and goes by jumps, not by a continuous flow—you
may earn £200 a year, but it does not keep running in all day long
in a thin stream; it comes in only weekly, or monthly, or quarterly, in
lumps: and your expenditure also goes out in sudden payments.

A more apt illustration of the idea of a rate is furnished by the
speed of a moving body. From London (Euston station) to Liverpool is
200 miles. If a train leaves London at 7 o’clock, and reaches Liverpool
at 11 o’clock, you know that, since it has travelled 200 miles in 4 hours,
its average rate must have been 50 miles per hour; because % = %.
Here you are really making a mental comparison between the distance
passed over and the time taken to pass over it. You are dividing one
by the other. If y is the whole distance, and ¢ the whole time, clearly
the average rate is % Now the speed was not actually constant all the
way: at starting, and during the slowing up at the end of the journey,
the speed was less. Probably at some part, when running downbhill,
the speed was over 60 miles an hour. If, during any particular element
of time dt, the corresponding element of distance passed over was dy,
then at that part of the journey the speed was % The rate at which
one quantity (in the present instance, distance) is changing in relation
to the other quantity (in this case, time) is properly expressed, then,
by stating the differential coefficient of one with respect to the other.

A welocity, scientifically expressed, is the rate at which a very small

distance in any given direction is being passed over; and may therefore
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be written
_dy
Cdt’

But if the velocity v is not uniform, then it must be either increasing

v

or else decreasing. The rate at which a velocity is increasing is called the
acceleration. If a moving body is, at any particular instant, gaining an
additional velocity dv in an element of time dt, then the acceleration a
at that instant may be written

b
dt’

a =
- dy
but dv is itself d o) Hence we may put

dt '’

. . d*y
and this is usually written a = ﬁ;

or the acceleration is the second differential coefficient of the distance,
with respect to time. Acceleration is expressed as a change of velocity
in unit time, for instance, as being so many feet per second per second;
the notation used being feet + second?.

When a railway train has just begun to move, its velocity v is small;

but it is rapidly gaining speed—it is being hurried up, or accelerated,
2

by the effort of the engine. So its d_tg is large. When it has got up its
2
top speed it is no longer being accelerated, so that then d_t;y has fallen

to zero. But when it nears its stopping place its speed begins to slow

down; may, indeed, slow down very quickly if the brakes are put on,
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and during this period of deceleration or slackening of pace, the value
2

dv Y
of —, that is, of —= will be negative.

dt e 8

To accelerate a mass m requires the continuous application of force.
The force necessary to accelerate a mass is proportional to the mass,
and it is also proportional to the acceleration which is being imparted.

Hence we may write for the force f, the expression

[ =ma;
dv

or f - maa
2

or f= m%.

The product of a mass by the speed at which it is going is called its

momentum, and is in symbols muv. If we differentiate momentum with

d(mv)
dt

respect to time we shall get for the rate of change of momentum.

But, since m is a constant quantity, this may be written m?j—:, which
we see above is the same as f. That is to say, force may be expressed
either as mass times acceleration, or as rate of change of momentum.
Again, if a force is employed to move something (against an equal
and opposite counter-force), it does work; and the amount of work done
is measured by the product of the force into the distance (in its own
direction) through which its point of application moves forward. So if
a force f moves forward through a length y, the work done (which we

may call w) will be
w=fxy;
where we take f as a constant force. If the force varies at different

parts of the range y, then we must find an expression for its value from
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point to point. If f be the force along the small element of length dy,
the amount of work done will be f x dy. But as dy is only an element
of length, only an element of work will be done. If we write w for work,

then an element of work will be dw; and we have

dw = f x dy;
which may be written

dw = ma - dy;
or dw = m% - dy;
or dw = m% - dy.

Further, we may transpose the expression and write
dw
T

This gives us yet a third definition of force; that if it is being used
to produce a displacement in any direction, the force (in that direction)
is equal to the rate at which work is being done per unit of length in
that direction. In this last sentence the word rate is clearly not used in
its time-sense, but in its meaning as ratio or proportion.

Sir Isaac Newton, who was (along with Leibnitz) an inventor of the
methods of the calculus, regarded all quantities that were varying as
flowing; and the ratio which we nowadays call the differential coefficient
he regarded as the rate of flowing, or the fluxion of the quantity in ques-
tion. He did not use the notation of the dy and dx, and dt (this was due

to Leibnitz), but had instead a notation of his own. If y was a quantity
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that varied, or “flowed,” then his symbol for its rate of variation (or
“fluxion”) was y. If = was the variable, then its fluxion was called .
The dot over the letter indicated that it had been differentiated. But
this notation does not tell us what is the independent variable with

respect to which the differentiation has been effected. When we see d—i{

we know that y is to be differentiated with respect to t. If we see d—y
x

we know that y is to be differentiated with respect to x. But if we see

merely 7, we cannot tell without looking at the context whether this is
d d
to mean & or & or —y, or what is the other variable. So, therefore,

dx dt dz

this fluxional notation is less informing than the differential notation,
and has in consequence largely dropped out of use. But its simplicity
gives it an advantage if only we will agree to use it for those cases ex-

clusively where time is the independent variable. In that case y will
2

d
mean d—? and o will mean —u; and ¥ will mean —

dt dt?’
Adopting this fluxional notation we may write the mechanical equa-

tions considered in the paragraphs above, as follows:

distance x,

velocity v =1,
acceleration a=1v=1,
force f=mo=mz,
work w=1x X Mmi.

Ezxamples.
(1) A body moves so that the distance = (in feet), which it travels
from a certain point O, is given by the relation x = 0.2t> + 10.4, where

t is the time in seconds elapsed since a certain instant. Find the velocity



WHEN TIME VARIES 59

and acceleration 5 seconds after the body began to move, and also
find the corresponding values when the distance covered is 100 feet.
Find also the average velocity during the first 10 seconds of its motion.

(Suppose distances and motion to the right to be positive.)

Now z=0.2t" +10.4
V== Z—j =04t; and a=21= CCZ;T;B = 0.4 = constant.

When t = 0, x = 104 and v = 0. The body started from a point
10.4 feet to the right of the point O; and the time was reckoned from
the instant the body started.

When t =5, v = 0.4 x 5 = 2 ft./sec.; a = 0.4 ft. /sec’.

When z = 100, 100 = 0.2t? + 10.4, or t* = 448, and t = 21.17 sec.;
v =0.4x21.17 = 8.468 ft./sec.

When t = 10,

distance travelled = 0.2 x 10% + 10.4 — 10.4 = 20 ft.

Average velocity = 22 = 2 ft. /sec.

(It is the same velocity as the velocity at the middle of the interval,
t = 5; for, the acceleration being constant, the velocity has varied
uniformly from zero when t = 0 to 4 ft./sec. when ¢ = 10.)

(2) In the above problem let us suppose
x = 0.2t + 3t 4+ 10.4.
. dzx

Az
=z =—=0.4t + 3; =r=—
V=2 7 +93; a==x 72

When ¢ = 0, z = 10.4 and v = 3 ft./sec, the time is reckoned from
the instant at which the body passed a point 10.4 ft. from the point O,

= (0.4 = constant.



CALCULUS MADE EASY 60

its velocity being then already 3 ft./sec. To find the time elapsed since

it began moving, let v = 0; then 0.4t +3 = 0, t = —% = —T7.5 sec.

The body began moving 7.5 sec. before time was begun to be observed;

5 seconds after this gives t = —2.5 and v = 0.4 x —2.5 + 3 = 2 ft./sec.
When z = 100 ft.,

100 = 0.2¢% + 3t 4+ 10.4; or t* + 15t — 448 = 0;

hence t = 14.95 sec., v = 0.4 x 14.95 4+ 3 = 8.98 ft./sec.

To find the distance travelled during the 10 first seconds of the
motion one must know how far the body was from the point O when it
started.

When t = —7.5,

r=02x(=75)?2—-3x75+10.4 = —0.85 ft.,

that is 0.85 ft. to the left of the point O.
Now, when t = 2.5,

2=02x254+3x%x25+10.4=19.15.

So, in 10 seconds, the distance travelled was 19.15 + 0.85 = 20 ft.,
and

the average velocity = % = 2 ft./sec.

(3) Consider a similar problem when the distance is given by z =
0.2t> — 3t + 10.4. Then v = 0.4t — 3, a = 0.4 = constant. When
t =0, z = 104 as before, and v = —3; so that the body was moving
in the direction opposite to its motion in the previous cases. As the

acceleration is positive, however, we see that this velocity will decrease
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as time goes on, until it becomes zero, when v = 0 or 0.4t — 3 = 0; or
t = 7.5 sec. After this, the velocity becomes positive; and 5 seconds

after the body started, t = 12.5, and
v=0.4x125—3 =2 ft./sec.
When x = 100,

100 = 0.2t* — 3t +10.4, or t* — 15t — 448 = 0,
and t =29.95; v =0.4 x29.95 — 3 = 8.98 ft./sec.

When v is zero, x = 0.2 X 7.52 — 3 x 7.5 + 10.4 = —0.85, informing
us that the body moves back to 0.85 ft. beyond the point O before it

stops. Ten seconds later
t=175and x = 0.2 x 17.52 —3 x 17.5+ 10.4 = 19.15.

The distance travelled = .85 4+ 19.15 = 20.0, and the average velocity
is again 2 ft./sec.

(4) Consider yet another problem of the same sort with z = 0.2¢3 —
3t2 +10.4; v = 0.6t> — 6t; a = 1.2t — 6. The acceleration is no more
constant.

When t =0, x =10.4, v =0, a = —6. The body is at rest, but just
ready to move with a negative acceleration, that is to gain a velocity
towards the point O.

(5) If we have z = 0.2t> — 3t +10.4, then v = 0.6t> — 3, and a = 1.2t.

When t =0, 2 =10.4; v =-3; a = 0.

The body is moving towards the point O with a velocity of 3 ft. /sec.,

and just at that instant the velocity is uniform.
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We see that the conditions of the motion can always be at once
ascertained from the time-distance equation and its first and second
derived functions. In the last two cases the mean velocity during the
first 10 seconds and the velocity 5 seconds after the start will no more
be the same, because the velocity is not increasing uniformly, the ac-
celeration being no longer constant.

(6) The angle 6 (in radians) turned through by a wheel is given by
0 = 3+ 2t —0.1t3, where t is the time in seconds from a certain instant;
find the angular velocity w and the angular acceleration «, (a) after
1 second; (b) after it has performed one revolution. At what time is it
at rest, and how many revolutions has it performed up to that instant?

Writing for the acceleration

. df . d%0
w=0=—"=2-03t? a=0=

When t =0, = 3; w = 2 rad./sec.; a = 0.
When t =1,

w=2-03=17rad./sec.; a=—0.6rad. /sec’.

This is a retardation; the wheel is slowing down.

After 1 revolution
6 =21 =6.28; 6.28=3+2t—0.1¢.

By plotting the graph, 6 = 3 + 2t — 0.1¢3, we can get the value or
values of ¢ for which 6 = 6.28; these are 2.11 and 3.03 (there is a third

negative value).
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When t = 2.11,

0 =6.28; w=2-—1.34=0.66rad./sec.;
o = —1.27 rad. /sec’.

When ¢t = 3.03,

0 =628, w=2-—2.754=—0.754 rad./sec.;
o = —1.82 rad. /sec’.

The velocity is reversed. The wheel is evidently at rest between
these two instants; it is at rest when w = 0, that is when 0 = 2 — 0.3t3,
or when t = 2.58 sec., it has performed

0 3+2x258—0.1x 258

5= 628 = 1.025 revolutions.

FEzercises V. (See page 255 for Answers.)

dy d*y
(1) If y = a + bt? + ct?; ﬁndaand T

dy 5. 4%y 2
Ans. pri 2bt + 4ct”; proi 2b + 12c¢t”.

(2) A body falling freely in space describes in t seconds a space s,
in feet, expressed by the equation s = 16t2. Draw a curve showing
the relation between s and t. Also determine the velocity of the body
at the following times from its being let drop: ¢t = 2 seconds; t = 4.6

seconds; ¢t = 0.01 second.

(3) If = at — 1gt?; find & and i.
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(4) If a body move according to the law
s =12 — 4.5t + 6.2¢%,

find its velocity when ¢ = 4 seconds; s being in feet.

(5) Find the acceleration of the body mentioned in the preceding

example. Is the acceleration the same for all values of ¢?

(6) The angle 0 (in radians) turned through by a revolving wheel is
connected with the time ¢ (in seconds) that has elapsed since starting;
by the law

0 =2.1— 3.2t + 4.8t%

Find the angular velocity (in radians per second) of that wheel when

1% seconds have elapsed. Find also its angular acceleration.

(7) A slider moves so that, during the first part of its motion, its

distance s in inches from its starting point is given by the expression

s =6.8t>— 10.8t; ¢ being in seconds.

Find the expression for the velocity and the acceleration at any

time; and hence find the velocity and the acceleration after 3 seconds.

(8) The motion of a rising balloon is such that its height A, in miles,
is given at any instant by the expression h = 0.5 + %\3/ t — 125; t being
in seconds.

Find an expression for the velocity and the acceleration at any time.

Draw curves to show the variation of height, velocity and acceleration

during the first ten minutes of the ascent.
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(9) A stone is thrown downwards into water and its depth p in me-
tres at any instant ¢ seconds after reaching the surface of the water is

given by the expression

+ 0.8t — 1.

P=aie

Find an expression for the velocity and the acceleration at any time.

Find the velocity and acceleration after 10 seconds.

(10) A body moves in such a way that the spaces described in the
time t from starting is given by s = t", where n is a constant. Find the
value of n when the velocity is doubled from the 5th to the 10th second;
find it also when the velocity is numerically equal to the acceleration
at the end of the 10th second.



CHAPTER IX.

INTRODUCING A USEFUL DODGE.

SOMETIMES one is stumped by finding that the expression to be differ-
entiated is too complicated to tackle directly.
Thus, the equation
y = (2% +0a?)?
is awkward to a beginner.
Now the dodge to turn the difficulty is this: Write some symbol,

such as u, for the expression 22 + a?; then the equation becomes
3
y=u2,

which you can easily manage; for
dy

_3.3
du 2"

Then tackle the expression
u=z?+ a2,

and differentiate it with respect to x,

du_

— = 2.
dx v
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Then all that remains is plain sailing;

dy

f —
or dx
dy

th t 1 —
at 1S, dx

dy du
du " dz’
3

§u% X 2x

32 + QQ)% X 2x

= 3o (2® + a2)%;

and so the trick is done.

67

By and bye, when you have learned how to deal with sines, and

cosines, and exponentials, you will find this dodge of increasing useful-

ness.

Ezamples.

Let us practise this dodge on a few examples.
(1) Differentiate y = /a + x.

Let a + z = w.
du 1 dy 1 _
%: ; y:u2’ @:%u 2:%(@-}-1‘)
dy_dyxdu 1
de  du  dxr 2Va+x
(2) Differentiat !
ifferentiate y = ——.
V= Vot
Let a + 2% = u.
du _1dy _3
dy dy du__ x
dv  du = dr V(a+ 223
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(3) Differentiate y = ( m — na’ + ﬁ) :

Let m — na? + pr-

= u.
du 2 _1 4 _7
%:—gnx 3 —gpx 3;
y = a. d_y — auafl
T du
dy dy du s p ! 9 1 4
—_— = — X — = — — 3 _— = 3 P
T 3 X I a(m nx —i—x% (3nz73 4 3po
1
(4) Differentiate y =
3 _ a2
Let u =23 — a®.
? =3z% y= u_%; Z—y = —%(:v?’ - a2)_%.
x u
dy dy y du 32
dr  du " dr 2 (23 — a?)?
1—
(5) Differentiate y = 1 +z
1
1—2x)2
Write this as y = ( x)l .
1+2x)2
1 1
1 d(l x)f 1 d(l —i—:L‘)?
1 2 —(l—z)2 —————
DIy Tt iy
dz 1+

68

(We may also write y = (1 — x)%(l + a:)_% and differentiate as a

product.)

Proceeding as in example (1) above, we get

d(1— 2)2 1 d(1+ z)2

1

= — ; and

dx o011 -z’ dx

o0/1+zx
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Hence
dy  (Q+ax):  (1-a)
dv — 204x)V1—2z 20+2)VI+a
L 1 2
2VT+avli—z 2/ +2)3
or CN—
dx (1+2)V/1—a?
e
(6) Differentiate y = el

We may write this

Differentiating (1 + 9(:2)_%, as shown in example (2) above, we get

dii+a)3] @
N+
so that
dy 3V Vb V(3 + 2?)

21t JIt2P 2/l

(7) Differentiate y = (x + Va2 + x + a)?.
Let z+ Va2 +z+a=u.
d d|(x?
du [(z +x+a)]'
dz dz

d 2
y=u® and d—y:3u2:3<x+\/x2+x+a) :
u

D=
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Now let (x2—|—x+a)%:vand (> +2+a)=

dw dv

%:21’—1—1; v:w%; %:%w_%.

Zi 5;}} le—i 1@+ z+a)” %(295—1-1).
Hence d—u:1+L

TN

dy _dy  du

dr du dx

2 2 +1
:3<x+\/x2+x+a> (1+—).
2Vl +x+a
(8) Differentiate y = \/a +3 i’/a -

W a? + a2
e get
2 i/ o o\ 1
_ (a +x )?(CL - )i’ _ (a2_{_$2)%(a2_$2)—%
(a®> — x2)2(a® + 2?)3
1 1
RPN (e VRN arl
dx dx (a? — 1’2)% dx

-1 du 1 1 dv 5

u=v _— = — =0 — = — 27
" dw 6 " dx

du du dv

w—z% d—w—lz_%' %—Zx
" dz 6 "o dx
dw dw dz 1 ,, 5 5
_ _ N — 6
dx dz dx Bx(a +27)
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Hence
d
_y—<a2+x2)% - 7 T :1U 5
dx 3(a2 — 22)6  3(a? — 22)5(a? + x2)6
dy x| a*+a? 1
or = ==
de 3 (@ =227 §/(a® — 22)(a? + 22)7]

dy") _nmy"' _n
Ay syt 5

(10) Find the first and second differential coefficients

ofy:% (a —x)z.

du 1 1 1 1
—_— = =W 2 — 1 g
dw 2 2wz 24/(a—x)x
dw
— =q — 2.
. a T
du dw du a—2x
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Now
(3ax — 42?)b(a — 2x)

(a —x)x

d?y

2by/(a — x)x (3a — 8x) —

dx? 40*(a — =)z
_ 3a® — 12az + 8a?
4b(a — z)\/(a — x)x

(We shall need these two last differential coefficients later on. See

Ex. X. No. 11.)

FEzercises VI.  (See page 255 for Answers.)
Differentiate the following:

(1) y=+va22+1 (2) y= Va2 +a?
1 a

~(a+2)?
(8) Differentiate y°> with respect to 32

VI— P
1-6

(9) Differentiate y =

The process can be extended to three or more differential coeffi-

) dy dy dz dv
h —_— = — _— _—
clents, so that dr o X e X i
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Examples.
(1) If 2 = 3a%; U:%; y =+/1+ v, find @
z dz
We have
y_ L odv  Modz s
dv  2y/1+v dz 237 dx
dy 168z° 28
dr — (2y/1+0)28 325928 + 7
2
(2)Ift:$; x:t3+%; U:%,ﬁnd%.
d_U:7x(5a:—6)' dx a2l a1
dr  33/(x — 1) dt 2 de 10V/693

dv  Te(5z—6)(3t2 + 1)

0 308/ (x— )W

an expression in which x must be replaced by its value, and ¢ by its

Hence

value in terms of 0.

3a T V1—06? 1 do
We get
1-46 1
0 = 3a2x_%; w = m; and ¢ =3 — ﬁw_l.
do 3a? dw 1

dv 2@ dd T (1+0)V/I—0°

(see example 5, p. 68); and
dp 1

do 2w

2
So that ﬁ = 1 1 3a

X X .
dr 2xw? (14+0)V1—-02 223

Replace now first w, then 6 by its value.
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Ezercises VII.  You can now successfully try the following. (See

page 256 for Answers.)

1 d
(1) fu=32% v=3wu+u?); andw= wr find %
1 dv
2) fy =322 ++v2;, z=I1+y; andv=———, find —.
3 1 d
(3) Ify:x—; z=(1+y)* andu= find 22,

V3 V1+2 dx



CHAPTER X.

GEOMETRICAL MEANING OF DIFFERENTIATION.

IT is useful to consider what geometrical meaning can be given to the
differential coefficient.

In the first place, any function of z, such, for example, as 22, or 1/,
or axr + b, can be plotted as a curve; and nowadays every schoolboy is

familiar with the process of curve-plotting.

Y

X X
0] 5—\/—/1) dr X
Fig. 7.

Let PQR, in Fig. 7, be a portion of a curve plotted with respect
to the axes of coordinates OX and OY. Consider any point () on this
curve, where the abscissa of the point is x and its ordinate is y. Now

observe how y changes when x is varied. If x is made to increase by
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a small increment dz, to the right, it will be observed that y also (in
this particular curve) increases by a small increment dy (because this
particular curve happens to be an ascending curve). Then the ratio of
dy to dx is a measure of the degree to which the curve is sloping up
between the two points () and T'. As a matter of fact, it can be seen on
the figure that the curve between () and T has many different slopes,
so that we cannot very well speak of the slope of the curve between
@ and T'. If, however, () and T are so near each other that the small
portion QT of the curve is practically straight, then it is true to say that
the ratio Z—z is the slope of the curve along QT'. The straight line QT
produced on either side touches the curve along the portion Q7 only,
and if this portion is indefinitely small, the straight line will touch the
curve at practically one point only, and be therefore a tangent to the
curve.

This tangent to the curve has evidently the same slope as QT', so

d
that d_y is the slope of the tangent to the curve at the point ) for which
x

the value of % is found.

We have seen that the short expression “the slope of a curve” has
no precise meaning, because a curve has so many slopes—in fact, every
small portion of a curve has a different slope. “The slope of a curve at
a point” is, however, a perfectly defined thing; it is the slope of a very
small portion of the curve situated just at that point; and we have seen
that this is the same as “the slope of the tangent to the curve at that
point.”

Observe that dx is a short step to the right, and dy the correspond-

ing short step upwards. These steps must be considered as short as
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possible—in fact indefinitely short,—though in diagrams we have to
represent them by bits that are not infinitesimally small, otherwise
they could not be seen.

We shall hereafter make considerable use of this circumstance that

d—y represents the slope of the curve at any point.
x

Y

dy

Fiac. 8.

If a curve is sloping up at 45° at a particular point, as in Fig. 8, dy

and dx will be equal, and the value of d_y =1.
x

If the curve slopes up steeper than 45° (Fig. 9), Z—z will be greater
than 1.

If the curve slopes up very gently, as in Fig. 10, % will be a fraction
smaller than 1.

For a horizontal line, or a horizontal place in a curve, dy = 0, and
therefore j—z =0.

If a curve slopes downward, as in Fig. 11, dy will be a step down,
and must therefore be reckoned of negative value; hence d_y will have

x
negative sign also.
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Y Y
dy
d
y /;ﬁ/
1dx : :
| | | |
| | | |
| | | |
| | | |
0] X 0] X
FiG. 9. Fic. 10.

If the “curve” happens to be a straight line, like that in Fig. 12, the

value of d—y will be the same at all points along it. In other words its
x

slope is constant.

If a curve is one that turns more upwards as it goes along to the
dy
dz
creasing steepness, as in Fig. 13.

right, the values of will become greater and greater with the in-

If a curve is one that gets flatter and flatter as it goes along, the

d
values of i will become smaller and smaller as the flatter part is

dx
Y
________ Q drx
dy
| |
| |
Yy | |
| |
| |
| |
| |
\—_\/*/."V*
0] dr X

Fic. 11.
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Fig. 12.

reached, as in Fig. 14.

