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What one fool can do, another can.

(Ancient Simian Proverb.)



PREFACE TO THE SECOND EDITION.

The surprising success of this work has led the author to add a con-

siderable number of worked examples and exercises. Advantage has

also been taken to enlarge certain parts where experience showed that

further explanations would be useful.

The author acknowledges with gratitude many valuable suggestions

and letters received from teachers, students, and—critics.

October, 1914.
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PROLOGUE.

Considering how many fools can calculate, it is surprising that it

should be thought either a difficult or a tedious task for any other fool

to learn how to master the same tricks.

Some calculus-tricks are quite easy. Some are enormously difficult.

The fools who write the textbooks of advanced mathematics—and they

are mostly clever fools—seldom take the trouble to show you how easy

the easy calculations are. On the contrary, they seem to desire to

impress you with their tremendous cleverness by going about it in the

most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach

myself the difficulties, and now beg to present to my fellow fools the

parts that are not hard. Master these thoroughly, and the rest will

follow. What one fool can do, another can.



CHAPTER I.

TO DELIVER YOU FROM THE PRELIMINARY

TERRORS.

The preliminary terror, which chokes off most fifth-form boys from

even attempting to learn how to calculate, can be abolished once for

all by simply stating what is the meaning—in common-sense terms—of

the two principal symbols that are used in calculating.

These dreadful symbols are:

(1) d which merely means “a little bit of.”

Thus dx means a little bit of x; or du means a little bit of u. Or-

dinary mathematicians think it more polite to say “an element of,”

instead of “a little bit of.” Just as you please. But you will find that

these little bits (or elements) may be considered to be indefinitely small.

(2)

∫
which is merely a long S, and may be called (if you like) “the

sum of.”

Thus

∫
dx means the sum of all the little bits of x; or

∫
dt means

the sum of all the little bits of t. Ordinary mathematicians call this

symbol “the integral of.” Now any fool can see that if x is considered

as made up of a lot of little bits, each of which is called dx, if you

add them all up together you get the sum of all the dx’s, (which is the
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same thing as the whole of x). The word “integral” simply means “the

whole.” If you think of the duration of time for one hour, you may (if

you like) think of it as cut up into 3600 little bits called seconds. The

whole of the 3600 little bits added up together make one hour.

When you see an expression that begins with this terrifying sym-

bol, you will henceforth know that it is put there merely to give you

instructions that you are now to perform the operation (if you can) of

totalling up all the little bits that are indicated by the symbols that

follow.

That’s all.



CHAPTER II.

ON DIFFERENT DEGREES OF SMALLNESS.

We shall find that in our processes of calculation we have to deal with

small quantities of various degrees of smallness.

We shall have also to learn under what circumstances we may con-

sider small quantities to be so minute that we may omit them from

consideration. Everything depends upon relative minuteness.

Before we fix any rules let us think of some familiar cases. There

are 60 minutes in the hour, 24 hours in the day, 7 days in the week.

There are therefore 1440 minutes in the day and 10080 minutes in the

week.

Obviously 1 minute is a very small quantity of time compared with

a whole week. Indeed, our forefathers considered it small as com-

pared with an hour, and called it “one minùte,” meaning a minute

fraction—namely one sixtieth—of an hour. When they came to re-

quire still smaller subdivisions of time, they divided each minute into

60 still smaller parts, which, in Queen Elizabeth’s days, they called

“second minùtes” (i.e. small quantities of the second order of minute-

ness). Nowadays we call these small quantities of the second order of

smallness “seconds.” But few people know why they are so called.

Now if one minute is so small as compared with a whole day, how
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much smaller by comparison is one second!

Again, think of a farthing as compared with a sovereign: it is barely

worth more than 1
1000

part. A farthing more or less is of precious little

importance compared with a sovereign: it may certainly be regarded

as a small quantity. But compare a farthing with £1000: relatively to

this greater sum, the farthing is of no more importance than 1
1000

of a

farthing would be to a sovereign. Even a golden sovereign is relatively

a negligible quantity in the wealth of a millionaire.

Now if we fix upon any numerical fraction as constituting the pro-

portion which for any purpose we call relatively small, we can easily

state other fractions of a higher degree of smallness. Thus if, for the

purpose of time, 1
60

be called a small fraction, then 1
60

of 1
60

(being a

small fraction of a small fraction) may be regarded as a small quantity

of the second order of smallness.*

Or, if for any purpose we were to take 1 per cent. (i.e. 1
100

) as a

small fraction, then 1 per cent. of 1 per cent. (i.e. 1
10,000

) would be a

small fraction of the second order of smallness; and 1
1,000,000

would be

a small fraction of the third order of smallness, being 1 per cent. of

1 per cent. of 1 per cent.

Lastly, suppose that for some very precise purpose we should regard
1

1,000,000
as “small.” Thus, if a first-rate chronometer is not to lose

or gain more than half a minute in a year, it must keep time with

an accuracy of 1 part in 1, 051, 200. Now if, for such a purpose, we

*The mathematicians talk about the second order of “magnitude” (i.e. great-

ness) when they really mean second order of smallness. This is very confusing to

beginners.
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regard 1
1,000,000

(or one millionth) as a small quantity, then 1
1,000,000

of
1

1,000,000
, that is 1

1,000,000,000,000
(or one trillionth) will be a small quantity

of the second order of smallness, and may be utterly disregarded, by

comparison.

Then we see that the smaller a small quantity itself is, the more

negligible does the corresponding small quantity of the second order

become. Hence we know that in all cases we are justified in neglecting

the small quantities of the second—or third (or higher)—orders, if only

we take the small quantity of the first order small enough in itself.

But, it must be remembered, that small quantities if they occur in

our expressions as factors multiplied by some other factor, may become

important if the other factor is itself large. Even a farthing becomes

important if only it is multiplied by a few hundred.

Now in the calculus we write dx for a little bit of x. These things

such as dx, and du, and dy, are called “differentials,” the differential

of x, or of u, or of y, as the case may be. [You read them as dee-eks,

or dee-you, or dee-wy.] If dx be a small bit of x, and relatively small of

itself, it does not follow that such quantities as x ·dx, or x2 dx, or ax dx

are negligible. But dx× dx would be negligible, being a small quantity

of the second order.

A very simple example will serve as illustration.

Let us think of x as a quantity that can grow by a small amount so

as to become x+dx, where dx is the small increment added by growth.

The square of this is x2 + 2x · dx + (dx)2. The second term is not

negligible because it is a first-order quantity; while the third term is of

the second order of smallness, being a bit of, a bit of x2. Thus if we
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took dx to mean numerically, say, 1
60

of x, then the second term would

be 2
60

of x2, whereas the third term would be 1
3600

of x2. This last term

is clearly less important than the second. But if we go further and take

dx to mean only 1
1000

of x, then the second term will be 2
1000

of x2, while

the third term will be only 1
1,000,000

of x2.

x

x

Fig. 1.

Geometrically this may be depicted as follows: Draw a square

(Fig. 1) the side of which we will take to represent x. Now suppose

the square to grow by having a bit dx added to its size each way.

The enlarged square is made up of the original square x2, the two

rectangles at the top and on the right, each of which is of area x · dx
(or together 2x · dx), and the little square at the top right-hand corner

which is (dx)2. In Fig. 2 we have taken dx as quite a big fraction

of x—about 1
5
. But suppose we had taken it only 1

100
—about the

thickness of an inked line drawn with a fine pen. Then the little corner

square will have an area of only 1
10,000

of x2, and be practically invisible.

Clearly (dx)2 is negligible if only we consider the increment dx to be

itself small enough.

Let us consider a simile.



DIFFERENT DEGREES OF SMALLNESS 7

x

x

x

x

dx

dx

dx

dx

Fig. 2.

x · dx

x · dx (dx)2

x2

Fig. 3.

Suppose a millionaire were to say to his secretary: next week I will

give you a small fraction of any money that comes in to me. Suppose

that the secretary were to say to his boy: I will give you a small fraction

of what I get. Suppose the fraction in each case to be 1
100

part. Now

if Mr. Millionaire received during the next week £1000, the secretary

would receive £10 and the boy 2 shillings. Ten pounds would be a

small quantity compared with £1000; but two shillings is a small small

quantity indeed, of a very secondary order. But what would be the

disproportion if the fraction, instead of being 1
100

, had been settled at
1

1000
part? Then, while Mr. Millionaire got his £1000, Mr. Secretary

would get only £1, and the boy less than one farthing!

The witty Dean Swift* once wrote:

*On Poetry: a Rhapsody (p. 20), printed 1733—usually misquoted.
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“So, Nat’ralists observe, a Flea

“Hath smaller Fleas that on him prey.

“And these have smaller Fleas to bite ’em,

“And so proceed ad infinitum.”

An ox might worry about a flea of ordinary size—a small creature of

the first order of smallness. But he would probably not trouble himself

about a flea’s flea; being of the second order of smallness, it would be

negligible. Even a gross of fleas’ fleas would not be of much account to

the ox.



CHAPTER III.

ON RELATIVE GROWINGS.

All through the calculus we are dealing with quantities that are grow-

ing, and with rates of growth. We classify all quantities into two classes:

constants and variables. Those which we regard as of fixed value, and

call constants, we generally denote algebraically by letters from the be-

ginning of the alphabet, such as a, b, or c; while those which we consider

as capable of growing, or (as mathematicians say) of “varying,” we de-

note by letters from the end of the alphabet, such as x, y, z, u, v, w,

or sometimes t.

Moreover, we are usually dealing with more than one variable at

once, and thinking of the way in which one variable depends on the

other: for instance, we think of the way in which the height reached

by a projectile depends on the time of attaining that height. Or we

are asked to consider a rectangle of given area, and to enquire how any

increase in the length of it will compel a corresponding decrease in the

breadth of it. Or we think of the way in which any variation in the

slope of a ladder will cause the height that it reaches, to vary.

Suppose we have got two such variables that depend one on the

other. An alteration in one will bring about an alteration in the other,

because of this dependence. Let us call one of the variables x, and the
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other that depends on it y.

Suppose we make x to vary, that is to say, we either alter it or

imagine it to be altered, by adding to it a bit which we call dx. We are

thus causing x to become x + dx. Then, because x has been altered,

y will have altered also, and will have become y + dy. Here the bit dy

may be in some cases positive, in others negative; and it won’t (except

by a miracle) be the same size as dx.

Take two examples.

(1) Let x and y be respectively the base and the height of a right-

angled triangle (Fig. 4), of which the slope of the other side is fixed

x dx

y y

dy

30◦

Fig. 4.

at 30◦. If we suppose this triangle to expand and yet keep its angles

the same as at first, then, when the base grows so as to become x+dx,

the height becomes y + dy. Here, increasing x results in an increase

of y. The little triangle, the height of which is dy, and the base of which

is dx, is similar to the original triangle; and it is obvious that the value

of the ratio
dy

dx
is the same as that of the ratio

y

x
. As the angle is 30◦

it will be seen that here
dy

dx
=

1

1.73
.
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(2) Let x represent, in Fig. 5, the horizontal distance, from a wall,

of the bottom end of a ladder, AB, of fixed length; and let y be the

x

y

O A

B

Fig. 5.

height it reaches up the wall. Now y clearly depends on x. It is easy to

see that, if we pull the bottom end A a bit further from the wall, the

top end B will come down a little lower. Let us state this in scientific

language. If we increase x to x+dx, then y will become y−dy; that is,

when x receives a positive increment, the increment which results to y

is negative.

Yes, but how much? Suppose the ladder was so long that when the

bottom end A was 19 inches from the wall the top end B reached just

15 feet from the ground. Now, if you were to pull the bottom end out

1 inch more, how much would the top end come down? Put it all into

inches: x = 19 inches, y = 180 inches. Now the increment of x which

we call dx, is 1 inch: or x+ dx = 20 inches.
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How much will y be diminished? The new height will be y − dy. If

we work out the height by Euclid I. 47, then we shall be able to find

how much dy will be. The length of the ladder is√
(180)2 + (19)2 = 181 inches.

Clearly then, the new height, which is y − dy, will be such that

(y − dy)2 = (181)2 − (20)2 = 32761− 400 = 32361,

y − dy =
√
32361 = 179.89 inches.

Now y is 180, so that dy is 180− 179.89 = 0.11 inch.

So we see that making dx an increase of 1 inch has resulted in

making dy a decrease of 0.11 inch.

And the ratio of dy to dx may be stated thus:

dy

dx
= −0.11

1
.

It is also easy to see that (except in one particular position) dy will

be of a different size from dx.

Now right through the differential calculus we are hunting, hunting,

hunting for a curious thing, a mere ratio, namely, the proportion which

dy bears to dx when both of them are indefinitely small.

It should be noted here that we can only find this ratio
dy

dx
when

y and x are related to each other in some way, so that whenever x varies

y does vary also. For instance, in the first example just taken, if the

base x of the triangle be made longer, the height y of the triangle

becomes greater also, and in the second example, if the distance x of

the foot of the ladder from the wall be made to increase, the height y
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reached by the ladder decreases in a corresponding manner, slowly at

first, but more and more rapidly as x becomes greater. In these cases

the relation between x and y is perfectly definite, it can be expressed

mathematically, being
y

x
= tan 30◦ and x2 + y2 = l2 (where l is the

length of the ladder) respectively, and
dy

dx
has the meaning we found in

each case.

If, while x is, as before, the distance of the foot of the ladder from

the wall, y is, instead of the height reached, the horizontal length of

the wall, or the number of bricks in it, or the number of years since it

was built, any change in x would naturally cause no change whatever

in y; in this case
dy

dx
has no meaning whatever, and it is not possible

to find an expression for it. Whenever we use differentials dx, dy,

dz, etc., the existence of some kind of relation between x, y, z, etc., is

implied, and this relation is called a “function” in x, y, z, etc.; the two

expressions given above, for instance, namely
y

x
= tan 30◦ and x2+y2 =

l2, are functions of x and y. Such expressions contain implicitly (that

is, contain without distinctly showing it) the means of expressing either

x in terms of y or y in terms of x, and for this reason they are called

implicit functions in x and y; they can be respectively put into the

forms

y = x tan 30◦ or x =
y

tan 30◦

and y =
√
l2 − x2 or x =

√
l2 − y2.

These last expressions state explicitly (that is, distinctly) the value

of x in terms of y, or of y in terms of x, and they are for this reason

called explicit functions of x or y. For example x2 + 3 = 2y − 7 is an
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implicit function in x and y; it may be written y =
x2 + 10

2
(explicit

function of x) or x =
√
2y − 10 (explicit function of y). We see that

an explicit function in x, y, z, etc., is simply something the value of

which changes when x, y, z, etc., are changing, either one at the time

or several together. Because of this, the value of the explicit function

is called the dependent variable, as it depends on the value of the other

variable quantities in the function; these other variables are called the

independent variables because their value is not determined from the

value assumed by the function. For example, if u = x2 sin θ, x and θ

are the independent variables, and u is the dependent variable.

Sometimes the exact relation between several quantities x, y, z ei-

ther is not known or it is not convenient to state it; it is only known,

or convenient to state, that there is some sort of relation between these

variables, so that one cannot alter either x or y or z singly without

affecting the other quantities; the existence of a function in x, y, z

is then indicated by the notation F (x, y, z) (implicit function) or by

x = F (y, z), y = F (x, z) or z = F (x, y) (explicit function). Sometimes

the letter f or ϕ is used instead of F , so that y = F (x), y = f(x) and

y = ϕ(x) all mean the same thing, namely, that the value of y depends

on the value of x in some way which is not stated.

We call the ratio
dy

dx
“the differential coefficient of y with respect

to x.” It is a solemn scientific name for this very simple thing. But

we are not going to be frightened by solemn names, when the things

themselves are so easy. Instead of being frightened we will simply pro-

nounce a brief curse on the stupidity of giving long crack-jaw names;

and, having relieved our minds, will go on to the simple thing itself,



ON RELATIVE GROWINGS 15

namely the ratio
dy

dx
.

In ordinary algebra which you learned at school, you were always

hunting after some unknown quantity which you called x or y; or some-

times there were two unknown quantities to be hunted for simultane-

ously. You have now to learn to go hunting in a new way; the fox being

now neither x nor y. Instead of this you have to hunt for this curious

cub called
dy

dx
. The process of finding the value of

dy

dx
is called “dif-

ferentiating.” But, remember, what is wanted is the value of this ratio

when both dy and dx are themselves indefinitely small. The true value

of the differential coefficient is that to which it approximates in the

limiting case when each of them is considered as infinitesimally minute.

Let us now learn how to go in quest of
dy

dx
.
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NOTE TO CHAPTER III.

How to read Differentials.

It will never do to fall into the schoolboy error of thinking that dx

means d times x, for d is not a factor—it means “an element of” or “a

bit of” whatever follows. One reads dx thus: “dee-eks.”

In case the reader has no one to guide him in such matters it may

here be simply said that one reads differential coefficients in the follow-

ing way. The differential coefficient

dy

dx
is read “dee-wy by dee-eks,” or “dee-wy over dee-eks.”

So also
du

dt
is read “dee-you by dee-tee.”

Second differential coefficients will be met with later on. They are

like this:

d2y

dx2
; which is read “dee-two-wy over dee-eks-squared,”

and it means that the operation of differentiating y with respect to x

has been (or has to be) performed twice over.

Another way of indicating that a function has been differentiated is

by putting an accent to the symbol of the function. Thus if y = F (x),

which means that y is some unspecified function of x (see p. 13), we may

write F ′(x) instead of
d
(
F (x)

)
dx

. Similarly, F ′′(x) will mean that the

original function F (x) has been differentiated twice over with respect

to x.



CHAPTER IV.

SIMPLEST CASES.

Now let us see how, on first principles, we can differentiate some simple

algebraical expression.

Case 1.

Let us begin with the simple expression y = x2. Now remember

that the fundamental notion about the calculus is the idea of growing.

Mathematicians call it varying. Now as y and x2 are equal to one

another, it is clear that if x grows, x2 will also grow. And if x2 grows,

then y will also grow. What we have got to find out is the proportion

between the growing of y and the growing of x. In other words our task

is to find out the ratio between dy and dx, or, in brief, to find the value

of
dy

dx
.

Let x, then, grow a little bit bigger and become x + dx; similarly,

y will grow a bit bigger and will become y+dy. Then, clearly, it will still

be true that the enlarged y will be equal to the square of the enlarged x.

Writing this down, we have:

y + dy = (x+ dx)2.
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Doing the squaring we get:

y + dy = x2 + 2x · dx+ (dx)2.

What does (dx)2 mean? Remember that dx meant a bit—a little

bit—of x. Then (dx)2 will mean a little bit of a little bit of x; that

is, as explained above (p. 4), it is a small quantity of the second order

of smallness. It may therefore be discarded as quite inconsiderable in

comparison with the other terms. Leaving it out, we then have:

y + dy = x2 + 2x · dx.

Now y = x2; so let us subtract this from the equation and we have

left

dy = 2x · dx.

Dividing across by dx, we find

dy

dx
= 2x.

Now this* is what we set out to find. The ratio of the growing of y

to the growing of x is, in the case before us, found to be 2x.

*N.B.—This ratio
dy

dx
is the result of differentiating y with respect to x. Dif-

ferentiating means finding the differential coefficient. Suppose we had some other

function of x, as, for example, u = 7x2+3. Then if we were told to differentiate this

with respect to x, we should have to find
du

dx
, or, what is the same thing,

d(7x2 + 3)

dx
.

On the other hand, we may have a case in which time was the independent variable

(see p. 14), such as this: y = b+ 1
2at

2. Then, if we were told to differentiate it, that

means we must find its differential coefficient with respect to t. So that then our

business would be to try to find
dy

dt
, that is, to find

d(b+ 1
2at

2)

dt
.
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Numerical example.

Suppose x = 100 and ∴ y = 10, 000. Then let x grow till it becomes

101 (that is, let dx = 1). Then the enlarged y will be 101 × 101 =

10, 201. But if we agree that we may ignore small quantities of the

second order, 1 may be rejected as compared with 10, 000; so we may

round off the enlarged y to 10, 200. y has grown from 10, 000 to 10, 200;

the bit added on is dy, which is therefore 200.
dy

dx
=

200

1
= 200. According to the algebra-working of the previous

paragraph, we find
dy

dx
= 2x. And so it is; for x = 100 and 2x = 200.

But, you will say, we neglected a whole unit.

Well, try again, making dx a still smaller bit.

Try dx = 1
10
. Then x+ dx = 100.1, and

(x+ dx)2 = 100.1× 100.1 = 10, 020.01.

Now the last figure 1 is only one-millionth part of the 10, 000, and

is utterly negligible; so we may take 10, 020 without the little decimal

at the end. And this makes dy = 20; and
dy

dx
=

20

0.1
= 200, which is

still the same as 2x.

Case 2.

Try differentiating y = x3 in the same way.

We let y grow to y + dy, while x grows to x+ dx.

Then we have

y + dy = (x+ dx)3.

Doing the cubing we obtain

y + dy = x3 + 3x2 · dx+ 3x(dx)2 + (dx)3.
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Now we know that we may neglect small quantities of the second

and third orders; since, when dy and dx are both made indefinitely

small, (dx)2 and (dx)3 will become indefinitely smaller by comparison.

So, regarding them as negligible, we have left:

y + dy = x3 + 3x2 · dx.

But y = x3; and, subtracting this, we have:

dy = 3x2 · dx,

and
dy

dx
= 3x2.

Case 3.

Try differentiating y = x4. Starting as before by letting both y and x

grow a bit, we have:

y + dy = (x+ dx)4.

Working out the raising to the fourth power, we get

y + dy = x4 + 4x3 dx+ 6x2(dx)2 + 4x(dx)3 + (dx)4.

Then striking out the terms containing all the higher powers of dx,

as being negligible by comparison, we have

y + dy = x4 + 4x3 dx.

Subtracting the original y = x4, we have left

dy = 4x3 dx,

and
dy

dx
= 4x3.
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Now all these cases are quite easy. Let us collect the results to see if

we can infer any general rule. Put them in two columns, the values of y

in one and the corresponding values found for
dy

dx
in the other: thus

y
dy

dx

x2 2x

x3 3x2

x4 4x3

Just look at these results: the operation of differentiating appears

to have had the effect of diminishing the power of x by 1 (for example

in the last case reducing x4 to x3), and at the same time multiplying by

a number (the same number in fact which originally appeared as the

power). Now, when you have once seen this, you might easily conjecture

how the others will run. You would expect that differentiating x5 would

give 5x4, or differentiating x6 would give 6x5. If you hesitate, try one

of these, and see whether the conjecture comes right.

Try y = x5.

Then y + dy = (x+ dx)5

= x5 + 5x4 dx+ 10x3(dx)2 + 10x2(dx)3

+ 5x(dx)4 + (dx)5.

Neglecting all the terms containing small quantities of the higher

orders, we have left

y + dy = x5 + 5x4 dx,
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and subtracting y = x5 leaves us

dy = 5x4 dx,

whence
dy

dx
= 5x4, exactly as we supposed.

Following out logically our observation, we should conclude that if

we want to deal with any higher power,—call it n—we could tackle it

in the same way.

Let y = xn,

then, we should expect to find that

dy

dx
= nx(n−1).

For example, let n = 8, then y = x8; and differentiating it would

give
dy

dx
= 8x7.

And, indeed, the rule that differentiating xn gives as the result nxn−1

is true for all cases where n is a whole number and positive. [Expanding

(x + dx)n by the binomial theorem will at once show this.] But the

question whether it is true for cases where n has negative or fractional

values requires further consideration.

Case of a negative power.

Let y = x−2. Then proceed as before:

y + dy = (x+ dx)−2

= x−2

(
1 +

dx

x

)−2

.
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Expanding this by the binomial theorem (see p. 137), we get

= x−2

[
1− 2 dx

x
+

2(2 + 1)

1× 2

(
dx

x

)2

− etc.

]
= x−2 − 2x−3 · dx+ 3x−4(dx)2 − 4x−5(dx)3 + etc.

So, neglecting the small quantities of higher orders of smallness, we

have:

y + dy = x−2 − 2x−3 · dx.

Subtracting the original y = x−2, we find

dy = −2x−3dx,

dy

dx
= −2x−3.

And this is still in accordance with the rule inferred above.

Case of a fractional power.

Let y = x
1
2 . Then, as before,

y + dy = (x+ dx)
1
2 = x

1
2

(
1 +

dx

x

) 1
2

=
√
x+

1

2

dx√
x
− 1

8

(dx)2

x
√
x

+ terms with higher

powers of dx.

Subtracting the original y = x
1
2 , and neglecting higher powers we

have left:

dy =
1

2

dx√
x
=

1

2
x− 1

2 · dx,
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and
dy

dx
=

1

2
x− 1

2 . Agreeing with the general rule.

Summary. Let us see how far we have got. We have arrived at the

following rule: To differentiate xn, multiply by the power and reduce

the power by one, so giving us nxn−1 as the result.

Exercises I. (See p. 252 for Answers.)

Differentiate the following:

(1) y = x13 (2) y = x− 3
2

(3) y = x2a (4) u = t2.4

(5) z = 3
√
u (6) y =

3
√
x−5

(7) u = 5

√
1

x8

(8) y = 2xa

(9) y =
q
√
x3

(10) y = n

√
1

xm

You have now learned how to differentiate powers of x. How easy it

is!



CHAPTER V.

NEXT STAGE. WHAT TO DO WITH CONSTANTS.

In our equations we have regarded x as growing, and as a result of x

being made to grow y also changed its value and grew. We usually

think of x as a quantity that we can vary; and, regarding the variation

of x as a sort of cause, we consider the resulting variation of y as an

effect. In other words, we regard the value of y as depending on that

of x. Both x and y are variables, but x is the one that we operate upon,

and y is the “dependent variable.” In all the preceding chapter we have

been trying to find out rules for the proportion which the dependent

variation in y bears to the variation independently made in x.

Our next step is to find out what effect on the process of differenti-

ating is caused by the presence of constants, that is, of numbers which

don’t change when x or y change their values.

Added Constants.

Let us begin with some simple case of an added constant, thus:

Let y = x3 + 5.

Just as before, let us suppose x to grow to x+dx and y to grow to y+dy.
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Then: y + dy = (x+ dx)3 + 5

= x3 + 3x2 dx+ 3x(dx)2 + (dx)3 + 5.

Neglecting the small quantities of higher orders, this becomes

y + dy = x3 + 3x2 · dx+ 5.

Subtract the original y = x3 + 5, and we have left:

dy = 3x2 dx.

dy

dx
= 3x2.

So the 5 has quite disappeared. It added nothing to the growth

of x, and does not enter into the differential coefficient. If we had put 7,

or 700, or any other number, instead of 5, it would have disappeared.

So if we take the letter a, or b, or c to represent any constant, it will

simply disappear when we differentiate.

If the additional constant had been of negative value, such as

−5 or −b, it would equally have disappeared.

Multiplied Constants.

Take as a simple experiment this case:

Let y = 7x2.

Then on proceeding as before we get:

y + dy = 7(x+ dx)2

= 7{x2 + 2x · dx+ (dx)2}
= 7x2 + 14x · dx+ 7(dx)2.
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Then, subtracting the original y = 7x2, and neglecting the last term,

we have

dy = 14x · dx.
dy

dx
= 14x.

Let us illustrate this example by working out the graphs of the

equations y = 7x2 and
dy

dx
= 14x, by assigning to x a set of successive

values, 0, 1, 2, 3, etc., and finding the corresponding values of y and

of
dy

dx
.

These values we tabulate as follows:

x 0 1 2 3 4 5 −1 −2 −3
y 0 7 28 63 112 175 7 28 63

dy

dx
0 14 28 42 56 70 −14 −28 −42

Now plot these values to some convenient scale, and we obtain the

two curves, Figs. 6 and 6a.

Carefully compare the two figures, and verify by inspection that

the height of the ordinate of the derived curve, Fig. 6a, is proportional

to the slope of the original curve,* Fig. 6, at the corresponding value

of x. To the left of the origin, where the original curve slopes negatively

(that is, downward from left to right) the corresponding ordinates of

the derived curve are negative.

Now if we look back at p. 18, we shall see that simply differenti-

ating x2 gives us 2x. So that the differential coefficient of 7x2 is just

*See p. 76 about slopes of curves.



CALCULUS MADE EASY 28

−3 −2 −1 0 1 2 3 4 5

50

100

150

200

x

y

Fig. 6.—Graph of y = 7x2.
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0

Fig. 6a.—Graph of
dy

dx
= 14x.

7 times as big as that of x2. If we had taken 8x2, the differential coeffi-

cient would have come out eight times as great as that of x2. If we put

y = ax2, we shall get
dy

dx
= a× 2x.

If we had begun with y = axn, we should have had
dy

dx
= a×nxn−1.

So that any mere multiplication by a constant reappears as a mere

multiplication when the thing is differentiated. And, what is true about

multiplication is equally true about division: for if, in the example

above, we had taken as the constant 1
7
instead of 7, we should have had

the same 1
7
come out in the result after differentiation.

Some Further Examples.

The following further examples, fully worked out, will enable you to

master completely the process of differentiation as applied to ordinary
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algebraical expressions, and enable you to work out by yourself the

examples given at the end of this chapter.

(1) Differentiate y =
x5

7
− 3

5
.

3

5
is an added constant and vanishes (see p. 25).

We may then write at once

dy

dx
=

1

7
× 5× x5−1,

or
dy

dx
=

5

7
x4.

(2) Differentiate y = a
√
x− 1

2

√
a.

The term
1

2

√
a vanishes, being an added constant; and as a

√
x, in

the index form, is written ax
1
2 , we have

dy

dx
= a× 1

2
× x

1
2−1 =

a

2
× x− 1

2 ,

or
dy

dx
=

a

2
√
x
.

(3) If ay + bx = by − ax+ (x+ y)
√
a2 − b2,

find the differential coefficient of y with respect to x.

As a rule an expression of this kind will need a little more knowledge

than we have acquired so far; it is, however, always worth while to try

whether the expression can be put in a simpler form.

First we must try to bring it into the form y = some expression

involving x only.

The expression may be written

(a− b)y + (a+ b)x = (x+ y)
√
a2 − b2.
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Squaring, we get

(a− b)2y2 + (a+ b)2x2 + 2(a+ b)(a− b)xy = (x2 + y2 + 2xy)(a2 − b2),

which simplifies to

(a− b)2y2 + (a+ b)2x2 = x2(a2 − b2) + y2(a2 − b2);

or [(a− b)2 − (a2 − b2)]y2 = [(a2 − b2)− (a+ b)2]x2,

that is 2b(b− a)y2 = −2b(b+ a)x2;

hence y =

√
a+ b

a− b
x and

dy

dx
=

√
a+ b

a− b
.

(4) The volume of a cylinder of radius r and height h is given by

the formula V = πr2h. Find the rate of variation of volume with the

radius when r = 5.5 in. and h = 20 in. If r = h, find the dimensions

of the cylinder so that a change of 1 in. in radius causes a change of

400 cub. in. in the volume.

The rate of variation of V with regard to r is

dV

dr
= 2πrh.

If r = 5.5 in. and h = 20 in. this becomes 690.8. It means

that a change of radius of 1 inch will cause a change of volume of

690.8 cub. inch. This can be easily verified, for the volumes with

r = 5 and r = 6 are 1570 cub. in. and 2260.8 cub. in. respectively, and

2260.8− 1570 = 690.8.

Also, if

r = h,
dV

dr
= 2πr2 = 400 and r = h =

√
400

2π
= 7.98 in.
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(5) The reading θ of a Féry’s Radiation pyrometer is related to the

Centigrade temperature t of the observed body by the relation

θ

θ1
=

(
t

t1

)4

,

where θ1 is the reading corresponding to a known temperature t1 of the

observed body.

Compare the sensitiveness of the pyrometer at temperatures

800◦ C., 1000◦ C., 1200◦ C., given that it read 25 when the temperature

was 1000◦ C.

The sensitiveness is the rate of variation of the reading with the

temperature, that is
dθ

dt
. The formula may be written

θ =
θ1
t41
t4 =

25t4

10004
,

and we have
dθ

dt
=

100t3

10004
=

t3

10, 000, 000, 000
.

When t = 800, 1000 and 1200, we get
dθ

dt
= 0.0512, 0.1 and 0.1728

respectively.

The sensitiveness is approximately doubled from 800◦ to 1000◦, and

becomes three-quarters as great again up to 1200◦.

Exercises II. (See p. 252 for Answers.)

Differentiate the following:

(1) y = ax3 + 6. (2) y = 13x
3
2 − c.
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(3) y = 12x
1
2 + c

1
2 . (4) y = c

1
2x

1
2 .

(5) u =
azn − 1

c
. (6) y = 1.18t2 + 22.4.

Make up some other examples for yourself, and try your hand at

differentiating them.

(7) If lt and l0 be the lengths of a rod of iron at the temperatures

t◦ C. and 0◦ C. respectively, then lt = l0(1+0.000012t). Find the change

of length of the rod per degree Centigrade.

(8) It has been found that if c be the candle power of an incandes-

cent electric lamp, and V be the voltage, c = aV b, where a and b are

constants.

Find the rate of change of the candle power with the voltage, and

calculate the change of candle power per volt at 80, 100 and 120 volts

in the case of a lamp for which a = 0.5× 10−10 and b = 6.

(9) The frequency n of vibration of a string of diameter D, length L

and specific gravity σ, stretched with a force T , is given by

n =
1

DL

√
gT

πσ
.

Find the rate of change of the frequency when D, L, σ and T are

varied singly.

(10) The greatest external pressure P which a tube can support with-

out collapsing is given by

P =

(
2E

1− σ2

)
t3

D3
,
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where E and σ are constants, t is the thickness of the tube and D is

its diameter. (This formula assumes that 4t is small compared to D.)

Compare the rate at which P varies for a small change of thickness

and for a small change of diameter taking place separately.

(11) Find, from first principles, the rate at which the following vary

with respect to a change in radius:

(a) the circumference of a circle of radius r;

(b) the area of a circle of radius r;

(c) the lateral area of a cone of slant dimension l;

(d) the volume of a cone of radius r and height h;

(e) the area of a sphere of radius r;

(f ) the volume of a sphere of radius r.

(12) The length L of an iron rod at the temperature T being given by

L = lt
[
1+0.000012(T − t)

]
, where lt is the length at the temperature t,

find the rate of variation of the diameter D of an iron tyre suitable for

being shrunk on a wheel, when the temperature T varies.



CHAPTER VI.

SUMS, DIFFERENCES, PRODUCTS AND

QUOTIENTS.

We have learned how to differentiate simple algebraical functions such

as x2 + c or ax4, and we have now to consider how to tackle the sum

of two or more functions.

For instance, let

y = (x2 + c) + (ax4 + b);

what will its
dy

dx
be? How are we to go to work on this new job?

The answer to this question is quite simple: just differentiate them,

one after the other, thus:

dy

dx
= 2x+ 4ax3. (Ans.)

If you have any doubt whether this is right, try a more general case,

working it by first principles. And this is the way.

Let y = u+v, where u is any function of x, and v any other function

of x. Then, letting x increase to x+ dx, y will increase to y + dy; and

u will increase to u+ du; and v to v + dv.

And we shall have:

y + dy = u+ du+ v + dv.
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Subtracting the original y = u+ v, we get

dy = du+ dv,

and dividing through by dx, we get:

dy

dx
=

du

dx
+

dv

dx
.

This justifies the procedure. You differentiate each function sep-

arately and add the results. So if now we take the example of the

preceding paragraph, and put in the values of the two functions, we

shall have, using the notation shown (p. 16),

dy

dx
=

d(x2 + c)

dx
+

d(ax4 + b)

dx

= 2x + 4ax3,

exactly as before.

If there were three functions of x, which we may call u, v and w, so

that

y = u+ v + w;

then
dy

dx
=

du

dx
+

dv

dx
+

dw

dx
.

As for subtraction, it follows at once; for if the function v had itself

had a negative sign, its differential coefficient would also be negative;

so that by differentiating

y = u− v,

we should get
dy

dx
=

du

dx
− dv

dx
.
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But when we come to do with Products, the thing is not quite so

simple.

Suppose we were asked to differentiate the expression

y = (x2 + c)× (ax4 + b),

what are we to do? The result will certainly not be 2x × 4ax3; for it

is easy to see that neither c × ax4, nor x2 × b, would have been taken

into that product.

Now there are two ways in which we may go to work.

First way. Do the multiplying first, and, having worked it out, then

differentiate.

Accordingly, we multiply together x2 + c and ax4 + b.

This gives ax6 + acx4 + bx2 + bc.

Now differentiate, and we get:

dy

dx
= 6ax5 + 4acx3 + 2bx.

Second way. Go back to first principles, and consider the equation

y = u× v;

where u is one function of x, and v is any other function of x. Then, if

x grows to be x + dx; and y to y + dy; and u becomes u + du, and v

becomes v + dv, we shall have:

y + dy = (u+ du)× (v + dv)

= u · v + u · dv + v · du+ du · dv.
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Now du ·dv is a small quantity of the second order of smallness, and

therefore in the limit may be discarded, leaving

y + dy = u · v + u · dv + v · du.

Then, subtracting the original y = u · v, we have left

dy = u · dv + v · du;

and, dividing through by dx, we get the result:

dy

dx
= u

dv

dx
+ v

du

dx
.

This shows that our instructions will be as follows: To differentiate

the product of two functions, multiply each function by the differential

coefficient of the other, and add together the two products so obtained.

You should note that this process amounts to the following: Treat u

as constant while you differentiate v; then treat v as constant while you

differentiate u; and the whole differential coefficient
dy

dx
will be the sum

of these two treatments.

Now, having found this rule, apply it to the concrete example which

was considered above.

We want to differentiate the product

(x2 + c)× (ax4 + b).

Call (x2 + c) = u; and (ax4 + b) = v.
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Then, by the general rule just established, we may write:

dy

dx
= (x2 + c)

d(ax4 + b)

dx
+ (ax4 + b)

d(x2 + c)

dx

= (x2 + c) 4ax3 + (ax4 + b) 2x

= 4ax5 + 4acx3 + 2ax5 + 2bx,

dy

dx
= 6ax5 + 4acx3 + 2bx,

exactly as before.

Lastly, we have to differentiate quotients.

Think of this example, y =
bx5 + c

x2 + a
. In such a case it is no use to

try to work out the division beforehand, because x2 + a will not divide

into bx5 + c, neither have they any common factor. So there is nothing

for it but to go back to first principles, and find a rule.

So we will put y =
u

v
;

where u and v are two different functions of the independent variable x.

Then, when x becomes x+dx, y will become y+dy; and u will become

u+ du; and v will become v + dv. So then

y + dy =
u+ du

v + dv
.
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Now perform the algebraic division, thus:

v + dv u+ du
u

v
+

du

v
− u · dv

v2

u+
u · dv
v

du− u · dv
v

du+
du · dv

v

− u · dv
v
− du · dv

v

− u · dv
v
− u · dv · dv

v2

− du · dv
v

+
u · dv · dv

v2
.

As both these remainders are small quantities of the second order,

they may be neglected, and the division may stop here, since any further

remainders would be of still smaller magnitudes.

So we have got:

y + dy =
u

v
+

du

v
− u · dv

v2
;

which may be written

=
u

v
+

v · du− u · dv
v2

.
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Now subtract the original y =
u

v
, and we have left:

dy =
v · du− u · dv

v2
;

whence
dy

dx
=

v
du

dx
− u

dv

dx
v2

.

This gives us our instructions as to how to differentiate a quotient

of two functions. Multiply the divisor function by the differential coef-

ficient of the dividend function; then multiply the dividend function by

the differential coefficient of the divisor function; and subtract. Lastly

divide by the square of the divisor function.

Going back to our example y =
bx5 + c

x2 + a
,

write bx5 + c = u;

and x2 + a = v.

Then

dy

dx
=

(x2 + a)
d(bx5 + c)

dx
− (bx5 + c)

d(x2 + a)

dx
(x2 + a)2

=
(x2 + a)(5bx4)− (bx5 + c)(2x)

(x2 + a)2
,

dy

dx
=

3bx6 + 5abx4 − 2cx

(x2 + a)2
. (Answer.)

The working out of quotients is often tedious, but there is nothing

difficult about it.

Some further examples fully worked out are given hereafter.
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(1) Differentiate y =
a

b2
x3 − a2

b
x+

a2

b2
.

Being a constant,
a2

b2
vanishes, and we have

dy

dx
=

a

b2
× 3× x3−1 − a2

b
× 1× x1−1.

But x1−1 = x0 = 1; so we get:

dy

dx
=

3a

b2
x2 − a2

b
.

(2) Differentiate y = 2a
√
bx3 − 3b 3

√
a

x
− 2
√
ab.

Putting x in the index form, we get

y = 2a
√
bx

3
2 − 3b 3

√
ax−1 − 2

√
ab.

Now

dy

dx
= 2a

√
b× 3

2
× x

3
2−1 − 3b 3

√
a× (−1)× x−1−1;

or,
dy

dx
= 3a

√
bx+

3b 3
√
a

x2
.

(3) Differentiate z = 1.8 3

√
1

θ2
− 4.4

5
√
θ
− 27◦.

This may be written: z = 1.8 θ−
2
3 − 4.4 θ−

1
5 − 27◦.

The 27◦ vanishes, and we have

dz

dθ
= 1.8×−2

3
× θ−

2
3−1 − 4.4×

(
−1

5

)
θ−

1
5−1;

or,
dz

dθ
= −1.2 θ− 5

3 + 0.88 θ−
6
5 ;

or,
dz

dθ
=

0.88
5
√
θ6
− 1.2

3
√
θ5
.



CALCULUS MADE EASY 42

(4) Differentiate v = (3t2 − 1.2t+ 1)3.

A direct way of doing this will be explained later (see p. 66); but

we can nevertheless manage it now without any difficulty.

Developing the cube, we get

v = 27t6 − 32.4t5 + 39.96t4 − 23.328t3 + 13.32t2 − 3.6t+ 1;

hence

dv

dt
= 162t5 − 162t4 + 159.84t3 − 69.984t2 + 26.64t− 3.6.

(5) Differentiate y = (2x− 3)(x+ 1)2.

dy

dx
= (2x− 3)

d
[
(x+ 1)(x+ 1)

]
dx

+ (x+ 1)2
d(2x− 3)

dx

= (2x− 3)

[
(x+ 1)

d(x+ 1)

dx
+ (x+ 1)

d(x+ 1)

dx

]
+ (x+ 1)2

d(2x− 3)

dx

= 2(x+ 1)
[
(2x− 3) + (x+ 1)

]
= 2(x+ 1)(3x− 2);

or, more simply, multiply out and then differentiate.

(6) Differentiate y = 0.5x3(x− 3).

dy

dx
= 0.5

[
x3d(x− 3)

dx
+ (x− 3)

d(x3)

dx

]
= 0.5

[
x3 + (x− 3)× 3x2

]
= 2x3 − 4.5x2.

Same remarks as for preceding example.

(7) Differentiate w =

(
θ +

1

θ

)(√
θ +

1√
θ

)
.
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This may be written

w = (θ + θ−1)(θ
1
2 + θ−

1
2 ).

dw

dθ
= (θ + θ−1)

d(θ
1
2 + θ−

1
2 )

dθ
+ (θ

1
2 + θ−

1
2 )
d(θ + θ−1)

dθ

= (θ + θ−1)(1
2
θ−

1
2 − 1

2
θ−

3
2 ) + (θ

1
2 + θ−

1
2 )(1− θ−2)

= 1
2
(θ

1
2 + θ−

3
2 − θ−

1
2 − θ−

5
2 ) + (θ

1
2 + θ−

1
2 − θ−

3
2 − θ−

5
2 )

= 3
2

(√
θ − 1√

θ5

)
+ 1

2

(
1√
θ
− 1√

θ3

)
.

This, again, could be obtained more simply by multiplying the two

factors first, and differentiating afterwards. This is not, however, always

possible; see, for instance, p. 170, example 8, in which the rule for

differentiating a product must be used.

(8) Differentiate y =
a

1 + a
√
x+ a2x

.

dy

dx
=

(1 + ax
1
2 + a2x)× 0− a

d(1 + ax
1
2 + a2x)

dx
(1 + a

√
x+ a2x)2

= − a(1
2
ax− 1

2 + a2)

(1 + ax
1
2 + a2x)2

.

(9) Differentiate y =
x2

x2 + 1
.

dy

dx
=

(x2 + 1) 2x− x2 × 2x

(x2 + 1)2
=

2x

(x2 + 1)2
.

(10) Differentiate y =
a+
√
x

a−√x .
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In the indexed form, y =
a+ x

1
2

a− x
1
2

.

dy

dx
=

(a− x
1
2 )(1

2
x− 1

2 )− (a+ x
1
2 )(−1

2
x− 1

2 )

(a− x
1
2 )2

=
a− x

1
2 + a+ x

1
2

2(a− x
1
2 )2 x

1
2

;

hence
dy

dx
=

a

(a−√x)2√x.

(11) Differentiate θ =
1− a

3
√
t2

1 + a
2
√
t3
.

Now θ =
1− at

2
3

1 + at
3
2

.

dθ

dt
=

(1 + at
3
2 )(−2

3
at−

1
3 )− (1− at

2
3 )× 3

2
at

1
2

(1 + at
3
2 )2

=

5a2
6
√
t7 − 4a

3
√
t
− 9a 2

√
t

6(1 + a
2
√
t3)2

.

(12) A reservoir of square cross-section has sides sloping at an angle

of 45◦ with the vertical. The side of the bottom is 200 feet. Find an

expression for the quantity pouring in or out when the depth of water

varies by 1 foot; hence find, in gallons, the quantity withdrawn hourly

when the depth is reduced from 14 to 10 feet in 24 hours.

The volume of a frustum of pyramid of height H, and of bases A

and a, is V =
H

3
(A+ a+

√
Aa). It is easily seen that, the slope being

45◦, if the depth be h, the length of the side of the square surface of

the water is 200 + 2h feet, so that the volume of water is

h

3
[2002 + (200 + 2h)2 + 200(200 + 2h)] = 40, 000h+ 400h2 +

4h3

3
.
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dV

dh
= 40, 000+800h+4h2 = cubic feet per foot of depth variation.

The mean level from 14 to 10 feet is 12 feet, when h = 12,
dV

dh
=

50, 176 cubic feet.

Gallons per hour corresponding to a change of depth of 4 ft. in

24 hours =
4× 50, 176× 6.25

24
= 52, 267 gallons.

(13) The absolute pressure, in atmospheres, P , of saturated steam

at the temperature t◦ C. is given by Dulong as being P =

(
40 + t

140

)5

as long as t is above 80◦. Find the rate of variation of the pressure with

the temperature at 100◦ C.

Expand the numerator by the binomial theorem (see p. 137).

P =
1

1405
(405 + 5× 404t+ 10× 403t2 + 10× 402t3 + 5× 40t4 + t5);

hence
dP

dt
=

1

537, 824× 105

(5× 404 + 20× 403t+ 30× 402t2 + 20× 40t3 + 5t4),

when t = 100 this becomes 0.036 atmosphere per degree Centigrade

change of temperature.

Exercises III. (See the Answers on p. 253.)

(1) Differentiate

(a) u = 1 + x+
x2

1× 2
+

x3

1× 2× 3
+ · · · .

(b) y = ax2 + bx+ c. (c) y = (x+ a)2.

(d) y = (x+ a)3.
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(2) If w = at− 1
2
bt2, find

dw

dt
.

(3) Find the differential coefficient of

y = (x+
√
−1)× (x−

√
−1).

(4) Differentiate

y = (197x− 34x2)× (7 + 22x− 83x3).

(5) If x = (y + 3)× (y + 5), find
dx

dy
.

(6) Differentiate y = 1.3709x× (112.6 + 45.202x2).