If a curve first descends, and then goes up again, as in Fig. 15,
presenting a concavity upwards, then clearly % will first be negative,
with diminishing values as the curve flattens, then will be zero at the
point where the bottom of the trough of the curve is reached; and from
this point onward ;l_:yc will have positive values that go on increasing. In
such a case y is said to pass by a minimum. The minimum value of y is
not necessarily the smallest value of y, it is that value of y corresponding
to the bottom of the trough; for instance, in Fig. 28 (p. 99), the value

of y corresponding to the bottom of the trough is 1, while y takes
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B

Fig. 14. Fic. 15.

elsewhere values which are smaller than this. The characteristic of a
minimum is that y must increase on either side of it.
N.B.—For the particular value of x that makes y a minimum, the

Y
lue of — = 0.
value of ——

If a curve first ascends and then descends, the values of Z—i will be
positive at first; then zero, as the summit is reached; then negative,
as the curve slopes downwards, as in Fig. 16. In this case y is said to
pass by a mazimum, but the maximum value of y is not necessarily the
greatest value of y. In Fig. 28, the maximum of y is 2%, but this is
by no means the greatest value y can have at some other point of the
curve.

N.B.—For the particular value of x that makes y a maximum, the

Yy
| f = =0.
value o . 0

d
If a curve has the peculiar form of Fig. 17, the values of d—y will
x

always be positive; but there will be one particular place where the

slope is least steep, where the value of d_y will be a minimum; that is,
x

less than it is at any other part of the curve.
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Fic. 17.

dy
dx

in the upper part, and positive in the lower part; while at the nose of

If a curve has the form of Fig. 18, the value of will be negative

the curve where it becomes actually perpendicular, the value of d_y will
x

be infinitely great.

FiGg. 18.

d
Now that we understand that 22 measures the steepness of a curve
x

at any point, let us turn to some of the equations which we have already

learned how to differentiate.
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(1) As the simplest case take this:
y=x-+b.

It is plotted out in Fig. 19, using equal scales for x and y. If we put
x = 0, then the corresponding ordinate will be y = b; that is to say, the

“curve” crosses the y-axis at the height . From here it ascends at 45°;

Y Y

Q
b
Q
b

Fic. 19. Fiac. 20.

for whatever values we give to x to the right, we have an equal y to
ascend. The line has a gradient of 1 in 1.

Now differentiate y = x + b, by the rules we have already learned
(pp. 21 and 25 ante), and we get d—i =1.

The slope of the line is such that for every little step dx to the right,
we go an equal little step dy upward. And this slope is constant—always
the same slope.

(2) Take another case:

y =axr + 0.



MEANING OF DIFFERENTIATION 83

We know that this curve, like the preceding one, will start from a
height b on the y-axis. But before we draw the curve, let us find its
slope by differentiating; which gives Z—Z = a. The slope will be constant,
at an angle, the tangent of which is here called a. Let us assign to a
some numerical value—say % Then we must give it such a slope that
it ascends 1 in 3; or dx will be 3 times as great as dy; as magnified in

Fig. 21. So, draw the line in Fig. 20 at this slope.

r— 7T - - - - 7T - - - =
| | |
|
|
|

Fic. 21.
(3) Now for a slightly harder case.
Let y = ax® +b.

Again the curve will start on the y-axis at a height b above the
origin.

Now differentiate. [If you have forgotten, turn back to p. 25; or,
rather, don’t turn back, but think out the differentiation.

= 2ax.

dx

This shows that the steepness will not be constant: it increases as

x increases. At the starting point P, where = = 0, the curve (Fig. 22)

has no steepness—that is, it is level. On the left of the origin, where x

has negative values, d_y will also have negative values, or will descend
x

from left to right, as in the Figure.
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Fic. 22.

Let us illustrate this by working out a particular instance. Taking
the equation
y =g’ +3,
and differentiating it, we get

dy _
dr 2

Now assign a few successive values, say from 0 to 5, to z; and calculate

x.

d
the corresponding values of y by the first equation; and of il from the

x
second equation. Tabulating results, we have:

T 0 1 2 3 4 )

y 3 0 331 4 | 53] 7 | 91

dy 1 1 1

| 0 Ll |l o2 |2l

Then plot them out in two curves, Figs. 23 and 24, in Fig. 23 plotting

the values of y against those of z and in Fig. 24 those of d_y against
x

those of x. For any assigned value of x, the height of the ordinate in

the second curve is proportional to the slope of the first curve.
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dy
@]

FiG. 23. FiG. 24.

If a curve comes to a sudden cusp, as in Fig. 25, the slope at that

point suddenly changes from a slope upward to a slope downward. In

Y

Fia. 25.

d
that case d_y will clearly undergo an abrupt change from a positive to
x
a negative value.
The following examples show further applications of the principles

just explained.
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(4) Find the slope of the tangent to the curve
1
=—43
Y70 +
at the point where x = —1. Find the angle which this tangent makes
with the curve y = 222 + 2.
The slope of the tangent is the slope of the curve at the point where

d
they touch one another (see p. 76); that is, it is the &Y of the curve for

dx

d 1 d 1

that point. Here Y _ " andforz = —1, & _ ——, which is the
dz 2x2 dx 2

slope of the tangent and of the curve at that point. The tangent, being

a straight line, has for equation y = ax + b, and its slope is d_y = a,
x

1 1
hence a = —3 Also if x = -1, y = m +3 = 2%; and as the
tangent passes by this point, the coordinates of the point must satisfy

the equation of the tangent, namely

1
= —— b
Y 2x+,

1
so that 2% =3 X (=1) + b and b = 2; the equation of the tangent is

therefore y = —%x + 2.

Now, when two curves meet, the intersection being a point com-
mon to both curves, its coordinates must satisfy the equation of each
one of the two curves; that is, it must be a solution of the system of
simultaneous equations formed by coupling together the equations of
the curves. Here the curves meet one another at points given by the

solution of
y:2x2+2,
1 2 1 .
y=—3r+2 or 2r°+2=—51+2;
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that is, z(2z + 3) = 0.

This equation has for its solutions x = 0 and z = —. The slope of

1
i
the curve y = 22 + 2 at any point is

d
é =4z.
For the point where x = 0, this slope is zero; the curve is horizontal.
For the point where
p—_t W _
4’ dx ’
hence the curve at that point slopes downwards to the right at such
an angle @ with the horizontal that tanf = 1; that is, at 45° to the
horizontal.

The slope of the straight line is —%; that is, it slopes downwards to
the right and makes with the horizontal an angle ¢ such that tan ¢ = %;
that is, an angle of 26° 34’. It follows that at the first point the curve
cuts the straight line at an angle of 26° 34’, while at the second it cuts
it at an angle of 45° — 26° 34’ = 18° 26.

(5) A straight line is to be drawn, through a point whose coordinates
are v = 2, y = —1, as tangent to the curve y = 22 — 5z + 6. Find the
coordinates of the point of contact.

The slope of the tangent must be the same as the % of the curve;
that is, 2o — 5.

The equation of the straight line is y = az+b, and as it is satisfied for
the values v = 2, y = —1, then —1 = a x2+0; also, its Z—z =a=2r-5.

The x and the y of the point of contact must also satisfy both the

equation of the tangent and the equation of the curve.



CALCULUS MADE EASY 88

We have then

(

y = x? — 5z + 6, (i)

y = axr + b, (ii)
—1=2a+b, (i)
| a=2z-05, (iv)

four equations in a, b, x, y.
Equations (i) and (ii) give * — 5z + 6 = ax + b.
Replacing a and b by their value in this, we get

7> — 5z +6 = (20 — 5)z — 1 —2(2x — ),

which simplifies to 22 — 4z + 3 = 0, the solutions of which are: x = 3

and x = 1. Replacing in (i), we get y = 0 and y = 2 respectively; the

two points of contact are then z =1, y =2, and z = 3, y = 0.
Note.—In all exercises dealing with curves, students will find it ex-

tremely instructive to verify the deductions obtained by actually plot-

ting the curves.

Ezercises VIII.  (See page 256 for Answers.)

(1) Plot the curve y = %xz — b, using a scale of millimetres. Measure

at points corresponding to different values of x, the angle of its slope.

Find, by differentiating the equation, the expression for slope; and
see, from a Table of Natural Tangents, whether this agrees with the

measured angle.
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(2) Find what will be the slope of the curve
y =0.122° — 2,
at the particular point that has as abscissa z = 2.

(3) If y = (z — a)(x — b), show that at the particular point of the

curve where d—y = 0, z will have the value 1(a + b).
x

d
(4) Find the d_y of the equation y = 2® + 3x; and calculate the
T

numerical values of d—y for the points corresponding to x = 0, x = %,
x
r=1 =2
(5) In the curve to which the equation is x? +y? = 4, find the values

of z at those points where the slope = 1.

(6) Find the slope, at any point, of the curve whose equation is

2 2
% + % = 1; and give the numerical value of the slope at the place

where x = 0, and at that where z = 1.

(7) The equation of a tangent to the curve y = 5 —2x + 0.5z, being
of the form y = mx 4+ n, where m and n are constants, find the value
of m and n if the point where the tangent touches the curve has x = 2

for abscissa.

(8) At what angle do the two curves
y=352"+2 and y=a*—5x+95

cut one another?

(9) Tangents to the curve y = £+/25 — 22 are drawn at points for
which x = 3 and x = 4. Find the coordinates of the point of intersection

of the tangents and their mutual inclination.
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(10) A straight line y = 2z — b touches a curve y = 3z% + 2 at one
point. What are the coordinates of the point of contact, and what is

the value of b7



CHAPTER XI.

MAXIMA AND MINIMA.

ONE of the principal uses of the process of differentiating is to find out
under what conditions the value of the thing differentiated becomes a
maximum, or a minimum. This is often exceedingly important in engi-
neering questions, where it is most desirable to know what conditions
will make the cost of working a minimum, or will make the efficiency a
maximum.

Now, to begin with a concrete case, let us take the equation

y=a>—4x+7.

By assigning a number of successive values to z, and finding the cor-
responding values of y, we can readily see that the equation represents

a curve with a minimum.

T 0 1 2 3 4 )
Y 7 4 3 4 7 12

These values are plotted in Fig. 26, which shows that y has appar-
ently a minimum value of 3, when z is made equal to 2. But are you

sure that the minimum occurs at 2, and not at 2% or at 13?
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[
[
[
[
[
[
[
[
[
[
[
4

o 1 2 3
Fia. 26.

Of course it would be possible with any algebraic expression to work
out a lot of values, and in this way arrive gradually at the particular

value that may be a maximum or a minimum.

Y

4__

3__

2____ — -
[} [}

1+ 1 1
[} [}

-1, 9 1 2 3\ 4 X
I T-1 I
I +-—2 I
| |
I T3 I
R S

Fia. 27.

Here is another example:

Let y = 3x — 2%
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Calculate a few values thus:

x -1 0 1 2 3 4 5

Y —4 0 2 2 0 -4 | =10

Plot these values as in Fig. 27.

It will be evident that there will be a maximum somewhere between
x = 1 and x = 2; and the thing looks as if the maximum value of y ought
to be about 2%. Try some intermediate values. If x = 1%1, y = 2.187; if
=13,y =225 if r = 1.6, y = 2.24. How can we be sure that 2.25 is
the real maximum, or that it occurs exactly when x = 1%?

Now it may sound like juggling to be assured that there is a way
by which one can arrive straight at a maximum (or minimum) value
without making a lot of preliminary trials or guesses. And that way
depends on differentiating. Look back to an earlier page (78) for the
remarks about Figs. 14 and 15, and you will see that whenever a curve
gets either to its maximum or to its minimum height, at that point its
Z—i = 0. Now this gives us the clue to the dodge that is wanted. When
there is put before you an equation, and you want to find that value
of x that will make its y a minimum (or a maximum), first differentiate
it, and having done so, write its é as equal to zero, and then solve
for . Put this particular value of x into the original equation, and you
will then get the required value of y. This process is commonly called
“equating to zero.”

To see how simply it works, take the example with which this chap-
ter opens, namely

y=a2—4dx+7.
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Differentiating, we get:

dy

— =2r—4

dx *
Now equate this to zero, thus:

20 —4 = 0.

Solving this equation for x, we get:

Now, we know that the maximum (or minimum) will occur exactly
when z = 2.

Putting the value x = 2 into the original equation, we get

y=2"—(4x2)+7
=4—-847
= 3.
Now look back at Fig. 26, and you will see that the minimum occurs

when x = 2, and that this minimum of y = 3.

Try the second example (Fig. 24), which is

2

y=3r—2x".
: - dy
Differentiating, — =3 - 2z.
dx
Equating to zero,
3—2x =0,

whence

&
I
[u—
N[
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and putting this value of x into the original equation, we find:

— (131 x 13),

I
SR

= N

Y
Y
This gives us exactly the information as to which the method of trying
a lot of values left us uncertain.

Now, before we go on to any further cases, we have two remarks to
make. When you are told to equate % to zero, you feel at first (that
is if you have any wits of your own) a kind of resentment, because you
know that % has all sorts of different values at different parts of the
curve, according to whether it is sloping up or down. So, when you are

suddenly told to write
dy _
de

you resent it, and feel inclined to say that it can’t be true. Now you will

0,

have to understand the essential difference between “an equation,” and
“an equation of condition.” Ordinarily you are dealing with equations
that are true in themselves, but, on occasions, of which the present are
examples, you have to write down equations that are not necessarily
true, but are only true if certain conditions are to be fulfilled; and you
write them down in order, by solving them, to find the conditions which
make them true. Now we want to find the particular value that x has
when the curve is neither sloping up nor sloping down, that is, at the
particular place where d—i = 0. So, writing é = 0 does not mean that

it always is = 0; but you write it down as a condition in order to see

how much x will come out if d—y is to be zero.
T
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The second remark is one which (if you have any wits of your own)
you will probably have already made: namely, that this much-belauded
process of equating to zero entirely fails to tell you whether the x that
you thereby find is going to give you a maximum value of y or a min-
imum value of y. Quite so. It does not of itself discriminate; it finds
for you the right value of x but leaves you to find out for yourselves
whether the corresponding y is a maximum or a minimum. Of course,
if you have plotted the curve, you know already which it will be.

For instance, take the equation:
1
y=4r + —.
x

Without stopping to think what curve it corresponds to, differenti-

ate it, and equate to zero:

dy 5 1
dx v x?
whence T = %;

and, inserting this value,
y=4

will be either a maximum or else a minimum. But which? You will
hereafter be told a way, depending upon a second differentiation, (see
Chap. XII., p. 109). But at present it is enough if you will simply
try any other value of x differing a little from the one found, and see
whether with this altered value the corresponding value of y is less or

greater than that already found.
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Try another simple problem in maxima and minima. Suppose you
were asked to divide any number into two parts, such that the product
was a maximum? How would you set about it if you did not know the
trick of equating to zero? I suppose you could worry it out by the rule
of try, try, try again. Let 60 be the number. You can try cutting it into
two parts, and multiplying them together. Thus, 50 times 10 is 500; 52
times 8 is 416; 40 times 20 is 800; 45 times 15 is 675; 30 times 30 is 900.
This looks like a maximum: try varying it. 31 times 29 is 899, which is
not so good; and 32 times 28 is 896, which is worse. So it seems that
the biggest product will be got by dividing into two equal halves.

Now see what the calculus tells you. Let the number to be cut into
two parts be called n. Then if z is one part, the other will be n — z,
and the product will be z(n — x) or nz — z%. So we write y = nx — 2.
Now differentiate and equate to zero;

dy _
dx

n
Solving for x, we get 5 =7

So now we know that whatever number n may be, we must divide it
into two equal parts if the product of the parts is to be a maximum;
and the value of that maximum product will always be = in?

This is a very useful rule, and applies to any number of factors, so
that if m +n + p = a constant number, m X n X p is a maximum when

m=mn=np.
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Test Case.
Let us at once apply our knowledge to a case that we can test.
Let y =% — x;

and let us find whether this function has a maximum or minimum; and
if so, test whether it is a maximum or a minimum.

Differentiating, we get

dy
— =2z —1.
dx
Equating to zero, we get
20 —1 =0,
whence 2r =1,
or T =3

That is to say, when x is made = %, the corresponding value of y
will be either a maximum or a minimum. Accordingly, putting x = %

in the original equation, we get

Y

N |+
N =

y=(3)"—
or y=—1.

Is this a maximum or a minimum? To test it, try putting x a little

bigger than %,—say make x = 0.6. Then
y = (0.6)> — 0.6 = 0.36 — 0.6 = —0.24,

which is higher up than —0.25; showing that y = —0.25 is a minimum.

Plot the curve for yourself, and verify the calculation.
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Further Examples.
A most interesting example is afforded by a curve that has both a

maximum and a minimum. Its equation is:

y:%m3—2x2+3m—|—1.

Now 2 =% — 4+ 3.

Fia. 28.

Equating to zero, we get the quadratic,
22 —4r+3=0;
and solving the quadratic gives us two roots, viz.

r=3

r = 1.
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The first of

Now, when x = 3, y = 1; and when z = 1, y = 2%.
these is a minimum, the second a maximum.
The curve itself may be plotted (as in Fig. 28) from the values

calculated, as below, from the original equation.

rz || —1 0 1 2 3 4 5 6
2

1 1 S T2 019

Y —4% 1 2

Wl
W=

Wi

A further exercise in maxima and minima is afforded by the follow-
ing example:
The equation to a circle of radius 7, having its centre C' at the point

whose coordinates are x = a, y = b, as depicted in Fig. 29, is:

(y—b)°+(x—a)?=r~"

Q
>

Fia. 29.

This may be transformed into

P e Y
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Now we know beforehand, by mere inspection of the figure, that
when x = a, y will be either at its maximum value, b + r, or else at its
minimum value, b—r. But let us not take advantage of this knowledge;
let us set about finding what value of z will make y a maximum or a

minimum, by the process of differentiating and equating to zero.

1 1
dy _1 X (2a — 2x),
dr  2./r? — (x —a)?

which reduces to

dy a—x

dr 2 —(z—a)?

Then the condition for y being maximum or minimum is:

a—x

r2 — (z —a)?

= 0.

Since no value whatever of  will make the denominator infinite,

the only condition to give zero is

Inserting this value in the original equation for the circle, we find
Yy = V2 4+ b;

and as the root of r? is either +r or —r, we have two resulting values

of y,

y=b+r

y=>b—r.
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The first of these is the maximum, at the top; the second the mini-
mum, at the bottom.

If the curve is such that there is no place that is a maximum or
minimum, the process of equating to zero will yield an impossible result.

For instance:

Let y = ax’® +bx +c.
d

Then & _ 3ax® +b.
dx

Equating this to zero, we get 3az? +b = 0,

—b [—b
2? = —, and xz = {/—, which is impossible.
3a 3a

Therefore y has no maximum nor minimum.

A few more worked examples will enable you to thoroughly master
this most interesting and useful application of the calculus.

(1) What are the sides of the rectangle of maximum area inscribed
in a circle of radius R?

If one side be called =,

the other side = \/(diagonal)? — 22,

and as the diagonal of the rectangle is necessarily a diameter, the other
side = v4R? — x2.
Then, area of rectangle S = xv4R? — 22,

d(vVAR? — x2
@:xx ( x)+ 4R2—x2x@.
dx dx dx
If you have forgotten how to differentiate v/4R? — x2, here is a hint:
d d
write 4R? — 22 = w and y = /w, and seek d_y and d—w; fight it out,
w x

and only if you can’t get on refer to page 66.
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You will get

e e e RV e P
For maximum or minimum we must have
4R?% — 227 _ o
4R? — 22 7

that is, 4R? — 222 = 0 and = = RV/2.

The other side = V4R? — 2R? = R+\/2: the two sides are equal; the
figure is a square the side of which is equal to the diagonal of the square
constructed on the radius. In this case it is, of course, a maximum with
which we are dealing.

(2) What is the radius of the opening of a conical vessel the sloping
side of which has a length [ when the capacity of the vessel is greatest?

If R be the radius and H the corresponding height, H = /12 — R2.

Volume V = mR? x g = TR? x @

Proceeding as in the previous problem, we get

av R 2R
L —rR?x — ViIz2 — R?
TR W/ ey R

_ 2nR(P— R*)—nR® 0

- 3WE-R

for maximum or minimum.
Or, 2rR(I* — R?) — nR*> = 0, and R = [4/2, for a maximum,

obviously.

(3) Find the maxima and minima of the function

x 4 —x

y:4—x T
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We get

dy (-2)—(-2)  —z-(@d-a)
de ~  (4—ax)? * x?

for maximum or minimum; or

4 4
m—ﬁzo and z = 2.

There is only one value, hence only one maximum or minimum.

For z =2, Yy =2,
for x=15 y=227,
for =25 y=22T7;

it is therefore a minimum. (It is instructive to plot the graph of the
function.)

(4) Find the maxima and minima of the function y = /1 +x +
V1 — 2. (It will be found instructive to plot the graph.)

Differentiating gives at once (see example No. 1, p. 67)

dy 1 1
de 2V14+x 21—z

for maximum or minimum.

=0

Hence v/1 +x = /1 — 2 and z = 0, the only solution
Forx =0, y=2.
For x = 40.5, y = 1.932, so this is a maximum.

(5) Find the maxima and minima of the function

_x2—5
Y=oy — 1
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We have
dy _ (2z—14) x2r — (¢°—5)2

dr (2z —4)? =0

for maximum or minimum; or

2x2—8x+10_0.
(20 —4)2 7

or 22 — 4z + 5 = 0; which has for solutions

d
These being imaginary, there is no real value of x for which d—y =0;
x
hence there is neither maximum nor minimum.

(6) Find the maxima and minima of the function

(y — 2%)? = 2°.

This may be written y = 22 + 23

dy _
dv

3
2

2x + gm =0 for maximum or minimum,;

that is, x(2:|:gx%) = 0, which is satisfied for z = 0, and for Zigx% =0,
that is for x = %. So there are two solutions.

Taking first = 0. If # = —0.5, y = 0.25 + I/—(.5)%, and if
r =405,y = 025 £ \Q/W On one side y is imaginary; that is,
there is no value of y that can be represented by a graph; the latter is
therefore entirely on the right side of the axis of y (see Fig. 30).

On plotting the graph it will be found that the curve goes to the
origin, as if there were a minimum there; but instead of continuing

beyond, as it should do for a minimum, it retraces its steps (forming
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what is called a “cusp”). There is no minimum, therefore, although the
d
condition for a minimum is satisfied, namely d_y = 0. It is necessary
x

therefore always to check by taking one value on either side.

Y
0.31

0.2

0.17

0 02 04 06 08 1\ =
FiG. 30.

Now, if we take x = % = 0.64. If z = 0.64, y = 0.7373 and
y = 0.0819; if x = 0.6, y becomes 0.6389 and 0.0811; and if z = 0.7,
y becomes 0.8996 and 0.0804.

This shows that there are two branches of the curve; the upper one
does not pass through a maximum, but the lower one does.

(7) A cylinder whose height is twice the radius of the base is increas-
ing in volume, so that all its parts keep always in the same proportion
to each other; that is, at any instant, the cylinder is similar to the
original cylinder. When the radius of the base is r feet, the surface

area is increasing at the rate of 20 square inches per second; at what
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rate is its volume then increasing?

Area = S = 2(7r?) + 277 x 2r = 677°.

Volume = V = 7r? x 2r = 2713,

d dv
—S =127r, — = 6712,
dr
2
dS = 12nrdr =20, dr= 0 ,
127r
9 9 20
dV = 6mr“dr = 6mr® x = 10r.
127r

The volume changes at the rate of 10r cubic inches.

Make other examples for yourself. There are few subjects which

offer such a wealth for interesting examples.

Exercises IX.  (See page 257 for Answers.)

(1) What values of x will make y a maximum and a minimum, if

LL’Q

= ?
z+1

(2) What value of x will make y a maximum in the equation y =
T

a? + 22’

(3) A line of length p is to be cut up into 4 parts and put together

Y

as a rectangle. Show that the area of the rectangle will be a maximum

if each of its sides is equal to }lp.

(4) A piece of string 30 inches long has its two ends joined together
and is stretched by 3 pegs so as to form a triangle. What is the largest

triangular area that can be enclosed by the string?
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(5) Plot the curve corresponding to the equation

_l0, 10
r  8—1z’

Y

d
also find %, and deduce the value of x that will make y a minimum;

and find that minimum value of y.

(6) If y = 2° — bz, find what values of x will make y a maximum or

a minimum.

(7) What is the smallest square that can be inscribed in a given

square?

(8) Inscribe in a given cone, the height of which is equal to the radius
of the base, a cylinder (a) whose volume is a maximum; (b) whose

lateral area is a maximum; (¢) whose total area is a maximum.