Find the differential coefficients of

(7) y =
2x+ 3

3x+ 2
. (8) y =

1 + x+ 2x2 + 3x3

1 + x+ 2x2
.

(9) y =
ax+ b

cx+ d
. (10) y =

xn + a

x−n + b
.

(11) The temperature t of the filament of an incandescent electric

lamp is connected to the current passing through the lamp by the re-

lation

C = a+ bt+ ct2.

Find an expression giving the variation of the current corresponding

to a variation of temperature.

(12) The following formulae have been proposed to express the re-

lation between the electric resistance R of a wire at the temperature
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t◦ C., and the resistance R0 of that same wire at 0◦ Centigrade, a, b, c

being constants.

R = R0(1 + at+ bt2).

R = R0(1 + at+ b
√
t).

R = R0(1 + at+ bt2)−1.

Find the rate of variation of the resistance with regard to tempera-

ture as given by each of these formulae.

(13) The electromotive-force E of a certain type of standard cell has

been found to vary with the temperature t according to the relation

E = 1.4340
[
1− 0.000814(t− 15) + 0.000007(t− 15)2

]
volts.

Find the change of electromotive-force per degree, at 15◦, 20◦

and 25◦.

(14) The electromotive-force necessary to maintain an electric arc of

length l with a current of intensity i has been found by Mrs. Ayrton to

be

E = a+ bl +
c+ kl

i
,

where a, b, c, k are constants.

Find an expression for the variation of the electromotive-force

(a) with regard to the length of the arc; (b) with regard to the strength

of the current.



CHAPTER VII.

SUCCESSIVE DIFFERENTIATION.

Let us try the effect of repeating several times over the operation of

differentiating a function (see p. 13). Begin with a concrete case.

Let y = x5.

First differentiation, 5x4.

Second differentiation, 5× 4x3 = 20x3.

Third differentiation, 5× 4× 3x2 = 60x2.

Fourth differentiation, 5× 4× 3× 2x = 120x.

Fifth differentiation, 5× 4× 3× 2× 1 = 120.

Sixth differentiation, = 0.

There is a certain notation, with which we are already acquainted

(see p. 14), used by some writers, that is very convenient. This is

to employ the general symbol f(x) for any function of x. Here the

symbol f( ) is read as “function of,” without saying what particular

function is meant. So the statement y = f(x) merely tells us that y is

a function of x, it may be x2 or axn, or cosx or any other complicated

function of x.
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The corresponding symbol for the differential coefficient is f ′(x),

which is simpler to write than
dy

dx
. This is called the “derived function”

of x.

Suppose we differentiate over again, we shall get the “second derived

function” or second differential coefficient, which is denoted by f ′′(x);

and so on.

Now let us generalize.

Let y = f(x) = xn.

First differentiation, f ′(x) = nxn−1.

Second differentiation, f ′′(x) = n(n− 1)xn−2.

Third differentiation, f ′′′(x) = n(n− 1)(n− 2)xn−3.

Fourth differentiation, f ′′′′(x) = n(n− 1)(n− 2)(n− 3)xn−4.

etc., etc.

But this is not the only way of indicating successive differentiations.

For,

if the original function be y = f(x);

once differentiating gives
dy

dx
= f ′(x);

twice differentiating gives

d

(
dy

dx

)
dx

= f ′′(x);

and this is more conveniently written as
d2y

(dx)2
, or more usually

d2y

dx2
.

Similarly, we may write as the result of thrice differentiating,
d3y

dx3
=

f ′′′(x).
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Examples.

Now let us try y = f(x) = 7x4 + 3.5x3 − 1
2
x2 + x− 2.

dy

dx
= f ′(x) = 28x3 + 10.5x2 − x+ 1,

d2y

dx2
= f ′′(x) = 84x2 + 21x− 1,

d3y

dx3
= f ′′′(x) = 168x+ 21,

d4y

dx4
= f ′′′′(x) = 168,

d5y

dx5
= f ′′′′′(x) = 0.

In a similar manner if y = ϕ(x) = 3x(x2 − 4),

ϕ′(x) =
dy

dx
= 3

[
x× 2x+ (x2 − 4)× 1

]
= 3(3x2 − 4),

ϕ′′(x) =
d2y

dx2
= 3× 6x = 18x,

ϕ′′′(x) =
d3y

dx3
= 18,

ϕ′′′′(x) =
d4y

dx4
= 0.

Exercises IV. (See page 253 for Answers.)

Find
dy

dx
and

d2y

dx2
for the following expressions:

(1) y = 17x+ 12x2. (2) y =
x2 + a

x+ a
.

(3) y = 1 +
x

1
+

x2

1× 2
+

x3

1× 2× 3
+

x4

1× 2× 3× 4
.
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(4) Find the 2nd and 3rd derived functions in the Exercises III.

(p. 45), No. 1 to No. 7, and in the Examples given (p. 40), No. 1 to

No. 7.



CHAPTER VIII.

WHEN TIME VARIES.

Some of the most important problems of the calculus are those where

time is the independent variable, and we have to think about the values

of some other quantity that varies when the time varies. Some things

grow larger as time goes on; some other things grow smaller. The dis-

tance that a train has got from its starting place goes on ever increasing

as time goes on. Trees grow taller as the years go by. Which is growing

at the greater rate; a plant 12 inches high which in one month becomes

14 inches high, or a tree 12 feet high which in a year becomes 14 feet

high?

In this chapter we are going to make much use of the word rate.

Nothing to do with poor-rate, or water-rate (except that even here the

word suggests a proportion—a ratio—so many pence in the pound).

Nothing to do even with birth-rate or death-rate, though these words

suggest so many births or deaths per thousand of the population. When

a motor-car whizzes by us, we say: What a terrific rate! When a

spendthrift is flinging about his money, we remark that that young

man is living at a prodigious rate. What do we mean by rate? In

both these cases we are making a mental comparison of something that

is happening, and the length of time that it takes to happen. If the
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motor-car flies past us going 10 yards per second, a simple bit of mental

arithmetic will show us that this is equivalent—while it lasts—to a rate

of 600 yards per minute, or over 20 miles per hour.

Now in what sense is it true that a speed of 10 yards per second

is the same as 600 yards per minute? Ten yards is not the same as

600 yards, nor is one second the same thing as one minute. What we

mean by saying that the rate is the same, is this: that the proportion

borne between distance passed over and time taken to pass over it, is

the same in both cases.

Take another example. A man may have only a few pounds in his

possession, and yet be able to spend money at the rate of millions

a year—provided he goes on spending money at that rate for a few

minutes only. Suppose you hand a shilling over the counter to pay

for some goods; and suppose the operation lasts exactly one second.

Then, during that brief operation, you are parting with your money

at the rate of 1 shilling per second, which is the same rate as £3 per

minute, or £180 per hour, or £4320 per day, or £1, 576, 800 per year!

If you have £10 in your pocket, you can go on spending money at the

rate of a million a year for just 51
4
minutes.

It is said that Sandy had not been in London above five minutes

when “bang went saxpence.” If he were to spend money at that rate

all day long, say for 12 hours, he would be spending 6 shillings an hour,

or £3. 12s. per day, or £21. 12s. a week, not counting the Sawbbath.

Now try to put some of these ideas into differential notation.

Let y in this case stand for money, and let t stand for time.

If you are spending money, and the amount you spend in a short
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time dt be called dy, the rate of spending it will be
dy

dt
, or rather, should

be written with a minus sign, as −dy

dt
, because dy is a decrement, not an

increment. But money is not a good example for the calculus, because

it generally comes and goes by jumps, not by a continuous flow—you

may earn £200 a year, but it does not keep running in all day long

in a thin stream; it comes in only weekly, or monthly, or quarterly, in

lumps: and your expenditure also goes out in sudden payments.

A more apt illustration of the idea of a rate is furnished by the

speed of a moving body. From London (Euston station) to Liverpool is

200 miles. If a train leaves London at 7 o’clock, and reaches Liverpool

at 11 o’clock, you know that, since it has travelled 200 miles in 4 hours,

its average rate must have been 50 miles per hour; because 200
4

= 50
1
.

Here you are really making a mental comparison between the distance

passed over and the time taken to pass over it. You are dividing one

by the other. If y is the whole distance, and t the whole time, clearly

the average rate is
y

t
. Now the speed was not actually constant all the

way: at starting, and during the slowing up at the end of the journey,

the speed was less. Probably at some part, when running downhill,

the speed was over 60 miles an hour. If, during any particular element

of time dt, the corresponding element of distance passed over was dy,

then at that part of the journey the speed was
dy

dt
. The rate at which

one quantity (in the present instance, distance) is changing in relation

to the other quantity (in this case, time) is properly expressed, then,

by stating the differential coefficient of one with respect to the other.

A velocity, scientifically expressed, is the rate at which a very small

distance in any given direction is being passed over; and may therefore
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be written

v =
dy

dt
.

But if the velocity v is not uniform, then it must be either increasing

or else decreasing. The rate at which a velocity is increasing is called the

acceleration. If a moving body is, at any particular instant, gaining an

additional velocity dv in an element of time dt, then the acceleration a

at that instant may be written

a =
dv

dt
;

but dv is itself d

(
dy

dt

)
. Hence we may put

a =

d

(
dy

dt

)
dt

;

and this is usually written a =
d2y

dt2
;

or the acceleration is the second differential coefficient of the distance,

with respect to time. Acceleration is expressed as a change of velocity

in unit time, for instance, as being so many feet per second per second;

the notation used being feet÷ second2.

When a railway train has just begun to move, its velocity v is small;

but it is rapidly gaining speed—it is being hurried up, or accelerated,

by the effort of the engine. So its
d2y

dt2
is large. When it has got up its

top speed it is no longer being accelerated, so that then
d2y

dt2
has fallen

to zero. But when it nears its stopping place its speed begins to slow

down; may, indeed, slow down very quickly if the brakes are put on,
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and during this period of deceleration or slackening of pace, the value

of
dv

dt
, that is, of

d2y

dt2
will be negative.

To accelerate a mass m requires the continuous application of force.

The force necessary to accelerate a mass is proportional to the mass,

and it is also proportional to the acceleration which is being imparted.

Hence we may write for the force f , the expression

f = ma;

or f = m
dv

dt
;

or f = m
d2y

dt2
.

The product of a mass by the speed at which it is going is called its

momentum, and is in symbols mv. If we differentiate momentum with

respect to time we shall get
d(mv)

dt
for the rate of change of momentum.

But, since m is a constant quantity, this may be written m
dv

dt
, which

we see above is the same as f . That is to say, force may be expressed

either as mass times acceleration, or as rate of change of momentum.

Again, if a force is employed to move something (against an equal

and opposite counter-force), it does work ; and the amount of work done

is measured by the product of the force into the distance (in its own

direction) through which its point of application moves forward. So if

a force f moves forward through a length y, the work done (which we

may call w) will be

w = f × y;

where we take f as a constant force. If the force varies at different

parts of the range y, then we must find an expression for its value from
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point to point. If f be the force along the small element of length dy,

the amount of work done will be f × dy. But as dy is only an element

of length, only an element of work will be done. If we write w for work,

then an element of work will be dw; and we have

dw = f × dy;

which may be written

dw = ma · dy;

or dw = m
d2y

dt2
· dy;

or dw = m
dv

dt
· dy.

Further, we may transpose the expression and write

dw

dy
= f.

This gives us yet a third definition of force; that if it is being used

to produce a displacement in any direction, the force (in that direction)

is equal to the rate at which work is being done per unit of length in

that direction. In this last sentence the word rate is clearly not used in

its time-sense, but in its meaning as ratio or proportion.

Sir Isaac Newton, who was (along with Leibnitz) an inventor of the

methods of the calculus, regarded all quantities that were varying as

flowing ; and the ratio which we nowadays call the differential coefficient

he regarded as the rate of flowing, or the fluxion of the quantity in ques-

tion. He did not use the notation of the dy and dx, and dt (this was due

to Leibnitz), but had instead a notation of his own. If y was a quantity
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that varied, or “flowed,” then his symbol for its rate of variation (or

“fluxion”) was ẏ. If x was the variable, then its fluxion was called ẋ.

The dot over the letter indicated that it had been differentiated. But

this notation does not tell us what is the independent variable with

respect to which the differentiation has been effected. When we see
dy

dt

we know that y is to be differentiated with respect to t. If we see
dy

dx
we know that y is to be differentiated with respect to x. But if we see

merely ẏ, we cannot tell without looking at the context whether this is

to mean
dy

dx
or

dy

dt
or

dy

dz
, or what is the other variable. So, therefore,

this fluxional notation is less informing than the differential notation,

and has in consequence largely dropped out of use. But its simplicity

gives it an advantage if only we will agree to use it for those cases ex-

clusively where time is the independent variable. In that case ẏ will

mean
dy

dt
and u̇ will mean

du

dt
; and ẍ will mean

d2x

dt2
.

Adopting this fluxional notation we may write the mechanical equa-

tions considered in the paragraphs above, as follows:

distance x,

velocity v = ẋ,

acceleration a = v̇ = ẍ,

force f = mv̇ = mẍ,

work w = x×mẍ.

Examples.

(1) A body moves so that the distance x (in feet), which it travels

from a certain point O, is given by the relation x = 0.2t2 +10.4, where

t is the time in seconds elapsed since a certain instant. Find the velocity
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and acceleration 5 seconds after the body began to move, and also

find the corresponding values when the distance covered is 100 feet.

Find also the average velocity during the first 10 seconds of its motion.

(Suppose distances and motion to the right to be positive.)

Now x = 0.2t2 + 10.4

v = ẋ =
dx

dt
= 0.4t; and a = ẍ =

d2x

dt2
= 0.4 = constant.

When t = 0, x = 10.4 and v = 0. The body started from a point

10.4 feet to the right of the point O; and the time was reckoned from

the instant the body started.

When t = 5, v = 0.4× 5 = 2 ft./sec.; a = 0.4 ft./sec2.

When x = 100, 100 = 0.2t2 + 10.4, or t2 = 448, and t = 21.17 sec.;

v = 0.4× 21.17 = 8.468 ft./sec.

When t = 10,

distance travelled = 0.2× 102 + 10.4− 10.4 = 20 ft.

Average velocity = 20
10

= 2 ft./sec.

(It is the same velocity as the velocity at the middle of the interval,

t = 5; for, the acceleration being constant, the velocity has varied

uniformly from zero when t = 0 to 4 ft./sec. when t = 10.)

(2) In the above problem let us suppose

x = 0.2t2 + 3t+ 10.4.

v = ẋ =
dx

dt
= 0.4t+ 3; a = ẍ =

d2x

dt2
= 0.4 = constant.

When t = 0, x = 10.4 and v = 3 ft./sec, the time is reckoned from

the instant at which the body passed a point 10.4 ft. from the point O,
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its velocity being then already 3 ft./sec. To find the time elapsed since

it began moving, let v = 0; then 0.4t + 3 = 0, t = − 3
.4

= −7.5 sec.

The body began moving 7.5 sec. before time was begun to be observed;

5 seconds after this gives t = −2.5 and v = 0.4×−2.5 + 3 = 2 ft./sec.

When x = 100 ft.,

100 = 0.2t2 + 3t+ 10.4; or t2 + 15t− 448 = 0;

hence t = 14.95 sec., v = 0.4× 14.95 + 3 = 8.98 ft./sec.

To find the distance travelled during the 10 first seconds of the

motion one must know how far the body was from the point O when it

started.

When t = −7.5,

x = 0.2× (−7.5)2 − 3× 7.5 + 10.4 = −0.85 ft.,

that is 0.85 ft. to the left of the point O.

Now, when t = 2.5,

x = 0.2× 2.52 + 3× 2.5 + 10.4 = 19.15.

So, in 10 seconds, the distance travelled was 19.15 + 0.85 = 20 ft.,

and

the average velocity = 20
10

= 2 ft./sec.

(3) Consider a similar problem when the distance is given by x =

0.2t2 − 3t + 10.4. Then v = 0.4t − 3, a = 0.4 = constant. When

t = 0, x = 10.4 as before, and v = −3; so that the body was moving

in the direction opposite to its motion in the previous cases. As the

acceleration is positive, however, we see that this velocity will decrease
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as time goes on, until it becomes zero, when v = 0 or 0.4t − 3 = 0; or

t = 7.5 sec. After this, the velocity becomes positive; and 5 seconds

after the body started, t = 12.5, and

v = 0.4× 12.5− 3 = 2 ft./sec.

When x = 100,

100 = 0.2t2 − 3t+ 10.4, or t2 − 15t− 448 = 0,

and t = 29.95; v = 0.4× 29.95− 3 = 8.98 ft./sec.

When v is zero, x = 0.2× 7.52 − 3× 7.5 + 10.4 = −0.85, informing

us that the body moves back to 0.85 ft. beyond the point O before it

stops. Ten seconds later

t = 17.5 and x = 0.2× 17.52 − 3× 17.5 + 10.4 = 19.15.

The distance travelled = .85 + 19.15 = 20.0, and the average velocity

is again 2 ft./sec.

(4) Consider yet another problem of the same sort with x = 0.2t3−
3t2 + 10.4; v = 0.6t2 − 6t; a = 1.2t − 6. The acceleration is no more

constant.

When t = 0, x = 10.4, v = 0, a = −6. The body is at rest, but just

ready to move with a negative acceleration, that is to gain a velocity

towards the point O.

(5) If we have x = 0.2t3−3t+10.4, then v = 0.6t2−3, and a = 1.2t.

When t = 0, x = 10.4; v = −3; a = 0.

The body is moving towards the point O with a velocity of 3 ft./sec.,

and just at that instant the velocity is uniform.
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We see that the conditions of the motion can always be at once

ascertained from the time-distance equation and its first and second

derived functions. In the last two cases the mean velocity during the

first 10 seconds and the velocity 5 seconds after the start will no more

be the same, because the velocity is not increasing uniformly, the ac-

celeration being no longer constant.

(6) The angle θ (in radians) turned through by a wheel is given by

θ = 3+2t−0.1t3, where t is the time in seconds from a certain instant;

find the angular velocity ω and the angular acceleration α, (a) after

1 second; (b) after it has performed one revolution. At what time is it

at rest, and how many revolutions has it performed up to that instant?

Writing for the acceleration

ω = θ̇ =
dθ

dt
= 2− 0.3t2, α = θ̈ =

d2θ

dt2
= −0.6t.

When t = 0, θ = 3; ω = 2 rad./sec.; α = 0.

When t = 1,

ω = 2− 0.3 = 1.7 rad./sec.; α = −0.6 rad./sec2.

This is a retardation; the wheel is slowing down.

After 1 revolution

θ = 2π = 6.28; 6.28 = 3 + 2t− 0.1t3.

By plotting the graph, θ = 3 + 2t − 0.1t3, we can get the value or

values of t for which θ = 6.28; these are 2.11 and 3.03 (there is a third

negative value).
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When t = 2.11,

θ = 6.28; ω = 2− 1.34 = 0.66 rad./sec.;

α = −1.27 rad./sec2.

When t = 3.03,

θ = 6.28; ω = 2− 2.754 = −0.754 rad./sec.;

α = −1.82 rad./sec2.

The velocity is reversed. The wheel is evidently at rest between

these two instants; it is at rest when ω = 0, that is when 0 = 2− 0.3t3,

or when t = 2.58 sec., it has performed

θ

2π
=

3 + 2× 2.58− 0.1× 2.583

6.28
= 1.025 revolutions.

Exercises V. (See page 255 for Answers.)

(1) If y = a+ bt2 + ct4; find
dy

dt
and

d2y

dt2
.

Ans.
dy

dt
= 2bt+ 4ct3;

d2y

dt2
= 2b+ 12ct2.

(2) A body falling freely in space describes in t seconds a space s,

in feet, expressed by the equation s = 16t2. Draw a curve showing

the relation between s and t. Also determine the velocity of the body

at the following times from its being let drop: t = 2 seconds; t = 4.6

seconds; t = 0.01 second.

(3) If x = at− 1
2
gt2; find ẋ and ẍ.
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(4) If a body move according to the law

s = 12− 4.5t+ 6.2t2,

find its velocity when t = 4 seconds; s being in feet.

(5) Find the acceleration of the body mentioned in the preceding

example. Is the acceleration the same for all values of t?

(6) The angle θ (in radians) turned through by a revolving wheel is

connected with the time t (in seconds) that has elapsed since starting;

by the law

θ = 2.1− 3.2t+ 4.8t2.

Find the angular velocity (in radians per second) of that wheel when

11
2
seconds have elapsed. Find also its angular acceleration.

(7) A slider moves so that, during the first part of its motion, its

distance s in inches from its starting point is given by the expression

s = 6.8t3 − 10.8t; t being in seconds.

Find the expression for the velocity and the acceleration at any

time; and hence find the velocity and the acceleration after 3 seconds.

(8) The motion of a rising balloon is such that its height h, in miles,

is given at any instant by the expression h = 0.5+ 1
10

3
√
t− 125; t being

in seconds.

Find an expression for the velocity and the acceleration at any time.

Draw curves to show the variation of height, velocity and acceleration

during the first ten minutes of the ascent.
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(9) A stone is thrown downwards into water and its depth p in me-

tres at any instant t seconds after reaching the surface of the water is

given by the expression

p =
4

4 + t2
+ 0.8t− 1.

Find an expression for the velocity and the acceleration at any time.

Find the velocity and acceleration after 10 seconds.

(10) A body moves in such a way that the spaces described in the

time t from starting is given by s = tn, where n is a constant. Find the

value of n when the velocity is doubled from the 5th to the 10th second;

find it also when the velocity is numerically equal to the acceleration

at the end of the 10th second.



CHAPTER IX.

INTRODUCING A USEFUL DODGE.

Sometimes one is stumped by finding that the expression to be differ-

entiated is too complicated to tackle directly.

Thus, the equation

y = (x2 + a2)
3
2

is awkward to a beginner.

Now the dodge to turn the difficulty is this: Write some symbol,

such as u, for the expression x2 + a2; then the equation becomes

y = u
3
2 ,

which you can easily manage; for

dy

du
=

3

2
u

1
2 .

Then tackle the expression

u = x2 + a2,

and differentiate it with respect to x,

du

dx
= 2x.
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Then all that remains is plain sailing;

for
dy

dx
=

dy

du
× du

dx
;

that is,
dy

dx
=

3

2
u

1
2 × 2x

= 3
2
(x2 + a2)

1
2 × 2x

= 3x(x2 + a2)
1
2 ;

and so the trick is done.

By and bye, when you have learned how to deal with sines, and

cosines, and exponentials, you will find this dodge of increasing useful-

ness.

Examples.

Let us practise this dodge on a few examples.

(1) Differentiate y =
√
a+ x.

Let a+ x = u.

du

dx
= 1; y = u

1
2 ;

dy

du
= 1

2
u− 1

2 = 1
2
(a+ x)−

1
2 .

dy

dx
=

dy

du
× du

dx
=

1

2
√
a+ x

.

(2) Differentiate y =
1√

a+ x2
.

Let a+ x2 = u.

du

dx
= 2x; y = u− 1

2 ;
dy

du
= −1

2
u− 3

2 .

dy

dx
=

dy

du
× du

dx
= − x√

(a+ x2)3
.
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(3) Differentiate y =

(
m− nx

2
3 +

p

x
4
3

)a

.

Let m− nx
2
3 + px− 4

3 = u.

du

dx
= −2

3
nx− 1

3 − 4
3
px− 7

3 ;

y = ua;
dy

du
= aua−1.

dy

dx
=

dy

du
× du

dx
= −a

(
m− nx

2
3 +

p

x
4
3

)a−1

(2
3
nx− 1

3 + 4
3
px− 7

3 ).

(4) Differentiate y =
1√

x3 − a2
.

Let u = x3 − a2.

du

dx
= 3x2; y = u− 1

2 ;
dy

du
= −1

2
(x3 − a2)−

3
2 .

dy

dx
=

dy

du
× du

dx
= − 3x2

2
√

(x3 − a2)3
.

(5) Differentiate y =

√
1− x

1 + x
.

Write this as y =
(1− x)

1
2

(1 + x)
1
2

.

dy

dx
=

(1 + x)
1
2
d(1− x)

1
2

dx
− (1− x)

1
2
d(1 + x)

1
2

dx
1 + x

.

(We may also write y = (1 − x)
1
2 (1 + x)−

1
2 and differentiate as a

product.)

Proceeding as in example (1) above, we get

d(1− x)
1
2

dx
= − 1

2
√
1− x

; and
d(1 + x)

1
2

dx
=

1

2
√
1 + x

.
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Hence

dy

dx
= − (1 + x)

1
2

2(1 + x)
√
1− x

− (1− x)
1
2

2(1 + x)
√
1 + x

= − 1

2
√
1 + x

√
1− x

−
√
1− x

2
√

(1 + x)3
;

or
dy

dx
= − 1

(1 + x)
√
1− x2

.

(6) Differentiate y =

√
x3

1 + x2
.

We may write this

y = x
3
2 (1 + x2)−

1
2 ;

dy

dx
= 3

2
x

1
2 (1 + x2)−

1
2 + x

3
2 × d

[
(1 + x2)−

1
2
]

dx
.

Differentiating (1 + x2)−
1
2 , as shown in example (2) above, we get

d
[
(1 + x2)−

1
2
]

dx
= − x√

(1 + x2)3
;

so that
dy

dx
=

3
√
x

2
√
1 + x2

−
√
x5√

(1 + x2)3
=

√
x(3 + x2)

2
√

(1 + x2)3
.

(7) Differentiate y = (x+
√
x2 + x+ a)3.

Let x+
√
x2 + x+ a = u.

du

dx
= 1 +

d
[
(x2 + x+ a)

1
2
]

dx
.

y = u3; and
dy

du
= 3u2 = 3

(
x+
√
x2 + x+ a

)2

.
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Now let (x2 + x+ a)
1
2 = v and (x2 + x+ a) = w.

dw

dx
= 2x+ 1; v = w

1
2 ;

dv

dw
= 1

2
w− 1

2 .

dv

dx
=

dv

dw
× dw

dx
= 1

2
(x2 + x+ a)−

1
2 (2x+ 1).

Hence
du

dx
= 1 +

2x+ 1

2
√
x2 + x+ a

,

dy

dx
=

dy

du
× du

dx

= 3
(
x+
√
x2 + x+ a

)2
(
1 +

2x+ 1

2
√
x2 + x+ a

)
.

(8) Differentiate y =

√
a2 + x2

a2 − x2

3

√
a2 − x2

a2 + x2
.

We get

y =
(a2 + x2)

1
2 (a2 − x2)

1
3

(a2 − x2)
1
2 (a2 + x2)

1
3

= (a2 + x2)
1
6 (a2 − x2)−

1
6 .

dy

dx
= (a2 + x2)

1
6
d
[
(a2 − x2)−

1
6
]

dx
+

d
[
(a2 + x2)

1
6
]

(a2 − x2)
1
6 dx

.

Let u = (a2 − x2)−
1
6 and v = (a2 − x2).

u = v−
1
6 ;

du

dv
= −1

6
v−

7
6 ;

dv

dx
= −2x.

du

dx
=

du

dv
× dv

dx
=

1

3
x(a2 − x2)−

7
6 .

Let w = (a2 + x2)
1
6 and z = (a2 + x2).

w = z
1
6 ;

dw

dz
=

1

6
z−

5
6 ;

dz

dx
= 2x.

dw

dx
=

dw

dz
× dz

dx
=

1

3
x(a2 + x2)−

5
6 .
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Hence

dy

dx
= (a2 + x2)

1
6

x

3(a2 − x2)
7
6

+
x

3(a2 − x2)
1
6 (a2 + x2)

5
6

;

or
dy

dx
=

x

3

[
6

√
a2 + x2

(a2 − x2)7
+

1
6
√

(a2 − x2)(a2 + x2)5]

]
.

(9) Differentiate yn with respect to y5.

d(yn)

d(y5)
=

nyn−1

5y5−1
=

n

5
yn−5.

(10) Find the first and second differential coefficients

of y =
x

b

√
(a− x)x.

dy

dx
=

x

b

d
{[

(a− x)x
] 1
2
}

dx
+

√
(a− x)x

b
.

Let
[
(a− x)x

] 1
2 = u and let (a− x)x = w; then u = w

1
2 .

du

dw
=

1

2
w− 1

2 =
1

2w
1
2

=
1

2
√

(a− x)x
.

dw

dx
= a− 2x.

du

dw
× dw

dx
=

du

dx
=

a− 2x

2
√

(a− x)x
.

Hence

dy

dx
=

x(a− 2x)

2b
√

(a− x)x
+

√
(a− x)x

b
=

x(3a− 4x)

2b
√

(a− x)x
.
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Now

d2y

dx2
=

2b
√

(a− x)x (3a− 8x)− (3ax− 4x2)b(a− 2x)√
(a− x)x

4b2(a− x)x

=
3a2 − 12ax+ 8x2

4b(a− x)
√

(a− x)x
.

(We shall need these two last differential coefficients later on. See

Ex. X. No. 11.)

Exercises VI. (See page 255 for Answers.)

Differentiate the following:

(1) y =
√
x2 + 1. (2) y =

√
x2 + a2.

(3) y =
1√
a+ x

. (4) y =
a√

a− x2
.

(5) y =

√
x2 − a2

x2
. (6) y =

3
√
x4 + a

2
√
x3 + a

.

(7) y =
a2 + x2

(a+ x)2
.

(8) Differentiate y5 with respect to y2.

(9) Differentiate y =

√
1− θ2

1− θ
.

The process can be extended to three or more differential coeffi-

cients, so that
dy

dx
=

dy

dz
× dz

dv
× dv

dx
.
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Examples.

(1) If z = 3x4; v =
7

z2
; y =

√
1 + v, find

dv

dx
.

We have

dy

dv
=

1

2
√
1 + v

;
dv

dz
= −14

z3
;

dz

dx
= 12x3.

dy

dx
= − 168x3

(2
√
1 + v)z3

= − 28

3x5
√
9x8 + 7

.

(2) If t =
1

5
√
θ
; x = t3 +

t

2
; v =

7x2

3
√
x− 1

, find
dv

dθ
.

dv

dx
=

7x(5x− 6)

3 3
√

(x− 1)4
;

dx

dt
= 3t2 + 1

2
;

dt

dθ
= − 1

10
√
θ3
.

Hence
dv

dθ
= −7x(5x− 6)(3t2 + 1

2
)

30 3
√
(x− 1)4

√
θ3

,

an expression in which x must be replaced by its value, and t by its

value in terms of θ.

(3) If θ =
3a2x√
x3

; ω =

√
1− θ2

1 + θ
; and ϕ =

√
3− 1

ω
√
2
, find

dϕ

dx
.

We get

θ = 3a2x− 1
2 ; ω =

√
1− θ

1 + θ
; and ϕ =

√
3− 1√

2
ω−1.

dθ

dx
= − 3a2

2
√
x3

;
dω

dθ
= − 1

(1 + θ)
√
1− θ2

(see example 5, p. 68); and

dϕ

dω
=

1√
2ω2

.

So that
dθ

dx
=

1√
2× ω2

× 1

(1 + θ)
√
1− θ2

× 3a2

2
√
x3

.

Replace now first ω, then θ by its value.
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Exercises VII. You can now successfully try the following. (See

page 256 for Answers.)

(1) If u = 1
2
x3; v = 3(u+ u2); and w =

1

v2
, find

dw

dx
.

(2) If y = 3x2 +
√
2; z =

√
1 + y; and v =

1√
3 + 4z

, find
dv

dx
.

(3) If y =
x3

√
3
; z = (1 + y)2; and u =

1√
1 + z

, find
du

dx
.



CHAPTER X.

GEOMETRICAL MEANING OF DIFFERENTIATION.

It is useful to consider what geometrical meaning can be given to the

differential coefficient.

In the first place, any function of x, such, for example, as x2, or
√
x,

or ax + b, can be plotted as a curve; and nowadays every schoolboy is

familiar with the process of curve-plotting.

dx

dy

P

Q

R

y

x dxO X

Y

Fig. 7.

Let PQR, in Fig. 7, be a portion of a curve plotted with respect

to the axes of coordinates OX and OY . Consider any point Q on this

curve, where the abscissa of the point is x and its ordinate is y. Now

observe how y changes when x is varied. If x is made to increase by
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a small increment dx, to the right, it will be observed that y also (in

this particular curve) increases by a small increment dy (because this

particular curve happens to be an ascending curve). Then the ratio of

dy to dx is a measure of the degree to which the curve is sloping up

between the two points Q and T . As a matter of fact, it can be seen on

the figure that the curve between Q and T has many different slopes,

so that we cannot very well speak of the slope of the curve between

Q and T . If, however, Q and T are so near each other that the small

portion QT of the curve is practically straight, then it is true to say that

the ratio
dy

dx
is the slope of the curve along QT . The straight line QT

produced on either side touches the curve along the portion QT only,

and if this portion is indefinitely small, the straight line will touch the

curve at practically one point only, and be therefore a tangent to the

curve.

This tangent to the curve has evidently the same slope as QT , so

that
dy

dx
is the slope of the tangent to the curve at the point Q for which

the value of
dy

dx
is found.

We have seen that the short expression “the slope of a curve” has

no precise meaning, because a curve has so many slopes—in fact, every

small portion of a curve has a different slope. “The slope of a curve at

a point” is, however, a perfectly defined thing; it is the slope of a very

small portion of the curve situated just at that point; and we have seen

that this is the same as “the slope of the tangent to the curve at that

point.”

Observe that dx is a short step to the right, and dy the correspond-

ing short step upwards. These steps must be considered as short as
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possible—in fact indefinitely short,—though in diagrams we have to

represent them by bits that are not infinitesimally small, otherwise

they could not be seen.

We shall hereafter make considerable use of this circumstance that
dy

dx
represents the slope of the curve at any point.

dx

dy

O X

Y

Fig. 8.

If a curve is sloping up at 45◦ at a particular point, as in Fig. 8, dy

and dx will be equal, and the value of
dy

dx
= 1.

If the curve slopes up steeper than 45◦ (Fig. 9),
dy

dx
will be greater

than 1.

If the curve slopes up very gently, as in Fig. 10,
dy

dx
will be a fraction

smaller than 1.

For a horizontal line, or a horizontal place in a curve, dy = 0, and

therefore
dy

dx
= 0.

If a curve slopes downward, as in Fig. 11, dy will be a step down,

and must therefore be reckoned of negative value; hence
dy

dx
will have

negative sign also.
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dx

dy

O X

Y

Fig. 9.

dx

dy

O X

Y

Fig. 10.

If the “curve” happens to be a straight line, like that in Fig. 12, the

value of
dy

dx
will be the same at all points along it. In other words its

slope is constant.

If a curve is one that turns more upwards as it goes along to the

right, the values of
dy

dx
will become greater and greater with the in-

creasing steepness, as in Fig. 13.

If a curve is one that gets flatter and flatter as it goes along, the

values of
dy

dx
will become smaller and smaller as the flatter part is

dx

dy

Q

y

x dxO X

Y

Fig. 11.
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dx

dy

dx

dy

dx

dy

O X

Y

Fig. 12.

dx
dy

dx
dy

dx

dy

O X

Y

Fig. 13.

reached, as in Fig. 14.

If a curve first descends, and then goes up again, as in Fig. 15,

presenting a concavity upwards, then clearly
dy

dx
will first be negative,

with diminishing values as the curve flattens, then will be zero at the

point where the bottom of the trough of the curve is reached; and from

this point onward
dy

dx
will have positive values that go on increasing. In

such a case y is said to pass by a minimum. The minimum value of y is

not necessarily the smallest value of y, it is that value of y corresponding

to the bottom of the trough; for instance, in Fig. 28 (p. 99), the value

of y corresponding to the bottom of the trough is 1, while y takes
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O X

Y

Fig. 14.

O X

Y

y min.

Fig. 15.

elsewhere values which are smaller than this. The characteristic of a

minimum is that y must increase on either side of it.

N.B.—For the particular value of x that makes y a minimum, the

value of
dy

dx
= 0.

If a curve first ascends and then descends, the values of
dy

dx
will be

positive at first; then zero, as the summit is reached; then negative,

as the curve slopes downwards, as in Fig. 16. In this case y is said to

pass by a maximum, but the maximum value of y is not necessarily the

greatest value of y. In Fig. 28, the maximum of y is 21
3
, but this is

by no means the greatest value y can have at some other point of the

curve.

N.B.—For the particular value of x that makes y a maximum, the

value of
dy

dx
= 0.

If a curve has the peculiar form of Fig. 17, the values of
dy

dx
will

always be positive; but there will be one particular place where the

slope is least steep, where the value of
dy

dx
will be a minimum; that is,

less than it is at any other part of the curve.
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O X

Y

y max.

Fig. 16.

O X

Y

Fig. 17.

If a curve has the form of Fig. 18, the value of
dy

dx
will be negative

in the upper part, and positive in the lower part; while at the nose of

the curve where it becomes actually perpendicular, the value of
dy

dx
will

be infinitely great.

dx

dx

dy

dy

Q

O X

Y

Fig. 18.

Now that we understand that
dy

dx
measures the steepness of a curve

at any point, let us turn to some of the equations which we have already

learned how to differentiate.
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(1) As the simplest case take this:

y = x+ b.

It is plotted out in Fig. 19, using equal scales for x and y. If we put

x = 0, then the corresponding ordinate will be y = b; that is to say, the

“curve” crosses the y-axis at the height b. From here it ascends at 45◦;

dx

dy

b

O X

Y

Fig. 19.

b

O X

Y

Fig. 20.

for whatever values we give to x to the right, we have an equal y to

ascend. The line has a gradient of 1 in 1.

Now differentiate y = x + b, by the rules we have already learned

(pp. 21 and 25 ante), and we get
dy

dx
= 1.

The slope of the line is such that for every little step dx to the right,

we go an equal little step dy upward. And this slope is constant—always

the same slope.

(2) Take another case:

y = ax+ b.
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We know that this curve, like the preceding one, will start from a

height b on the y-axis. But before we draw the curve, let us find its

slope by differentiating; which gives
dy

dx
= a. The slope will be constant,

at an angle, the tangent of which is here called a. Let us assign to a

some numerical value—say 1
3
. Then we must give it such a slope that

it ascends 1 in 3; or dx will be 3 times as great as dy; as magnified in

Fig. 21. So, draw the line in Fig. 20 at this slope.

Fig. 21.

(3) Now for a slightly harder case.

Let y = ax2 + b.

Again the curve will start on the y-axis at a height b above the

origin.

Now differentiate. [If you have forgotten, turn back to p. 25; or,

rather, don’t turn back, but think out the differentiation.]

dy

dx
= 2ax.

This shows that the steepness will not be constant: it increases as

x increases. At the starting point P , where x = 0, the curve (Fig. 22)

has no steepness—that is, it is level. On the left of the origin, where x

has negative values,
dy

dx
will also have negative values, or will descend

from left to right, as in the Figure.
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P

Q

R

b

O X

Y

Fig. 22.

Let us illustrate this by working out a particular instance. Taking

the equation

y = 1
4
x2 + 3,

and differentiating it, we get

dy

dx
= 1

2
x.

Now assign a few successive values, say from 0 to 5, to x; and calculate

the corresponding values of y by the first equation; and of
dy

dx
from the

second equation. Tabulating results, we have:

x 0 1 2 3 4 5

y 3 31
4

4 51
4

7 91
4

dy

dx
0 1

2
1 11

2
2 21

2

Then plot them out in two curves, Figs. 23 and 24, in Fig. 23 plotting

the values of y against those of x and in Fig. 24 those of
dy

dx
against

those of x. For any assigned value of x, the height of the ordinate in

the second curve is proportional to the slope of the first curve.
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Fig. 23.

−3 −2 −1
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1
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x

dy

dx

0

dy

dx
=

1
2
x

Fig. 24.

If a curve comes to a sudden cusp, as in Fig. 25, the slope at that

point suddenly changes from a slope upward to a slope downward. In

O X

Y

Fig. 25.

that case
dy

dx
will clearly undergo an abrupt change from a positive to

a negative value.

The following examples show further applications of the principles

just explained.
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(4) Find the slope of the tangent to the curve

y =
1

2x
+ 3,

at the point where x = −1. Find the angle which this tangent makes

with the curve y = 2x2 + 2.

The slope of the tangent is the slope of the curve at the point where

they touch one another (see p. 76); that is, it is the
dy

dx
of the curve for

that point. Here
dy

dx
= − 1

2x2
and for x = −1, dy

dx
= −1

2
, which is the

slope of the tangent and of the curve at that point. The tangent, being

a straight line, has for equation y = ax + b, and its slope is
dy

dx
= a,

hence a = −1

2
. Also if x = −1, y =

1

2(−1) + 3 = 21
2
; and as the

tangent passes by this point, the coordinates of the point must satisfy

the equation of the tangent, namely

y = −1

2
x+ b,

so that 21
2
= −1

2
× (−1) + b and b = 2; the equation of the tangent is

therefore y = −1

2
x+ 2.

Now, when two curves meet, the intersection being a point com-

mon to both curves, its coordinates must satisfy the equation of each

one of the two curves; that is, it must be a solution of the system of

simultaneous equations formed by coupling together the equations of

the curves. Here the curves meet one another at points given by the

solution of y = 2x2 + 2,

y = −1
2
x+ 2 or 2x2 + 2 = −1

2
x+ 2;
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that is, x(2x+ 1
2
) = 0.

This equation has for its solutions x = 0 and x = −1
4
. The slope of

the curve y = 2x2 + 2 at any point is

dy

dx
= 4x.

For the point where x = 0, this slope is zero; the curve is horizontal.

For the point where

x = −1

4
,

dy

dx
= −1;

hence the curve at that point slopes downwards to the right at such

an angle θ with the horizontal that tan θ = 1; that is, at 45◦ to the

horizontal.

The slope of the straight line is −1
2
; that is, it slopes downwards to

the right and makes with the horizontal an angle ϕ such that tanϕ = 1
2
;

that is, an angle of 26◦ 34′. It follows that at the first point the curve

cuts the straight line at an angle of 26◦ 34′, while at the second it cuts

it at an angle of 45◦ − 26◦ 34′ = 18◦ 26′.

(5) A straight line is to be drawn, through a point whose coordinates

are x = 2, y = −1, as tangent to the curve y = x2 − 5x + 6. Find the

coordinates of the point of contact.

The slope of the tangent must be the same as the
dy

dx
of the curve;

that is, 2x− 5.

The equation of the straight line is y = ax+b, and as it is satisfied for

the values x = 2, y = −1, then −1 = a×2+b; also, its
dy

dx
= a = 2x−5.

The x and the y of the point of contact must also satisfy both the

equation of the tangent and the equation of the curve.
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We have then

y = x2 − 5x+ 6, (i)

y = ax+ b, (ii)

−1 = 2a+ b, (iii)

a = 2x− 5, (iv)

four equations in a, b, x, y.

Equations (i) and (ii) give x2 − 5x+ 6 = ax+ b.

Replacing a and b by their value in this, we get

x2 − 5x+ 6 = (2x− 5)x− 1− 2(2x− 5),

which simplifies to x2 − 4x + 3 = 0, the solutions of which are: x = 3

and x = 1. Replacing in (i), we get y = 0 and y = 2 respectively; the

two points of contact are then x = 1, y = 2, and x = 3, y = 0.

Note.—In all exercises dealing with curves, students will find it ex-

tremely instructive to verify the deductions obtained by actually plot-

ting the curves.

Exercises VIII. (See page 256 for Answers.)

(1) Plot the curve y = 3
4
x2−5, using a scale of millimetres. Measure

at points corresponding to different values of x, the angle of its slope.

Find, by differentiating the equation, the expression for slope; and

see, from a Table of Natural Tangents, whether this agrees with the

measured angle.
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(2) Find what will be the slope of the curve

y = 0.12x3 − 2,

at the particular point that has as abscissa x = 2.

(3) If y = (x − a)(x − b), show that at the particular point of the

curve where
dy

dx
= 0, x will have the value 1

2
(a+ b).

(4) Find the
dy

dx
of the equation y = x3 + 3x; and calculate the

numerical values of
dy

dx
for the points corresponding to x = 0, x = 1

2
,

x = 1, x = 2.

(5) In the curve to which the equation is x2+y2 = 4, find the values

of x at those points where the slope = 1.

(6) Find the slope, at any point, of the curve whose equation is
x2

32
+

y2

22
= 1; and give the numerical value of the slope at the place

where x = 0, and at that where x = 1.

(7) The equation of a tangent to the curve y = 5−2x+0.5x3, being

of the form y = mx + n, where m and n are constants, find the value

of m and n if the point where the tangent touches the curve has x = 2

for abscissa.

(8) At what angle do the two curves

y = 3.5x2 + 2 and y = x2 − 5x+ 9.5

cut one another?

(9) Tangents to the curve y = ±
√
25− x2 are drawn at points for

which x = 3 and x = 4. Find the coordinates of the point of intersection

of the tangents and their mutual inclination.
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(10) A straight line y = 2x − b touches a curve y = 3x2 + 2 at one

point. What are the coordinates of the point of contact, and what is

the value of b?



CHAPTER XI.

MAXIMA AND MINIMA.

One of the principal uses of the process of differentiating is to find out

under what conditions the value of the thing differentiated becomes a

maximum, or a minimum. This is often exceedingly important in engi-

neering questions, where it is most desirable to know what conditions

will make the cost of working a minimum, or will make the efficiency a

maximum.

Now, to begin with a concrete case, let us take the equation

y = x2 − 4x+ 7.

By assigning a number of successive values to x, and finding the cor-

responding values of y, we can readily see that the equation represents

a curve with a minimum.

x 0 1 2 3 4 5

y 7 4 3 4 7 12

These values are plotted in Fig. 26, which shows that y has appar-

ently a minimum value of 3, when x is made equal to 2. But are you

sure that the minimum occurs at 2, and not at 21
4
or at 13

4
?
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1 2 3 4

1

2

3

4

5

6

7

O X

Y

Fig. 26.

Of course it would be possible with any algebraic expression to work

out a lot of values, and in this way arrive gradually at the particular

value that may be a maximum or a minimum.

1 2 3 4

1

2

3

4

−4

−3

−2

−1
−1 4 X

Y

O

Fig. 27.

Here is another example:

Let y = 3x− x2.
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Calculate a few values thus:

x −1 0 1 2 3 4 5

y −4 0 2 2 0 −4 −10

Plot these values as in Fig. 27.

It will be evident that there will be a maximum somewhere between

x = 1 and x = 2; and the thing looks as if the maximum value of y ought

to be about 21
4
. Try some intermediate values. If x = 11

4
, y = 2.187; if

x = 11
2
, y = 2.25; if x = 1.6, y = 2.24. How can we be sure that 2.25 is

the real maximum, or that it occurs exactly when x = 11
2
?

Now it may sound like juggling to be assured that there is a way

by which one can arrive straight at a maximum (or minimum) value

without making a lot of preliminary trials or guesses. And that way

depends on differentiating. Look back to an earlier page (78) for the

remarks about Figs. 14 and 15, and you will see that whenever a curve

gets either to its maximum or to its minimum height, at that point its
dy

dx
= 0. Now this gives us the clue to the dodge that is wanted. When

there is put before you an equation, and you want to find that value

of x that will make its y a minimum (or a maximum), first differentiate

it, and having done so, write its
dy

dx
as equal to zero, and then solve

for x. Put this particular value of x into the original equation, and you

will then get the required value of y. This process is commonly called

“equating to zero.”

To see how simply it works, take the example with which this chap-

ter opens, namely

y = x2 − 4x+ 7.
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Differentiating, we get:
dy

dx
= 2x− 4.

Now equate this to zero, thus:

2x− 4 = 0.

Solving this equation for x, we get:

2x = 4,

x = 2.