(9) Inscribe in a sphere, a cylinder (a) whose volume is a maxi-
mum; (b) whose lateral area is a maximum; (¢) whose total area is a

maximum.

(10) A spherical balloon is increasing in volume. If, when its radius
is r feet, its volume is increasing at the rate of 4 cubic feet per second,

at what rate is its surface then increasing?
) Inscribe in a given sphere a cone whose volume is a maximum.

(11
(12) The current C given by a battery of N similar voltaic cells is
C nx kg
= =,
™m
R+ —
* N

cells coupled in series. Find the proportion of n to N for which the

where E, R, r, are constants and n is the number of

current is greatest.



CHAPTER XII.

CURVATURE OF CURVES.

RETURNING to the process of successive differentiation, it may be
asked: Why does anybody want to differentiate twice over? We know
that when the variable quantities are space and time, by differentiating
twice over we get the acceleration of a moving body, and that in the

geometrical interpretation, as applied to curves, d—y means the slope of
x
2
the curve. But what can d—g mean in this case? Clearly it means the
x
rate (per unit of length x) at which the slope is changing—in brief, it

is a measure of the curvature of the slope.

Y

:

Fic. 31. Fic. 32.

Suppose a slope constant, as in Fig. 31.
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d
Here, d—y is of constant value.
x

Suppose, however, a case in which, like Fig. 32, the slope itself is

dy
al =2

(dm) . d*y
i that is,

et will be positive.
x

x
If the slope is becoming less as you go to the right (as in Fig. 14,

getting greater upwards, then

p. 80), or as in Fig. 33, then, even though the curve may be going
2

upward, since the change is such as to diminish its slope, its &y will

dx?
!
4’44:/

be negative.

Fia. 33.

It is now time to initiate you into another secret—how to tell
whether the result that you get by “equating to zero” is a maximum or
a minimum. The trick is this: After you have differentiated (so as to
get the expression which you equate to zero), you then differentiate a

second time, and look whether the result of the second differentiation
2

is positive or negative. If d_z comes out positive, then you know that
x
2
the value of y which you got was a minimum; but if d—z comes out
x
negative, then the value of y which you got must be a mazimum. That’s
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the rule.

The reason of it ought to be quite evident. Think of any curve that
has a minimum point in it (like Fig. 15, p. 80), or like Fig. 34, where the
point of minimum y is marked M, and the curve is concave upwards.
To the left of M the slope is downward, that is, negative, and is getting
less negative. To the right of M the slope has become upward, and

is getting more and more upward. Clearly the change of slope as the

Y Y
M
D)
|
|
|
M | > Yy maz.
! |
|
1>y min. :
|
| I)
O ;_vﬁ/ X o) ;_vﬁ/ X
T €
Fic. 34. FiG. 35.

2
curve passes through M is such that d—gé is positive, for its operation,
x

as x increases toward the right, is to convert a downward slope into an
upward one.

Similarly, consider any curve that has a maximum point in it (like
Fig. 16, p. 81), or like Fig. 35, where the curve is conver, and the max-
imum point is marked M. In this case, as the curve passes through M

from left to right, its upward slope is converted into a downward or
2

negative slope, so that in this case the “slope of the slope” d_z is
x
negative.

Go back now to the examples of the last chapter and verify in this
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way the conclusions arrived at as to whether in any particular case
there is a maximum or a minimum. You will find below a few worked

out examples.

(1) Find the maximum or minimum of
(a) y=42® — 9z — 6; (b) y=6+9z — 4%
and ascertain if it be a maximum or a minimum in each case.

d
(a) d—y:8x—9:0; r =14, andy=—11.065.
T

d?y
dx?

d
(b) £:9—8x:0; x=1%; and y = 4+11.065.

d?y
dz?

= 8; it is +; hence it is a minimum.

= —8; it is —; hence it is a maximum.

(2) Find the maxima and minima of the function y = 2* — 3z + 16.

d
Y _342-3-0. 22=1, andz=+1.
dx
d2
d—]};:%; for x = 1; it is +;
hence x = 1 corresponds to a minimum y = 14. For x = —1 it is —;
hence x = —1 corresponds to a maximum y = +18.
r—1
3) Find th i d mini fy= .
(3) Find the maxima and minima of y 2192
dy (@*+2)x1—(x—1)x2x 22z—2+2

= = = 0;
dx (22 +2)? (22 +2)? ’
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or 22 — 2z — 2 = 0, whose solutions are x = +2.73 and x = —0.73.

d*y (22 +2)% x (22 — 2) — (2% — 22 — 2)(42> + 8x)

dx? (x2+2)4
_ 22° — 62" — 8a® — 8a® — 24w + 8
- (:c2 4 2)4 :

The denominator is always positive, so it is sufficient to ascertain

the sign of the numerator.

If we put x = 2.73, the numerator is negative; the maximum, y =
0.183.

If we put x = —0.73, the numerator is positive; the minimum,
y = —0.683.

(4) The expense C' of handling the products of a certain factory

varies with the weekly output P according to the relation C' = aP +
b

c+ P
the expense be least?

+d, where a, b, ¢, d are positive constants. For what output will

ac b

ip = a— m =0 for maximum or minimum,;

b b
hence a = ———= andP:j:\/j—c.
(c+ P)? a
b
As the output cannot be negative, P = —I—\/j —c.
a

2
Now a-C _ +b(20 +2P)

P2 (ct+ P)*

b
which is positive for all the values of P; hence P = —1—\/j —c corresponds
a

to a minimum.
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(5) The total cost per hour C' of lighting a building with N lamps

of a certain kind is

C, EPC,
N
¢= (t T 7000 )

where F is the commercial efficiency (watts per candle),

P is the candle power of each lamp,
t is the average life of each lamp in hours,
C; = cost of renewal in pence per hour of use,

C, = cost of energy per 1000 watts per hour.

Moreover, the relation connecting the average life of a lamp with
the commercial efficiency at which it is run is approximately ¢t = mE™,
where m and n are constants depending on the kind of lamp.

Find the commercial efficiency for which the total cost of lighting

will be least.

C PC,
h N E~" E
We have C= (m +1000 ),
dC _ PCc  nCl oy _

dE ~ 1000 m

for maximum or minimum.
1000 x nC; 1000 x nC;
En+1 — d E — n+1 )
mPC, an V. mPC,

This is clearly for minimum, since

d*C C
= (n+1)—E

- +2)
dE? m
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which is positive for a positive value of E.
For a particular type of 16 candle-power lamps, C; = 17 pence,
C. = 5 pence; and it was found that m = 10 and n = 3.6.

P 4_</1000><3.6>< 17
- 10x 16 x 5

= 2.6 watts per candle-power.

Ezercises X.  (You are advised to plot the graph of any numerical

example.) (See p. 258 for the Answers.)

(1) Find the maxima and minima of

y =3+ 2% — 10z + 8.

b d 2
(2) Given y = —x — cz?, find expressions for —y, and for —y, also
a dx dz?
find the value of z which makes y a maximum or a minimum, and show

whether it is maximum or minimum.

(3) Find how many maxima and how many minima there are in the
curve, the equation to which is

2?7t

— 1 .
y 5 "o

and how many in that of which the equation is

2 4 l’G

Y= "9 "y 0

(4) Find the maxima and minima of

)
X
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(5) Find the maxima and minima of

3

y::ﬁ—i—x—i—l'

(6) Find the maxima and minima of

5%5
2+ 22’

y —_=
(7) Find the maxima and minima of

3x +x+5
2 -3 2 ’

y:

(8) Divide a number N into two parts in such a way that three times
the square of one part plus twice the square of the other part shall be

a minimum.

(9) The efficiency u of an electric generator at different values of
output z is expressed by the general equation:
x
YT b+ ea?
where a is a constant depending chiefly on the energy losses in the iron
and c a constant depending chiefly on the resistance of the copper parts.
Find an expression for that value of the output at which the efficiency

will be a maximum.

(10) Suppose it to be known that consumption of coal by a certain
steamer may be represented by the formula y = 0.34+0.001v3; where ¥ is
the number of tons of coal burned per hour and v is the speed expressed
in nautical miles per hour. The cost of wages, interest on capital, and

depreciation of that ship are together equal, per hour, to the cost of
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1 ton of coal. What speed will make the total cost of a voyage of 1000
nautical miles a minimum? And, if coal costs 10 shillings per ton, what

will that minimum cost of the voyage amount to?

(11) Find the maxima and minima of

Y = i% (10 — x).

(12) Find the maxima and minima of

y=4a® —2® — 2 + 1.



CHAPTER XIII.

OTHER USEFUL DODGES.

Partial Fractions.

WE have seen that when we differentiate a fraction we have to perform
a rather complicated operation; and, if the fraction is not itself a simple
one, the result is bound to be a complicated expression. If we could
split the fraction into two or more simpler fractions such that their
sum is equivalent to the original fraction, we could then proceed by
differentiating each of these simpler expressions. And the result of
differentiating would be the sum of two (or more) differentials, each one
of which is relatively simple; while the final expression, though of course
it will be the same as that which could be obtained without resorting
to this dodge, is thus obtained with much less effort and appears in a
simplified form.

Let us see how to reach this result. Try first the job of adding
two fractions together to form a resultant fraction. Take, for example,

T+ and xi

3r+1
T T And in the same way he can

the two fractions Every schoolboy can add these

together and find their sum to be

22 —
add together three or more fractions. Now this process can certainly

be reversed: that is to say, that if this last expression were given, it
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is certain that it can somehow be split back again into its original
components or partial fractions. Only we do not know in every case
that may be presented to us how we can so split it. In order to find
this out we shall consider a simple case at first. But it is important
to bear in mind that all which follows applies only to what are called
“proper” algebraic fractions, meaning fractions like the above, which
have the numerator of a lesser degree than the denominator; that is,

those in which the highest index of x is less in the numerator than in

2
. . . 742
the denominator. If we have to deal with such an expression as — T
x‘ —
we can simplify it by division, since it is equivalent to 1 + 2—1; and
‘Z‘ —

3

22
into partial fractions can be applied, as explained hereafter.

1 is a proper algebraic fraction to which the operation of splitting

Case I. 1f we perform many additions of two or more fractions
the denominators of which contain only terms in z, and no terms in

3 or any other powers of x, we always find that the denominator

% x
of the final resulting fraction is the product of the denominators of
the fractions which were added to form the result. It follows that by
factorizing the denominator of this final fraction, we can find every one

of the denominators of the partial fractions of which we are in search.

Suppose we wish to go back from to the components which

1 2
we know are and . If we did not know what those compo-
r+1 r—1

nents were we can still prepare the way by writing:

xr2 —

3r+1 3r+1 B
22—-1 (z+1D)(x—1) x+1

+ )
r—1

leaving blank the places for the numerators until we know what to put
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there. We always may assume the sign between the partial fractions
to be plus, since, if it be minus, we shall simply find the corresponding
numerator to be negative. Now, since the partial fractions are proper
fractions, the numerators are mere numbers without x at all, and we
can call them A, B, C'... as we please. So, in this case, we have:

B41_ A B
22—1 z4+1 z-1

If now we perform the addition of these two partial fractions, we
Alr—1)+ B 1 3 1

get (@ )+ Blz+ ); and this must be equal to Tt .

(x4 1)(x—1) (x4 1)(x—1)

And, as the denominators in these two expressions are the same, the

numerators must be equal, giving us:
3r+1=A(x—1)+ Bz +1).

Now, this is an equation with two unknown quantities, and it would
seem that we need another equation before we can solve them and find
A and B. But there is another way out of this difficulty. The equation
must be true for all values of x; therefore it must be true for such values
of x as will cause x — 1 and x + 1 to become zero, that is for z = 1 and
for x = —1 respectively. If we make z = 1, we get 4 = (Ax0)+ (B x2),
so that B = 2; and if we make z = —1, we get —2 = (Ax —2)+ (B x0),
so that A = 1. Replacing the A and B of the partial fractions by these

1 2
new values, we find them to become and ; and the thing is
r+1 r—1
done. )
4 2r — 14
As a farther example, let us take the fraction v e . The

234322 —x—3
denominator becomes zero when x is given the value 1; hence x — 1 is

a factor of it, and obviously then the other factor will be 22 + 4x + 3;
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and this can again be decomposed into (x+1)(z +3). So we may write

the fraction thus:

422 + 20 — 14 A B C

m3+3x2—x—3_x+1+m—1+x+3’

making three partial factors.

Proceeding as before, we find
4 + 22— 14 = Az — 1)(z +3) + Bz + 1)(z + 3) + C(z + 1)(x — 1).
Now, if we make z = 1, we get:
—8=(Ax0)+B(2x4)+(C x0); thatis, B=—1.
If x =—1, we get:

—12=A(-2x2)+ (B x0)+ (C x0); whence A= 3.

If x = —3, we get:
16 =(Ax0)+ (B x0)+C(—2x —4); whence C = 2.

So then the partial fractions are:

3 1 n 2
xr+1 z—-1 x+3

which is far easier to differentiate with respect to x than the complicated

expression from which it is derived.
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Case II. If some of the factors of the denominator contain terms
in 22, and are not conveniently put into factors, then the corresponding
numerator may contain a term in x, as well as a simple number; and
hence it becomes necessary to represent this unknown numerator not

by the symbol A but by Ax + B; the rest of the calculation being made

as before.
—r2 _
Try, for instance: v =3 .
(2 4+ 1)(x +1)
—2*—-3  Az+B C

(2+1)(x+1) 2241 +x+1;
—2> -3 =(Az+ B)(x + 1) + C(2* + 1).

Putting x = —1, we get —4 = C x 2; and C' = —2;

hence —2° =3 = (Ar+ B)(z +1) — 22° — 2;
and v —1=Ax(z+ 1)+ Bz +1).

Putting = 0, we get —1 = B;
hence
P —1=Az(z+1)—x—1; or2®+x=Azx(z+1);
and r+1=Ax+1),

so that A = 1, and the partial fractions are:

r—1 2
2+1 x+1

Take as another example the fraction

=2
(22 +1)(22+2)°
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We get
x3—2 _Az+B Cz+D

(22 +1)(22+2) 2241 * x? 42
(Ax+B)(:c2+2)—l—(C’a:—i—D)(:cQ—i—l).

(22 4+ 1)(2% 4 2)

In this case the determination of A, B, C', D is not so easy. It
will be simpler to proceed as follows: Since the given fraction and
the fraction found by adding the partial fractions are equal, and have
tdentical denominators, the numerators must also be identically the
same. In such a case, and for such algebraical expressions as those with
which we are dealing here, the coefficients of the same powers of x are
equal and of same sign.

Hence, since

2 — 2= (Az + B)(2* +2) + (Cx + D)(2* + 1)
= (A+C0)2* + (B+ D)a* + 24+ C)x + 2B + D,

we have 1 = A+ C; 0 = B+ D (the coefficient of 2% in the left
expression being zero); 0 = 2A + C; and —2 = 2B + D. Here are

four equations, from which we readily obtain A = —1; B = —2; C' = 2;

2 1 2

D = 0; so that the partial fractions are (f +1) _r . This method
2?4+2 22+1

can always be used; but the method shown first will be found the

quickest in the case of factors in x only.

Case III. When, among the factors of the denominator there are
some which are raised to some power, one must allow for the possi-
ble existence of partial fractions having for denominator the several

powers of that factor up to the highest. For instance, in splitting the
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3z —2 1
fraction a T we must allow for the possible existence of a
(x4+1)%(x—2)

denominator x + 1 as well as (z 4+ 1) and (z — 2).

It maybe thought, however, that, since the numerator of the fraction
the denominator of which is (z + 1)? may contain terms in z, we must
allow for this in writing Ax + B for its numerator, so that

322 —2r +1 _Ax+B+ C n D
r+12(x—2) (41?2 z4+1 z-2
( )

If, however, we try to find A, B, C' and D in this case, we fail, because
we get four unknowns; and we have only three relations connecting

them, yet
3x? — 2w+ 1 r—1 1 1

G 12@—2) @+1)P z4l 2

But if we write

32 —2x+1 A B C

G2 —2) @+1)P r4l =2

we get
377 —2r+1=A(r —2) + Bz + 1) (2 — 2) + C(z + 1)?,

which gives C' = 1 for x = 2. Replacing C' by its value, transposing,
gathering like terms and dividing by  — 2, we get —22 = A+ B(x+1),
which gives A = —2 for z = —1. Replacing A by its value, we get

20 = -2+ B(z +1).

Hence B = 2; so that the partial fractions are:

2 2 N 1
r+1 (z+12 z-2
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-1 1
instead of + < + stated above as being the fractions
r+1 (x4+1)2 z-2
3z2 —2 1
from which —= T was obtained. The mystery is cleared if we

(z +1)*(z - 2)

observe that

x
can itself be split into the two fractions
(z +1) P v r+1

m, so that the three fractions given are really equivalent to
x
1 1 2 1 2 2 1

tr1 T+l @t1)P 2-2 2+l (@rlE -2

which are the partial fractions obtained.
We see that it is sufficient to allow for one numerical term in each
numerator, and that we always get the ultimate partial fractions.
When there is a power of a factor of 22 in the denominator, however,
the corresponding numerators must be of the form Ax+ B; for example,

3x—1 Ax + B Cx+D FE

07 1P+l 22 —12 =1 agl

which gives
3r—1=(Az+ B)(z + 1) + (Cz + D)(x + 1)(22* — 1) + E(22* — 1)%.

For x = —1, this gives E = —4. Replacing, transposing, collecting
like terms, and dividing by x + 1, we get

162° — 162% + 3 = 202 + 2D2* + (A — C) + (B — D).

Hence 2C' =16 and C =8; 2D = —-16 and D = -8, A—C =0 or
A—-8=0and A =8, and finally, B— D =3 or B = —5. So that we
obtain as the partial fractions:

(8x —5) 8(x—1)_ 4
(222 —-1)2  222—-1 241
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It is useful to check the results obtained. The simplest way is to
replace x by a single value, say +1, both in the given expression and in
the partial fractions obtained.

Whenever the denominator contains but a power of a single factor,
a very quick method is as follows:

1
T solet o+ 1=z thenw =2z —1.

4
(x+1)

Taking, for example,
Replacing, we get
4z—1)+1 42—-3 4 3

23 23 22 23

The partial fractions are, therefore,

4 3

(x+1) (z+1)%

Application to differentiation. Let it be required to differentiate
5 —4dx

T
dy  (62% + 7w —3) x4+ (5 —4a)(122 +7)
dr (622 + Tz — 3)?
242 — 60z — 23

(622 + Tx — 3)2
If we split the given expression into

1 2
3r—1 2r+3’

we get, however,

dy 3 n 4
dr 3z —1)2 (22 +3)?’
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which is really the same result as above split into partial fractions.
But the splitting, if done after differentiating, is more complicated, as
will easily be seen. When we shall deal with the integration of such
expressions, we shall find the splitting into partial fractions a precious

auxiliary (see p. 228).

FEzercises XI.  (See page 259 for Answers.)

Split into fractions:

37 +5 31— 4
W e+ @ Ty
3T+ 5 x+1
3) 2+x—12 (4) 22— Tr+12°
r—8 z? — 137 + 26
()@x+®wx—%' (Q(x—m@—ﬁxx_@'
x> —3r+1
OB P ey pe
5x2 +Tx+1
®) G DE DG
z? at 41
O m—1 <m>x&+r
5%+ 6x +4
(11) ($+1)(QJ2+$+1). (12) (:r;—l)(:v—Z)T
(13) o 93—|—3

(z2 = D(z+1) “®<x+m%x—n‘
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2492 1 2 — 12
(15) 3r° + 2z + . (16) bx® + 8x
(x4 2)(x?+ 2+ 1)? (x+4)3

72+ 9z — 1 x
W " ey

2

Differential of an Inverse Function.

Consider the function (see p. 13) y = 3x; it can be expressed in the

form x = =; this latter form is called the inverse function to the one
originally given.

d d 1
If y = 3z, —y:3;ifx:y <

- 3 d_y = 3 and we see that
d

dy
Consider y = 422, d_y = 8z; the inverse function is
T

y% dx 1 1 1
Tr = = = = —.
dy 4y 4x2x 8x

dy dx
Here again — x —=1.
& dr dy
It can be shown that for all functions which can be put into the
inverse form, one can always write

dyxdx_l o dy 1
de = dy ' de — dx’
dy
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It follows that, being given a function, if it be easier to differentiate
the inverse function, this may be done, and the reciprocal of the differ-
ential coefficient of the inverse function gives the differential coefficient

of the given function itself.

3
As an example, suppose that we wish to differentiate y = ¢/ = — 1.
x

3
We have seen one way of doing this, by writing u = — — 1, and finding
x

@ and @ This gives
dz

du
dy 3
de 3
222 § —1
T

If we had forgotten how to proceed by this method, or wished to
check our result by some other way of obtaining the differential coef-
ficient, or for any other reason we could not use the ordinary method,

we can proceed as follows: The inverse function is z =

1+y%
de  3x2y 6y
dy — (1+y2)?  (1+y?)?
hence
3 2
1+——1
dy 1 (L+9?)? ( )

de ~ dv 6y '
qv 212
Y
Let us take as an other example _—
1p y= 3*9 —
The inverse function is = — — 5 or 6 = y~3 — 5, and
Y
df

=3yt =-3Y/(6+5)"
W (6+5)
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d 1
It follows that d—y = ————————, as might have been found oth-
x

3/(0 + 5)1

We shall find this dodge most useful later on; meanwhile you are

erwise.

advised to become familiar with it by verifying by its means the results
obtained in Exercises I. (p. 24), Nos. 5, 6, 7; Examples (p. 67), Nos.
1, 2, 4; and Exercises VI. (p. 72), Nos. 1, 2, 3 and 4.

You will surely realize from this chapter and the preceding, that in
many respects the calculus is an art rather than a science: an art only
to be acquired, as all other arts are, by practice. Hence you should
work many examples, and set yourself other examples, to see if you can

work them out, until the various artifices become familiar by use.



CHAPTER XIV.

ON TRUE COMPOUND INTEREST AND THE LAW
OF ORGANIC GROWTH.

LET there be a quantity growing in such a way that the increment of
its growth, during a given time, shall always be proportional to its own
magnitude. This resembles the process of reckoning interest on money
at some fixed rate; for the bigger the capital, the bigger the amount of
interest on it in a given time.

Now we must distinguish clearly between two cases, in our calcula-
tion, according as the calculation is made by what the arithmetic books
call “simple interest,” or by what they call “compound interest.” For
in the former case the capital remains fixed, while in the latter the
interest is added to the capital, which therefore increases by successive

additions.

(1) At simple interest. Consider a concrete case. Let the capital at
start be £100, and let the rate of interest be 10 per cent. per annum.
Then the increment to the owner of the capital will be £10 every year.
Let him go on drawing his interest every year, and hoard it by putting
it by in a stocking, or locking it up in his safe. Then, if he goes on for

10 years, by the end of that time he will have received 10 increments
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of £10 each, or £100, making, with the original £100, a total of £200
in all. His property will have doubled itself in 10 years. If the rate of
interest had been 5 per cent., he would have had to hoard for 20 years
to double his property. If it had been only 2 per cent., he would have
had to hoard for 50 years. It is easy to see that if the value of the yearly
interest is — of the capital, he must go on hoarding for n years in order
to double lr?is property.

Or, if y be the original capital, and the yearly interest is g, then,
at the end of n years, his property will be !

y+n%:2y.

(2) At compound interest. As before, let the owner begin with a
capital of £100, earning interest at the rate of 10 per cent. per annum;
but, instead of hoarding the interest, let it be added to the capital
each year, so that the capital grows year by year. Then, at the end
of one year, the capital will have grown to £110; and in the second
year (still at 10%) this will earn £11 interest. He will start the third
year with £121, and the interest on that will be £12. 2s.; so that he
starts the fourth year with £133. 2s., and so on. It is easy to work
it out, and find that at the end of the ten years the total capital will

have grown to £259. 7s. 6d. In fact, we see that at the end of each

L

5 of a pound, and therefore, if

this is always added on, each year multiplies the capital by %; and if

year, each pound will have earned

continued for ten years (which will multiply by this factor ten times
over) will multiply the original capital by 2.59374. Let us put this into

symbols. Put yg for the original capital; — for the fraction added on at
n
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each of the n operations; and y,, for the value of the capital at the end

of the n'" operation. Then

1 n
Yn = Yo 1+ - .
n

But this mode of reckoning compound interest once a year, is really
not quite fair; for even during the first year the £100 ought to have been
growing. At the end of half a year it ought to have been at least £105,
and it certainly would have been fairer had the interest for the second
half of the year been calculated on £105. This would be equivalent to
calling it 5% per half-year; with 20 operations, therefore, at each of
which the capital is multiplied by g—é. If reckoned this way, by the end
of ten years the capital would have grown to £265. 6s. 7d.; for

(14 %)% = 2.653.