Now, we know that the maximum (or minimum) will occur exactly

when x = 2.

Putting the value x = 2 into the original equation, we get

y = 22 − (4× 2) + 7

= 4− 8 + 7

= 3.

Now look back at Fig. 26, and you will see that the minimum occurs

when x = 2, and that this minimum of y = 3.

Try the second example (Fig. 24), which is

y = 3x− x2.

Differentiating,
dy

dx
= 3− 2x.

Equating to zero,

3− 2x = 0,

whence x = 11
2
;
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and putting this value of x into the original equation, we find:

y = 41
2
− (11

2
× 11

2
),

y = 21
4
.

This gives us exactly the information as to which the method of trying

a lot of values left us uncertain.

Now, before we go on to any further cases, we have two remarks to

make. When you are told to equate
dy

dx
to zero, you feel at first (that

is if you have any wits of your own) a kind of resentment, because you

know that
dy

dx
has all sorts of different values at different parts of the

curve, according to whether it is sloping up or down. So, when you are

suddenly told to write
dy

dx
= 0,

you resent it, and feel inclined to say that it can’t be true. Now you will

have to understand the essential difference between “an equation,” and

“an equation of condition.” Ordinarily you are dealing with equations

that are true in themselves, but, on occasions, of which the present are

examples, you have to write down equations that are not necessarily

true, but are only true if certain conditions are to be fulfilled; and you

write them down in order, by solving them, to find the conditions which

make them true. Now we want to find the particular value that x has

when the curve is neither sloping up nor sloping down, that is, at the

particular place where
dy

dx
= 0. So, writing

dy

dx
= 0 does not mean that

it always is = 0; but you write it down as a condition in order to see

how much x will come out if
dy

dx
is to be zero.
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The second remark is one which (if you have any wits of your own)

you will probably have already made: namely, that this much-belauded

process of equating to zero entirely fails to tell you whether the x that

you thereby find is going to give you a maximum value of y or a min-

imum value of y. Quite so. It does not of itself discriminate; it finds

for you the right value of x but leaves you to find out for yourselves

whether the corresponding y is a maximum or a minimum. Of course,

if you have plotted the curve, you know already which it will be.

For instance, take the equation:

y = 4x+
1

x
.

Without stopping to think what curve it corresponds to, differenti-

ate it, and equate to zero:

dy

dx
= 4− x−2 = 4− 1

x2
= 0;

whence x = 1
2
;

and, inserting this value,

y = 4

will be either a maximum or else a minimum. But which? You will

hereafter be told a way, depending upon a second differentiation, (see

Chap. XII., p. 109). But at present it is enough if you will simply

try any other value of x differing a little from the one found, and see

whether with this altered value the corresponding value of y is less or

greater than that already found.
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Try another simple problem in maxima and minima. Suppose you

were asked to divide any number into two parts, such that the product

was a maximum? How would you set about it if you did not know the

trick of equating to zero? I suppose you could worry it out by the rule

of try, try, try again. Let 60 be the number. You can try cutting it into

two parts, and multiplying them together. Thus, 50 times 10 is 500; 52

times 8 is 416; 40 times 20 is 800; 45 times 15 is 675; 30 times 30 is 900.

This looks like a maximum: try varying it. 31 times 29 is 899, which is

not so good; and 32 times 28 is 896, which is worse. So it seems that

the biggest product will be got by dividing into two equal halves.

Now see what the calculus tells you. Let the number to be cut into

two parts be called n. Then if x is one part, the other will be n − x,

and the product will be x(n− x) or nx− x2. So we write y = nx− x2.

Now differentiate and equate to zero;

dy

dx
= n− 2x = 0

Solving for x, we get
n

2
= x.

So now we know that whatever number n may be, we must divide it

into two equal parts if the product of the parts is to be a maximum;

and the value of that maximum product will always be = 1
4
n2.

This is a very useful rule, and applies to any number of factors, so

that if m+ n+ p = a constant number, m× n× p is a maximum when

m = n = p.
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Test Case.

Let us at once apply our knowledge to a case that we can test.

Let y = x2 − x;

and let us find whether this function has a maximum or minimum; and

if so, test whether it is a maximum or a minimum.

Differentiating, we get

dy

dx
= 2x− 1.

Equating to zero, we get

2x− 1 = 0,

whence 2x = 1,

or x = 1
2
.

That is to say, when x is made = 1
2
, the corresponding value of y

will be either a maximum or a minimum. Accordingly, putting x = 1
2

in the original equation, we get

y = (1
2
)2 − 1

2
,

or y = −1
4
.

Is this a maximum or a minimum? To test it, try putting x a little

bigger than 1
2
,—say make x = 0.6. Then

y = (0.6)2 − 0.6 = 0.36− 0.6 = −0.24,

which is higher up than −0.25; showing that y = −0.25 is a minimum.

Plot the curve for yourself, and verify the calculation.
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Further Examples.

A most interesting example is afforded by a curve that has both a

maximum and a minimum. Its equation is:

y = 1
3
x3 − 2x2 + 3x+ 1.

Now
dy

dx
= x2 − 4x+ 3.

1 2 3 4 5

1

2

3

4

5

6

−4

−3

−2

−1

−1

X

Y

O

Fig. 28.

Equating to zero, we get the quadratic,

x2 − 4x+ 3 = 0;

and solving the quadratic gives us two roots, viz.x = 3

x = 1.
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Now, when x = 3, y = 1; and when x = 1, y = 21
3
. The first of

these is a minimum, the second a maximum.

The curve itself may be plotted (as in Fig. 28) from the values

calculated, as below, from the original equation.

x −1 0 1 2 3 4 5 6

y −41
3

1 21
3

12
3

1 21
3

72
3

19

A further exercise in maxima and minima is afforded by the follow-

ing example:

The equation to a circle of radius r, having its centre C at the point

whose coordinates are x = a, y = b, as depicted in Fig. 29, is:

(y − b)2 + (x− a)2 = r2.

b

a

x

y

C

r

O X

Y

Fig. 29.

This may be transformed into

y =
√

r2 − (x− a)2 + b.
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Now we know beforehand, by mere inspection of the figure, that

when x = a, y will be either at its maximum value, b+ r, or else at its

minimum value, b−r. But let us not take advantage of this knowledge;

let us set about finding what value of x will make y a maximum or a

minimum, by the process of differentiating and equating to zero.

dy

dx
=

1

2

1√
r2 − (x− a)2

× (2a− 2x),

which reduces to

dy

dx
=

a− x√
r2 − (x− a)2

.

Then the condition for y being maximum or minimum is:

a− x√
r2 − (x− a)2

= 0.

Since no value whatever of x will make the denominator infinite,

the only condition to give zero is

x = a.

Inserting this value in the original equation for the circle, we find

y =
√
r2 + b;

and as the root of r2 is either +r or −r, we have two resulting values

of y, y

y

= b+ r

= b− r.
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The first of these is the maximum, at the top; the second the mini-

mum, at the bottom.

If the curve is such that there is no place that is a maximum or

minimum, the process of equating to zero will yield an impossible result.

For instance:

Let y = ax3 + bx+ c.

Then
dy

dx
= 3ax2 + b.

Equating this to zero, we get 3ax2 + b = 0,

x2 =
−b
3a

, and x =

√
−b
3a

, which is impossible.

Therefore y has no maximum nor minimum.

A few more worked examples will enable you to thoroughly master

this most interesting and useful application of the calculus.

(1) What are the sides of the rectangle of maximum area inscribed

in a circle of radius R?

If one side be called x,

the other side =
√

(diagonal)2 − x2;

and as the diagonal of the rectangle is necessarily a diameter, the other

side =
√
4R2 − x2.

Then, area of rectangle S = x
√
4R2 − x2,

dS

dx
= x× d

(√
4R2 − x2

)
dx

+
√
4R2 − x2 × d(x)

dx
.

If you have forgotten how to differentiate
√
4R2 − x2, here is a hint:

write 4R2 − x2 = w and y =
√
w, and seek

dy

dw
and

dw

dx
; fight it out,

and only if you can’t get on refer to page 66.
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You will get

dS

dx
= x×− x√

4R2 − x2
+
√
4R2 − x2 =

4R2 − 2x2

√
4R2 − x2

.

For maximum or minimum we must have

4R2 − 2x2

√
4R2 − x2

= 0;

that is, 4R2 − 2x2 = 0 and x = R
√
2.

The other side =
√
4R2 − 2R2 = R

√
2; the two sides are equal; the

figure is a square the side of which is equal to the diagonal of the square

constructed on the radius. In this case it is, of course, a maximum with

which we are dealing.

(2) What is the radius of the opening of a conical vessel the sloping

side of which has a length l when the capacity of the vessel is greatest?

If R be the radius and H the corresponding height, H =
√
l2 −R2.

Volume V = πR2 × H

3
= πR2 ×

√
l2 −R2

3
.

Proceeding as in the previous problem, we get

dV

dR
= πR2 ×− R

3
√
l2 −R2

+
2πR

3

√
l2 −R2

=
2πR(l2 −R2)− πR3

3
√
l2 −R2

= 0

for maximum or minimum.

Or, 2πR(l2 − R2) − πR2 = 0, and R = l
√

2
3
, for a maximum,

obviously.

(3) Find the maxima and minima of the function

y =
x

4− x
+

4− x

x
.
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We get

dy

dx
=

(4− x)− (−x)
(4− x)2

+
−x− (4− x)

x2
= 0

for maximum or minimum; or

4

(4− x)2
− 4

x2
= 0 and x = 2.

There is only one value, hence only one maximum or minimum.

For x = 2, y = 2,

for x = 1.5, y = 2.27,

for x = 2.5, y = 2.27;

it is therefore a minimum. (It is instructive to plot the graph of the

function.)

(4) Find the maxima and minima of the function y =
√
1 + x +

√
1− x. (It will be found instructive to plot the graph.)

Differentiating gives at once (see example No. 1, p. 67)

dy

dx
=

1

2
√
1 + x

− 1

2
√
1− x

= 0

for maximum or minimum.

Hence
√
1 + x =

√
1− x and x = 0, the only solution

For x = 0, y = 2.

For x = ±0.5, y = 1.932, so this is a maximum.

(5) Find the maxima and minima of the function

y =
x2 − 5

2x− 4
.
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We have
dy

dx
=

(2x− 4)× 2x− (x2 − 5)2

(2x− 4)2
= 0

for maximum or minimum; or

2x2 − 8x+ 10

(2x− 4)2
= 0;

or x2 − 4x+ 5 = 0; which has for solutions

x = 5
2
±
√
−1.

These being imaginary, there is no real value of x for which
dy

dx
= 0;

hence there is neither maximum nor minimum.

(6) Find the maxima and minima of the function

(y − x2)2 = x5.

This may be written y = x2 ± x
5
2 .

dy

dx
= 2x± 5

2
x

3
2 = 0 for maximum or minimum;

that is, x(2± 5
2
x

1
2 ) = 0, which is satisfied for x = 0, and for 2± 5

2
x

1
2 = 0,

that is for x = 16
25
. So there are two solutions.

Taking first x = 0. If x = −0.5, y = 0.25 ± 2
√
−(.5)5, and if

x = +0.5, y = 0.25 ± 2
√

(.5)5. On one side y is imaginary; that is,

there is no value of y that can be represented by a graph; the latter is

therefore entirely on the right side of the axis of y (see Fig. 30).

On plotting the graph it will be found that the curve goes to the

origin, as if there were a minimum there; but instead of continuing

beyond, as it should do for a minimum, it retraces its steps (forming
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what is called a “cusp”). There is no minimum, therefore, although the

condition for a minimum is satisfied, namely
dy

dx
= 0. It is necessary

therefore always to check by taking one value on either side.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

x

y

Fig. 30.

Now, if we take x = 16
25

= 0.64. If x = 0.64, y = 0.7373 and

y = 0.0819; if x = 0.6, y becomes 0.6389 and 0.0811; and if x = 0.7,

y becomes 0.8996 and 0.0804.

This shows that there are two branches of the curve; the upper one

does not pass through a maximum, but the lower one does.

(7) A cylinder whose height is twice the radius of the base is increas-

ing in volume, so that all its parts keep always in the same proportion

to each other; that is, at any instant, the cylinder is similar to the

original cylinder. When the radius of the base is r feet, the surface

area is increasing at the rate of 20 square inches per second; at what
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rate is its volume then increasing?

Area = S = 2(πr2) + 2πr × 2r = 6πr2.

Volume = V = πr2 × 2r = 2πr3.

dS

dr
= 12πr,

dV

dr
= 6πr2,

dS = 12πr dr = 20, dr =
20

12πr
,

dV = 6πr2 dr = 6πr2 × 20

12πr
= 10r.

The volume changes at the rate of 10r cubic inches.

Make other examples for yourself. There are few subjects which

offer such a wealth for interesting examples.

Exercises IX. (See page 257 for Answers.)

(1) What values of x will make y a maximum and a minimum, if

y =
x2

x+ 1
?

(2) What value of x will make y a maximum in the equation y =
x

a2 + x2
?

(3) A line of length p is to be cut up into 4 parts and put together

as a rectangle. Show that the area of the rectangle will be a maximum

if each of its sides is equal to 1
4
p.

(4) A piece of string 30 inches long has its two ends joined together

and is stretched by 3 pegs so as to form a triangle. What is the largest

triangular area that can be enclosed by the string?
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(5) Plot the curve corresponding to the equation

y =
10

x
+

10

8− x
;

also find
dy

dx
, and deduce the value of x that will make y a minimum;

and find that minimum value of y.

(6) If y = x5− 5x, find what values of x will make y a maximum or

a minimum.

(7) What is the smallest square that can be inscribed in a given

square?

(8) Inscribe in a given cone, the height of which is equal to the radius

of the base, a cylinder (a) whose volume is a maximum; (b) whose

lateral area is a maximum; (c) whose total area is a maximum.

(9) Inscribe in a sphere, a cylinder (a) whose volume is a maxi-

mum; (b) whose lateral area is a maximum; (c) whose total area is a

maximum.

(10) A spherical balloon is increasing in volume. If, when its radius

is r feet, its volume is increasing at the rate of 4 cubic feet per second,

at what rate is its surface then increasing?

(11) Inscribe in a given sphere a cone whose volume is a maximum.

(12) The current C given by a battery of N similar voltaic cells is

C =
n× E

R +
rn2

N

, where E, R, r, are constants and n is the number of

cells coupled in series. Find the proportion of n to N for which the

current is greatest.



CHAPTER XII.

CURVATURE OF CURVES.

Returning to the process of successive differentiation, it may be

asked: Why does anybody want to differentiate twice over? We know

that when the variable quantities are space and time, by differentiating

twice over we get the acceleration of a moving body, and that in the

geometrical interpretation, as applied to curves,
dy

dx
means the slope of

the curve. But what can
d2y

dx2
mean in this case? Clearly it means the

rate (per unit of length x) at which the slope is changing—in brief, it

is a measure of the curvature of the slope.

O X

Y

Fig. 31.

O X

Y

Fig. 32.

Suppose a slope constant, as in Fig. 31.
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Here,
dy

dx
is of constant value.

Suppose, however, a case in which, like Fig. 32, the slope itself is

getting greater upwards, then

d

(
dy

dx

)
dx

, that is,
d2y

dx2
, will be positive.

If the slope is becoming less as you go to the right (as in Fig. 14,

p. 80), or as in Fig. 33, then, even though the curve may be going

upward, since the change is such as to diminish its slope, its
d2y

dx2
will

be negative.

O X

Y

Fig. 33.

It is now time to initiate you into another secret—how to tell

whether the result that you get by “equating to zero” is a maximum or

a minimum. The trick is this: After you have differentiated (so as to

get the expression which you equate to zero), you then differentiate a

second time, and look whether the result of the second differentiation

is positive or negative. If
d2y

dx2
comes out positive, then you know that

the value of y which you got was a minimum; but if
d2y

dx2
comes out

negative, then the value of y which you got must be a maximum. That’s
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the rule.

The reason of it ought to be quite evident. Think of any curve that

has a minimum point in it (like Fig. 15, p. 80), or like Fig. 34, where the

point of minimum y is marked M , and the curve is concave upwards.

To the left of M the slope is downward, that is, negative, and is getting

less negative. To the right of M the slope has become upward, and

is getting more and more upward. Clearly the change of slope as the

M

x

y min.

O X

Y

Fig. 34.

M

x

y max.

O X

Y

Fig. 35.

curve passes through M is such that
d2y

dx2
is positive, for its operation,

as x increases toward the right, is to convert a downward slope into an

upward one.

Similarly, consider any curve that has a maximum point in it (like

Fig. 16, p. 81), or like Fig. 35, where the curve is convex, and the max-

imum point is marked M . In this case, as the curve passes through M

from left to right, its upward slope is converted into a downward or

negative slope, so that in this case the “slope of the slope”
d2y

dx2
is

negative.

Go back now to the examples of the last chapter and verify in this
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way the conclusions arrived at as to whether in any particular case

there is a maximum or a minimum. You will find below a few worked

out examples.

(1) Find the maximum or minimum of

(a) y = 4x2 − 9x− 6; (b) y = 6 + 9x− 4x2;

and ascertain if it be a maximum or a minimum in each case.

(a)
dy

dx
= 8x− 9 = 0; x = 11

8
, and y = −11.065.

d2y

dx2
= 8; it is +; hence it is a minimum.

(b)
dy

dx
= 9− 8x = 0; x = 11

8
; and y = +11.065.

d2y

dx2
= −8; it is −; hence it is a maximum.

(2) Find the maxima and minima of the function y = x3 − 3x+ 16.

dy

dx
= 3x2 − 3 = 0; x2 = 1; and x = ±1.

d2y

dx2
= 6x; for x = 1; it is +;

hence x = 1 corresponds to a minimum y = 14. For x = −1 it is −;
hence x = −1 corresponds to a maximum y = +18.

(3) Find the maxima and minima of y =
x− 1

x2 + 2
.

dy

dx
=

(x2 + 2)× 1− (x− 1)× 2x

(x2 + 2)2
=

2x− x2 + 2

(x2 + 2)2
= 0;
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or x2 − 2x− 2 = 0, whose solutions are x = +2.73 and x = −0.73.

d2y

dx2
= −(x2 + 2)2 × (2x− 2)− (x2 − 2x− 2)(4x3 + 8x)

(x2 + 2)4

= −2x5 − 6x4 − 8x3 − 8x2 − 24x+ 8

(x2 + 2)4
.

The denominator is always positive, so it is sufficient to ascertain

the sign of the numerator.

If we put x = 2.73, the numerator is negative; the maximum, y =

0.183.

If we put x = −0.73, the numerator is positive; the minimum,

y = −0.683.
(4) The expense C of handling the products of a certain factory

varies with the weekly output P according to the relation C = aP +
b

c+ P
+d, where a, b, c, d are positive constants. For what output will

the expense be least?

dC

dP
= a− b

(c+ P )2
= 0 for maximum or minimum;

hence a =
b

(c+ P )2
and P = ±

√
b

a
− c.

As the output cannot be negative, P = +

√
b

a
− c.

Now
d2C

dP 2
= +

b(2c+ 2P )

(c+ P )4
,

which is positive for all the values of P ; hence P = +

√
b

a
−c corresponds

to a minimum.
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(5) The total cost per hour C of lighting a building with N lamps

of a certain kind is

C = N

(
Cl

t
+

EPCe

1000

)
,

where E is the commercial efficiency (watts per candle),

P is the candle power of each lamp,

t is the average life of each lamp in hours,

Cl = cost of renewal in pence per hour of use,

Ce = cost of energy per 1000 watts per hour.

Moreover, the relation connecting the average life of a lamp with

the commercial efficiency at which it is run is approximately t = mEn,

where m and n are constants depending on the kind of lamp.

Find the commercial efficiency for which the total cost of lighting

will be least.

We have C = N

(
Cl

m
E−n +

PCe

1000
E

)
,

dC

dE
=

PCe

1000
− nCl

m
E−(n+1) = 0

for maximum or minimum.

En+1 =
1000× nCl

mPCe

and E = n+1

√
1000× nCl

mPCe

.

This is clearly for minimum, since

d2C

dE2
= (n+ 1)

nCl

m
E−(n+2),
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which is positive for a positive value of E.

For a particular type of 16 candle-power lamps, Cl = 17 pence,

Ce = 5 pence; and it was found that m = 10 and n = 3.6.

E = 4.6

√
1000× 3.6× 17

10× 16× 5
= 2.6 watts per candle-power.

Exercises X. (You are advised to plot the graph of any numerical

example.) (See p. 258 for the Answers.)

(1) Find the maxima and minima of

y = x3 + x2 − 10x+ 8.

(2) Given y =
b

a
x − cx2, find expressions for

dy

dx
, and for

d2y

dx2
, also

find the value of x which makes y a maximum or a minimum, and show

whether it is maximum or minimum.

(3) Find how many maxima and how many minima there are in the

curve, the equation to which is

y = 1− x2

2
+

x4

24
;

and how many in that of which the equation is

y = 1− x2

2
+

x4

24
− x6

720
.

(4) Find the maxima and minima of

y = 2x+ 1 +
5

x2
.
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(5) Find the maxima and minima of

y =
3

x2 + x+ 1
.

(6) Find the maxima and minima of

y =
5x

2 + x2
.

(7) Find the maxima and minima of

y =
3x

x2 − 3
+

x

2
+ 5.

(8) Divide a number N into two parts in such a way that three times

the square of one part plus twice the square of the other part shall be

a minimum.

(9) The efficiency u of an electric generator at different values of

output x is expressed by the general equation:

u =
x

a+ bx+ cx2
;

where a is a constant depending chiefly on the energy losses in the iron

and c a constant depending chiefly on the resistance of the copper parts.

Find an expression for that value of the output at which the efficiency

will be a maximum.

(10) Suppose it to be known that consumption of coal by a certain

steamer may be represented by the formula y = 0.3+0.001v3; where y is

the number of tons of coal burned per hour and v is the speed expressed

in nautical miles per hour. The cost of wages, interest on capital, and

depreciation of that ship are together equal, per hour, to the cost of
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1 ton of coal. What speed will make the total cost of a voyage of 1000

nautical miles a minimum? And, if coal costs 10 shillings per ton, what

will that minimum cost of the voyage amount to?

(11) Find the maxima and minima of

y = ±x

6

√
x(10− x).

(12) Find the maxima and minima of

y = 4x3 − x2 − 2x+ 1.



CHAPTER XIII.

OTHER USEFUL DODGES.

Partial Fractions.

We have seen that when we differentiate a fraction we have to perform

a rather complicated operation; and, if the fraction is not itself a simple

one, the result is bound to be a complicated expression. If we could

split the fraction into two or more simpler fractions such that their

sum is equivalent to the original fraction, we could then proceed by

differentiating each of these simpler expressions. And the result of

differentiating would be the sum of two (or more) differentials, each one

of which is relatively simple; while the final expression, though of course

it will be the same as that which could be obtained without resorting

to this dodge, is thus obtained with much less effort and appears in a

simplified form.

Let us see how to reach this result. Try first the job of adding

two fractions together to form a resultant fraction. Take, for example,

the two fractions
1

x+ 1
and

2

x− 1
. Every schoolboy can add these

together and find their sum to be
3x+ 1

x2 − 1
. And in the same way he can

add together three or more fractions. Now this process can certainly

be reversed: that is to say, that if this last expression were given, it
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is certain that it can somehow be split back again into its original

components or partial fractions. Only we do not know in every case

that may be presented to us how we can so split it. In order to find

this out we shall consider a simple case at first. But it is important

to bear in mind that all which follows applies only to what are called

“proper” algebraic fractions, meaning fractions like the above, which

have the numerator of a lesser degree than the denominator; that is,

those in which the highest index of x is less in the numerator than in

the denominator. If we have to deal with such an expression as
x2 + 2

x2 − 1
,

we can simplify it by division, since it is equivalent to 1 +
3

x2 − 1
; and

3

x2 − 1
is a proper algebraic fraction to which the operation of splitting

into partial fractions can be applied, as explained hereafter.

Case I. If we perform many additions of two or more fractions

the denominators of which contain only terms in x, and no terms in

x2, x3, or any other powers of x, we always find that the denominator

of the final resulting fraction is the product of the denominators of

the fractions which were added to form the result. It follows that by

factorizing the denominator of this final fraction, we can find every one

of the denominators of the partial fractions of which we are in search.

Suppose we wish to go back from
3x+ 1

x2 − 1
to the components which

we know are
1

x+ 1
and

2

x− 1
. If we did not know what those compo-

nents were we can still prepare the way by writing:

3x+ 1

x2 − 1
=

3x+ 1

(x+ 1)(x− 1)
=

x+ 1
+

x− 1
,

leaving blank the places for the numerators until we know what to put
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there. We always may assume the sign between the partial fractions

to be plus, since, if it be minus, we shall simply find the corresponding

numerator to be negative. Now, since the partial fractions are proper

fractions, the numerators are mere numbers without x at all, and we

can call them A, B, C . . . as we please. So, in this case, we have:

3x+ 1

x2 − 1
=

A

x+ 1
+

B

x− 1
.

If now we perform the addition of these two partial fractions, we

get
A(x− 1) +B(x+ 1)

(x+ 1)(x− 1)
; and this must be equal to

3x+ 1

(x+ 1)(x− 1)
.

And, as the denominators in these two expressions are the same, the

numerators must be equal, giving us:

3x+ 1 = A(x− 1) +B(x+ 1).

Now, this is an equation with two unknown quantities, and it would

seem that we need another equation before we can solve them and find

A and B. But there is another way out of this difficulty. The equation

must be true for all values of x; therefore it must be true for such values

of x as will cause x− 1 and x+1 to become zero, that is for x = 1 and

for x = −1 respectively. If we make x = 1, we get 4 = (A×0)+(B×2),
so that B = 2; and if we make x = −1, we get −2 = (A×−2)+(B×0),
so that A = 1. Replacing the A and B of the partial fractions by these

new values, we find them to become
1

x+ 1
and

2

x− 1
; and the thing is

done.

As a farther example, let us take the fraction
4x2 + 2x− 14

x3 + 3x2 − x− 3
. The

denominator becomes zero when x is given the value 1; hence x− 1 is

a factor of it, and obviously then the other factor will be x2 + 4x + 3;
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and this can again be decomposed into (x+1)(x+3). So we may write

the fraction thus:

4x2 + 2x− 14

x3 + 3x2 − x− 3
=

A

x+ 1
+

B

x− 1
+

C

x+ 3
,

making three partial factors.

Proceeding as before, we find

4x2 + 2x− 14 = A(x− 1)(x+ 3) +B(x+ 1)(x+ 3) + C(x+ 1)(x− 1).

Now, if we make x = 1, we get:

−8 = (A× 0) +B(2× 4) + (C × 0); that is, B = −1.

If x = −1, we get:

−12 = A(−2× 2) + (B × 0) + (C × 0); whence A = 3.

If x = −3, we get:

16 = (A× 0) + (B × 0) + C(−2×−4); whence C = 2.

So then the partial fractions are:

3

x+ 1
− 1

x− 1
+

2

x+ 3
,

which is far easier to differentiate with respect to x than the complicated

expression from which it is derived.
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Case II. If some of the factors of the denominator contain terms

in x2, and are not conveniently put into factors, then the corresponding

numerator may contain a term in x, as well as a simple number; and

hence it becomes necessary to represent this unknown numerator not

by the symbol A but by Ax+B; the rest of the calculation being made

as before.

Try, for instance:
−x2 − 3

(x2 + 1)(x+ 1)
.

−x2 − 3

(x2 + 1)(x+ 1)
=

Ax+B

x2 + 1
+

C

x+ 1
;

−x2 − 3 = (Ax+B)(x+ 1) + C(x2 + 1).

Putting x = −1, we get −4 = C × 2; and C = −2;

hence −x2 − 3 = (Ax+B)(x+ 1)− 2x2 − 2;

and x2 − 1 = Ax(x+ 1) +B(x+ 1).

Putting x = 0, we get −1 = B;

hence

x2 − 1 = Ax(x+ 1)− x− 1; or x2 + x = Ax(x+ 1);

and x+ 1 = A(x+ 1),

so that A = 1, and the partial fractions are:

x− 1

x2 + 1
− 2

x+ 1
.

Take as another example the fraction

x3 − 2

(x2 + 1)(x2 + 2)
.
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We get

x3 − 2

(x2 + 1)(x2 + 2)
=

Ax+B

x2 + 1
+

Cx+D

x2 + 2

=
(Ax+B)(x2 + 2) + (Cx+D)(x2 + 1)

(x2 + 1)(x2 + 2)
.

In this case the determination of A, B, C, D is not so easy. It

will be simpler to proceed as follows: Since the given fraction and

the fraction found by adding the partial fractions are equal, and have

identical denominators, the numerators must also be identically the

same. In such a case, and for such algebraical expressions as those with

which we are dealing here, the coefficients of the same powers of x are

equal and of same sign.

Hence, since

x3 − 2 = (Ax+B)(x2 + 2) + (Cx+D)(x2 + 1)

= (A+ C)x3 + (B +D)x2 + (2A+ C)x+ 2B +D,

we have 1 = A + C; 0 = B + D (the coefficient of x2 in the left

expression being zero); 0 = 2A + C; and −2 = 2B + D. Here are

four equations, from which we readily obtain A = −1; B = −2; C = 2;

D = 0; so that the partial fractions are
2(x+ 1)

x2 + 2
− x+ 2

x2 + 1
. This method

can always be used; but the method shown first will be found the

quickest in the case of factors in x only.

Case III. When, among the factors of the denominator there are

some which are raised to some power, one must allow for the possi-

ble existence of partial fractions having for denominator the several

powers of that factor up to the highest. For instance, in splitting the
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fraction
3x2 − 2x+ 1

(x+ 1)2(x− 2)
we must allow for the possible existence of a

denominator x+ 1 as well as (x+ 1)2 and (x− 2).

It maybe thought, however, that, since the numerator of the fraction

the denominator of which is (x+ 1)2 may contain terms in x, we must

allow for this in writing Ax+B for its numerator, so that

3x2 − 2x+ 1

(x+ 1)2(x− 2)
=

Ax+B

(x+ 1)2
+

C

x+ 1
+

D

x− 2
.

If, however, we try to find A, B, C and D in this case, we fail, because

we get four unknowns; and we have only three relations connecting

them, yet

3x2 − 2x+ 1

(x+ 1)2(x− 2)
=

x− 1

(x+ 1)2
+

1

x+ 1
+

1

x− 2
.

But if we write

3x2 − 2x+ 1

(x+ 1)2(x− 2)
=

A

(x+ 1)2
+

B

x+ 1
+

C

x− 2
,

we get

3x2 − 2x+ 1 = A(x− 2) +B(x+ 1)(x− 2) + C(x+ 1)2,

which gives C = 1 for x = 2. Replacing C by its value, transposing,

gathering like terms and dividing by x−2, we get −2x = A+B(x+1),

which gives A = −2 for x = −1. Replacing A by its value, we get

2x = −2 +B(x+ 1).

Hence B = 2; so that the partial fractions are:

2

x+ 1
− 2

(x+ 1)2
+

1

x− 2
,



OTHER USEFUL DODGES 125

instead of
1

x+ 1
+

x− 1

(x+ 1)2
+

1

x− 2
stated above as being the fractions

from which
3x2 − 2x+ 1

(x+ 1)2(x− 2)
was obtained. The mystery is cleared if we

observe that
x− 1

(x+ 1)2
can itself be split into the two fractions

1

x+ 1
−

2

(x+ 1)2
, so that the three fractions given are really equivalent to

1

x+ 1
+

1

x+ 1
− 2

(x+ 1)2
+

1

x− 2
=

2

x+ 1
− 2

(x+ 1)2
+

1

x− 2
,

which are the partial fractions obtained.

We see that it is sufficient to allow for one numerical term in each

numerator, and that we always get the ultimate partial fractions.

When there is a power of a factor of x2 in the denominator, however,

the corresponding numerators must be of the form Ax+B; for example,

3x− 1

(2x2 − 1)2(x+ 1)
=

Ax+B

(2x2 − 1)2
+

Cx+D

2x2 − 1
+

E

x+ 1
,

which gives

3x− 1 = (Ax+B)(x+ 1) + (Cx+D)(x+ 1)(2x2 − 1) + E(2x2 − 1)2.

For x = −1, this gives E = −4. Replacing, transposing, collecting

like terms, and dividing by x+ 1, we get

16x3 − 16x2 + 3 = 2Cx3 + 2Dx2 + x(A− C) + (B −D).

Hence 2C = 16 and C = 8; 2D = −16 and D = −8; A− C = 0 or

A − 8 = 0 and A = 8, and finally, B −D = 3 or B = −5. So that we

obtain as the partial fractions:

(8x− 5)

(2x2 − 1)2
+

8(x− 1)

2x2 − 1
− 4

x+ 1
.
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It is useful to check the results obtained. The simplest way is to

replace x by a single value, say +1, both in the given expression and in

the partial fractions obtained.

Whenever the denominator contains but a power of a single factor,

a very quick method is as follows:

Taking, for example,
4x+ 1

(x+ 1)3
, let x+ 1 = z; then x = z − 1.

Replacing, we get

4(z − 1) + 1

z3
=

4z − 3

z3
=

4

z2
− 3

z3
.

The partial fractions are, therefore,

4

(x+ 1)2
− 3

(x+ 1)3
.

Application to differentiation. Let it be required to differentiate

y =
5− 4x

6x2 + 7x− 3
; we have

dy

dx
= −(6x2 + 7x− 3)× 4 + (5− 4x)(12x+ 7)

(6x2 + 7x− 3)2

=
24x2 − 60x− 23

(6x2 + 7x− 3)2
.

If we split the given expression into

1

3x− 1
− 2

2x+ 3
,

we get, however,

dy

dx
= − 3

(3x− 1)2
+

4

(2x+ 3)2
,
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which is really the same result as above split into partial fractions.

But the splitting, if done after differentiating, is more complicated, as

will easily be seen. When we shall deal with the integration of such

expressions, we shall find the splitting into partial fractions a precious

auxiliary (see p. 228).

Exercises XI. (See page 259 for Answers.)

Split into fractions:

(1)
3x+ 5

(x− 3)(x+ 4)
. (2)

3x− 4

(x− 1)(x− 2)
.

(3)
3x+ 5

x2 + x− 12
. (4)

x+ 1

x2 − 7x+ 12
.

(5)
x− 8

(2x+ 3)(3x− 2)
. (6)

x2 − 13x+ 26

(x− 2)(x− 3)(x− 4)
.

(7)
x2 − 3x+ 1

(x− 1)(x+ 2)(x− 3)
.

(8)
5x2 + 7x+ 1

(2x+ 1)(3x− 2)(3x+ 1)
.

(9)
x2

x3 − 1
. (10)

x4 + 1

x3 + 1
.

(11)
5x2 + 6x+ 4

(x+ 1)(x2 + x+ 1)
. (12)

x

(x− 1)(x− 2)2
.

(13)
x

(x2 − 1)(x+ 1)
. (14)

x+ 3

(x+ 2)2(x− 1)
.
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(15)
3x2 + 2x+ 1

(x+ 2)(x2 + x+ 1)2
. (16)

5x2 + 8x− 12

(x+ 4)3
.

(17)
7x2 + 9x− 1

(3x− 2)4
. (18)

x2

(x3 − 8)(x− 2)
.

Differential of an Inverse Function.

Consider the function (see p. 13) y = 3x; it can be expressed in the

form x =
y

3
; this latter form is called the inverse function to the one

originally given.

If y = 3x,
dy

dx
= 3; if x =

y

3
,

dx

dy
=

1

3
, and we see that

dy

dx
=

1

dx

dy

or
dy

dx
× dx

dy
= 1.

Consider y = 4x2,
dy

dx
= 8x; the inverse function is

x =
y

1
2

2
, and

dx

dy
=

1

4
√
y
=

1

4× 2x
=

1

8x
.

Here again
dy

dx
× dx

dy
= 1.

It can be shown that for all functions which can be put into the

inverse form, one can always write

dy

dx
× dx

dy
= 1 or

dy

dx
=

1

dx

dy

.
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It follows that, being given a function, if it be easier to differentiate

the inverse function, this may be done, and the reciprocal of the differ-

ential coefficient of the inverse function gives the differential coefficient

of the given function itself.

As an example, suppose that we wish to differentiate y = 2

√
3

x
− 1.

We have seen one way of doing this, by writing u =
3

x
− 1, and finding

dy

du
and

du

dx
. This gives

dy

dx
= − 3

2x2

√
3

x
− 1

.

If we had forgotten how to proceed by this method, or wished to

check our result by some other way of obtaining the differential coef-

ficient, or for any other reason we could not use the ordinary method,

we can proceed as follows: The inverse function is x =
3

1 + y2
.

dx

dy
= − 3× 2y

(1 + y2)2
= − 6y

(1 + y2)2
;

hence

dy

dx
=

1

dx

dy

= −(1 + y2)2

6y
= −

(
1 +

3

x
− 1

)2

6× 2

√
3

x
− 1

= − 3

2x2

√
3

x
− 1

.

Let us take as an other example y =
1

3
√
θ + 5

.

The inverse function is θ =
1

y3
− 5 or θ = y−3 − 5, and

dθ

dy
= −3y−4 = −3 3

√
(θ + 5)4.
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It follows that
dy

dx
= − 1

3
√

(θ + 5)4
, as might have been found oth-

erwise.

We shall find this dodge most useful later on; meanwhile you are

advised to become familiar with it by verifying by its means the results

obtained in Exercises I. (p. 24), Nos. 5, 6, 7; Examples (p. 67), Nos.

1, 2, 4; and Exercises VI. (p. 72), Nos. 1, 2, 3 and 4.

You will surely realize from this chapter and the preceding, that in

many respects the calculus is an art rather than a science: an art only

to be acquired, as all other arts are, by practice. Hence you should

work many examples, and set yourself other examples, to see if you can

work them out, until the various artifices become familiar by use.



CHAPTER XIV.

ON TRUE COMPOUND INTEREST AND THE LAW

OF ORGANIC GROWTH.

Let there be a quantity growing in such a way that the increment of

its growth, during a given time, shall always be proportional to its own

magnitude. This resembles the process of reckoning interest on money

at some fixed rate; for the bigger the capital, the bigger the amount of

interest on it in a given time.

Now we must distinguish clearly between two cases, in our calcula-

tion, according as the calculation is made by what the arithmetic books

call “simple interest,” or by what they call “compound interest.” For

in the former case the capital remains fixed, while in the latter the

interest is added to the capital, which therefore increases by successive

additions.

(1) At simple interest. Consider a concrete case. Let the capital at

start be £100, and let the rate of interest be 10 per cent. per annum.

Then the increment to the owner of the capital will be £10 every year.

Let him go on drawing his interest every year, and hoard it by putting

it by in a stocking, or locking it up in his safe. Then, if he goes on for

10 years, by the end of that time he will have received 10 increments
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of £10 each, or £100, making, with the original £100, a total of £200

in all. His property will have doubled itself in 10 years. If the rate of

interest had been 5 per cent., he would have had to hoard for 20 years

to double his property. If it had been only 2 per cent., he would have

had to hoard for 50 years. It is easy to see that if the value of the yearly

interest is
1

n
of the capital, he must go on hoarding for n years in order

to double his property.

Or, if y be the original capital, and the yearly interest is
y

n
, then,

at the end of n years, his property will be

y + n
y

n
= 2y.

(2) At compound interest. As before, let the owner begin with a

capital of £100, earning interest at the rate of 10 per cent. per annum;

but, instead of hoarding the interest, let it be added to the capital

each year, so that the capital grows year by year. Then, at the end

of one year, the capital will have grown to £110; and in the second

year (still at 10%) this will earn £11 interest. He will start the third

year with £121, and the interest on that will be £12. 2s.; so that he

starts the fourth year with £133. 2s., and so on. It is easy to work

it out, and find that at the end of the ten years the total capital will

have grown to £259. 7s. 6d. In fact, we see that at the end of each

year, each pound will have earned 1
10

of a pound, and therefore, if

this is always added on, each year multiplies the capital by 11
10
; and if

continued for ten years (which will multiply by this factor ten times

over) will multiply the original capital by 2.59374. Let us put this into

symbols. Put y0 for the original capital;
1

n
for the fraction added on at
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each of the n operations; and yn for the value of the capital at the end

of the nth operation. Then

yn = y0

(
1 +

1

n

)n

.

But this mode of reckoning compound interest once a year, is really

not quite fair; for even during the first year the £100 ought to have been

growing. At the end of half a year it ought to have been at least £105,

and it certainly would have been fairer had the interest for the second

half of the year been calculated on £105. This would be equivalent to

calling it 5% per half-year; with 20 operations, therefore, at each of

which the capital is multiplied by 21
20
. If reckoned this way, by the end

of ten years the capital would have grown to £265. 6s. 7d.; for

(1 + 1
20
)20 = 2.653.

But, even so, the process is still not quite fair; for, by the end of

the first month, there will be some interest earned; and a half-yearly

reckoning assumes that the capital remains stationary for six months at

a time. Suppose we divided the year into 10 parts, and reckon a one-per-

cent. interest for each tenth of the year. We now have 100 operations

lasting over the ten years; or

yn = £100
(
1 + 1

100

)100
;

which works out to £270. 9s. 71
2
d.

Even this is not final. Let the ten years be divided into 1000 periods,

each of 1
100

of a year; the interest being 1
10

per cent. for each such period;

then

yn = £100
(
1 + 1

1000

)1000
;
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which works out to £271. 13s. 10d.

Go even more minutely, and divide the ten years into 10, 000 parts,

each 1
1000

of a year, with interest at 1
100

of 1 per cent. Then

yn = £100
(
1 + 1

10,000

)10,000

;

which amounts to £271. 16s. 31
2
d.

Finally, it will be seen that what we are trying to find is in reality

the ultimate value of the expression

(
1 +

1

n

)n

, which, as we see, is

greater than 2; and which, as we take n larger and larger, grows closer

and closer to a particular limiting value. However big you make n, the

value of this expression grows nearer and nearer to the figure

2.71828 . . .

a number never to be forgotten.

Let us take geometrical illustrations of these things. In Fig. 36,

OP stands for the original value. OT is the whole time during which

the value is growing. It is divided into 10 periods, in each of which

there is an equal step up. Here
dy

dx
is a constant; and if each step up

is 1
10

of the original OP , then, by 10 such steps, the height is doubled.

If we had taken 20 steps, each of half the height shown, at the end the

height would still be just doubled. Or n such steps, each of
1

n
of the

original height OP , would suffice to double the height. This is the case

of simple interest. Here is 1 growing till it becomes 2.

In Fig. 37, we have the corresponding illustration of the geometrical

progression. Each of the successive ordinates is to be 1 +
1

n
, that is,

n+ 1

n
times as high as its predecessor. The steps up are not equal,
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1 2 3 4 5 6 7 8 9

P

U

1

2

O T

Fig. 36.

because each step up is now
1

n
of the ordinate at that part of the curve.

If we had literally 10 steps, with
(
1 + 1

10

)
for the multiplying factor,

the final total would be (1 + 1
10
)10 or 2.594 times the original 1. But if

only we take n sufficiently large (and the corresponding
1

n
sufficiently

small), then the final value

(
1 +

1

n

)n

to which unity will grow will

be 2.71828.

1 2 3 4 5 6 7 8 9

P

U

1

2.7182

O T

Fig. 37.

Epsilon. To this mysterious number 2.7182818 etc., the mathemati-

cians have assigned as a symbol the Greek letter ϵ (pronounced ep-
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silon). All schoolboys know that the Greek letter π (called pi) stands

for 3.141592 etc.; but how many of them know that epsilon means

2.71828? Yet it is an even more important number than π!

What, then, is epsilon?

Suppose we were to let 1 grow at simple interest till it became 2;

then, if at the same nominal rate of interest, and for the same time,

we were to let 1 grow at true compound interest, instead of simple, it

would grow to the value epsilon.

This process of growing proportionately, at every instant, to the

magnitude at that instant, some people call a logarithmic rate of grow-

ing. Unit logarithmic rate of growth is that rate which in unit time will

cause 1 to grow to 2.718281. It might also be called the organic rate

of growing: because it is characteristic of organic growth (in certain

circumstances) that the increment of the organism in a given time is

proportional to the magnitude of the organism itself.

If we take 100 per cent. as the unit of rate, and any fixed period

as the unit of time, then the result of letting 1 grow arithmetically at

unit rate, for unit time, will be 2, while the result of letting 1 grow

logarithmically at unit rate, for the same time, will be 2.71828 . . . .

A little more about Epsilon. We have seen that we require to know

what value is reached by the expression

(
1 +

1

n

)n

, when n becomes

indefinitely great. Arithmetically, here are tabulated a lot of values

(which anybody can calculate out by the help of an ordinary table of

logarithms) got by assuming n = 2; n = 5; n = 10; and so on, up to
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n = 10, 000.

(1 + 1
2
)2 = 2.25.

(1 + 1
5
)5 = 2.488.

(1 + 1
10
)10 = 2.594.

(1 + 1
20
)20 = 2.653.

(1 + 1
100

)100 = 2.705.

(1 + 1
1000

)1000 = 2.7169.

(1 + 1
10,000

)10,000 = 2.7181.

It is, however, worth while to find another way of calculating this

immensely important figure.

Accordingly, we will avail ourselves of the binomial theorem, and

expand the expression

(
1 +

1

n

)n

in that well-known way.

The binomial theorem gives the rule that

(a+ b)n = an + n
an−1b

1!
+ n(n− 1)

an−2b2

2!

+ n(n− 1)(n− 2)
an−3b3

3!
+ etc.

Putting a = 1 and b =
1

n
, we get

(
1 +

1

n

)n

= 1 + 1 +
1

2!

(
n− 1

n

)
+

1

3!

(n− 1)(n− 2)

n2

+
1

4!

(n− 1)(n− 2)(n− 3)

n3
+ etc.
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Now, if we suppose n to become indefinitely great, say a billion, or

a billion billions, then n− 1, n− 2, and n− 3, etc., will all be sensibly

equal to n; and then the series becomes

ϵ = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ etc. . . .

By taking this rapidly convergent series to as many terms as we

please, we can work out the sum to any desired point of accuracy. Here

is the working for ten terms:

1.000000

dividing by 1 1.000000

dividing by 2 0.500000

dividing by 3 0.166667

dividing by 4 0.041667

dividing by 5 0.008333

dividing by 6 0.001389

dividing by 7 0.000198

dividing by 8 0.000025

dividing by 9 0.000002

Total 2.718281

ϵ is incommensurable with 1, and resembles π in being an inter-

minable non-recurrent decimal.

The Exponential Series. We shall have need of yet another series.

Let us, again making use of the binomial theorem, expand the ex-

pression

(
1 +

1

n

)nx

, which is the same as ϵx when we make n indefi-
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nitely great.

ϵx = 1nx + nx

1nx−1

(
1

n

)
1!

+ nx(nx− 1)

1nx−2

(
1

n

)2

2!

+ nx(nx− 1)(nx− 2)

1nx−3

(
1

n

)3

3!
+ etc.

= 1 + x+
1

2!
· n

2x2 − nx

n2
+

1

3!
· n

3x3 − 3n2x2 + 2nx

n3
+ etc.

= 1 + x+
x2 − x

n
2!

+
x3 − 3x2

n
+

2x

n2

3!
+ etc.

But, when n is made indefinitely great, this simplifies down to the

following:

ϵx = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ etc. . . .

This series is called the exponential series.