But, even so, the process is still not quite fair; for, by the end of
the first month, there will be some interest earned; and a half-yearly
reckoning assumes that the capital remains stationary for six months at
a time. Suppose we divided the year into 10 parts, and reckon a one-per-
cent. interest for each tenth of the year. We now have 100 operations
lasting over the ten years; or

Y = £100 (14 )"
which works out to £270. 9s. 7% d.
Even this is not final. Let the ten years be divided into 1000 periods,
each of - of a year; the interest being % per cent. for each such period;

100
then

1000
Yo = £100 (1+ 55)
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which works out to £271. 13s. 10d.

Go even more minutely, and divide the ten years into 10, 000 parts,

L

oo of 1 per cent. Then

each Wloo of a year, with interest at

10,000
g = £100 (14+ b )
which amounts to £271. 16s. 35d.

Finally, it will be seen that what we are tryTiLng to find is in reality
the ultimate value of the expression |1+ — | , which, as we see, is
greater than 2; and which, as we take n larng and larger, grows closer
and closer to a particular limiting value. However big you make n, the

value of this expression grows nearer and nearer to the figure
2.71828. ..

a number never to be forgotten.

Let us take geometrical illustrations of these things. In Fig. 36,
OP stands for the original value. OT is the whole time during which
the value is growing. It is divided into 10 periods, in each of which
there is an equal step up. Here % is a constant; and if each step up
is % of the original OP, then, by 10 such steps, the height is doubled.
If we had taken 20 steps, each of half the height shown, at the end the
height would still be just doubled. Or n such steps, each of 1 of the
original height O P, would suffice to double the height. This is T’éhe case
of simple interest. Here is 1 growing till it becomes 2.

In Fig. 37, we have the corresponding illustration of the geometrical

1
progression. Each of the successive ordinates is to be 1 + —, that is,
n
n+1

times as high as its predecessor. The steps up are not equal,
n
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I
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Fia. 36.

1
because each step up is now — of the ordinate at that part of the curve.
n
If we had literally 10 steps, with (1 + %) for the multiplying factor,
the final total would be (1 + 5)'° or 2.594 times the original 1. But if

1
only we take n sufficiently large (and the corresponding — sufficiently
n

1 n

small), then the final value (1 + —) to which unity will grow will
n

be 2.71828.

2.7182

Epsilon. To this mysterious number 2.7182818 etc., the mathemati-

cians have assigned as a symbol the Greek letter ¢ (pronounced ep-
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silon). All schoolboys know that the Greek letter 7 (called pi) stands
for 3.141592 etc.; but how many of them know that epsilon means
2.718287 Yet it is an even more important number than 7!

What, then, is epsilon?

Suppose we were to let 1 grow at simple interest till it became 2;
then, if at the same nominal rate of interest, and for the same time,
we were to let 1 grow at true compound interest, instead of simple, it
would grow to the value epsilon.

This process of growing proportionately, at every instant, to the
magnitude at that instant, some people call a logarithmic rate of grow-
ing. Unit logarithmic rate of growth is that rate which in unit time will
cause 1 to grow to 2.718281. It might also be called the organic rate
of growing: because it is characteristic of organic growth (in certain
circumstances) that the increment of the organism in a given time is
proportional to the magnitude of the organism itself.

If we take 100 per cent. as the unit of rate, and any fixed period
as the unit of time, then the result of letting 1 grow arithmetically at
unit rate, for unit time, will be 2, while the result of letting 1 grow

logarithmically at unit rate, for the same time, will be 2.71828. ...

A little more about Epsilon. We have seen that we require to know
n

what value is reached by the expression (1 + — ) , when n becomes
n

indefinitely great. Arithmetically, here are tabulated a lot of values

(which anybody can calculate out by the help of an ordinary table of

logarithms) got by assuming n = 2; n = 5; n = 10; and so on, up to
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n = 10, 000.

(14 3)? =2.25.
(14 31)° = 2.488.
(14 4)" = 2.594.
(14 %)% = 2.653.
(14 55)"°  =2.705.
(14 55" =2.7169.
(14 fo05) "% = 2.7181.

It is, however, worth while to find another way of calculating this
immensely important figure.

Accordingly, we will avail ourselves of the binomial theorem, and

expand the expression | 1 4+ — | in that well-known way.
n

The binomial theorem gives the rule that

. " an—l Cln_2b2
(a+b)"=a"+n T +n(n—1) 5
an—3 3
+n(n—1)(n—2) + etc.

3!

1
Putting a =1 and b = —, we get
n

(1+%)n=1+1+%(n;1)+%(”_1T)l(2”—2)
1 (n—1)(n—2)(n—3)

+ Z 3 + etc.
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Now, if we suppose n to become indefinitely great, say a billion, or
a billion billions, then n — 1, n — 2, and n — 3, etc., will all be sensibly
equal to n; and then the series becomes

141 1 1 1 ;
€ = -+ +§+§+z+eC

By taking this rapidly convergent series to as many terms as we
please, we can work out the sum to any desired point of accuracy. Here

is the working for ten terms:

1.000000

dividing by 1 1.000000
dividing by 2 0.500000
dividing by 3 0.166667
dividing by 4 0.041667
dividing by 5 0.008333
dividing by 6 0.001389
dividing by 7 0.000198
dividing by 8 0.000025
dividing by 9 0.000002
Total 2.718281

€ is incommensurable with 1, and resembles 7 in being an inter-

minable non-recurrent decimal.

The Exponential Series. We shall have need of yet another series.

Let us, again making use of the binomial theorem, expand the ex-

nr
pression (1 + —) , which is the same as €* when we make n indefi-
n
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nitely great.

2
1nxfl (l) 1n:p72 (l)
€ =17 4 pp— L | nx(nx — 1)—n

1! 2!
1n:p3(1>3
+ nz(nx — 1)(nx — Q)Tn + etc.

1 n222—nx 1 n23—3n%22+ 2nx
:1+CL’+§'T § 3 + etc.
32 2

o x3—i+—f
=14+2z+ 2|”+ g, N~ 4 ete.

But, when n is made indefinitely great, this simplifies down to the
following;:
i 2 3 4
€ :1+x+§+§+z+etc....
This series is called the exponential series.
The great reason why e is regarded of importance is that €* possesses
a property, not possessed by any other function of x, that when you
differentiate it its value remains unchanged; or, in other words, its
differential coefficient is the same as itself. This can be instantly seen

by differentiating it with respect to x, thus:

d<€x>—0+1+ 2z N 3z? N 423
de 1-2 1-2-3 1-2-3-4
+ 52! +et
1-2-.3-4-5 ¢
x2 x3 rt
or =1+ax+ + + + etc.,

1-2 1-2.3 1-2-3-4

which is exactly the same as the original series.
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Now we might have gone to work the other way, and said: Go to;
let us find a function of x, such that its differential coefficient is the
same as itself. Or, is there any expression, involving only powers of x,
which is unchanged by differentiation? Accordingly; let us assume as

a general expression that
y = A+ Bz + Cx® + Da® + Ex®* + etc.,

(in which the coefficients A, B, C, etc. will have to be determined),

and differentiate it.

d
d—y = B+ 2Cx + 3Dx? + 4E2> + etc.
T

Now, if this new expression is really to be the same as that from

B A
which it was derived, it is clear that A must = B; that C' = 2 =13

1.2
c A D A
that 5 = 1.9.3 At 4 1.2.3.4°

The law of change is therefore that

tC.

Y T S
= — etcC. .
y 1 1-2°1.2.3""1.2.3-4

If, now, we take A = 1 for the sake of further simplicity, we have

x? 3 x?

X
=1 — tc.
V=it T s T 1 9.3 T 1.0.3.4 ¢

Differentiating it any number of times will give always the same
series over again.

If, now, we take the particular case of A = 1, and evaluate the
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series, we shall get simply

when x =1, y = 2.718281 etc.; that is, y = €;
when z = 2, y = (2.718281 etc.)?; that is, y = €%
when xz = 3, y = (2.718281 etc.)?; that is, y = €%;

and therefore
when x =z, y = (2.718281 etc.)®; that is, y = €”,

thus finally demonstrating that

x? x3 xt

e
r—1 — .
¢ Tt T e T T3 T a3 T

INOTE.—How to read exponentials. For the benefit of those who
have no tutor at hand it may be of use to state that €” is read as

)

“epsilon to the eksth power;” or some people read it “exponential eks.”
So €t is read “epsilon to the pee-teeth-power” or “exponential pee tee.”
Take some similar expressions:—Thus, €2 is read “epsilon to the minus
two power” or “exponential minus two.” € is read “epsilon to the
minus ay-eksth” or “exponential minus ay-eks.” |

Of course it follows that €” remains unchanged if differentiated with
respect to y. Also €, which is equal to (e*)*, will, when differentiated

with respect to z, be ae®”, because a is a constant.

Natural or Naperian Logarithms.
Another reason why € is important is because it was made by Napier,

the inventor of logarithms, the basis of his system. If y is the value of
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€”, then x is the logarithm, to the base €, of y. Or, if

_x
y—ﬁ,

then x = log, y.

The two curves plotted in Figs. 38 and 39 represent these equations.

The points calculated are:

T 0 0.5 1 1.5 2
For FiG. 38
y 1 | 1.65| 2.71| 450 7.39
y 1 |2 3 4 8
For FiG. 39
T 0 0.69] 1.10] 1.39| 2.08
) Yy
8+ 8t-----------
rc | T---------
61 | 6t ---------
51 | Bt —— = -~ - L]
g S
Ny '
3t _ _ _ _ _ [ [ 3+ -----— | I
94 | | | 2 L : |
1_- | l I 14 | | | I
! | | | Lo
@) 0.5 1 1.5 2 r 0] 1 2 x
Fic. 39. Fia. 38.

It will be seen that, though the calculations yield different points
for plotting, yet the result is identical. The two equations really mean

the same thing.
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As many persons who use ordinary logarithms, which are calcu-
lated to base 10 instead of base €, are unfamiliar with the “natural”
logarithms, it may be worth while to say a word about them. The or-
dinary rule that adding logarithms gives the logarithm of the product
still holds good; or

log, a + log, b = log, ab.

Also the rule of powers holds good;
n x log,a =log, a".

But as 10 is no longer the basis, one cannot multiply by 100 or 1000
by merely adding 2 or 3 to the index. One can change the natural
logarithm to the ordinary logarithm simply by multiplying it by 0.4343;

or

log,px = 0.4343 x log, x,

and conversely, log, x = 2.3026 X log,, x.

Ezxponential and Logarithmic Equations.

Now let us try our hands at differentiating certain expressions that
contain logarithms or exponentials.

Take the equation:

y = log, x.
First transform this into
e =,

whence, since the differential of € with regard to y is the original

function unchanged (see p. 139),
dx

Ty
dy

€7,



A USEFUL TABLE OF “NAPERIAN LOGARITHMS”

(Also called Natural Logarithms or Hyperbolic Logarithms)

Number

1

1.1
1.2
1.5
1.7
2.0
2.2
2.5
2.7
2.8
3.0
3.5
4.0
4.5
2.0

CALCULUS MADE EASY

log,
0.0000
0.0953
0.1823
0.4055
0.5306
0.6931
0.7885
0.9163
0.9933
1.0296
1.0986
1.2528
1.3863
1.5041
1.6094

Number

6

7

8

9

10

20

50

100
200
500
1,000
2,000
5,000
10, 000
20, 000

log,
1.7918
1.9459
2.0794
2.1972
2.3026
2.9957
3.9120
4.6052
5.2983
6.2146
6.9078
7.6009
8.5172
9.2103
9.9035

144
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and, reverting from the inverse to the original function,

dy 1 1 1

il e
dy
Now this is a very curious result. It may be written
% =zt

Note that 27! is a result that we could never have got by the rule for
differentiating powers. That rule (page 24) is to multiply by the power,
and reduce the power by 1. Thus, differentiating 2* gave us 322; and
differentiating 2% gave 2z'. But differentiating 2° does not give us
27! or 0 x 7!, because z° is itself = 1, and is a constant. We shall
have to come back to this curious fact that differentiating log, x gives

us — when we reach the chapter on integrating.
x

Now, try to differentiate

y = log (v + a),

that is e =xr+a;
d
we have w = ¢¥, since the differential of €¥ remains €Y.
Y
d
This gives ey + a;

dy

hence, reverting to the original function (see p. 128), we get
dy 1 1

dv d_l’ Cr+4a
dy
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Next try y = log,, .

First change to natural logarithms by multiplying by the modulus
0.4343. This gives us

y = 0.4343 log, z;
dy  0.4343

whence =
dx x

The next thing is not quite so simple. Try this:

T

y=a".
Taking the logarithm of both sides, we get

log, y = xlog, a,
log, y 1
= _

or = = x log, y.
log.a log.a
Since is a constant, we get
og, a
dx 1 1 1

- = X - @ -
dy log.a 'y a®xlog.a’

hence, reverting to the original function.

dy 1

de  dx

dy

=a” X log, a.
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We see that, since

dr dy de 1 1 1 dy
— X = - X , — X ==
dy dx dy 'y log.a” y dx

= log, a.

We shall find that whenever we have an expression such as log, y =

a function of x, we always have — d_y = the differential coefficient of
x

Y
the function of x, so that we could have written at once, from log, y =
xlog, a,
1 dy

d
;) dr =log,a and d_z = a” log, a.

Let us now attempt further examples.

Ezxamples.

(1) y =€ *. Let —ax = z; then y = €.

dy . dz L Y —az
— =€ - = —aj; ence  — = —ae .
dx dx

Or thus:

1 dy dy

] = —aqp: -2 =

z2

2
(2) y=¢€73. Let % = z; then y = €.

dy . dz 2x dy 2x i?

dz 7 dr 3 dz 3
Or thus:
2 ldy 2z dy 2z i

08 Y = 37 ydv 37 dr 3 €
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(3) y = emit
2 ldy 2(x+1)—2x
log. y = e e RSV IR
r+1 ydx (x 4+ 1)
dy 2 2z
h & _ =23
enee de  (z+ 1)26

2x
Check b iti =
eck by writing o z

(4) y =€V v’ +a log, y = (2% + a)%.

1 dy T q dy xxeVrita
- == nd — = .
ydr (224 a)% dx (2% + a)%

D=

Forif(xz—l—a)%:uandx2+a=v,u:v )

du 1 dv du T
dv  9p3 dx dx (22 +a)2

Check by writing V22 4+ a = 2.
(5) y = log(a + 2%). Let (a + 2*) = z; then y = log, 2.

dy 1 dz NI dy 32
—~Z =2: = =3z* hence 2= =-——.
dz 2’ dx ’ de a+ a3

(6) y = log {32® + Va+ x2}. Let 32® + Va+ 2% = z; then y =

log, z.

dy 1 dz 62 + x
@ _ 2 82 el T
dz 2’ dx V2 +a
x
6r L
dy _ x+vx2+a_ z(1+6va*+a)
dr 322+ Va+22 322+ Va2 +a)Va?ta
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(7) y = (z+3)*Vz — 2.

log. y = 2log (z + 3) + 1 log.(z — 2).
tdy _ 2 1
ydr (z+3) 2x-2)

dy 2 1
= Ve 2{x+3+mx—m}‘

w\m

(8) y = (a* +3)°(a? - 2)5.

log, y = 3log,(z* + 3) + Zlog, (z” — 2);

1 dy 21 +2 3z 6 N 222
ydr (22 +3) 323-2 22+3 23-2

For if y = log, (z? + 3), let > + 3 = z and u = log, z.

du 1 dz 9 du 2z
dz 2z dz "odr 22 +3
d RY
Similarly, if v = 10g6($3 —2), d_i = 3x_ 2 and

dy 5 5 3 2 [ 6z 22*
-~ — 3 —2)3 .
dx (" +3)( ) x2—|—3+x3—2

1
log. y = loge(x +a) — 3 loge(a; —a).

2 1 3z2? T x?

y dx T 212+a 343—-a 22+a 43—a

dy \/x2+a{ T 22 }
and — = .

dx 3 —aq |lx2+a x3—a
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1
(10) y = log, =
1
dy logeﬂt><0—1><5 1
o log? x T zlog’a
(11) y = /log, & = (logex)%, Let z = log, x; y = =3
dy 1 2 dz 1 dy 1

L3 & dn s

log, y = ax(log, 1 — log, a®) = —ax log, a”.

1d
W s xa® log, a — alog, a®.
y dx
d 1 axr
and Y (—) (z x a*log, a + alog, a®).
dx a®

Try now the following exercises.

FEzercises XII.  (See page 260 for Answers.)
(1) Differentiate y = b(e™* — e~%%).

(2) Find the differential coefficient with respect to ¢ of the expression
u = at* + 2log, t.

d(l
(3) If y = n', find —( 08, Y)

dt
1 a* dy
4) Show that if y = - - -2 = ab,
(4) Show that if y b g a du a
dw
5) If w=pv", find —.

Differentiate
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(6) y = log ™. (7) y=3c 71,
(8) y= (322 +1)e . (9) y =log,(z° + a).

(10) y = (32* — 1)(/x + 1).

IOgefL’—f—?) — T a
(11) y = ( ) (12) y = a® x z*
x4+ 3

(13) It was shown by Lord Kelvin that the speed of signalling

through a submarine cable depends on the value of the ratio of the

external diameter of the core to the diameter of the enclosed copper

wire. If this ratio is called y, then the number of signals s that can be

sent per minute can be expressed by the formula

1
s = ay’log, —;
)

where a is a constant depending on the length and the quality of the

materials. Show that if these are given, s will be a maximum if y =

1+ /e

(14) Find the maximum or minimum of

y = 2° —log, .

(15) Differentiate y = log, (axe®).

(16) Differentiate y = (log, az)?.
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The Logarithmic Curve.

Let us return to the curve which has its successive ordinates in

geometrical progression, such as that represented by the equation y =

T

bp*.
We can see, by putting x = 0, that b is the initial height of y.

Then when

rx=1, y="bp; r=2, y=b?* =3, y=~b’ etc

Also, we see that p is the numerical value of the ratio between the
height of any ordinate and that of the next preceding it. In Fig. 40, we

have taken p as g; each ordinate being g as high as the preceding one.

Y
i
I I
Vo 3 !
I
: ! = i I :
| I [ 1 |
1 I | : I | ] X \ :
b I \ I | I I I : | I I
R R R S ogb( o« 1 ot v
(0] 1 2 3 4 5 6 X 9 1 2 3 4 5 6 X
Fia. 40. FiG. 41.

If two successive ordinates are related together thus in a constant
ratio, their logarithms will have a constant difference; so that, if we
should plot out a new curve, Fig. 41, with values of log, y as ordinates,

it would be a straight line sloping up by equal steps. In fact, it follows
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from the equation, that

log, y = log, b+ x - log, p,
whence log. y — log b = x - log, p.

Now, since log, p is a mere number, and may be written as log, p = a,
it follows that

log y_ azr,
‘b
and the equation takes the new form

axr

y = be

The Die-away Curve.

If we were to take p as a proper fraction (less than unity), the curve
would obviously tend to sink downwards, as in Fig. 42, where each
successive ordinate is % of the height of the preceding one.

The equation is still

y = bp";
but since p is less than one, log, p will be a negative quantity, and may

¢ and now our equation for the curve

be written —a; so that p = €~
takes the form

y = be .

The importance of this expression is that, in the case where the

independent variable is time, the equation represents the course of a
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—_F - - - - - - =

great many physical processes in which something is gradually dying
away. Thus, the cooling of a hot body is represented (in Newton’s

celebrated “law of cooling”) by the equation
0; = Ope™*;

where 6, is the original excess of temperature of a hot body over that
of its surroundings, #; the excess of temperature at the end of time t,
and a is a constant—mnamely, the constant of decrement, depending on
the amount of surface exposed by the body, and on its coefficients of
conductivity and emissivity, etc.

A similar formula,
—at
Qi = Qoe ¥,

is used to express the charge of an electrified body, originally having a
charge Dy, which is leaking away with a constant of decrement a; which
constant depends in this case on the capacity of the body and on the
resistance of the leakage-path.

Oscillations given to a flexible spring die out after a time; and the

dying-out of the amplitude of the motion may be expressed in a similar
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way.

In fact e %

serves as a die-away factor for all those phenomena in
which the rate of decrease is proportional to the magnitude of that
which is decreasing; or where, in our usual symbols, % is proportional
at every moment to the value that y has at that moment. For we have
only to inspect the curve, Fig. 42 above, to see that, at every part of it,
the slope % is proportional to the height y; the curve becoming flatter

as y grows smaller. In symbols, thus

y = be "
or log, y = log, b — az log, € = log, b — az,
1d
and, differentiating, ~Y —a;
y dx
h dy b —ax X ( )
ence — = be —a) = —ay;
daj y?

or, in words, the slope of the curve is downward, and proportional to y
and to the constant a.

We should have got the same result if we had taken the equation in

the form
y = bp*;
d
for then & _ bp” x log, p.
dx
But log,. p = —a;
iving us - = —a) = —a

as before.
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The Time-constant. In the expression for the “die-away factor” e,

the quantity a is the reciprocal of another quantity known as “the time-
constant,” which we may denote by the symbol T'. Then the die-away
factor will be written e’%; and it will be seen, by making t = T that the

1
meaning of T’ (or of —) is that this is the length of time which it takes
a

for the original quantity (called 6y or @)y in the preceding instances) to
die away —th part—that is to 0.3678—of its original value.
€

¥ are continually required in different

The values of ¢ and €~
branches of physics, and as they are given in very few sets of mathemat-
ical tables, some of the values are tabulated on p. 157 for convenience.

As an example of the use of this table, suppose there is a hot body
cooling, and that at the beginning of the experiment (i.e. when ¢ = 0)
it is 72° hotter than the surrounding objects, and if the time-constant
of its cooling is 20 minutes (that is, if it takes 20 minutes for its excess
of temperature to fall to 1 part of 72°), then we can calculate to what
it will have fallen in any g?ven time ¢. For instance, let £ be 60 minutes.
Then % = 60 + 20 = 3, and we shall have to find the value of €3,
and then multiply the original 72° by this. The table shows that ¢=3
is 0.0498. So that at the end of 60 minutes the excess of temperature

will have fallen to 72° x 0.0498 = 3.586°.
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T €’ e’ 1—€"
0.00 1.0000 1.0000 0.0000
0.10 1.1052 0.9048 0.0952
0.20 1.2214 0.8187 0.1813
0.50 1.6487 0.6065 0.3935
0.75 2.1170 0.4724 0.5276
0.90 2.4596 0.4066 0.5934
1.00 2.7183 0.3679 0.6321
1.10 3.0042 0.3329 0.6671
1.20 3.3201 0.3012 0.6988
1.25 3.4903 0.2865 0.7135
1.50 4.4817 0.2231 0.7769
1.75 5.755 0.1738 0.8262
2.00 7.389 0.1353 0.8647
2.50 12.182 0.0821 0.9179
3.00 20.086 0.0498 0.9502
3.50 33.115 0.0302 0.9698
4.00 04.598 0.0183 0.9817
4.50 90.017 0.0111 0.9889
5.00 148.41 0.0067 0.9933
5.50 244.69 0.0041 0.9959
6.00 403.43 0.00248 0.99752
7.50 1808.04 0.00055 0.99947
10.00 22026.5 0.000045 0.999955

157
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Further Examples.
(1) The strength of an electric current in a conductor at a time
t secs. after the application of the electromotive force producing it is

E
given by the expression C' = = {1 — e’%}.

The time constant is I

If E =10, R = 1, L = 0.01; then when ¢ is very large the term e L

E
becomes 1, and C' = 7= 10; also

L
— =T =0.01.
R

Its value at any time may be written:
C =10 — 10¢ 001,

the time-constant being 0.01. This means that it takes 0.01 sec. for the
1

variable term to fall by — = 0.3678 of its initial value 10e— 501 = 10.
€

To find the value of the current when ¢ = 0.001 sec., say, % = 0.1,
e %1 =0.9048 (from table).

It follows that, after 0.001 sec., the variable term is 0.9048 x 10 =
9.048, and the actual current is 10 — 9.048 = 0.952.

Similarly, at the end of 0.1 sec.,

% =10; €' =0.000045;

the variable term is 10 x 0.000045 = 0.00045, the current being 9.9995.

(2) The intensity I of a beam of light which has passed through a
thickness [ cm. of some transparent medium is I = Iye %!, where I is

the initial intensity of the beam and K is a “constant of absorption.”
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This constant is usually found by experiments. If it be found, for
instance, that a beam of light has its intensity diminished by 18% in
passing through 10 cms. of a certain transparent medium, this means
that 82 = 100 x e £*10 or ¢ 19K = (.82, and from the table one sees
that 10K = 0.20 very nearly; hence K = 0.02.

To find the thickness that will reduce the intensity to half its value,
one must find the value of [ which satisfies the equality 50 = 100 x e~ %0%,
or 0.5 = ¢ %92 Tt is found by putting this equation in its logarithmic

form, namely,

log 0.5 = —0.02 x [ X loge,
which gives

—0.3010

'= 2 < 04383

= 34.7 centimetres nearly.

(3) The quantity @ of a radio-active substance which has not yet un-
dergone transformation is known to be related to the initial quantity Qg
of the substance by the relation Q = Qe *, where ) is a constant and
t the time in seconds elapsed since the transformation began.

For “Radium A,” if time is expressed in seconds, experiment shows
that A = 3.85 x 1073. Find the time required for transforming half the
substance. (This time is called the “mean life” of the substance.)

We have 0.5 = ¢ 000385,

log 0.5 = —0.00385¢ x log €;

and t = 3 minutes very nearly.
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FEzercises XIII.  (See page 260 for Answers.)

(1) Draw the curve y = be_%; where b = 12, T' = 8, and t is given

various values from 0 to 20.

(2) If a hot body cools so that in 24 minutes its excess of temperature
has fallen to half the initial amount, deduce the time-constant, and find

how long it will be in cooling down to 1 per cent. of the original excess.

(3) Plot the curve y = 100(1 — e~ 2").
(4) The following equations give very similar curves:

) ar
(i) y—m,

(i) y = a(l — €F);

(ili) y = 9?)0 arc tan (%) .

Draw all three curves, taking a = 100 millimetres; b = 30 millime-

tres.

(5) Find the differential coefficient of y with respect to z, if

(6) For “Thorium A,” the value of A is 5; find the “mean life,” that
is, the time taken by the transformation of a quantity @ of “Thorium A”
equal to half the initial quantity )y in the expression

Q = Qoe ™,

t being in seconds.
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(7) A condenser of capacity K = 4 x 1079 charged to a potential
Vo = 20, is discharging through a resistance of 10,000 ohms. Find the
potential V after (a) 0.1 second; (b) 0.01 second; assuming that the fall

of potential follows the rule V = Vge’ﬁ.

(8) The charge @ of an electrified insulated metal sphere is reduced
from 20 to 16 units in 10 minutes. Find the coefficient p of leakage,
if Q = Qo x e " Qo being the initial charge and ¢ being in seconds.
Hence find the time taken by half the charge to leak away.

(9) The damping on a telephone line can be ascertained from the re-
lation i = ipe~?!, where i is the strength, after ¢ seconds, of a telephonic
current of initial strength ¢; [ is the length of the line in kilometres, and
[ is a constant. For the Franco-English submarine cable laid in 1910,
f =0.0114. Find the damping at the end of the cable (40 kilometres),
and the length along which i is still 8% of the original current (limiting

value of very good audition).

(10) The pressure p of the atmosphere at an altitude h kilometres is

given by p = poe " py being the pressure at sea-level (760 millimetres).

The pressures at 10, 20 and 50 kilometres being 199.2, 42.2, 0.32
respectively, find k£ in each case. Using the mean value of k, find the

percentage error in each case.
(11) Find the minimum or maximum of y = z*.
(12) Find the minimum or maximum of y = s

(13) Find the minimum or maximum of y = zat.



CHAPTER XV.

HOW TO DEAL WITH SINES AND COSINES.

GREEK letters being usual to denote angles, we will take as the usual
letter for any variable angle the letter 6 (“theta”).

Let us consider the function

y = siné.

FiG. 43.

What we have to investigate is the value of ; or, in other
words, if the angle 6 varies, we have to find the relation between the
increment of the sine and the increment of the angle, both increments

being indefinitely small in themselves. Examine Fig. 43, wherein, if the
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radius of the circle is unity, the height of y is the sine, and 0 is the
angle. Now, if # is supposed to increase by the addition to it of the
small angle dd—an element of angle—the height of y, the sine, will be
increased by a small element dy. The new height y + dy will be the sine

of the new angle # + df, or, stating it as an equation,
y + dy = sin(0 + db);
and subtracting from this the first equation gives
dy = sin(f + df) — sin 6.

The quantity on the right-hand side is the difference between two
sines, and books on trigonometry tell us how to work this out. For they

tell us that if M and N are two different angles,

M+N . M-N
sin ——.

If, then, we put M = 6 + df for one angle, and N = 6 for the other,

sin M —sin N = 2cos

we may write

0-+-do+60 . 0+df—0
- SIn ,
2 2

or, dy = 2 cos(0 + 1df) - sin £d6.

dy = 2 cos

But if we regard df as indefinitely small, then in the limit we may
neglect %d@ by comparison with 6, and may also take sin %dé’ as being
the same as %d@. The equation then becomes:

dy = 2cosf x %d&;
dy = cos @ - db,

and, finally, % = cos .
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The accompanying curves, Figs. 44 and 45, show, plotted to scale,
the values of y = sin#, and Y cos 0, for the corresponding values

do
of 6.

|
0.5 :
|
|

30° 60° 90° i

-0.5

Fic. 44.

Fic. 45.
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Take next the cosine.
Let y = cos 6.
Now cos f = sin (g — 0).

Therefore

%z—cos(z—9>.

And it follows that

@ = —sin#f.

do

Lastly, take the tangent.

Let y = tané,
dy = tan(f + df) — tan 6.

Expanding, as shown in books on trigonometry,

tan @ 4 tan df
tan(0 + d) = 1—tané - tandG;
_ tan® + tandf
~ 1—tan6 - tandd
(1 + tan? ) tan df
1 —tané -tandf

— tané

whence dy

165
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Now remember that if df is indefinitely diminished, the value
of tan df becomes identical with df, and tan6 - df is negligibly small

compared with 1, so that the expression reduces to

(1+ tan?6) df

dy —
Y 1 )
d
so that d_g =1+ tan?#,
d
or d_g = sec? 6.
Collecting these results, we have:
dy
Y do
sin 6 cos 6
cos 6 —sin 6
tan 6 sec? )

Sometimes, in mechanical and physical questions, as, for example,
in simple harmonic motion and in wave-motions, we have to deal with
angles that increase in proportion to the time. Thus, if 7" be the time
of one complete period, or movement round the circle, then, since the
angle all round the circle is 27 radians, or 360°, the amount of angle

moved through in time t, will be
0 =27 —t i dian
111 radians
Ta )

t
or 0 = 36()?, in degrees.
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If the frequency, or number of periods per second, be denoted by n,

then n = T and we may then write:
0 = 2mnt.

Then we shall have

= sin 27wnt.

If, now, we wish to know how the sine varies with respect to time,
we must differentiate with respect, not to 6, but to t. For this we must

resort to the artifice explained in Chapter IX., p. 66, and put
dy dy db

At df dt’

Now yr will obviously be 27n; so that

d
Y cosf x 2mn
dt
= 27n - cos 2mnt.
Similarly, it follows that
d(cos 2mnt)

= —27n - sin 27nt.

dt

Second Differential Coeflicient of Sine or Cosine.

We have seen that when sin @ is differentiated with respect to 6 it
becomes cos; and that when cosf is differentiated with respect to 6
it becomes — sin #; or, in symbols,

d*(sin )
de?

= —sind.



CALCULUS MADE EASY 168

So we have this curious result that we have found a function such
that if we differentiate it twice over, we get the same thing from which
we started, but with the sign changed from + to —.

The same thing is true for the cosine; for differentiating cos 6 gives
us —sin @, and differentiating — sin 6 gives us — cos #; or thus:

d*(cos 0)

TR = —cos#f.

Sines and cosines are the only functions of which the second differ-

ential coefficient is equal (and of opposite sign to) the original function.

Ezxamples.

With what we have so far learned we can now differentiate expres-
sions of a more complex nature.

(1) y = arcsinz.

If y is the arc whose sine is x, then z = siny.

dz
— = C0S Y.
dy Y
Passing now from the inverse function to the original one, we get
dy 1 1
de  dr  cosy
dy
Now cosy = 1/1 —sin’y = V1 — a2;
dy 1

hence

de  1—22

a rather unexpected result.
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(2) y = cos® .
This is the same thing as y = (cos 0)3.
Let cosf = v; then y = v3; @ = 3v2.
dv
d
d_z = —siné.
d d d
d—‘z = d—g X d—z = —3cos®fsinb.

(3) y =sin(z + a).

Let x +a =wv; then y = sinv.

dy dv dy
=, = COsU; - and - cos(z + a)

(4) y = log, sin 6.
Let sinf = v; y = log, v.

@—l' @_COSQ'
dv v df ’
1
%: - excosﬁzcotﬁ.
sin
cos
5) y =cotl = :
(5) y = co sin 6
dy —sin? 60 — cos? 6
a9 sin? 4
= —(1 + cot? ) = — cosec? 6.
(6) y = tan 36.
Let 30 = v; y = tanuv; %:sec%}.
v
d d
d—Z:ZS; d—Z:?)seczSH.
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(7) y = V1+3tan?f; y=(1+3tan26)z,
Let 3tan?6 = v.
dy 1

1
=(1 2, 2= . 67);
y=@1+0v)% - 2\/m(seep );
dv 9
@—Gtané’secé’
(for, if tan 6 = u,
dv du
_q2 AU _ . U g
v = 3u’; I u; 70 sec” 0,
d
hence d—; = 6(tan O sec? )
hence dy 6 tan 0 sec? 0

d)  2v1+3tan2f

(8) y = sinz cos .

dy . .
— =sinz(—sinz) 4+ cosz X cosx

dx

= cos® x — sin® .

FEzercises XIV.  (See page 261 for Answers.)
(1) Differentiate the following:

(i) yzAsin(@—%).

(ii) y=sin’6; and y = sin26.

(iil) y=sin’@; and y = sin30.

(2) Find the value of 6 for which sinf x cos € is a maximum.
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1
(3) Differentiate y = o Cos 2mnt.
s

If y =sina”, find %
dz

(1)
(5) Differentiate y = log, cos z.
(6) Differentiate y = 18.2sin(x + 26°).

(7) Plot the curve y = 100sin(f — 15°); and show that the slope of

the curve at § = 75° is half the maximum slope.

(8) If y = sin @ - sin 26, find Eii_z

(9) If y = a - tan™ ("), find the differential coefficient of y with

respect to 6.
(10) Differentiate y = €*sin® z.

(11) Differentiate the three equations of Exercises XIII. (p. 160),
No. 4, and compare their differential coefficients, as to whether they
are equal, or nearly equal, for very small values of x, or for very large

values of x, or for values of x in the neighbourhood of x = 30.

(12) Differentiate the following:

(i) y =secz. (ii) y = arccosz.

(iii) y = arctanz. (iv) y = arcsecz.

(v) y=tanz x V3sec.

(13) Differentiate y = sin(26 + 3)%3.
(14) Differentiate y = 63 + 3sin(f + 3) — 3¢ — 37,

(15) Find the maximum or minimum of y = 6 cos 6.



CHAPTER XVI.

PARTTAL DIFFERENTIATION.

WE sometimes come across quantities that are functions of more than
one independent variable. Thus, we may find a case where y depends
on two other variable quantities, one of which we will call © and the

other v. In symbols
y = f(u,v).
Take the simplest concrete case.

Let Yy=1uXu.

What are we to do? If we were to treat v as a constant, and differentiate

with respect to u, we should get

dy, = v du;

or if we treat u as a constant, and differentiate with respect to v, we

should have:

dy, = udv.

The little letters here put as subscripts are to show which quantity

has been taken as constant in the operation.



PARTIAL DIFFERENTIATION 173

Another way of indicating that the differentiation has been per-
formed only partially, that is, has been performed only with respect to
one of the independent variables, is to write the differential coefficients

with Greek deltas, like 0, instead of little d. In this way

Gy_
ou
oy
%—’U/.

If we put in these values for v and u respectively, we shall have

0
dy, = 5 du,
u which are partial differentials.
dy. — 2 4
w = &~ AU,
4 ov

But, if you think of it, you will observe that the total variation of y
depends on both these things at the same time. That is to say, if both

are varying, the real dy ought to be written

_ Oy ¥
dy = 8udu+8v dv;

and this is called a total differential. In some books it is written dy =
dy dy
— ) d — | dv.
() e (32)
Ezample (1). Find the partial differential coefficients of the expres-

sion w = 2ax? + 3bxy + 4cy®. The answers are:

8_11) = daz + 3by.
Ox

0

Y _ 3pa + 12¢12.

oy
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The first is obtained by supposing y constant, the second is obtained

by supposing = constant; then

dw = (4azx + 3by) dx + (3bz + 12¢cy?) dy.

Ezample (2). Let z = z¥. Then, treating first y and then z as

constant, we get in the usual way

0z

I y—1

o yx” o,

0z

— =z x1

a9y €T og, T,

so that dz = yz¥~dz + 2¥log, x dy.

Ezample (3). A cone having height h and radius of base r has

1
3

the ratio of change of volume, with respect to radius, is different from

volume V = imr?h. If its height remains constant, while r changes,

ratio of change of volume with respect to height which would occur if

the height were varied and the radius kept constant, for

ov 2«
i
or 3
o m,
—_— = —r
oh 3

The variation when both the radius and the height change is given

2
by dV = %rh dv + gﬂ dh.

Ezample (4). In the following example F' and f denote two ar-
bitrary functions of any form whatsoever. For example, they may be

sine-functions, or exponentials, or mere algebraic functions of the two
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independent variables, t and x. This being understood, let us take the

expression
y=F(z+at)+ f(z - at),
or, y = F(w) + f(v);
where w=x+at, and v=ux— at.
Then dy _ OF(w) Ow N df(v) Ov

or  Ow Or ov Oz
— F(w) -1+ f(0) -1

(where the figure 1 is simply the coefficient of = in w and v);

82 I "
and 73; = F"(w)+ f"(v).
Jdy OF(w) Oow 0Of(v) Ov
Al 2 = T /Al
i ot~ ow ot ov ot
= Fl(w)-a— f'(v)a;
and Oy = F"(w)a® + f"(v)a?;
ot? ’
Py 50y
whence w =a @

This differential equation is of immense importance in mathematical

physics.

Maxima and Minima of Functions of two Independent

Variables.

Ezample (5). Let us take up again Exercise IX., p. 107, No. 4.
Let x and y be the length of two of the portions of the string.
The third is 30 — (x + y), and the area of the triangle is A =
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V/s(s —x)(s —y)(s — 30 + = + y), where s is the half perimeter, 15, so
that A = v/15P, where

P=(15—-x)(15—-y)(z+y — 15)
= xy® + 2%y — 152% — 15y* — 452y + 4502 + 450y — 3375.

Clearly A is maximum when P is maximum.

For a maximum (clearly it will not be a minimum in this case), one
must have simultaneously

oP oP
— =0 and — =0;
Ox o oy ’
that is, 22y — 30x 4+ y* — 45y + 450 = 0,

2zy — 30y + 2% — 452 + 450 = 0.

An immediate solution is z = y.

If we now introduce this condition in the value of P, we find

P

(15 — 2)*(2x — 15) = 22° — 752 + 900z — 3375.

P
For maximum or minimum, e 622 — 1502 + 900 = 0, which gives
x
xz =15 or z = 10.

2P

Clearly x = 15 gives minimum area; x = 10 gives the maximum, for
722 122 — 150, which is +30 for x = 15 and —30 for x = 10.
x
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Ezample (6). Find the dimensions of an ordinary railway coal truck
with rectangular ends, so that, for a given volume V' the area of sides
and floor together is as small as possible.

The truck is a rectangular box open at the top. Let x be the length
and y be the width; then the depth is Z The surface area is S =

Ty
2V 2V
Yy + — +—.
T Y
oS oS 2V 2V
dsS=—d —dy = ——|d — — | dy.
oz "t oy ( x) ‘”(x yZ) /
For minimum (clearly it won’t be a maximum here),
2V 2V
. . L , 4V
Here also, an immediate solution is x = y, so that S = x* + —,
x
@ =2r — ﬂ = 0 for minimum, and
dx x?

T = V2V,

Exercises XV.  (See page 263 for Answers.)

3
1) Differentiate the expression r_ 203y — 2y%x + Y with respect
3 3

to x alone, and with respect to y alone.

(2) Find the partial differential coefficients with respect to x, y

and z, of the expression

x2yz + xy2z + xyz2 + x2y222.
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(3) Let r* = (z —a)*+ (y — b)* + (2 — ¢)%.
or or Or OPr  O*r

Find the value of g + 8_y + 5 Also find the value of 922 + a_yz
0%r

922
(4) Find the total differential of y = u".

_|_

(5) Find the total differential of y = u®sinv; of y = (sinz)*; and of
log, u

y= :
(%

(6) Verify that the sum of three quantities x, y, z, whose product is

a constant k, is maximum when these three quantities are equal.

(7) Find the maximum or minimum of the function

u=x+2xy+y.

(8) The post-office regulations state that no parcel is to be of such
a size that its length plus its girth exceeds 6 feet. What is the great-
est volume that can be sent by post (a) in the case of a package of
rectangular cross section; (b) in the case of a package of circular cross

section.

(9) Divide 7 into 3 parts such that the continued product of their

sines may be a maximum or minimum.
x+y

(10) Find the maximum or minimum of u = :
Ty
(11) Find maximum and minimum of

u=1y+2x —2log,.y — log, z.

(12) A telpherage bucket of given capacity has the shape of a hor-

izontal isosceles triangular prism with the apex underneath, and the
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opposite face open. Find its dimensions in order that the least amount

of iron sheet may be used in its construction.



CHAPTER XVIIL.

INTEGRATION.

THE great secret has already been revealed that this mysterious sym-
bol / , which is after all only a long S, merely means “the sum of,” or
“the sum of all such quantities as.” It therefore resembles that other
symbol } (the Greek Sigma), which is also a sign of summation. There
is this difference, however, in the practice of mathematical men as to
the use of these signs, that while > is generally used to indicate the
sum of a number of finite quantities, the integral sign / is generally
used to indicate the summing up of a vast number of small quantities of
indefinitely minute magnitude, mere elements in fact, that go to make
up the total required. Thus /dy =y, and /dx = .

Any one can understand how the whole of anything can be conceived
of as made up of a lot of little bits; and the smaller the bits the more of
them there will be. Thus, a line one inch long may be conceived as made
up of 10 pieces, each % of an inch long; or of 100 parts, each part being

1 - . BRI 1
705 Of an inch long; or of 1,000,000 parts, each of which is 1,000,000 of
an inch long; or, pushing the thought to the limits of conceivability, it
may be regarded as made up of an infinite number of elements each of
which is infinitesimally small.

Yes, you will say, but what is the use of thinking of anything that
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way? Why not think of it straight off, as a whole? The simple reason is
that there are a vast number of cases in which one cannot calculate the
bigness of the thing as a whole without reckoning up the sum of a lot
of small parts. The process of “integrating” is to enable us to calculate
totals that otherwise we should be unable to estimate directly.

Let us first take one or two simple cases to familiarize ourselves with
this notion of summing up a lot of separate parts.

Consider the series:
I+5+5+3+5+5 5 Tete

Here each member of the series is formed by taking it half the value
of the preceding. What is the value of the total if we could go on to
an infinite number of terms? Every schoolboy knows that the answer

is 2. Think of it, if you like, as a line. Begin with one inch; add a half

N— - O N R

1 1/2 1/4 1/8

FiG. 46.

inch, add a quarter; add an eighth; and so on. If at any point of the
operation we stop, there will still be a piece wanting to make up the

whole 2 inches; and the piece wanting will always be the same size as

1

the last piece added. Thus, if after having put together 1, 5, and i, we

stop, there will be i wanting. If we go on till we have added 6—14, there
will still be 6—14 wanting. The remainder needed will always be equal to
the last term added. By an infinite number of operations only should

we reach the actual 2 inches. Practically we should reach it when we
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got to pieces so small that they could not be drawn—that would be

after about 10 terms, for the eleventh term is If we want to go

.
so far that not even a Whitworth’s measuring machine would detect it,
we should merely have to go to about 20 terms. A microscope would
not show even the 18" term! So the infinite number of operations is no
such dreadful thing after all. The integral is simply the whole lot. But,
as we shall see, there are cases in which the integral calculus enables us
to get at the exact total that there would be as the result of an infinite
number of operations. In such cases the integral calculus gives us a
rapid and easy way of getting at a result that would otherwise require

an interminable lot of elaborate working out. So we had best lose no

time in learning how to integrate.

Slopes of Curves, and the Curves themselves.

Let us make a little preliminary enquiry about the slopes of curves.
For we have seen that differentiating a curve means finding an expres-
sion for its slope (or for its slopes at different points). Can we perform
the reverse process of reconstructing the whole curve if the slope (or
slopes) are prescribed for us?

Go back to case (2) on p. 82. Here we have the simplest of curves,

a sloping line with the equation

y = ax + b.

We know that here b represents the initial height of y when =z = 0,

d
and that a, which is the same as —y, is the “slope” of the line. The line

dx
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Fic. 47.

has a constant slope. All along it the elementary triangles A dy

dr
have the same proportion between height and base. Suppose we were

to take the dx’s, and dy’s of finite magnitude, so that 10 dx’s made up

one inch, then there would be ten little triangles like

A AAAAAAA A ]

Now, suppose that we were ordered to reconstruct the “curve,”

d
starting merely from the information that d—y = a. What could we
x

do? Still taking the little d’s as of finite size, we could draw 10 of them,

all with the same slope, and then put them together, end to end, like
this: And, as the slope is the same for all, they would join to make, as
in Fig. 48, a sloping line sloping with the correct slope % = a. And
whether we take the dy’s and dx’s as finite or infinitely small, as they
are all alike, clearly % = a, if we reckon y as the total of all the dy’s,

and x as the total of all the dz’s. But whereabouts are we to put this
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)
>

Fia. 48.

sloping line? Are we to start at the origin O, or higher up? As the only
information we have is as to the slope, we are without any instructions
as to the particular height above O; in fact the initial height is unde-
termined. The slope will be the same, whatever the initial height. Let
us therefore make a shot at what may be wanted, and start the sloping

line at a height C' above O. That is, we have the equation
y=ax+C.

It becomes evident now that in this case the added constant means
the particular value that y has when x = 0.

Now let us take a harder case, that of a line, the slope of which is
not constant, but turns up more and more. Let us assume that the

upward slope gets greater and greater in proportion as x grows. In
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symbols this is:

dy
= =ax.
dx
Or, to give a concrete case, take a = %, so that
dy
— = :izx.
de 5

Then we had best begin by calculating a few of the values of the

slope at different values of z, and also draw little diagrams of them.

When r =0, Z—i =0,
=1, Z—Z =0.2,
d
r=2, % — 0.4,
c—3 W_gg

dx

dy
dx

dy
dx

Now try to put the pieces together, setting each so that the middle

AN

= 1.0.

of its base is the proper distance to the right, and so that they fit
together at the corners; thus (Fig. 49). The result is, of course, not
a smooth curve: but it is an approximation to one. If we had taken
bits half as long, and twice as numerous, like Fig. 50, we should have a
better approximation. But for a perfect curve we ought to take each dx

and its corresponding dy infinitesimally small, and infinitely numerous.



CALCULUS MADE EASY 186

P

£

Fia. 49.