The great reason why ϵ is regarded of importance is that ϵx possesses

a property, not possessed by any other function of x, that when you

differentiate it its value remains unchanged ; or, in other words, its

differential coefficient is the same as itself. This can be instantly seen

by differentiating it with respect to x, thus:

d(ϵx)

dx
= 0 + 1 +

2x

1 · 2 +
3x2

1 · 2 · 3 +
4x3

1 · 2 · 3 · 4
+

5x4

1 · 2 · 3 · 4 · 5 + etc.

or = 1 + x+
x2

1 · 2 +
x3

1 · 2 · 3 +
x4

1 · 2 · 3 · 4 + etc.,

which is exactly the same as the original series.
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Now we might have gone to work the other way, and said: Go to;

let us find a function of x, such that its differential coefficient is the

same as itself. Or, is there any expression, involving only powers of x,

which is unchanged by differentiation? Accordingly; let us assume as

a general expression that

y = A+Bx+ Cx2 +Dx3 + Ex4 + etc.,

(in which the coefficients A, B, C, etc. will have to be determined),

and differentiate it.

dy

dx
= B + 2Cx+ 3Dx2 + 4Ex3 + etc.

Now, if this new expression is really to be the same as that from

which it was derived, it is clear that A must = B; that C =
B

2
=

A

1 · 2;

that D =
C

3
=

A

1 · 2 · 3; that E =
D

4
=

A

1 · 2 · 3 · 4, etc.

The law of change is therefore that

y = A

(
1 +

x

1
+

x2

1 · 2 +
x3

1 · 2 · 3 +
x4

1 · 2 · 3 · 4 + etc.

)
.

If, now, we take A = 1 for the sake of further simplicity, we have

y = 1 +
x

1
+

x2

1 · 2 +
x3

1 · 2 · 3 +
x4

1 · 2 · 3 · 4 + etc.

Differentiating it any number of times will give always the same

series over again.

If, now, we take the particular case of A = 1, and evaluate the
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series, we shall get simply

when x = 1, y = 2.718281 etc.; that is, y = ϵ;

when x = 2, y = (2.718281 etc.)2; that is, y = ϵ2;

when x = 3, y = (2.718281 etc.)3; that is, y = ϵ3;

and therefore

when x = x, y = (2.718281 etc.)x; that is, y = ϵx,

thus finally demonstrating that

ϵx = 1 +
x

1
+

x2

1 · 2 +
x3

1 · 2 · 3 +
x4

1 · 2 · 3 · 4 + etc.

[Note.—How to read exponentials. For the benefit of those who

have no tutor at hand it may be of use to state that ϵx is read as

“epsilon to the eksth power ;” or some people read it “exponential eks.”

So ϵpt is read “epsilon to the pee-teeth-power” or “exponential pee tee.”

Take some similar expressions:—Thus, ϵ−2 is read “epsilon to the minus

two power” or “exponential minus two.” ϵ−ax is read “epsilon to the

minus ay-eksth” or “exponential minus ay-eks.”]

Of course it follows that ϵy remains unchanged if differentiated with

respect to y. Also ϵax, which is equal to (ϵa)x, will, when differentiated

with respect to x, be aϵax, because a is a constant.

Natural or Naperian Logarithms.

Another reason why ϵ is important is because it was made by Napier,

the inventor of logarithms, the basis of his system. If y is the value of
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ϵx, then x is the logarithm, to the base ϵ, of y. Or, if

y = ϵx,

then x = logϵ y.

The two curves plotted in Figs. 38 and 39 represent these equations.

The points calculated are:

For Fig. 38

 x 0 0.5 1 1.5 2

y 1 1.65 2.71 4.50 7.39

For Fig. 39

 y 1 2 3 4 8

x 0 0.69 1.10 1.39 2.08

0.5 1 1.5 2

1

2

3

4

5

6

7

8

y
=
ǫ
x

O x

y

Fig. 39.

1 2

1

2

3

4

5

6

7

8

x
=
lo
g ǫ
y

O x

y

Fig. 38.

It will be seen that, though the calculations yield different points

for plotting, yet the result is identical. The two equations really mean

the same thing.
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As many persons who use ordinary logarithms, which are calcu-

lated to base 10 instead of base ϵ, are unfamiliar with the “natural”

logarithms, it may be worth while to say a word about them. The or-

dinary rule that adding logarithms gives the logarithm of the product

still holds good; or

logϵ a+ logϵ b = logϵ ab.

Also the rule of powers holds good;

n× logϵ a = logϵ a
n.

But as 10 is no longer the basis, one cannot multiply by 100 or 1000

by merely adding 2 or 3 to the index. One can change the natural

logarithm to the ordinary logarithm simply by multiplying it by 0.4343;

or

log10 x = 0.4343× logϵ x,

and conversely, logϵ x = 2.3026× log10 x.

Exponential and Logarithmic Equations.

Now let us try our hands at differentiating certain expressions that

contain logarithms or exponentials.

Take the equation:

y = logϵ x.

First transform this into

ϵy = x,

whence, since the differential of ϵy with regard to y is the original

function unchanged (see p. 139),

dx

dy
= ϵy,
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A Useful Table of “Naperian Logarithms”

(Also called Natural Logarithms or Hyperbolic Logarithms)

Number logϵ Number logϵ

1 0.0000 6 1.7918

1.1 0.0953 7 1.9459

1.2 0.1823 8 2.0794

1.5 0.4055 9 2.1972

1.7 0.5306 10 2.3026

2.0 0.6931 20 2.9957

2.2 0.7885 50 3.9120

2.5 0.9163 100 4.6052

2.7 0.9933 200 5.2983

2.8 1.0296 500 6.2146

3.0 1.0986 1, 000 6.9078

3.5 1.2528 2, 000 7.6009

4.0 1.3863 5, 000 8.5172

4.5 1.5041 10, 000 9.2103

5.0 1.6094 20, 000 9.9035
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and, reverting from the inverse to the original function,

dy

dx
=

1

dx

dy

=
1

ϵy
=

1

x
.

Now this is a very curious result. It may be written

d(logϵ x)

dx
= x−1.

Note that x−1 is a result that we could never have got by the rule for

differentiating powers. That rule (page 24) is to multiply by the power,

and reduce the power by 1. Thus, differentiating x3 gave us 3x2; and

differentiating x2 gave 2x1. But differentiating x0 does not give us

x−1 or 0 × x−1, because x0 is itself = 1, and is a constant. We shall

have to come back to this curious fact that differentiating logϵ x gives

us
1

x
when we reach the chapter on integrating.

Now, try to differentiate

y = logϵ(x+ a),

that is ϵy = x+ a;

we have
d(x+ a)

dy
= ϵy, since the differential of ϵy remains ϵy.

This gives
dx

dy
= ϵy = x+ a;

hence, reverting to the original function (see p. 128), we get

dy

dx
=

1

dx

dy

=
1

x+ a
.
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Next try y = log10 x.

First change to natural logarithms by multiplying by the modulus

0.4343. This gives us

y = 0.4343 logϵ x;

whence
dy

dx
=

0.4343

x
.

The next thing is not quite so simple. Try this:

y = ax.

Taking the logarithm of both sides, we get

logϵ y = x logϵ a,

or x =
logϵ y

logϵ a
=

1

logϵ a
× logϵ y.

Since
1

logϵ a
is a constant, we get

dx

dy
=

1

logϵ a
× 1

y
=

1

ax × logϵ a
;

hence, reverting to the original function.

dy

dx
=

1

dx

dy

= ax × logϵ a.
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We see that, since

dx

dy
× dy

dx
= 1 and

dx

dy
=

1

y
× 1

logϵ a
,

1

y
× dy

dx
= logϵ a.

We shall find that whenever we have an expression such as logϵ y =

a function of x, we always have
1

y

dy

dx
= the differential coefficient of

the function of x, so that we could have written at once, from logϵ y =

x logϵ a,
1

y

dy

dx
= logϵ a and

dy

dx
= ax logϵ a.

Let us now attempt further examples.

Examples.

(1) y = ϵ−ax. Let −ax = z; then y = ϵz.

dy

dx
= ϵz;

dz

dx
= −a; hence

dy

dx
= −aϵ−ax.

Or thus:

logϵ y = −ax; 1

y

dy

dx
= −a; dy

dx
= −ay = −aϵ−ax.

(2) y = ϵ
x2

3 . Let
x2

3
= z; then y = ϵz.

dy

dz
= ϵz;

dz

dx
=

2x

3
;

dy

dx
=

2x

3
ϵ
x2

3 .

Or thus:

logϵ y =
x2

3
;

1

y

dy

dx
=

2x

3
;

dy

dx
=

2x

3
ϵ
x2

3 .
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(3) y = ϵ
2x
x+1 .

logϵ y =
2x

x+ 1
,

1

y

dy

dx
=

2(x+ 1)− 2x

(x+ 1)2
;

hence
dy

dx
=

2

(x+ 1)2
ϵ

2x
x+1 .

Check by writing
2x

x+ 1
= z.

(4) y = ϵ
√

x2+a. logϵ y = (x2 + a)
1
2 .

1

y

dy

dx
=

x

(x2 + a)
1
2

and
dy

dx
=

x× ϵ
√

x2+a

(x2 + a)
1
2

.

For if (x2 + a)
1
2 = u and x2 + a = v, u = v

1
2 ,

du

dv
=

1

2v
1
2

;
dv

dx
= 2x;

du

dx
=

x

(x2 + a)
1
2

.

Check by writing
√
x2 + a = z.

(5) y = log(a+ x3). Let (a+ x3) = z; then y = logϵ z.

dy

dz
=

1

z
;

dz

dx
= 3x2; hence

dy

dx
=

3x2

a+ x3
.

(6) y = logϵ{3x2 +
√
a+ x2}. Let 3x2 +

√
a+ x2 = z; then y =

logϵ z.

dy

dz
=

1

z
;

dz

dx
= 6x+

x√
x2 + a

;

dy

dx
=

6x+
x√

x2 + a

3x2 +
√
a+ x2

=
x(1 + 6

√
x2 + a)

(3x2 +
√
x2 + a)

√
x2 + a

.
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(7) y = (x+ 3)2
√
x− 2.

logϵ y = 2 logϵ(x+ 3) + 1
2
logϵ(x− 2).

1

y

dy

dx
=

2

(x+ 3)
+

1

2(x− 2)
;

dy

dx
= (x+ 3)2

√
x− 2

{
2

x+ 3
+

1

2(x− 2)

}
.

(8) y = (x2 + 3)3(x3 − 2)
2
3 .

logϵ y = 3 logϵ(x
2 + 3) + 2

3
logϵ(x

3 − 2);

1

y

dy

dx
= 3

2x

(x2 + 3)
+

2

3

3x2

x3 − 2
=

6x

x2 + 3
+

2x2

x3 − 2
.

For if y = logϵ(x
2 + 3), let x2 + 3 = z and u = logϵ z.

du

dz
=

1

z
;

dz

dx
= 2x;

du

dx
=

2x

x2 + 3
.

Similarly, if v = logϵ(x
3 − 2),

dv

dx
=

3x2

x3 − 2
and

dy

dx
= (x2 + 3)3(x3 − 2)

2
3

{
6x

x2 + 3
+

2x2

x3 − 2

}
.

(9) y =
2
√
x2 + a

3
√
x3 − a

.

logϵ y =
1

2
logϵ(x

2 + a)− 1

3
logϵ(x

3 − a).

1

y

dy

dx
=

1

2

2x

x2 + a
− 1

3

3x2

x3 − a
=

x

x2 + a
− x2

x3 − a

and
dy

dx
=

2
√
x2 + a

3
√
x3 − a

{
x

x2 + a
− x2

x3 − a

}
.



CALCULUS MADE EASY 150

(10) y =
1

logϵ x

dy

dx
=

logϵ x× 0− 1× 1

x
log2ϵ x

= − 1

x log2ϵ x
.

(11) y = 3
√

logϵ x = (logϵ x)
1
3 . Let z = logϵ x; y = z

1
3 .

dy

dz
=

1

3
z−

2
3 ;

dz

dx
=

1

x
;

dy

dx
=

1

3x 3
√

log2ϵ x
.

(12) y =

(
1

ax

)ax

.

logϵ y = ax(logϵ 1− logϵ a
x) = −ax logϵ ax.

1

y

dy

dx
= −ax× ax logϵ a− a logϵ a

x.

and
dy

dx
= −

(
1

ax

)ax

(x× ax+1 logϵ a+ a logϵ a
x).

Try now the following exercises.

Exercises XII. (See page 260 for Answers.)

(1) Differentiate y = b(ϵax − ϵ−ax).

(2) Find the differential coefficient with respect to t of the expression

u = at2 + 2 logϵ t.

(3) If y = nt, find
d(logϵ y)

dt
.

(4) Show that if y =
1

b
· abx

logϵ a
,

dy

dx
= abx.

(5) If w = pvn, find
dw

dv
.

Differentiate
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(6) y = logϵ x
n. (7) y = 3ϵ−

x
x−1 .

(8) y = (3x2 + 1)ϵ−5x. (9) y = logϵ(x
a + a).

(10) y = (3x2 − 1)(
√
x+ 1).

(11) y =
logϵ(x+ 3)

x+ 3
. (12) y = ax × xa.

(13) It was shown by Lord Kelvin that the speed of signalling

through a submarine cable depends on the value of the ratio of the

external diameter of the core to the diameter of the enclosed copper

wire. If this ratio is called y, then the number of signals s that can be

sent per minute can be expressed by the formula

s = ay2 logϵ
1

y
;

where a is a constant depending on the length and the quality of the

materials. Show that if these are given, s will be a maximum if y =

1÷√ϵ.

(14) Find the maximum or minimum of

y = x3 − logϵ x.

(15) Differentiate y = logϵ(axϵ
x).

(16) Differentiate y = (logϵ ax)
3.
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The Logarithmic Curve.

Let us return to the curve which has its successive ordinates in

geometrical progression, such as that represented by the equation y =

bpx.

We can see, by putting x = 0, that b is the initial height of y.

Then when

x = 1, y = bp; x = 2, y = bp2; x = 3, y = bp3, etc.

Also, we see that p is the numerical value of the ratio between the

height of any ordinate and that of the next preceding it. In Fig. 40, we

have taken p as 6
5
; each ordinate being 6

5
as high as the preceding one.

1 2 3 4 5 6

b

O X

Y

Fig. 40.

1 2 3 4 5 6

log b

lo
g
y

O X

Fig. 41.

If two successive ordinates are related together thus in a constant

ratio, their logarithms will have a constant difference; so that, if we

should plot out a new curve, Fig. 41, with values of logϵ y as ordinates,

it would be a straight line sloping up by equal steps. In fact, it follows



THE LAW OF ORGANIC GROWTH 153

from the equation, that

logϵ y = logϵ b+ x · logϵ p,
whence logϵ y − logϵ b = x · logϵ p.

Now, since logϵ p is a mere number, and may be written as logϵ p = a,

it follows that

logϵ
y

b
= ax,

and the equation takes the new form

y = bϵax.

The Die-away Curve.

If we were to take p as a proper fraction (less than unity), the curve

would obviously tend to sink downwards, as in Fig. 42, where each

successive ordinate is 3
4
of the height of the preceding one.

The equation is still

y = bpx;

but since p is less than one, logϵ p will be a negative quantity, and may

be written −a; so that p = ϵ−a, and now our equation for the curve

takes the form

y = bϵ−ax.

The importance of this expression is that, in the case where the

independent variable is time, the equation represents the course of a
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1 2 3 4 5 6

b

O X

Y

Fig. 42.

great many physical processes in which something is gradually dying

away. Thus, the cooling of a hot body is represented (in Newton’s

celebrated “law of cooling”) by the equation

θt = θ0ϵ
−at;

where θ0 is the original excess of temperature of a hot body over that

of its surroundings, θt the excess of temperature at the end of time t,

and a is a constant—namely, the constant of decrement, depending on

the amount of surface exposed by the body, and on its coefficients of

conductivity and emissivity, etc.

A similar formula,

Qt = Q0ϵ
−at,

is used to express the charge of an electrified body, originally having a

charge Q0, which is leaking away with a constant of decrement a; which

constant depends in this case on the capacity of the body and on the

resistance of the leakage-path.

Oscillations given to a flexible spring die out after a time; and the

dying-out of the amplitude of the motion may be expressed in a similar
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way.

In fact ϵ−at serves as a die-away factor for all those phenomena in

which the rate of decrease is proportional to the magnitude of that

which is decreasing; or where, in our usual symbols,
dy

dt
is proportional

at every moment to the value that y has at that moment. For we have

only to inspect the curve, Fig. 42 above, to see that, at every part of it,

the slope
dy

dx
is proportional to the height y; the curve becoming flatter

as y grows smaller. In symbols, thus

y = bϵ−ax

or logϵ y = logϵ b− ax logϵ ϵ = logϵ b− ax,

and, differentiating,
1

y

dy

dx
= −a;

hence
dy

dx
= bϵ−ax × (−a) = −ay;

or, in words, the slope of the curve is downward, and proportional to y

and to the constant a.

We should have got the same result if we had taken the equation in

the form

y = bpx;

for then
dy

dx
= bpx × logϵ p.

But logϵ p = −a;

giving us
dy

dx
= y × (−a) = −ay,

as before.
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The Time-constant. In the expression for the “die-away factor” ϵ−at,

the quantity a is the reciprocal of another quantity known as “the time-

constant,” which we may denote by the symbol T . Then the die-away

factor will be written ϵ−
t
T ; and it will be seen, by making t = T that the

meaning of T

(
or of

1

a

)
is that this is the length of time which it takes

for the original quantity (called θ0 or Q0 in the preceding instances) to

die away
1

ϵ
th part—that is to 0.3678—of its original value.

The values of ϵx and ϵ−x are continually required in different

branches of physics, and as they are given in very few sets of mathemat-

ical tables, some of the values are tabulated on p. 157 for convenience.

As an example of the use of this table, suppose there is a hot body

cooling, and that at the beginning of the experiment (i.e. when t = 0)

it is 72◦ hotter than the surrounding objects, and if the time-constant

of its cooling is 20 minutes (that is, if it takes 20 minutes for its excess

of temperature to fall to
1

ϵ
part of 72◦), then we can calculate to what

it will have fallen in any given time t. For instance, let t be 60 minutes.

Then
t

T
= 60 ÷ 20 = 3, and we shall have to find the value of ϵ−3,

and then multiply the original 72◦ by this. The table shows that ϵ−3

is 0.0498. So that at the end of 60 minutes the excess of temperature

will have fallen to 72◦ × 0.0498 = 3.586◦.
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x ϵx ϵ−x 1− ϵ−x

0.00 1.0000 1.0000 0.0000

0.10 1.1052 0.9048 0.0952

0.20 1.2214 0.8187 0.1813

0.50 1.6487 0.6065 0.3935

0.75 2.1170 0.4724 0.5276

0.90 2.4596 0.4066 0.5934

1.00 2.7183 0.3679 0.6321

1.10 3.0042 0.3329 0.6671

1.20 3.3201 0.3012 0.6988

1.25 3.4903 0.2865 0.7135

1.50 4.4817 0.2231 0.7769

1.75 5.755 0.1738 0.8262

2.00 7.389 0.1353 0.8647

2.50 12.182 0.0821 0.9179

3.00 20.086 0.0498 0.9502

3.50 33.115 0.0302 0.9698

4.00 54.598 0.0183 0.9817

4.50 90.017 0.0111 0.9889

5.00 148.41 0.0067 0.9933

5.50 244.69 0.0041 0.9959

6.00 403.43 0.00248 0.99752

7.50 1808.04 0.00055 0.99947

10.00 22026.5 0.000045 0.999955



CALCULUS MADE EASY 158

Further Examples.

(1) The strength of an electric current in a conductor at a time

t secs. after the application of the electromotive force producing it is

given by the expression C =
E

R

{
1− ϵ−

Rt
L

}
.

The time constant is
L

R
.

If E = 10, R = 1, L = 0.01; then when t is very large the term ϵ−
Rt
L

becomes 1, and C =
E

R
= 10; also

L

R
= T = 0.01.

Its value at any time may be written:

C = 10− 10ϵ−
t

0.01 ,

the time-constant being 0.01. This means that it takes 0.01 sec. for the

variable term to fall by
1

ϵ
= 0.3678 of its initial value 10ϵ−

0
0.01 = 10.

To find the value of the current when t = 0.001 sec., say,
t

T
= 0.1,

ϵ−0.1 = 0.9048 (from table).

It follows that, after 0.001 sec., the variable term is 0.9048 × 10 =

9.048, and the actual current is 10− 9.048 = 0.952.

Similarly, at the end of 0.1 sec.,

t

T
= 10; ϵ−10 = 0.000045;

the variable term is 10× 0.000045 = 0.00045, the current being 9.9995.

(2) The intensity I of a beam of light which has passed through a

thickness l cm. of some transparent medium is I = I0ϵ
−Kl, where I0 is

the initial intensity of the beam and K is a “constant of absorption.”
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This constant is usually found by experiments. If it be found, for

instance, that a beam of light has its intensity diminished by 18% in

passing through 10 cms. of a certain transparent medium, this means

that 82 = 100 × ϵ−K×10 or ϵ−10K = 0.82, and from the table one sees

that 10K = 0.20 very nearly; hence K = 0.02.

To find the thickness that will reduce the intensity to half its value,

one must find the value of l which satisfies the equality 50 = 100×ϵ−0.02l,

or 0.5 = ϵ−0.02l. It is found by putting this equation in its logarithmic

form, namely,

log 0.5 = −0.02× l × log ϵ,

which gives

l =
−0.3010

−0.02× 0.4343
= 34.7 centimetres nearly.

(3) The quantity Q of a radio-active substance which has not yet un-

dergone transformation is known to be related to the initial quantity Q0

of the substance by the relation Q = Q0ϵ
−λt, where λ is a constant and

t the time in seconds elapsed since the transformation began.

For “Radium A,” if time is expressed in seconds, experiment shows

that λ = 3.85× 10−3. Find the time required for transforming half the

substance. (This time is called the “mean life” of the substance.)

We have 0.5 = ϵ−0.00385t.

log 0.5 = −0.00385t× log ϵ;

and t = 3 minutes very nearly.
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Exercises XIII. (See page 260 for Answers.)

(1) Draw the curve y = bϵ−
t
T ; where b = 12, T = 8, and t is given

various values from 0 to 20.

(2) If a hot body cools so that in 24 minutes its excess of temperature

has fallen to half the initial amount, deduce the time-constant, and find

how long it will be in cooling down to 1 per cent. of the original excess.

(3) Plot the curve y = 100(1− ϵ−2t).

(4) The following equations give very similar curves:

(i) y =
ax

x+ b
;

(ii) y = a(1− ϵ−
x
b );

(iii) y =
a

90◦
arc tan

(x
b

)
.

Draw all three curves, taking a = 100 millimetres; b = 30 millime-

tres.

(5) Find the differential coefficient of y with respect to x, if

(a) y = xx; (b) y = (ϵx)x; (c) y = ϵx
x
.

(6) For “Thorium A,” the value of λ is 5; find the “mean life,” that

is, the time taken by the transformation of a quantityQ of “Thorium A”

equal to half the initial quantity Q0 in the expression

Q = Q0ϵ
−λt;

t being in seconds.
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(7) A condenser of capacity K = 4 × 10−6, charged to a potential

V0 = 20, is discharging through a resistance of 10, 000 ohms. Find the

potential V after (a) 0.1 second; (b) 0.01 second; assuming that the fall

of potential follows the rule V = V0ϵ
− t

KR .

(8) The charge Q of an electrified insulated metal sphere is reduced

from 20 to 16 units in 10 minutes. Find the coefficient µ of leakage,

if Q = Q0 × ϵ−µt; Q0 being the initial charge and t being in seconds.

Hence find the time taken by half the charge to leak away.

(9) The damping on a telephone line can be ascertained from the re-

lation i = i0ϵ
−βl, where i is the strength, after t seconds, of a telephonic

current of initial strength i0; l is the length of the line in kilometres, and

β is a constant. For the Franco-English submarine cable laid in 1910,

β = 0.0114. Find the damping at the end of the cable (40 kilometres),

and the length along which i is still 8% of the original current (limiting

value of very good audition).

(10) The pressure p of the atmosphere at an altitude h kilometres is

given by p = p0ϵ
−kh; p0 being the pressure at sea-level (760 millimetres).