Then, how much ought the value of any y to be? Clearly, at any
point P of the curve, the value of y will be the sum of all the little dy’s
from 0 up to that level, that is to say, /dy = y. And as each dy is

equal to %x -dz, it follows that the whole y will be equal to the sum of

all such bits as %x -dx, or, as we should write it, / %$ dx.

Now if x had been constant, / %m - dxr would have been the same

as %x/dx, or %xQ. But x began by being 0, and increases to the

Y
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particular value of = at the point P, so that its average value from 0 to

s 1 _ 1,2, _ 1.2

that point is jz. Hence [ txdr = {52°; or y = j52°.
But, as in the previous case, this requires the addition of an unde-
termined constant C', because we have not been told at what height
above the origin the curve will begin, when x = 0. So we write, as the

equation of the curve drawn in Fig. 51,

y:%xQ—I—C.

FiG. 51.

Ezxercises XVI.  (See page 264 for Answers.)

. . 2,1 .1, 1 1
(1) Find the ultimate sum of £ + 3 + 5 + 5 + 5; + etc
2) Show that the series 1 — 2 +1 -1 4114 1ete isconvergent,
273 14 Ts5 67
and find its sum to 8 terms.
22 23 4
(3) Iflog (1 +2) =2 — — + — — — + etc., find log, 1.3.

2 3 4
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(4) Following a reasoning similar to that explained in this chapter,
find v,
d d
(a) if % =1z; (b)if d—z = CosT.

d
(5) If d—i = 22 + 3, find y.



CHAPTER XVIIIL

INTEGRATING AS THE REVERSE OF
DIFFERENTIATING.

DIFFERENTIATING is the process by which when y is given us (as a
function of x), we can find d_y
x

Like every other mathematical operation, the process of differentia-

d )
tion may be reversed; thus, if differentiating y = 2* gives us d—y = 423,
T

if one begins with @ = 423 one would say that reversing the process
would yield y = 2*. But here comes in a curious point. We should get
% = 423 if we had begun with any of the following: z*, or z* + a,
or z* + ¢, or #* with any added constant. So it is clear that in working
backwards from d_z to y, one must make provision for the possibility
of there being an added constant, the value of which will be unde-
termined until ascertained in some other way. So, if differentiating x"
yields nz" ™!, going backwards from % = na" ! will give us y = 2" +C;
where C' stands for the yet undetermined possible constant.

Clearly, in dealing with powers of =, the rule for working backwards
will be: Increase the power by 1, then divide by that increased power,

and add the undetermined constant.
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So, in the case where
dy n
— = ,
dx

working backwards, we get

1
y=——a""+C.

n+1
If differentiating the equation y = ax™ gives us
dy n—1
— =anx""",
dx
it is a matter of common sense that beginning with
dy n—1
— =anx""",
dx

and reversing the process, will give us

y=ax".

So, when we are dealing with a multiplying constant, we must simply
put the constant as a multiplier of the result of the integration.

Thus, if Z—i = 422, the reverse process gives us y = %:pS.

But this is incomplete. For we must remember that if we had started
with

y=ax" + C,

where C' is any constant quantity whatever, we should equally have
found

dy 1

e
= =anz" .
dzx

So, therefore, when we reverse the process we must always remember
to add on this undetermined constant, even if we do not yet know what

its value will be.
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This process, the reverse of differentiating, is called integrating; for
it consists in finding the value of the whole quantity y when you are
given only an expression for dy or for ﬁ Hitherto we have as much as
possible kept dy and dx together as a differential coefficient: henceforth
we shall more often have to separate them.

If we begin with a simple case,

Yo

We may write this, if we like, as
dy = 2% dz.

Now this is a “differential equation” which informs us that an ele-
ment of y is equal to the corresponding element of z multiplied by z2.
Now, what we want is the integral; therefore, write down with the

proper symbol the instructions to integrate both sides, thus:

/dy:/xde.

[Note as to reading integrals: the above would be read thus:
“Integral dee-wy equals integral eks-squared dee-eks.”]

We haven’t yet integrated: we have only written down instructions
to integrate—if we can. Let us try. Plenty of other fools can do it—why
not we also? The left-hand side is simplicity itself. The sum of all the

bits of y is the same thing as y itself. So we may at once put:

y:/:BQd:v.
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But when we come to the right-hand side of the equation we must
remember that what we have got to sum up together is not all the dx’s,

but all such terms as 22 dz; and this will not be the same as x> / dx,

because z2 is not a constant. For some of the dz’s will be multiplied
by big values of 22, and some will be multiplied by small values of 2,
according to what = happens to be. So we must bethink ourselves as
to what we know about this process of integration being the reverse
of differentiation. Now, our rule for this reversed process—see p. 189
ante—when dealing with x™ is “increase the power by one, and divide
by the same number as this increased power.” That is to say, 2% dx will
be changed* to %x?’. Put this into the equation; but don’t forget to add

the “constant of integration” C' at the end. So we get:

y:%$3+C.

You have actually performed the integration. How easy!

Let us try another simple case.

d_y_ 12

Let =axr”,
dx

where a is any constant multiplier. Well, we found when differentiat-

ing (see p. 27) that any constant factor in the value of y reappeared

*You may ask, what has become of the little dx at the end? Well, remember
that it was really part of the differential coefficient, and when changed over to the
right-hand side, as in the z?dx, serves as a reminder that z is the independent
variable with respect to which the operation is to be effected; and, as the result of
the product being totalled up, the power of x has increased by one. You will soon

become familiar with all this.
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d
unchanged in the value of d—y In the reversed process of integrating, it
x
will therefore also reappear in the value of y. So we may go to work as

before, thus

dy = ax'? - dz,

/dy—/ 12 du,
/dy:a/xwdx,

y=ax g 1313—4—0

So that is done. How easy!

We begin to realize now that integrating is a process of finding our
way back, as compared with differentiating. If ever, during differentiat-
ing, we have found any particular expression—in this example az'?—we
can find our way back to the y from which it was derived. The contrast
between the two processes may be illustrated by the following remark
due to a well-known teacher. If a stranger were set down in Trafalgar
Square, and told to find his way to Euston Station, he might find the
task hopeless. But if he had previously been personally conducted from
Euston Station to Trafalgar Square, it would be comparatively easy to

him to find his way back to Euston Station.

Integration of the Sum or Difference of two Functions.

d
Let Y2y
dx

then dy = 2 dx + 23 dx.
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There is no reason why we should not integrate each term separately:
for, as may be seen on p. 34, we found that when we differentiated the
sum of two separate functions, the differential coefficient was simply the
sum of the two separate differentiations. So, when we work backwards,
integrating, the integration will be simply the sum of the two separate
integrations.

Our instructions will then be:

/dy:/($2+x3)dx
:/dex—l—/:c?’dx

y:%x3+}lx4+a

If either of the terms had been a negative quantity, the correspond-
ing term in the integral would have also been negative. So that differ-

ences are as readily dealt with as sums.

How to deal with Constant Terms.

Suppose there is in the expression to be integrated a constant term—

such as this:
dy
—~ =z" +0b.
I xr +

This is laughably easy. For you have only to remember that when
you differentiated the expression y = ax, the result was d_y = a. Hence,

x
when you work the other way and integrate, the constant reappears
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multiplied by z. So we get

dy =x"dr+b-dzx,

/dy—/:v d:E—l—/bdx

= 2" 4 b+ C.
n+1

195

Here are a lot of examples on which to try your newly acquired

powers.

Ezxamples.

d
(1) Given d—y = 24z'"". Find y. Ans. y =222+ C.
T

(2) Find / a+b)(x+1)du. It is (a+b)/(m+ 1) dx

2
or (a+0b) [/xdw—l—/dm] or a—l—b)(%—i—x)qLC’.

(3) Given a = gt2. Find u. Ans. u = %gt% +C.

d
(4) di 3 — 2? + . Find y.

dy = (2° —2° + z)dx or

dy = 23 do — 2 do + x dx; y:/x3dx—/x2dx+/xdx;

and Yy = ix‘l — %x?’ + %mQ +C.

(5) Integrate 9.752*2° dz. Ans. y = 32%% + C.
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All these are easy enough. Let us try another case.

dy

Let i ax

Proceeding as before, we will write

dy = az™ ' - dz, /dy = a/:cl dx.

Well, but what is the integral of =1 dx?

If you look back amongst the results of differentiating 2% and 23
and 2", etc., you will find we never got ! from any one of them as
the value of % We got 322 from 22; we got 2z from z?; we got 1
from z! (that is, from z itself); but we did not get =! from 2°, for
two very good reasons. First, z° is simply = 1, and is a constant, and
could not have a differential coefficient. Secondly, even if it could be
differentiated, its differential coefficient (got by slavishly following the

! and that multiplication by zero gives it

usual rule) would be 0 x x~
zero value! Therefore when we now come to try to integrate = dx, we

see that it does not come in anywhere in the powers of x that are given

1
/x”dmz e
n—+1

It is an exceptional case.

by the rule:

Well; but try again. Look through all the various differentials ob-
tained from various functions of z, and try to find amongst them x .
A sufficient search will show that we actually did get d—y = 27! as the

x

result of differentiating the function y = log, x (see p. 145).
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Then, of course, since we know that differentiating log,  x gives
us 7!, we know that, by reversing the process, integrating dy = x~! dx
will give us y = log, x. But we must not forget the constant factor a
that was given, nor must we omit to add the undetermined constant of

integration. This then gives us as the solution to the present problem,
y=alog .z + C.

N.B.—Here note this very remarkable fact, that we could not have
integrated in the above case if we had not happened to know the cor-
responding differentiation. If no one had found out that differentiating
log, z gave !, we should have been utterly stuck by the problem how
to integrate 7! dx. Indeed it should be frankly admitted that this is
one of the curious features of the integral calculus:—that you can’t in-
tegrate anything before the reverse process of differentiating something
else has yielded that expression which you want to integrate. No one,
even to-day, is able to find the general integral of the expression,

@ o 2

—T
=a
dx ’

because a~* has never yet been found to result from differentiating

anything else.

Another simple case.

Find /(m +1)(x + 2) dz.

On looking at the function to be integrated, you remark that it
is the product of two different functions of . You could, you think,
integrate (z+1) dz by itself, or (z+42) dx by itself. Of course you could.

But what to do with a product? None of the differentiations you have
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learned have yielded you for the differential coefficient a product like
this. Failing such, the simplest thing is to multiply up the two functions,

and then integrate. This gives us
/(x2 + 3z + 2) dx.
And this is the same as
/x2daj+/3xdm+/2dm.
And performing the integrations, we get

%xg + %xz + 22+ C.

Some other Integrals.

Now that we know that integration is the reverse of differentiation,
we may at once look up the differential coefficients we already know, and
see from what functions they were derived. This gives us the following

integrals ready made:

z7t (p. 145); /x_ldx =log .z + C.

! (p. 145); / ! dr =log (x+a)+C
r+a O ’ Ttag L TR '
€’ (p. 139); /e‘” dx ="+ C.

e’ /6_9” de =—-€"4+C
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1 dy €@ x0—1x¢€"

forify=——, <Z4=_ =),

(for ity = =, 2 T — e
sinz  (p. 165); /smxda: = —cosx + C.
cosz (p. 163); /cosxdx =sinz + C.

Also we may deduce the following;:

log, x; /logE rdr =a(log.x—1)+C
. dy «x
(forif y =xlog.x —x, — =—+log.x—1=log, z).
dr =z
logyo x; /loglo xdr = 0.4343x(log.x — 1) + C.
a.’l‘
v . 146); “d =
L.
COS ax; / cosardr = —sinax + C
a

(for if y = sinax, = acos ar; hence to get cosax one must differen-

| dr
tiate y = —sinax).
a

1
sin ax; /sinaxdx = ——cosax + C.
a
Try also cos? 0; a little dodge will simplify matters:

c0820 = cos® 0 —sin? @ = 2cos? 6 — 1;

hence cos? = 1(cos20 + 1),
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and /0052 0do = %/(cos 20+ 1)do

:%/60829d9~|—%/d9.

in 2
- SH; i + g + C. (See also p. 225).

See also the Table of Standard Forms on pp. 249-251. You should
make such a table for yourself, putting in it only the general functions
which you have successfully differentiated and integrated. See to it that

it grows steadily!

On Double and Triple Integrals.

In many cases it is necessary to integrate some expression for two or
more variables contained in it; and in that case the sign of integration

appears more than once. Thus,

//f(:v,y,)da?dy

means that some function of the variables x and y has to be integrated
for each. It does not matter in which order they are done. Thus, take

the function 2 + y%. Integrating it with respect to x gives us:
/(332 + ) dz = $2° + zy’.
Now, integrate this with respect to y:

/(%903 +ay?) dy = S’y + sxy?,
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to which of course a constant is to be added. If we had reversed the
order of the operations, the result would have been the same.
In dealing with areas of surfaces and of solids, we have often to

integrate both for length and breadth, and thus have integrals of the

//u-da:dy,

where u is some property that depends, at each point, on x and on y.

form

This would then be called a surface-integral. It indicates that the value
of all such elements as u - dz - dy (that is to say, of the value of u over
a little rectangle dz long and dy broad) has to be summed up over the
whole length and whole breadth.

Similarly in the case of solids, where we deal with three dimen-
sions. Consider any element of volume, the small cube whose dimen-
sions are dx dy dz. If the figure of the solid be expressed by the function

f(z,y, ), then the whole solid will have the volume-integral,

Volume:///f(x,y,z)-dm-dy-dz.

Naturally, such integrations have to be taken between appropriate lim-
its* in each dimension; and the integration cannot be performed unless
one knows in what way the boundaries of the surface depend on z, vy,
and z. If the limits for x are from x; to xs, those for y from y; to ys,

and those for z from 2; to 2o, then clearly we have

22 y2 2
volume = / / / flz,y,2) - dx - dy - dz.
z1 yl zl

*See p. 206 for integration between limits.
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There are of course plenty of complicated and difficult cases; but, in
general, it is quite easy to see the significance of the symbols where they
are intended to indicate that a certain integration has to be performed

over a given surface, or throughout a given solid space.

FEzercises XVII.  (See p. 264 for the Answers.)

(1) Find /yd:x when y? = 4az.

1
(2) Find /%dw. (3) Find /ax?’ dz.
_7
(4) Find /(:Jc2+a) dr. (5) Integrate 5z~ 2.

(6) Find /(43:3 + 3% + 2z + 1) du.

dy ax bx* ca?
NIf—=—+—+—:;findy.
Gy =5 T+ findy

(8) Find / (xz +a> dz. (9) Find / (z +3)? da.

xr+a

(10) Find /(m +2)(x —a)dx.

(11) Find /(\/E+ Vx)3a® dx.

do

(12) Find /(sin@ —3) 3

(13) Find / cos® afl db. (14) Find / sin? 0 df.
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15) Find [ sin®a# dé. 16) Find [ €**dx.
(15)

(17) Find/ldx (18) Find/ldx .

+a —x




CHAPTER XIX.

ON FINDING AREAS BY INTEGRATING.

ONE use of the integral calculus is to enable us to ascertain the values
of areas bounded by curves.

Let us try to get at the subject bit by bit.
Y

A

P
4]

Y1

Y2

M N
O;\/d

N |

——
L2

Fia. 52.

Let AB (Fig. 52) be a curve, the equation to which is known. That
is, y in this curve is some known function of x. Think of a piece of the

curve from the point P to the point Q.
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Let a perpendicular PM be dropped from P, and another QN from
the point (). Then call OM = z; and ON = x5, and the ordinates
PM =y, and QN = y5. We have thus marked out the area PQN M
that lies beneath the piece PQ). The problem is, how can we calculate
the value of this area?

The secret of solving this problem is to conceive the area as be-
ing divided up into a lot of narrow strips, each of them being of the
width dz. The smaller we take dx, the more of them there will be
between x; and x5. Now, the whole area is clearly equal to the sum of
the areas of all such strips. Our business will then be to discover an
expression for the area of any one narrow strip, and to integrate it so
as to add together all the strips. Now think of any one of the stri@l/_k_
will be like this: being bounded between two vertical sides,
with a flat bottom dx, and with a slightly curved sloping top.
Suppose we take its average height as being y; then, as its
width is dx, its area will be y dx. And seeing that we may take

the width as narrow as we please, if we only take it narrow

enough its average height will be the same as the height at the

middle of it. Now let us call the unknown value of the whole
area S, meaning surface. The area of one strip will be simply a bit of

the whole area, and may therefore be called dS. So we may write
area of 1 strip =dS =y - dx.

If then we add up all the strips, we get

total area S = /dS = /ydm.
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So then our finding S depends on whether we can integrate y-dx for
the particular case, when we know what the value of y is as a function
of x.

For instance, if you were told that for the particular curve in ques-
tion y = b+ az?, no doubt you could put that value into the expression
and say: then I must find [ (b+ az?)dx.

That is all very well; but a little thought will show you that some-
thing more must be done. Because the area we are trying to find is not
the area under the whole length of the curve, but only the area limited
on the left by PM, and on the right by QN it follows that we must
do something to define our area between those ‘limits.’

This introduces us to a new notion, namely that of integrating be-
tween limits. We suppose = to vary, and for the present purpose we do
not require any value of z below x; (that is OM), nor any value of x
above x5 (that is ON). When an integral is to be thus defined between
two limits, we call the lower of the two values the inferior limit, and the
upper value the superior limit. Any integral so limited we designate as
a definite integral, by way of distinguishing it from a general integral
to which no limits are assigned.

In the symbols which give instructions to integrate, the limits are
marked by putting them at the top and bottom respectively of the sign

of integration. Thus the instruction

T=x9
/ y - dx
r=x1

will be read: find the integral of y - dx between the inferior limit x; and

the superior limit x».
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Sometimes the thing is written more simply

xg
/ y - dx.
z1

Well, but how do you find an integral between limits, when you have
got these instructions?

Look again at Fig. 52 (p. 204). Suppose we could find the area under
the larger piece of curve from A to @, that is from x = 0 to = = 9,
naming the area AQNO. Then, suppose we could find the area under
the smaller piece from A to P, that is from z = 0 to x = x{, namely
the area APMO. If then we were to subtract the smaller area from
the larger, we should have left as a remainder the area PQN M, which
is what we want. Here we have the clue as to what to do; the definite
integral between the two limits is the difference between the integral
worked out for the superior limit and the integral worked out for the
lower limit.

Let us then go ahead. First, find the general integral thus:

/ ydz,
and, as y = b+ ax? is the equation to the curve (Fig. 52),
/(b + ax?) dx

is the general integral which we must find.

Doing the integration in question by the rule (p. 193), we get
br + gm3 +

and this will be the whole area from 0 up to any value of x that we

may assign.
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Therefore, the larger area up to the superior limit x5 will be

a
bxy + §x§ +C;

and the smaller area up to the inferior limit z; will be

a

bl‘1+3

i + C.
Now, subtract the smaller from the larger, and we get for the area S
the value,
a3 3
area S = b(xy — x1) + §<x2 — 7).

This is the answer we wanted. Let us give some numerical values.

Suppose b = 10, a = 0.06, and x5, = 8 and x; = 6. Then the area S is
equal to

0.06
10(8 — 6) + T(83 —6%)

=20+ 0.02(512 — 216)
=20+ 0.02 x 296
=20+ 5.92

= 25.92.

Let us here put down a symbolic way of stating what we have as-

T=T9
/ ydr = ys — 1,
=T

where 15 is the integrated value of y dx corresponding to x5, and y; that

certained about limits:

corresponding to .



FINDING AREAS BY INTEGRATING 209

All integration between limits requires the difference between two
values to be thus found. Also note that, in making the subtraction the

added constant C' has disappeared.

Examples.

(1) To familiarize ourselves with the process, let us take a case of
which we know the answer beforehand. Let us find the area of the
triangle (Fig. 53), which has base z = 12 and height y = 4. We know

beforehand, from obvious mensuration, that the answer will come 24.

)
1 7
T 1 : P 4
T L I
Of———— — 7
12
Fia. 53.

Now, here we have as the “curve” a sloping line for which the equa-
tion is
L

The area in question will be

=12 =12
/ y-dr = / -dx.
x=0 x=0

Integrating % dx (p. 192), and putting down the value of the general

wls

integral in square brackets with the limits marked above and below, we
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get

r r=12
area = . xz} +C

210

Let us satisfy ourselves about this rather surprising dodge of cal-

culation, by testing it on a simple example. Get some squared paper,

preferably some that is ruled in little squares of one-eighth inch or one-

Y
5
4
L
3
L1

2

L1
1

L1

[0) 3 6 9 12

Fic. 54.

tenth inch each way. On this squared paper plot out the graph of the

equation,

T
=3
The values to be plotted will be:
x 0 3 6 9 12
Y 0 1 2 3 4
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The plot is given in Fig. 54.

Now reckon out the area beneath the curve by counting the little
squares below the line, from x = 0 as far as x = 12 on the right. There
are 18 whole squares and four triangles, each of which has an area equal
to 1% squares; or, in total, 24 squares. Hence 24 is the numerical value
of the integral of % dzx between the lower limit of x = 0 and the higher
limit of x = 12.

As a further exercise, show that the value of the same integral be-
tween the limits of x = 3 and x = 15 is 36.

Y

a O T
FiG. 55.

(2) Find the area, between limits x = z; and = = 0, of the curve

b
r+a

y:
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T+ a

= blog Ans.

€

N.B.—Notice that in dealing with definite integrals the constant C'
always disappears by subtraction.

Let it be noted that this process of subtracting one part from a
larger to find the difference is really a common practice. How do you

find the area of a plane ring (Fig. 56), the outer radius of which is 7

)

FiGc. 56.

and the inner radius is 77 You know from mensuration that the area
of the outer circle is 7r3; then you find the area of the inner circle, 7r?;
then you subtract the latter from the former, and find area of ring

= m(r3 — r}); which may be written
m(re 4 r1)(re —r1)
= mean circumference of ring x width of ring.
(3) Here’s another case—that of the die-away curve (p. 153). Find

the area between x = 0 and « = a, of the curve (Fig. 57) whose equation

18
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The integration (p. 198) gives

=0 [_e_ﬂo
=b[—e " — (=]
=b(1—€).
p
Y
4t
P2
0 — — X
a v2
Fic. 57. Fic. 58.

(4) Another example is afforded by the adiabatic curve of a perfect
gas, the equation to which is pv™ = ¢, where p stands for pressure, v for
volume, and n is of the value 1.42 (Fig. 58).

Find the area under the curve (which is proportional to the work

done in suddenly compressing the gas) from volume vy to volume v;.
V=09
area = / cv " - dv
v

1 2
=c i
=

v1

Here we have
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An Ezxercise.
Prove the ordinary mensuration formula, that the area A of a circle

whose radius is R, is equal to wR2.

Consider an elementary zone or annulus of the surface (Fig. 59), of
breadth dr, situated at a distance r from the centre. We may consider
the entire surface as consisting of such narrow zones, and the whole
area A will simply be the integral of all such elementary zones from
centre to margin, that is, integrated from r =0 to r = R.

We have therefore to find an expression for the elementary area dA
of the narrow zone. Think of it as a strip of breadth dr, and of a length
that is the periphery of the circle of radius r, that is, a length of 27r.

Then we have, as the area of the narrow zone,
dA = 27rdr.

Hence the area of the whole circle will be:

r=R r=R
A:/dA:/ 27rr-d7“:27r/ r-dr.
r=0 r=0
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Now, the general integral of r - dr is %rQ. Therefore,

A= 27T[%7’2]:zf;

or A= QW[%RZ — %(0)2};

whence A=r1R2

Another Exercise.
Let us find the mean ordinate of the positive part of the curve

y = x — 22, which is shown in Fig. 60. To find the mean ordinate, we

Y M
1/4
| N
@ T~
4 1
Fia. 60.

shall have to find the area of the piece OM N, and then divide it by
the length of the base ON. But before we can find the area we must
ascertain the length of the base, so as to know up to what limit we are
to integrate. At N the ordinate y has zero value; therefore, we must
look at the equation and see what value of x will make y = 0. Now,
clearly, if z is 0, y will also be 0, the curve passing through the origin O;
but also, if x = 1, y = 0; so that x = 1 gives us the position of the
point V.
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Then the area wanted is

But the base length is 1.

1

5

[N.B.—It will be a pretty and simple exercise in maxima and minima

Therefore, the average ordinate of the curve =

to find by differentiation what is the height of the maximum ordinate.
It must be greater than the average.]
The mean ordinate of any curve, over a range from x = 0 to x = zy,

is given by the expression,
T=x1

mean y = — y - dx.
x]. =0

One can also find in the same way the surface area of a solid of

revolution.

Ezxample.

The curve y = 2% — 5 is revolving about the axis of . Find the area
of the surface generated by the curve between z = 0 and = = 6.

A point on the curve, the ordinate of which is y, describes a circum-
ference of length 27y, and a narrow belt of the surface, of width dz,
corresponding to this point, has for area 27wy dx. The total area is

=6 =6 3 6
27?/ ydx:27r/ (2% = 5)dr =27 [w——5x]
=0 =0 3 0
= 6.28 x 42 = 263.76.
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Areas in Polar Coordinates.

When the equation of the boundary of an area is given as a function
of the distance r of a point of it from a fixed point O (see Fig. 61) called

the pole, and of the angle which r makes with the positive horizontal

B A

/s

O X

FiGa. 61.

direction OX, the process just explained can be applied just as easily,
with a small modification. Instead of a strip of area, we consider a
small triangle OAB, the angle at O being df, and we find the sum of
all the little triangles making up the required area.

The area of such a small triangle is approximately — X r or

rdf
5 x r; hence the portion of the area included between the curve and

two positions of r corresponding to the angles #; and 6, is given by

9=05
% / r?de.
0=0,

Ezxamples.

(1) Find the area of the sector of 1 radian in a circumference of

radius a inches.
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The polar equation of the circumference is evidently » = a. The

0=05 2 =1 2
1 / 2do="% [ dp="2
0=6, 2 Jo—o 2

area is

(2) Find the area of the first quadrant of the curve (known as “Pas-

cal’s Snail”), the polar equation of which is 7 = a(1 + cos6).

Area =

=T
1/ i a*(1+ cos ) do
0

=0
@2 [0=%

2
—/ (14 2cosf + cos” §) do
2 Jo=o
2 0 sin207?
%[9+2sm9+—+sm
a

2" Ta |,
2(3m +8)
—

Volumes by Integration.

What we have done with the area of a little strip of a surface, we
can, of course, just as easily do with the volume of a little strip of a
solid. We can add up all the little strips that make up the total solid,
and find its volume, just as we have added up all the small little bits

that made up an area to find the final area of the figure operated upon.

Ezxamples.
(1) Find the volume of a sphere of radius r.
A thin spherical shell has for volume 4722 dx (see Fig. 59, p. 214);

summing up all the concentric shells which make up the sphere, we
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have

xr=

volume sphere = /

r 1'3 T
Ara? dx = 4 {—} = 273,
x=0 3

3
0

4\

|

Fia. 62.

We can also proceed as follows: a slice of the sphere, of thickness dzx,

has for volume 7my? dx (see Fig. 62). Also x and y are related by the

expression
T
Hence volume sphere = 2 / 7(r? — 2*) dx
=0
:27r{/ erx—/ xde}
=0 x=0
21" 4w
=21 |rx — —| = —».
sl

(2) Find the volume of the solid generated by the revolution of the

curve y? = 6z about the axis of x, between x = 0 and = = 4.
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The volume of a strip of the solid is my? dx.

=4 =4
Hence volume = / my? dr = 67 / xdx

=0 =0

132 4
= 6 {—} = 487 = 150.8.
2 0

On Quadratic Means.

In certain branches of physics, particularly in the study of alternat-
ing electric currents, it is necessary to be able to calculate the quadratic
mean of a variable quantity. By “quadratic mean” is denoted the square
root of the mean of the squares of all the values between the limits con-
sidered. Other names for the quadratic mean of any quantity are its
“virtual” value, or its “R.M.S.” (meaning root-mean-square) value. The
French term is valeur efficace. If y is the function under consideration,
and the quadratic mean is to be taken between the limits of x = 0 and

x = [; then the quadratic mean is expressed as
1/
¥ 7 / y?dx.
0

Examples.
(1) To find the quadratic mean of the function y = ax (Fig. 63).

!
Here the integral is / a’z® dz, which is $a*03.

0
Dividing by [ and taking the square root, we have

quadratic mean = al.

1
V3



FINDING AREAS BY INTEGRATING 221

l
FiG. 63.

1

sal; and the ratio of quadratic to

Here the arithmetical mean is

2
arithmetical mean (this ratio is called the form-factor) is % = 1.155.
(2) To find the quadratic mean of the function y = x°.
=l 2a+1
l

The integral is / 22 dz, that is
=0 a + 1

lQa
H drati — f/ .
ence JquadratiC mean 2a T 1

(3) To find the quadratic mean of the function y = a2.

=l =l
The integral is / (a?)?dz, that is / a® dx,

N8

=0 =0
a® =l
log.a],_,
L1
which is a4 .
log. a
-1
. . o
Hence the quadratic mean is .
llog, a

FEzercises XVIII.  (See p. 265 for Answers.)

1) Find the area of the curve y = 2> + x — 5 between z = 0 and
Yy

x = 6, and the mean ordinates between these limits.
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(2) Find the area of the parabola y = 2a\/r between x = 0 and
x = a. Show that it is two-thirds of the rectangle of the limiting

ordinate and of its abscissa.

(3) Find the area of the positive portion of a sine curve and the

mean ordinate.

(4) Find the area of the positive portion of the curve y = sin® z, and

find the mean ordinate.

(5) Find the area included between the two branches of the curve
y=a>+ 2% from x = 0 to x = 1, also the area of the positive portion

of the lower branch of the curve (see Fig. 30, p. 106).
(6) Find the volume of a cone of radius of base r, and of height h.

(7) Find the area of the curve y = z* — log, x between z = 0 and
r =1
(8) Find the volume generated by the curve y = 1+ 22, as it

revolves about the axis of z, between x = 0 and x = 4.

(9) Find the volume generated by a sine curve revolving about the

axis of z. Find also the area of its surface.

(10) Find the area of the portion of the curve zy = a included be-

tween £ = 1 and z = a. Find the mean ordinate between these limits.

(11) Show that the quadratic mean of the function y = sin , between

2
the limits of 0 and 7 radians, is - Find also the arithmetical mean
of the same function between the same limits; and show that the form-

factor is = 1.11.
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(12) Find the arithmetical and quadratic means of the function x? +

3z + 2, from z =0 to z = 3.

(13) Find the quadratic mean and the arithmetical mean of the func-
tion y = A;sinx + A; sin 3z.

(14) A certain curve has the equation y = 3.42¢>2'%. Find the area
included between the curve and the axis of x, from the ordinate at x = 2

to the ordinate at x = 8. Find also the height of the mean ordinate of

the curve between these points.

(15) Show that the radius of a circle, the area of which is twice the
area of a polar diagram, is equal to the quadratic mean of all the values

of r for that polar diagram.

(16) Find the volume generated by the curve y = :I:%\/x(lo —x)

rotating about the axis of x.



CHAPTER XX.

DODGES, PITFALLS, AND TRIUMPHS.

Dodges. A great part of the labour of integrating things consists in
licking them into some shape that can be integrated. The books—and
by this is meant the serious books—on the Integral Calculus are full of
plans and methods and dodges and artifices for this kind of work. The

following are a few of them.

Integration by Parts. This name is given to a dodge, the formula

/udx:ux—/xdu—i-(?.

It is useful in some cases that you can’t tackle directly, for it shows

for which is

that if in any case / x du can be found, then / udx can also be found.

The formula can be deduced as follows. From p. 37, we have,
d(uz) = udzr + x du,

which may be written
u(dr) = d(ux) — x du,

which by direct integration gives the above expression.
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Examples.
(1) Find /w - sinw dw.
Write v = w, and for sinw - dw write dx. We shall then have

du = dw, while /Sinw ~dw = —cosw = .

Putting these into the formula, we get

/w-sinwdw:w(—cosw)—/—coswdw

= —wcosw + sinw + C.

(2) Find /xe’” dx.

Write u=uz, €’ dr = dv;
then du = dzx, v=c¢€",
and / ze® dx = re® — / ¢ dzx  (by the formula)

=z’ —e"=€e"(x—1)+C.

(3) Try /COSZQdQ.
u = cos b, cosf df = dv.

Hence du = —sinf d#, v =sinb,

/00829d8—cosﬁsiDQ—i—/sinQ@dQ

+/(1 — cos® 0) db

n 2
in 2
= s1n2 9+/d9—/00529d9.

B 2cosfsind
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in 2
Hence 2/c052 0db = sin 20 +0
in20 0
and /(:os2 I —— -+ C.
4 2
(4) Find /:c2 sin x dz.
Write 2 = u, sinx dr = dv;
then du = 2x dx, V= —CoSx,

/xZSinxdx: —x2cosx+2/xcosxdx.

Now find / x cos x dz, integrating by parts (as in Example 1 above):

/:Ucos.rd:v:xsina:+cos:v+0.

Hence

/wQSinxdx = —z?cosx + 2xsinz + 2cosz + C'

22
=2 {xsinx—l—cosx(l—?)} + .
(5) Find /\/1 — 22 dx.

Write u=+vV1—22, dr=dv

d
then dy = ——22% (see Chap. IX., p. 66)

V1—22
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and x = v; so that

22 dx

N

Here we may use a little dodge, for we can write

/m“:/% /m %

/\/1—x2dx—x\/1—x2—|—

2?2 dx
Adding these two last equations, we get rid of | ———, and we
g a g Vi

have

/mdx_xM+/m

Do you remember meeting it is got by differentiating

dx 0
V1—22

y = arcsinx (see p. 168); hence its integral is arcsinz, and so

V1 — 22
/\/1—x2d$:%+%arcsinx+0.

You can try now some exercises by yourself; you will find some at
the end of this chapter.

Substitution. This is the same dodge as explained in Chap. IX.,

p. 66. Let us illustrate its application to integration by a few examples.

(1) / V3 +xda.

Let 34+x=u, dr=du;

replace /ué du = %u% =23+ :r;)%
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o

d d
Let €’ = u, a_ €', and dx = —u;
dz €*
dx du du du
so that +— = ﬁ = 1 = D) T 1 .
xr —X X X —X u
€+ € €r(e* + € u (u . _)
u
du . . e
—— is the result of differentiating arc tan x.
1+ u?

Hence the integral is arc tan €”.

dz dz dz
B [ 5= = = .
v+ 2z + 3 2+ 22+ 142 (z+1)2 4 (V2)2

Let r+1=u, dr=du;

d d
Y but Y is the result of

2R et

differentiating u = — arctan —.
a a

then the integral becomes /

Hence one has finally — arc tan etl for the value of the given
V2 V2
integral.

Formule of Reduction are special forms applicable chiefly to bino-
mial and trigonometrical expressions that have to be integrated, and
have to be reduced into some form of which the integral is known.

Rationalization, and Factorization of Denominator are dodges ap-
plicable in special cases, but they do not admit of any short or general
explanation. Much practice is needed to become familiar with these
preparatory processes.

The following example shows how the process of splitting into partial

fractions, which we learned in Chap. XIIIL., p. 118, can be made use of

in integration.
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] dx ) .
Take agaln / m, if we Spht m
tions, this becomes (see p. 230):

1 {/ dx _/ dx }
2v=2 ) z+1—-+=2 z+1++/-2
1 o r+1—+/—2
T 2y—2 g€x+1+\/—2’

Notice that the same integral can be expressed sometimes in more than

into partial frac-

one way (which are equivalent to one another).

Pitfalls. A beginner is liable to overlook certain points that a prac-
tised hand would avoid; such as the use of factors that are equivalent to
either zero or infinity, and the occurrence of indeterminate quantities
such as 8. There is no golden rule that will meet every possible case.
Nothing but practice and intelligent care will avail. An example of a
pitfall which had to be circumvented arose in Chap. XVIIIL., p. 189,

when we came to the problem of integrating ! du.

Triumphs. By triumphs must be understood the successes with
which the calculus has been applied to the solution of problems other-
wise intractable. Often in the consideration of physical relations one
is able to build up an expression for the law governing the interac-
tion of the parts or of the forces that govern them, such expression
being naturally in the form of a differential equation, that is an equa-
tion containing differential coefficients with or without other algebraic
quantities. And when such a differential equation has been found, one
can get no further until it has been integrated. Generally it is much
easier to state the appropriate differential equation than to solve it:—

the real trouble begins then only when one wants to integrate, unless
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indeed the equation is seen to possess some standard form of which the
integral is known, and then the triumph is easy. The equation which
results from integrating a differential equation is called* its “solution”;
and it is quite astonishing how in many cases the solution looks as if it
had no relation to the differential equation of which it is the integrated
form. The solution often seems as different from the original expression
as a butterfly does from the caterpillar that it was. Who would have

supposed that such an innocent thing as

dy 1
dr a2 — 12
could blossom out into
1
Yy = —10g€a+x +C7
2a a—zx

yet the latter is the solution of the former.
As a last example, let us work out the above together.

By partial fractions,

Lo 1,
a2 —z2  2a(a+z)  2a(a—z)’
dy = dx dx

2a(a + x) * 2a(a —x)’

_i / dx +/ dx
Y= % a+x a—x

*This means that the actual result of solving it is called its “solution.” But many

mathematicians would say, with Professor Forsyth, “every differential equation is
considered as solved when the value of the dependent variable is expressed as a
function of the independent variable by means either of known functions, or of
integrals, whether the integrations in the latter can or cannot be expressed in terms

of functions already known.”
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1

= - (log,(a +2) — log, (. — 2))
1 a+zx
2a a—x

+C.

Not a very difficult metamorphosis!
There are whole treatises, such as Boole’s Differential Equations,
devoted to the subject of thus finding the “solutions” for different orig-

inal forms.

Ezercises XIX.  (See p. 266 for Answers.)

(1) Find /Mdm. (2) Find /a:logexdx.
(3) Find /w“ log, x dx. (4) Find /ex cos€” du.
(5) Find /icos(logE x)dx. (6) Find /xzex dzx.

(7) Find / @dw (8) Find / xliggx.

(9) Find / %dw. (10) Find / %.
(11) Find /% (12) Find/jfilxl.

dx dx
13) Find . 14) Find | ——.
(13) Fin / 1 —at (14) Fin / v a — bx?




CHAPTER XXI.

FINDING SOME SOLUTIONS.

IN this chapter we go to work finding solutions to some important
differential equations, using for this purpose the processes shown in the
preceding chapters.

The beginner, who now knows how easy most of those processes
are in themselves, will here begin to realize that integration is an art.
As in all arts, so in this, facility can be acquired only by diligent and
regular practice. He who would attain that facility must work out
examples, and more examples, and yet more examples, such as are
found abundantly in all the regular treatises on the Calculus. Our

purpose here must be to afford the briefest introduction to serious work.

Ezxample 1. Find the solution of the differential equation

d
ay—i—b%zo.

Transposing we have
VW _

de Y
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Now the mere inspection of this relation tells us that we have got
to do with a case in which Z—z is proportional to y. If we think of the
curve which will represent y as a function of z, it will be such that its
slope at any point will be proportional to the ordinate at that point,
and will be a negative slope if y is positive. So obviously the curve

will be a die-away curve (p. 153), and the solution will contain e~*

as
a factor. But, without presuming on this bit of sagacity, let us go to
work.

As both y and dy occur in the equation and on opposite sides, we
can do nothing until we get both y and dy to one side, and dx to the
other. To do this, we must split our usually inseparable companions

dy and dx from one another.

dy a
— = —da.
Y b

Having done the deed, we now can see that both sides have got into

a shape that is integrable, because we recognize —y, or — dy, as a differ-
Yy

ential that we have met with (p. 143) when differentiating logarithms.

So we may at once write down the instructions to integrate,

dy a
2 2 dae
/y / b

and doing the two integrations, we have:

log,.y = —%x + log, C,

where log, C' is the yet undetermined constant® of integration. Then,

*We may write down any form of constant as the “constant of integration,” and
the form log, C is adopted here by preference, because the other terms in this line
of equation are, or are treated as logarithms; and it saves complications afterward

if the added constant be of the same kind.
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delogarizing, we get:

y = Ce b7,

which is the solution required. Now, this solution looks quite unlike
the original differential equation from which it was constructed: yet to
an expert mathematician they both convey the same information as to
the way in which y depends on z.

Now, as to the (', its meaning depends on the initial value of y. For
if we put x = 0 in order to see what value y then has, we find that this
makes y = Ce"; and as e ® = 1 we see that C' is nothing else than the
particular value* of y at starting. This we may call yy, and so write the

solution as

Ezample 2.

Let us take as an example to solve

dy
b—:
ay + I g,

where ¢ is a constant. Again, inspecting the equation will suggest,
(1) that somehow or other €” will come into the solution, and (2) that

if at any part of the curve y becomes either a maximum or a minimum,
d
so that d_y = 0, then y will have the value = I But let us go to work
x a

as before, separating the differentials and trying to transform the thing

*Compare what was said about the “constant of integration,” with reference to
Fig. 48 on p. 184, and Fig. 51 on p. 187.
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into some integrable shape.

bd—y— —ay;
dx_g y?
dy 9(2_ )
dx b \a ’
dy a
— = ——dz.
y—24 b
a

Now we have done our best to get nothing but y and dy on one
side, and nothing but dz on the other. But is the result on the left side
integrable?

It is of the same form as the result on p. 145; so, writing the in-
structions to integrate, we have:
by / ¢
. g 2 dz;

and, doing the integration, and adding the appropriate constant,

log, (y — Q) =—Zr+ log, C
a b
whence Yy — g _ Ce’%”‘“;
a
and finally, Yy = g + Ce 57,
a

which is the solution.
If the condition is laid down that y = 0 when = 0 we can find C;

for then the exponential becomes = 1; and we have

0=210,
a

or C=-=.
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Putting in this value, the solution becomes

g _a
=Z(1 —e "),
y="(1-¢€7%)

But further, if z grows indefinitely, y will grow to a maximum; for
when x = 00, the exponential = 0, giving ypax. = J Substituting this,
we get finally ¢

Y = Ymax (1 — € 07).

This result is also of importance in physical science.

Example 3.

d
@ _ g - sin 27nt.

Let b =
e ay + o

We shall find this much less tractable than the preceding. First
divide through by b.

— + %y = %sin 2mnt.

Now, as it stands, the left side is not integrable. But it can be
made so by the artifice—and this is where skill and practice suggest a

plan—of multiplying all the terms by et giving us:
= ge%t - sin 27nt,
b
which is the same as
dy Bty d(ev’) g

ay .
= Z¢€b’ - sin 2mnt;

s TV T
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and this being a perfect differential may be integrated thus:—since, if

o du_dy o d(eb?)
_ t t
CEYE S T TV g

(1

/b -sin 27nt - dt + C,

a
yeb =

_8y

b /ezt -sin 2nt - dt + Ce b [A]

9
b
or y—%

The last term is obviously a term which will die out as ¢ increases,
and may be omitted. The trouble now comes in to find the integral
that appears as a factor. To tackle this we resort to the device (see

p. 224) of integration by parts, the general formula for which is / udv =

uv — /vdu. For this purpose write

a
u = ebt;

dv = sin 27nt - dt.

We shall then have

a a
du = b x — dt;
b
1
v = ——— cos 2mnt.
™

Inserting these, the integral in question becomes:

/ vt . sin 27nt - dt

1 a 1 a
=_—— .evt.cos2mnt — ——Cos27mt-eﬂt-gdt
2mn 2mn b
1 a a,
= ———¢btcos2mnt + —— [ €bt - cos2mnt - dt. [B]

21n 27mnb
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The last integral is still irreducible. To evade the difficulty, repeat

the integration by parts of the left side, but treating it in the reverse
way by writing:

u = sin 27nt;

dv = eb? . dt;

du = 2mn - cos 2mnt - dt;
whence b
V= —6Ft
a

Inserting these, we get

/ezt -sin 27nt - dt
b

. 2mnb
= — . ¢b" -8in2mnt —
a a

/th - cos 2mnt - dt. [C]

Noting that the final intractable integral in [C] is the same as that
2mnb

a

in [B], we may eliminate it, by multiplying [B] by , and multiply-
ing [c] by L, and adding them.
2mnb

The result, when cleared down, is:

a; . a; [ ab-sin2mnt — 2wnb? - cos 2mnt
eb’ - sin2mnt - dt = et D]
a? + 4m2n2b2

Inserting this value in [A], we get

B a - sin 27nt — 27nb - cos 2mnt
y=49 a? + 4m2n2b? ’

To simplify still further, let us imagine an angle ¢ such that tan ¢ =
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2mnb
o
2mnb
Then sin ¢ = ™ ,
Va2 + 4n?n?b?
and cos ¢ = ¢

Va? +4n2n2p?
Substituting these, we get:

cos ¢ - sin 2mnt — sin ¢ - cos 2mnt

vVa? 4+ 4m2n2h? ’

which may be written

sin(27nt — ¢)
g Va2 + 4n2n2p?’

which is the solution desired.

This is indeed none other than the equation of an alternating electric
current, where g represents the amplitude of the electromotive force,
n the frequency, a the resistance, b the coefficient of self-induction of

the circuit, and ¢ is an angle of lag.

Ezample 4.
Suppose that Mdx+ N dy = 0.

We could integrate this expression directly, if M were a function of x
only, and N a function of y only; but, if both M and N are functions
that depend on both z and y, how are we to integrate it? Is it itself
an exact differential? That is: have M and N each been formed by
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partial differentiation from some common function U, or not? If they

have, then
oU
— =M
Ox ’
oUu
— =N
dy
And if such a common function exists, then
oU ou
% dx + 8_ d

is an exact differential (compare p. 172).
Now the test of the matter is this. If the expression is an exact

differential, it must be true that

av_ay.
dy  dz’
d(dU)  d(dU)
for th -
or e dedy — dydz’

which is necessarily true.
Take as an illustration the equation

(1 + 3zy)dr + 2° dy = 0.

Is this an exact differential or not? Apply the test.
d(1 4+ 3zy)

dx

which do not agree. Therefore, it is not an exact differential, and the
two functions 1 + 3zy and z? have not come from a common original

function.
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It is possible in such cases to discover, however, an integrating fac-
tor, that is to say, a factor such that if both are multiplied by this factor,
the expression will become an exact differential. There is no one rule
for discovering such an integrating factor; but experience will usually
suggest one. In the present instance 2x will act as such. Multiplying
by 2z, we get

(22 + 62%y) dv + 22° dy = 0.

Now apply the test to this.

d 2
(2x + 62%y) _ 62,
dy
d(2z?) )
=6
dx o

which agrees. Hence this is an exact differential, and may be integrated.

Now, if w = 223y,
dw = 6%y dx + 22° dy.
Hence /63:23/ dz + /21:3 dy = w = 22°y;

so that we get U=z2>+223y+C.

d?y 5
Example 5. Let 72 +n°y = 0.
In this case we have a differential equation of the second degree, in

which y appears in the form of a second differential coefficient, as well

as in person.

) d2y 2
Transposing, we have —= = —n?y.

dt?
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It appears from this that we have to do with a function such that its
second differential coefficient is proportional to itself, but with reversed
sign. In Chapter XV. we found that there was such a function—namely,
the sine (or the cosine also) which possessed this property. So, without
further ado, we may infer that the solution will be of the form y =
Asin(pt + q). However, let us go to work.

Multiply both sides of the original equation by 2% and integrate,

2 dy

d
giving us 00 VY, 222y y

FToR =0, and, as

dy 2
d*y dy d dt dy\*
o4y ay _ _\dt) ay 2,2 _ 2y _
TR i (dt> Frly -0 =0,

C being a constant. Then, taking the square roots,

@:—n\/yQ—CQ and LQZn-dt.

dt 2 —y
But it can be shown that (see p. 168)

1 d(arcsin 2)

_ c’.
V- Ay

whence, passing from angles to sines,

arc sin% =nt+C; and y=Csin(nt+ C}),

where ('] is a constant angle that comes in by integration.

Or, preferably, this may be written

y = Asinnt + B cosnt, which is the solution.
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Example 6. % —n?y =0.

Here we have obviously to deal with a function y which is such
that its second differential coefficient is proportional to itself. The only
function we know that has this property is the exponential function
(see p. 139), and we may be certain therefore that the solution of the
equation will be of that form.

Proceeding as before, by multiplying through by 2%, and integrat-

d*y d d
ing, we get 08 Y Y _ g2y

0
dz? dx ydx ’

d(dy)2 ’
d*y d d
yay dx | ( y) 2yt P) =0,

d 2 =
and, as dx? dx dx dx
d
d—y—n\/y2+62: ,
dy

where ¢ is a constant, and =ndz.

/y2+62
Now, if w =log.(y + 1/y? + ¢?) = log, u,
dw 1 du—1+ Yy Y+ VYRt
du U’ dy 1/y2—{-02 ,/y2—|-62
1

dw

and d_y = \/ﬁ
Hence, integrating, this gives us
log, (y + V42 + ) = nx + log, C,
Y+ VRt E =0 (1)
Now Y+ VP2 + ) X (~y + V2 +2) =

2
whence —y+ Y+t = %e_”x. (2)
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Subtracting (2) from (1) and dividing by 2, we then have
1 1c?
= 20w — Z e
Y790 Taet o
which is more conveniently written
y = Ae"" 4+ Be ",

Or, the solution, which at first sight does not look as if it had anything
to do with the original equation, shows that y consists of two terms,
one of which grows logarithmically as x increases, and of a second term

which dies away as x increases.

Example 7.

Let

Examination of this expression will show that, if b = 0, it has the
form of Example 1, the solution of which was a negative exponential.
On the other hand, if a = 0, its form becomes the same as that of
Example 6, the solution of which is the sum of a positive and a negative
exponential. It is therefore not very surprising to find that the solution

of the present example is

a [a? g
where m:% and n = Wy

The steps by which this solution is reached are not given here; they

may be found in advanced treatises.
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Example 8.
Py ,dy

e~ da?

It was seen (p. 174) that this equation was derived from the original
y=Fla+at)+ f(z - at),

where F' and f were any arbitrary functions of .
Another way of dealing with it is to transform it by a change of

variables into ,
d-y
=0
du - dv ’

where u = x 4 at, and v = x — at, leading to the same general solution.

If we consider a case in which F' vanishes, then we have simply

y = f(z — at);

and this merely states that, at the time ¢ = 0, y is a particular func-
tion of x, and may be looked upon as denoting that the curve of the
relation of y to x has a particular shape. Then any change in the value
of t is equivalent simply to an alteration in the origin from which x is
reckoned. That is to say, it indicates that, the form of the function
being conserved, it is propagated along the x direction with a uniform
velocity a; so that whatever the value of the ordinate y at any par-
ticular time t, at any particular point xy, the same value of y will
appear at the subsequent time ¢; at a point further along, the abscissa
of which is zo+a(t; —tp). In this case the simplified equation represents
the propagation of a wave (of any form) at a uniform speed along the

x direction.
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If the differential equation had been written

d?y _ d?y
T T e

the solution would have been the same, but the velocity of propagation

would have had the value

You have now been personally conducted over the frontiers into the
enchanted land. And in order that you may have a handy reference
to the principal results, the author, in bidding you farewell, begs to
present you with a passport in the shape of a convenient collection of
standard forms (see pp. 249-251). In the middle column are set down
a number of the functions which most commonly occur. The results of
differentiating them are set down on the left; the results of integrating

them are set down on the right. May you find them useful!



EPILOGUE AND APOLOGUE.

IT may be confidently assumed that when this tractate “Calculus made
Easy” falls into the hands of the professional mathematicians, they will
(if not too lazy) rise up as one man, and damn it as being a thoroughly
bad book. Of that there can be, from their point of view, no possi-
ble manner of doubt whatever. It commits several most grievous and
deplorable errors.

First, it shows how ridiculously easy most of the operations of the
calculus really are.

Secondly, it gives away so many trade secrets. By showing you that
what one fool can do, other fools can do also, it lets you see that these
mathematical swells, who pride themselves on having mastered such an
awfully difficult subject as the calculus, have no such great reason to
be puffed up. They like you to think how terribly difficult it is, and
don’t want that superstition to be rudely dissipated.

Thirdly, among the dreadful things they will say about “So Easy”
is this: that there is an utter failure on the part of the author to
demonstrate with rigid and satisfactory completeness the validity of
sundry methods which he has presented in simple fashion, and has
even dared to use in solving problems! But why should he not? You

don’t forbid the use of a watch to every person who does not know how
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to make one? You don’t object to the musician playing on a violin that
he has not himself constructed. You don’t teach the rules of syntax to
children until they have already become fluent in the use of speech. It
would be equally absurd to require general rigid demonstrations to be
expounded to beginners in the calculus.

One other thing will the professed mathematicians say about this
thoroughly bad and vicious book: that the reason why it is so easy is
because the author has left out all the things that are really difficult.
And the ghastly fact about this accusation is that—it is true/ That
is, indeed, why the book has been written—written for the legion of
innocents who have hitherto been deterred from acquiring the elements
of the calculus by the stupid way in which its teaching is almost al-
ways presented. Any subject can be made repulsive by presenting it
bristling with difficulties. The aim of this book is to enable beginners
to learn its language, to acquire familiarity with its endearing sim-
plicities, and to grasp its powerful methods of solving problems, with-
out being compelled to toil through the intricate out-of-the-way (and
mostly irrelevant) mathematical gymnastics so dear to the unpractical
mathematician.

There are amongst young engineers a number on whose ears the
adage that what one fool can do, another can, may fall with a familiar
sound. They are earnestly requested not to give the author away, nor

to tell the mathematicians what a fool he really is.



TABLE OF STANDARD FORMS.

d
& — y — /y dz
dx
Algebraic.
1 T %1‘2 +C
0 a ax + C
1 r+a st +axr+C
a ax sax? +C
2 x2 328+ C
n'xnfl xn anrl + C
n+1
—x 2 ! log.z +C
du dv dw
%i% . utvtw fudxj:fvdx:tfwdx
d d
i +v o U No general form known
dx dx
du dv
V— — U —
dx 5 dx 4 No general form known
) v
d
d—Z u ur — [xdu+C
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d
d_y — y — / ydx
x
Exponential and Logarithmic.
€’ €’ e+ C
rt log, = z(log.z — 1)+ C
0.4343 x 27! logy « 0.4343z(log.z — 1) + C
a”log, a a® ¢
log,. a
Trigonometrical.
cos T sin x —cosx +C
—sinz cosx sinz + C'
sec? x tanx —log, cosz + C
Circular (Inverse).
1
) arc sin x x-arcsine +v1—22+C
—x
1
— = arc cos x-arccosx — 1 —a22+C
—x
1
1+ a2 arc tan x z-arctanz — 5 log (14 2?) + C
Hyperbolic.
cosh z sinh coshz + C
sinh cosh sinhz + C
sech® z tanh log, coshz + C
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d
& — y — /yd:z:
dx
Miscellaneous.
1 1
e —— log (x +a)+C
(x4 a)? r+a ge(w+a)+
T 1
- _— log (z + Va? + 22) + C
@i | Jaia Bl :
b 1 1
- +-log (a £ bx C
$(a:l:ban)2 a =+ bx b el )+
3a%x a? T
- 5 3 ——— 1 C
(a2+$2>§ (a2 +$2)§ 1/012 +$2
. 1
a-cosaxr sin ax —~cosax + C
a
. 1 .
—a - sinax CoS ax —sinaz + C
a
9 1
a - sec” ax tan ax ——log, cosazxr + C
a
T  sin2x
sin 2x sin? x - — C
2 4 +
xr  sin2x
—sin2 cos? — C
n2x x 5 1 +
—1
n-sin” 1z cosx sin™ z B T /s.in”_2 zdx+C
n n
CcoS T 1 T
e log, tan — + C
sin? x sin 8 tall o +
sin 2x 1
4 5 —cotanzx + C
sin® x sin® x
.2 2
sin“ x — cos® x 1
— 5 - log, tanx + C
sin“ z - cos? x sinz - cosx
RSN COSTEE | G g - sinna 3 cos(m — n)z — 3 cos(m + n)z + C
m - SINn Nx - COS MIT
in 2
2a - sin 2ax sin? az r_snar +C
2 4a
in 2
—2a - sin 2ax cos? ax T ohcaw +C
2 4a




Exercises I. (p. 24.)
dy _ 12 dy 3 s dy (2a—1)
du dz 1 _» dy 5 _s8
— = 2.4, 5) — = —u~3 6) =2 — — 3.
dt O =37 ) =377
du 8 _13 dy
— = ——1x 5. _J — 2 a—1
dx 5 ’ (8) dx @
dy 3 3= dy m _min
- =- 10) — = —— n
dx qx ! (10) dx nx
Exercises II. (p. 31.)
d d d
d—i = 3az (2) % —13x 328 (3) d—i = 62
dy 11 1 du an dy
—= = —c2x" 2. 5) — = —z"! 6) — = 2.36t
dx 262902 ()dz ¢’ (6) dt
dl,
— = 0.000012 x .
dt o
ac b—1 .
Fa abV’~*,0.98, 3.00 and 7.47 candle power per volt respectively.
dn 1 gr  dn 1 gT
dD ~ LD?V 7o’ dL  DL2>\ 7o’
dn 1 gr dn 1 g
do 2DLV\ w03 dT  2DL\ noT’

ANSWERS.
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(10) Rate of change of P when ¢ varies D
Rate of change of P when D varies ¢
dD  0.000012l,
(11) 2m, 27r, wl, %th, 87, 4mr. (12) i —
Exercises III. (p. 45.)
R
(1) (a)l—l—x—l—?—i-g—i-ﬂ%—... (b) 2az + . (¢) 2z + 2a.
(d) 32* + 6ax + 3a*.
dw dy
2) — =a—10t. 3) == =2x.
(2) o =a (3) o =2

(4) 141102* — 65404 — 224422 + 8192z + 1379.

(5) ? =2y +8. (6) 185.9022654x + 154.36334.
Y
-5 4 3 2
(7) . ()656 + 6x +9x‘
(3z +2) (14 z + 222)?
9) ad — be (10) anx™ "1 + bna™ ! 4+ 2nat
(cz +d)* (z77 + b)?2
(11) b+ 2ct.

b Ro(a + 2bt) R*(a + 2bt)
12 2bt — — _—
(12) Rolat26t),  Ro (a * 2\/Z>’ (1 + at + bt?)? or Ro
(13) 1.4340(0.000014¢ — 0.001024), —0.00117, —0.00107, —0.00097.
dE ko dE  c+k

14) = =pt o, =
W) =045 2
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Exercises IV. (p. 50.)

(1) 17+ 24z; 24. @) >+ 2ax —a  2a(a+1)
(x+a)2 ' (x+a)P’
22 23 22
1 | .
B et o5t axs et
(4) (Exercises I11.):
dy _dy
(1) (a) 5 = 5 =1+z+g2”+ gz’ + ..
(b) 2a, 0. (c) 2, 0. (d) 6x + 6a, 6.

(4) 564402° — 1962122 — 4488z + 8192.

16932022 — 3924242 — 4488.

(5) 2, 0. (6) 371.80453x, 371.80453.

30 270

0 (Bz+2)3" (3z+2)1

(Exzamples, p. 40):

) Ga  Ga ) 3av/b  6by/a  18b{a  3avh
ZRTN N N
5 2 L056 23232 16
O VE v Vs sven
(4) 810t* — 648t* + 479.52t* — 139.968t + 26.64.
3240t — 1944¢* + 959.04t — 139.968.

(5) 12z + 2, 12. (6) 62% — 9z, 12z — 9.

03 () ()
3 1 1 15 7 1
§<ﬁ_ﬁ>_§<ﬁ+7>'
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Exercises V. (p. 63.)
(2) 64; 147.2; and 0.32 feet per second.

(3) x=a—gt; T = —g. (4) 45.1 feet per second.

(5) 12.4 feet per second per second. Yes.

255

(6) Angular velocity = 11.2 radians per second; angular acceleration

= 9.6 radians per second per second.

(7) v=20.4t>—10.8. a=40.8t. 172.8 in./sec., 122.4 in./sec’.

1 1
= s a = — .
30 /(t — 125)2 45 3/(t — 125)5
8t 242 — 32
- Q@ = —
(4 +12)% (4+2)%
(10) n =2, n=11.

(8) v

(9) v=0.8— 0.7926 and 0.00211.

Exercises VI. (p. 72.)

T x 1
W @ Ve N TR
A ar 942 — 12
W =y ®) mym—a
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302 [52 (2% +a) — (2' + a)] - 2a(x—a).
(a:4+a)%(x3 —i—a)% (z +a)?

5,3 1

Y ©) 1-0)vi—02

Exercises VII. (p. 74.)
dw  3x*(3+32?)
27 (4 )
dv 122

dr T3t 38 (\/§+4\/1+\/§+3x2)2.

du 2?2 (V3 + 2%)

_ - (2)]

-

3

Exercises VIII. (p. 88.)

256

1.44.
dy 2 : 3
i 3z° + 3; and the numerical values are: 3, 3%, 6, and 15.
x
+/2.
d 4 1
Y__ 2T Slope is zero where x = 0; and is F——= where x = 1.

dx 9y 3v/2
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(7) m=4,n=-3.
(8) Intersections at z = 1, x = —3. Angles 153° 26, 2° 28'.
(9) Intersection at x = 3.57, y = 3.50. Angle 16° 16'.

(10) s=1 y=2L b=—

wlot

w
W=

Exercises IX. (p. 107.)
(1) Min.: z =0, y =0; max.: x = =2, y = —4.

(2) z=a. (4) 25v/3 square inches.

dy 10 10
5y o — 0y
(5) dx $2+(8—x)2’

(6) Max. for x = —1; min. for x = 1.

r=4;y=>5.

(7) Join the middle points of the four sides.

(8) r=2R, r =, 1o max.

2
= = 0.8506R.
r=ryf2 = f .

(10) At the rate of — square feet per second.
r

R\/_ (12) NR

(11) r 3 n=a
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Exercises X. (p. 115.)

(1) Max.: z = —2.19, y = 24.19; min.;, z = 1.52, y = —1.38.

d b d?
(2) d—z == 2cz; d_xz =2 1= Tn0 (a maximum).
(3) (a) One maximum and two minima.

(b) One maximum. (z = 0; other points unreal.)
(4) Min.: z =1.71, y = 6.14. (5) Max: x = —.5, y =4.
(6) Max.: x = 1.414, y = 1.7675.

Min.: z = —1.414, y = 1.7675.

(7) Max.: z = —3.565, y = 2.12.
Min.: z = +3.565, y = 7.88.

(8) 0.4N, 0.6N. ©) = %

(10) Speed 8.66 nautical miles per hour. Time taken 115.47 hours.
Minimum cost £112. 12s.

(11) Max. and min. for x = 7.5, y = £5.414. (See example no. 10,
p. 71.)

(12) Min.: x = %, y = 0.25; max.: x = —%, y = 1.408.
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Exercises XI. (p. 127.)

(1) $33 $j—4 2) xil xiQ' ®) x33+$i4‘
4 1 22
(4) 3;34_ —3 (5) 13(2:1;’9—1— 3) 133z -2)
2 4
(6) x_2+x_3_q;i4
1 11 1
D a0 e 0w -3
7 71 o
® 5E D T BEr -2 Tt
) 3(m1— 1) " 3(90221;1 1) 10) o+ 3($2+ 1) i 3(9521__‘”29:” 1)
) (xil)jo?Q—xkiJlrl' (12 xil_xi2+(x—22)2'
19 5~ i T
4 4 1
T R TR R
1 —1 1
(15) T+2 :I;2j-x+1 (224 +1)2
(16) 2 i 4 (x 124)2 e iﬁ4>3'
7 55 73
U e —2r T oG-y T oG — 2t
(15) : ;

6(z —2) +3(:c—2)2 C6(a2+ 20+ 4)
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Exercises XII. (p. 150.)

(1) CLb(gal‘ + efax). (2> 2at + % (3) 10g6 n
(5) npo™™. (6) = 3¢ T
: "
(8) 6z — 5(3z% + 1)e 5=, © az®1 |
T4+ a

(10) (3x2656_1+ 2(\/51+x>> (322 — 1) (v7 + 1).

(1) 1 —log, (33'2—1— 3)
(z+3)

(12) a® (az® ' + 2%log, a). (14) Min.: y = 0.7 for z = 0.694.

1+
st

(15)

(16) 5 (log6 ar)?.

Exercises XIII. (p. 160.)

(1 =z (..t = 8z), and use the Table on page 157.

) L

(2) T = 34.627; 159.46 minutes.

(3) Take 2t = x; and use the Table on page 157.
)

(5) (a) 2* (1 +log.x); (b) 2x(e”)™; (c) € x a® (1 +log ).
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(6) 0.14 second. (7) (a) 1.642; (b) 15.58.

(8) p = 0.00037, 311,
(9) i is 63.4% of iy, 220 kilometres.

(10) 0.133, 0.145, 0.155, mean 0.144; —10.2%, —0.9%, +77.2%.

(11) Min. for z = 1 (12) Max. for x = e.

€

(13) Min. for z = log, a.

Exercises XIV. (p. 170.)

1) () Y = 4cos (9— g)

do
(ii) Z—Z = 2sinf cosf = sin 20 and % = 2 cos 26,
d d
iii & 3sin? 0 cos 6 and & _ 3 cos 30.
do do
™ .
(2) 6 = 45° or 1 radians. (3) % — _nsin21nt.
(4) a*log, acosa®. (5) Césx = cotan
sin

(6) 18.2cos (x + 26°).
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(7) The slope is d—‘z = 100 cos (6 — 15°), which is a maximum when

(0—15°) =0, or 6 = 15°; the value of the slope being then = 100.
When 6 = 75° the slope is 100cos(75° — 15°) = 100 cos 60° =
100 x 1 = 50.

(8) cosfsin26 + 2cos260sinf = 2sin § (cos”  + cos 26)
= 2sin6 (3cos® 0 — 1).
(9) amnd"!tan™! (6™) sec? ™.

(10) € (sin®z +sin2z); €” (sin®z + 2sin 2z + 2 cos 2z).

L dy ab a ab
1) ()Y = - 9% do,_ab
( ) (Z) dl' (.T"‘b)z’ (11) be b? (111) 90 X (b2+$2)
(12) (i) j_y = sec x tan x;
x
-1
do 1— 22
(i) @ 1
de 1 —i—xQ’

()dy 1
dr  zv/2? -1

dy  V3secx (3sec’ z—l)

I

V) o= :
dy
(13) 7 — 4.6 (20 + 3)"? cos (20 + 3)**
d .
(14) 0 = 360 + 3cos (0 + 3) — log, 3 (cosé’ % 3sind 4 39)‘

(15) 6 = cot 0; 0 = £0.86; is max. for +6, min. for —0.
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Exercises XV. (p. 177.)

(1) a® — 62y — 2y% 5 — 22° — day.

(2) 2xyz + Y22 + 2%y + 2xy%2%;

2ryz + 2z + w2? + 227y

2ryz + 22y + xy? + 20%y22.

1 (r+y+2)—(a+b+c)
B) A@-—a)+ -0+ (z-0)}= ;=

r r r

(4) dy = vu’"'du+ u’log, udv.

(5) dy = 3sinvu? du + u® cosv dv,
dy = usinz" ! cosz dz + (sin z)" log, sin zdu,

dy = — — du — log, u— dv.
v U v

(7) Minimum for x =y = —

N

(8) (a) Length 2 feet, width = depth = 1 foot, vol. = 2 cubic feet.
(b) Radius = % feet = 7.46 in., length = 2 feet, vol. = 2.54.

(9) All three parts equal; the product is maximum.

(10) Minimum for z =y = 1.

(11) Min.: z =1 and y = 2.

(12) Angle at apex = 90°; equal sides = length = v/2V.
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Exercises XVI. (p. 187.)

(1) 13. (2) 0.6344. (3) 0.2624.

(4) (a) y=32>+C; (b)y=sinz+C.

(5) y=a*+3x+C.

Exercises XVII. (p. 202.)

3 1 4
4Vax> 2) —— +C. 5”_
(1) 25— +C. (2) =35+ (3) 3 +C
(4) 32%+az+C. (5) —2273 4+ C.
2 3 4
6) 2* + 2+ 2>+ 2+ C. o 8T bet et
N T
2 2
(8) ra_ r—a+ ta by division. Therefore the answer is
%+a T+a
% —azx + (a® 4+ a)log (z + a) + C. (See pages 196 and 198.)
xt 5 27 5 @ 2—a
(9) —+32°+ —2*+27z+C. (10) - + x* — 2ax + C.
4 2 3 2
(11) a®(22% + %x%) +C. (12) —g5cosf — 10+ C.
6  sin2ab 6 sin20
13) = . 14) - — .
(13) st~ ¢ (14) 5 1 C
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0 sin 2a6 (16) 16390'
(15) 5 ™ +C. 3
(17) log(1+2)+ C. (18) —log (1 —z)+ C.

Exercises XVIIL. (p. 221.)

(1) Area = 60; mean ordinate = 10.

(2) Area = 2 of a x 2av/a.

2
™
(4) Area = 1.57; mean ordinate = 0.5.

= 0.637.

(3) Area = 2; mean ordinate =

h
(5) 0.572, 0.0476. (6) Volume = 725
(7) 1.25. (8) 79.4.

(9) Volume = 4.9348; area of surface = 12.57 (from 0 to ).
a
a—1
(12) Arithmetical mean = 9.5; quadratic mean = 10.85.

(10) alog, a,

log, a.

1
(13) Quadratic mean = E\/A% + A3; arithmetical mean = 0.

The first involves a somewhat difficult integral, and may be

stated thus: By definition the quadratic mean will be

1 27T
\/2_/ (A sinz + Az sin 3z)? dx.
™ Jo




CALCULUS MADE EASY 266

Now the integration indicated by
/(Af sin® x 4+ 2A; Az sin z sin 3z + A3 sin” 37) dx

2

is more readily obtained if for sin®x we write
1 —cos2x
2

For 2sin x sin 3z we write cos 2z — cos 4x; and, for sin® 3z,

1 — cosbx
2

Making these substitutions, and integrating, we get (see p. 198)

A? sin 2z sin2r  sindx A? sin 6z
— |z - A A - - :
() o ()2 ()

At the lower limit the substitution of 0 for x causes all this to
vanish, whilst at the upper limit the substitution of 27 for x gives

A3 + AZr. And hence the answer follows.
(14) Area is 62.6 square units. Mean ordinate is 10.42.

(16) 436.3. (This solid is pear shaped.)

Exercises XIX. (p.231.)

2 CL2

2
— X
(1) —+5Sin_1§+0. (2) 5 (log.x —3) +C.
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a+1 .
3) x (logex— 1 )—i—C'. (4) sine® + C.

a+1 a+1
(5) sin(log, ) + C. (6) e®(x® — 2z +2) + C.
(7) ——(log, z)*+! 4 C. (8) log, (log, z) + C.

a+1

(9) 2log, (x — 1)+ 3log.(x +2) + C.

(10) %loge(x —1)+ %loge(aj —2)+ l%loge(m +3)+C.

b T—a 22 -1
11) —1 C.
(11) 5 og€x+a+ (12) log€x2+1+0
1 I+z
(13) Zlog61—+§arctanx+0.
-z
1 —va — bx? 1
(14) —logg\/a a-n (Let — = w; then, in the result, let
Va r/a x
b
V2 ——=0v—-u)

You had better differentiate now the answer and work back to

the given expression as a check.

Every earnest student is exhorted to manufacture more examples
for himself at every stage, so as to test his powers. When integrating
he can always test his answer by differentiating it, to see whether he
gets back the expression from which he started.

There are lots of books which give examples for practice. It will suf-
fice here to name two: R. G. Blaine’s The Calculus and its Applications,
and F. M. Saxelby’s A Course in Practical Mathematics.
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TRANSCRIBER’S NOTE

The diagrams have been re-created, using accompanying

formulas or descriptions from the text where possible.

In Chapter XIV, pages 132—-159, numerical values of (1 + %)n,
€”, and related quantities of British currency have been verified

and rounded to the nearest digit.

On page 142 (page 146 in the original), the graphs of the
natural logarithm and exponential functions, Figures 38 and 39,

have been interchanged to match the surrounding text.

The vertical dashed lines in the natural logarithm graph,
Figure 39 (Figure 38 in the original), have been moved to

match the data in the corresponding table.

On page 164 (page 167 in the original), the graphs of the sine
and cosine functions, Figures 44 and 45, have been interchanged

to match the surrounding text.
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