The pressures at 10, 20 and 50 kilometres being 199.2, 42.2, 0.32

respectively, find k in each case. Using the mean value of k, find the

percentage error in each case.

(11) Find the minimum or maximum of y = xx.

(12) Find the minimum or maximum of y = x
1
x .

(13) Find the minimum or maximum of y = xa
1
x .



CHAPTER XV.

HOW TO DEAL WITH SINES AND COSINES.

Greek letters being usual to denote angles, we will take as the usual

letter for any variable angle the letter θ (“theta”).

Let us consider the function

y = sin θ.

dθ

θ

O

y

Fig. 43.

What we have to investigate is the value of
d(sin θ)

dθ
; or, in other

words, if the angle θ varies, we have to find the relation between the

increment of the sine and the increment of the angle, both increments

being indefinitely small in themselves. Examine Fig. 43, wherein, if the
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radius of the circle is unity, the height of y is the sine, and θ is the

angle. Now, if θ is supposed to increase by the addition to it of the

small angle dθ—an element of angle—the height of y, the sine, will be

increased by a small element dy. The new height y+dy will be the sine

of the new angle θ + dθ, or, stating it as an equation,

y + dy = sin(θ + dθ);

and subtracting from this the first equation gives

dy = sin(θ + dθ)− sin θ.

The quantity on the right-hand side is the difference between two

sines, and books on trigonometry tell us how to work this out. For they

tell us that if M and N are two different angles,

sinM − sinN = 2 cos
M +N

2
· sin M −N

2
.

If, then, we put M = θ+ dθ for one angle, and N = θ for the other,

we may write

dy = 2 cos
θ + dθ + θ

2
· sin θ + dθ − θ

2
,

or, dy = 2 cos(θ + 1
2
dθ) · sin 1

2
dθ.

But if we regard dθ as indefinitely small, then in the limit we may

neglect 1
2
dθ by comparison with θ, and may also take sin 1

2
dθ as being

the same as 1
2
dθ. The equation then becomes:

dy = 2 cos θ × 1
2
dθ;

dy = cos θ · dθ,

and, finally,
dy

dθ
= cos θ.



CALCULUS MADE EASY 164

The accompanying curves, Figs. 44 and 45, show, plotted to scale,

the values of y = sin θ, and
dy

dθ
= cos θ, for the corresponding values

of θ.

−1

−0.5

0.5

1

30◦ 60◦ 90◦ 180◦ 270◦ 360◦
θ

y

Fig. 44.

−1

−0.5

0.5

1

30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 270◦ 360◦
θ

y

Fig. 45.
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Take next the cosine.

Let y = cos θ.

Now cos θ = sin
(π
2
− θ

)
.

Therefore

dy = d
(
sin

(π
2
− θ

))
= cos

(π
2
− θ

)
× d(−θ),

= cos
(π
2
− θ

)
× (−dθ),

dy

dθ
= − cos

(π
2
− θ

)
.

And it follows that

dy

dθ
= − sin θ.

Lastly, take the tangent.

Let y = tan θ,

dy = tan(θ + dθ)− tan θ.

Expanding, as shown in books on trigonometry,

tan(θ + dθ) =
tan θ + tan dθ

1− tan θ · tan dθ ;

whence dy =
tan θ + tan dθ

1− tan θ · tan dθ − tan θ

=
(1 + tan2 θ) tan dθ

1− tan θ · tan dθ .
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Now remember that if dθ is indefinitely diminished, the value

of tan dθ becomes identical with dθ, and tan θ · dθ is negligibly small

compared with 1, so that the expression reduces to

dy =
(1 + tan2 θ) dθ

1
,

so that
dy

dθ
= 1 + tan2 θ,

or
dy

dθ
= sec2 θ.

Collecting these results, we have:

y
dy

dθ

sin θ cos θ

cos θ − sin θ

tan θ sec2 θ

Sometimes, in mechanical and physical questions, as, for example,

in simple harmonic motion and in wave-motions, we have to deal with

angles that increase in proportion to the time. Thus, if T be the time

of one complete period, or movement round the circle, then, since the

angle all round the circle is 2π radians, or 360◦, the amount of angle

moved through in time t, will be

θ = 2π
t

T
, in radians,

or θ = 360
t

T
, in degrees.
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If the frequency, or number of periods per second, be denoted by n,

then n =
1

T
, and we may then write:

θ = 2πnt.

Then we shall have

y = sin 2πnt.

If, now, we wish to know how the sine varies with respect to time,

we must differentiate with respect, not to θ, but to t. For this we must

resort to the artifice explained in Chapter IX., p. 66, and put

dy

dt
=

dy

dθ
· dθ
dt

.

Now
dθ

dt
will obviously be 2πn; so that

dy

dt
= cos θ × 2πn

= 2πn · cos 2πnt.

Similarly, it follows that

d(cos 2πnt)

dt
= −2πn · sin 2πnt.

Second Differential Coefficient of Sine or Cosine.

We have seen that when sin θ is differentiated with respect to θ it

becomes cos θ; and that when cos θ is differentiated with respect to θ

it becomes − sin θ; or, in symbols,

d2(sin θ)

dθ2
= − sin θ.
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So we have this curious result that we have found a function such

that if we differentiate it twice over, we get the same thing from which

we started, but with the sign changed from + to −.
The same thing is true for the cosine; for differentiating cos θ gives

us − sin θ, and differentiating − sin θ gives us − cos θ; or thus:

d2(cos θ)

dθ2
= − cos θ.

Sines and cosines are the only functions of which the second differ-

ential coefficient is equal (and of opposite sign to) the original function.

Examples.

With what we have so far learned we can now differentiate expres-

sions of a more complex nature.

(1) y = arc sin x.

If y is the arc whose sine is x, then x = sin y.

dx

dy
= cos y.

Passing now from the inverse function to the original one, we get

dy

dx
=

1

dx

dy

=
1

cos y
.

Now cos y =

√
1− sin2 y =

√
1− x2;

hence
dy

dx
=

1√
1− x2

,

a rather unexpected result.
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(2) y = cos3 θ.

This is the same thing as y = (cos θ)3.

Let cos θ = v; then y = v3;
dy

dv
= 3v2.

dv

dθ
= − sin θ.

dy

dθ
=

dy

dv
× dv

dθ
= −3 cos2 θ sin θ.

(3) y = sin(x+ a).

Let x+ a = v; then y = sin v.

dy

dv
= cos v;

dv

dx
= 1 and

dy

dx
= cos(x+ a).

(4) y = logϵ sin θ.

Let sin θ = v; y = logϵ v.

dy

dv
=

1

v
;

dv

dθ
= cos θ;

dy

dθ
=

1

sin θ
× cos θ = cot θ.

(5) y = cot θ =
cos θ

sin θ
.

dy

dθ
=
− sin2 θ − cos2 θ

sin2 θ

= −(1 + cot2 θ) = − cosec2 θ.

(6) y = tan 3θ.

Let 3θ = v; y = tan v;
dy

dv
= sec2 v.

dv

dθ
= 3;

dy

dθ
= 3 sec2 3θ.
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(7) y =
√
1 + 3 tan2 θ; y = (1 + 3 tan2 θ)

1
2 .

Let 3 tan2 θ = v.

y = (1 + v)
1
2 ;

dy

dv
=

1

2
√
1 + v

(see p. 67);

dv

dθ
= 6 tan θ sec2 θ

(for, if tan θ = u,

v = 3u2;
dv

du
= 6u;

du

dθ
= sec2 θ;

hence
dv

dθ
= 6(tan θ sec2 θ)

hence
dy

dθ
=

6 tan θ sec2 θ

2
√
1 + 3 tan2 θ

.

(8) y = sinx cosx.

dy

dx
= sinx(− sinx) + cos x× cosx

= cos2 x− sin2 x.

Exercises XIV. (See page 261 for Answers.)

(1) Differentiate the following:

(i) y = A sin
(
θ − π

2

)
.

(ii) y = sin2 θ; and y = sin 2θ.

(iii) y = sin3 θ; and y = sin 3θ.

(2) Find the value of θ for which sin θ × cos θ is a maximum.
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(3) Differentiate y =
1

2π
cos 2πnt.

(4) If y = sin ax, find
dy

dx
.

(5) Differentiate y = logϵ cosx.

(6) Differentiate y = 18.2 sin(x+ 26◦).

(7) Plot the curve y = 100 sin(θ − 15◦); and show that the slope of

the curve at θ = 75◦ is half the maximum slope.

(8) If y = sin θ · sin 2θ, find dy

dθ
.

(9) If y = a · tanm(θn), find the differential coefficient of y with

respect to θ.

(10) Differentiate y = ϵx sin2 x.

(11) Differentiate the three equations of Exercises XIII. (p. 160),

No. 4, and compare their differential coefficients, as to whether they

are equal, or nearly equal, for very small values of x, or for very large

values of x, or for values of x in the neighbourhood of x = 30.

(12) Differentiate the following:

(i) y = secx. (ii) y = arc cos x.

(iii) y = arc tan x. (iv) y = arc sec x.

(v) y = tanx×
√
3 secx.

(13) Differentiate y = sin(2θ + 3)2.3.

(14) Differentiate y = θ3 + 3 sin(θ + 3)− 3sin θ − 3θ.

(15) Find the maximum or minimum of y = θ cos θ.



CHAPTER XVI.

PARTIAL DIFFERENTIATION.

We sometimes come across quantities that are functions of more than

one independent variable. Thus, we may find a case where y depends

on two other variable quantities, one of which we will call u and the

other v. In symbols

y = f(u, v).

Take the simplest concrete case.

Let y = u× v.

What are we to do? If we were to treat v as a constant, and differentiate

with respect to u, we should get

dyv = v du;

or if we treat u as a constant, and differentiate with respect to v, we

should have:

dyu = u dv.

The little letters here put as subscripts are to show which quantity

has been taken as constant in the operation.
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Another way of indicating that the differentiation has been per-

formed only partially, that is, has been performed only with respect to

one of the independent variables, is to write the differential coefficients

with Greek deltas, like ∂, instead of little d. In this way

∂y

∂u
= v,

∂y

∂v
= u.

If we put in these values for v and u respectively, we shall have

dyv =
∂y

∂u
du,

dyu =
∂y

∂v
dv,

 which are partial differentials.

But, if you think of it, you will observe that the total variation of y

depends on both these things at the same time. That is to say, if both

are varying, the real dy ought to be written

dy =
∂y

∂u
du+

∂y

∂v
dv;

and this is called a total differential. In some books it is written dy =(
dy

du

)
du+

(
dy

dv

)
dv.

Example (1). Find the partial differential coefficients of the expres-

sion w = 2ax2 + 3bxy + 4cy3. The answers are:

∂w

∂x
= 4ax+ 3by.

∂w

∂y
= 3bx+ 12cy2.


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The first is obtained by supposing y constant, the second is obtained

by supposing x constant; then

dw = (4ax+ 3by) dx+ (3bx+ 12cy2) dy.

Example (2). Let z = xy. Then, treating first y and then x as

constant, we get in the usual way

∂z

∂x
= yxy−1,

∂z

∂y
= xy × logϵ x,


so that dz = yxy−1 dx+ xy logϵ x dy.

Example (3). A cone having height h and radius of base r has

volume V = 1
3
πr2h. If its height remains constant, while r changes,

the ratio of change of volume, with respect to radius, is different from

ratio of change of volume with respect to height which would occur if

the height were varied and the radius kept constant, for

∂V

∂r
=

2π

3
rh,

∂V

∂h
=

π

3
r2.


The variation when both the radius and the height change is given

by dV =
2π

3
rh dV +

π

3
r2 dh.

Example (4). In the following example F and f denote two ar-

bitrary functions of any form whatsoever. For example, they may be

sine-functions, or exponentials, or mere algebraic functions of the two
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independent variables, t and x. This being understood, let us take the

expression

y = F (x+ at) + f(x− at),

or, y = F (w) + f(v);

where w = x+ at, and v = x− at.

Then
∂y

∂x
=

∂F (w)

∂w
· ∂w
∂x

+
∂f(v)

∂v
· ∂v
∂x

= F ′(w) · 1 + f ′(v) · 1

(where the figure 1 is simply the coefficient of x in w and v);

and
∂2y

∂x2
= F ′′(w) + f ′′(v).

Also
∂y

∂t
=

∂F (w)

∂w
· ∂w
∂t

+
∂f(v)

∂v
· ∂v
∂t

= F ′(w) · a− f ′(v)a;

and
∂2y

∂t2
= F ′′(w)a2 + f ′′(v)a2;

whence
∂2y

∂t2
= a2

∂2y

∂x2
.

This differential equation is of immense importance in mathematical

physics.

Maxima and Minima of Functions of two Independent

Variables.

Example (5). Let us take up again Exercise IX., p. 107, No. 4.

Let x and y be the length of two of the portions of the string.

The third is 30 − (x + y), and the area of the triangle is A =
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√
s(s− x)(s− y)(s− 30 + x+ y), where s is the half perimeter, 15, so

that A =
√
15P , where

P = (15− x)(15− y)(x+ y − 15)

= xy2 + x2y − 15x2 − 15y2 − 45xy + 450x+ 450y − 3375.

Clearly A is maximum when P is maximum.

dP =
∂P

∂x
dx+

∂P

∂y
dy.

For a maximum (clearly it will not be a minimum in this case), one

must have simultaneously

∂P

∂x
= 0 and

∂P

∂y
= 0;

that is, 2xy − 30x+ y2 − 45y + 450 = 0,

2xy − 30y + x2 − 45x+ 450 = 0.


An immediate solution is x = y.

If we now introduce this condition in the value of P , we find

P = (15− x)2(2x− 15) = 2x3 − 75x2 + 900x− 3375.

For maximum or minimum,
dP

dx
= 6x2 − 150x + 900 = 0, which gives

x = 15 or x = 10.

Clearly x = 15 gives minimum area; x = 10 gives the maximum, for
d2P

dx2
= 12x− 150, which is +30 for x = 15 and −30 for x = 10.
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Example (6). Find the dimensions of an ordinary railway coal truck

with rectangular ends, so that, for a given volume V the area of sides

and floor together is as small as possible.

The truck is a rectangular box open at the top. Let x be the length

and y be the width; then the depth is
V

xy
. The surface area is S =

xy +
2V

x
+

2V

y
.

dS =
∂S

∂x
dx+

∂S

∂y
dy =

(
y − 2V

x2

)
dx+

(
x− 2V

y2

)
dy.

For minimum (clearly it won’t be a maximum here),

y − 2V

x2
= 0, x− 2V

y2
= 0.

Here also, an immediate solution is x = y, so that S = x2 +
4V

x
,

dS

dx
= 2x− 4V

x2
= 0 for minimum, and

x =
3
√
2V .

Exercises XV. (See page 263 for Answers.)

(1) Differentiate the expression
x3

3
− 2x3y − 2y2x +

y

3
with respect

to x alone, and with respect to y alone.

(2) Find the partial differential coefficients with respect to x, y

and z, of the expression

x2yz + xy2z + xyz2 + x2y2z2.
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(3) Let r2 = (x− a)2 + (y − b)2 + (z − c)2.

Find the value of
∂r

∂x
+

∂r

∂y
+

∂r

∂z
. Also find the value of

∂2r

∂x2
+

∂2r

∂y2
+

∂2r

∂z2
.

(4) Find the total differential of y = uv.

(5) Find the total differential of y = u3 sin v; of y = (sinx)u; and of

y =
logϵ u

v
.

(6) Verify that the sum of three quantities x, y, z, whose product is

a constant k, is maximum when these three quantities are equal.

(7) Find the maximum or minimum of the function

u = x+ 2xy + y.

(8) The post-office regulations state that no parcel is to be of such

a size that its length plus its girth exceeds 6 feet. What is the great-

est volume that can be sent by post (a) in the case of a package of

rectangular cross section; (b) in the case of a package of circular cross

section.

(9) Divide π into 3 parts such that the continued product of their

sines may be a maximum or minimum.

(10) Find the maximum or minimum of u =
ϵx+y

xy
.

(11) Find maximum and minimum of

u = y + 2x− 2 logϵ y − logϵ x.

(12) A telpherage bucket of given capacity has the shape of a hor-

izontal isosceles triangular prism with the apex underneath, and the
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opposite face open. Find its dimensions in order that the least amount

of iron sheet may be used in its construction.



CHAPTER XVII.

INTEGRATION.

The great secret has already been revealed that this mysterious sym-

bol

∫
, which is after all only a long S, merely means “the sum of,” or

“the sum of all such quantities as.” It therefore resembles that other

symbol
∑

(the Greek Sigma), which is also a sign of summation. There

is this difference, however, in the practice of mathematical men as to

the use of these signs, that while
∑

is generally used to indicate the

sum of a number of finite quantities, the integral sign

∫
is generally

used to indicate the summing up of a vast number of small quantities of

indefinitely minute magnitude, mere elements in fact, that go to make

up the total required. Thus

∫
dy = y, and

∫
dx = x.

Any one can understand how the whole of anything can be conceived

of as made up of a lot of little bits; and the smaller the bits the more of

them there will be. Thus, a line one inch long may be conceived as made

up of 10 pieces, each 1
10

of an inch long; or of 100 parts, each part being
1

100
of an inch long; or of 1, 000, 000 parts, each of which is 1

1,000,000
of

an inch long; or, pushing the thought to the limits of conceivability, it

may be regarded as made up of an infinite number of elements each of

which is infinitesimally small.

Yes, you will say, but what is the use of thinking of anything that
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way? Why not think of it straight off, as a whole? The simple reason is

that there are a vast number of cases in which one cannot calculate the

bigness of the thing as a whole without reckoning up the sum of a lot

of small parts. The process of “integrating” is to enable us to calculate

totals that otherwise we should be unable to estimate directly.

Let us first take one or two simple cases to familiarize ourselves with

this notion of summing up a lot of separate parts.

Consider the series:

1 + 1
2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ etc.

Here each member of the series is formed by taking it half the value

of the preceding. What is the value of the total if we could go on to

an infinite number of terms? Every schoolboy knows that the answer

is 2. Think of it, if you like, as a line. Begin with one inch; add a half

1 1/2 1/4 1/8

Fig. 46.

inch, add a quarter; add an eighth; and so on. If at any point of the

operation we stop, there will still be a piece wanting to make up the

whole 2 inches; and the piece wanting will always be the same size as

the last piece added. Thus, if after having put together 1, 1
2
, and 1

4
, we

stop, there will be 1
4
wanting. If we go on till we have added 1

64
, there

will still be 1
64

wanting. The remainder needed will always be equal to

the last term added. By an infinite number of operations only should

we reach the actual 2 inches. Practically we should reach it when we
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got to pieces so small that they could not be drawn—that would be

after about 10 terms, for the eleventh term is 1
1024

. If we want to go

so far that not even a Whitworth’s measuring machine would detect it,

we should merely have to go to about 20 terms. A microscope would

not show even the 18th term! So the infinite number of operations is no

such dreadful thing after all. The integral is simply the whole lot. But,

as we shall see, there are cases in which the integral calculus enables us

to get at the exact total that there would be as the result of an infinite

number of operations. In such cases the integral calculus gives us a

rapid and easy way of getting at a result that would otherwise require

an interminable lot of elaborate working out. So we had best lose no

time in learning how to integrate.

Slopes of Curves, and the Curves themselves.

Let us make a little preliminary enquiry about the slopes of curves.

For we have seen that differentiating a curve means finding an expres-

sion for its slope (or for its slopes at different points). Can we perform

the reverse process of reconstructing the whole curve if the slope (or

slopes) are prescribed for us?

Go back to case (2) on p. 82. Here we have the simplest of curves,

a sloping line with the equation

y = ax+ b.

We know that here b represents the initial height of y when x = 0,

and that a, which is the same as
dy

dx
, is the “slope” of the line. The line



INTEGRATION 183

b

O X

Y

Fig. 47.

has a constant slope. All along it the elementary triangles
dx

dy

have the same proportion between height and base. Suppose we were

to take the dx’s, and dy’s of finite magnitude, so that 10 dx’s made up

one inch, then there would be ten little triangles like

Now, suppose that we were ordered to reconstruct the “curve,”

starting merely from the information that
dy

dx
= a. What could we

do? Still taking the little d’s as of finite size, we could draw 10 of them,

all with the same slope, and then put them together, end to end, like

this: And, as the slope is the same for all, they would join to make, as

in Fig. 48, a sloping line sloping with the correct slope
dy

dx
= a. And

whether we take the dy’s and dx’s as finite or infinitely small, as they

are all alike, clearly
y

x
= a, if we reckon y as the total of all the dy’s,

and x as the total of all the dx’s. But whereabouts are we to put this
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c

O X

Y

Fig. 48.

sloping line? Are we to start at the origin O, or higher up? As the only

information we have is as to the slope, we are without any instructions

as to the particular height above O; in fact the initial height is unde-

termined. The slope will be the same, whatever the initial height. Let

us therefore make a shot at what may be wanted, and start the sloping

line at a height C above O. That is, we have the equation

y = ax+ C.

It becomes evident now that in this case the added constant means

the particular value that y has when x = 0.

Now let us take a harder case, that of a line, the slope of which is

not constant, but turns up more and more. Let us assume that the

upward slope gets greater and greater in proportion as x grows. In
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symbols this is:
dy

dx
= ax.

Or, to give a concrete case, take a = 1
5
, so that

dy

dx
= 1

5
x.

Then we had best begin by calculating a few of the values of the

slope at different values of x, and also draw little diagrams of them.

When x = 0,
dy

dx
= 0,

x = 1,
dy

dx
= 0.2,

x = 2,
dy

dx
= 0.4,

x = 3,
dy

dx
= 0.6,

x = 4,
dy

dx
= 0.8,

x = 5,
dy

dx
= 1.0.

Now try to put the pieces together, setting each so that the middle

of its base is the proper distance to the right, and so that they fit

together at the corners; thus (Fig. 49). The result is, of course, not

a smooth curve: but it is an approximation to one. If we had taken

bits half as long, and twice as numerous, like Fig. 50, we should have a

better approximation. But for a perfect curve we ought to take each dx

and its corresponding dy infinitesimally small, and infinitely numerous.
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1 2 3 4 5

P

O X

Y

Fig. 49.

Then, how much ought the value of any y to be? Clearly, at any

point P of the curve, the value of y will be the sum of all the little dy’s

from 0 up to that level, that is to say,

∫
dy = y. And as each dy is

equal to 1
5
x · dx, it follows that the whole y will be equal to the sum of

all such bits as 1
5
x · dx, or, as we should write it,

∫
1
5
x · dx.

Now if x had been constant,

∫
1
5
x · dx would have been the same

as 1
5
x

∫
dx, or 1

5
x2. But x began by being 0, and increases to the

1 2 3 4 5

P

O X

Y

Fig. 50.
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particular value of x at the point P , so that its average value from 0 to

that point is 1
2
x. Hence

∫
1
5
x dx = 1

10
x2; or y = 1

10
x2.

But, as in the previous case, this requires the addition of an unde-

termined constant C, because we have not been told at what height

above the origin the curve will begin, when x = 0. So we write, as the

equation of the curve drawn in Fig. 51,

y = 1
10
x2 + C.

c

x

y

Y

Fig. 51.

Exercises XVI. (See page 264 for Answers.)

(1) Find the ultimate sum of 2
3
+ 1

3
+ 1

6
+ 1

12
+ 1

24
+ etc.

(2) Show that the series 1− 1
2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
etc., is convergent,

and find its sum to 8 terms.

(3) If logϵ(1 + x) = x− x2

2
+

x3

3
− x4

4
+ etc., find logϵ 1.3.
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(4) Following a reasoning similar to that explained in this chapter,

find y,

(a) if
dy

dx
= 1

4
x; (b) if

dy

dx
= cosx.

(5) If
dy

dx
= 2x+ 3, find y.



CHAPTER XVIII.

INTEGRATING AS THE REVERSE OF

DIFFERENTIATING.

Differentiating is the process by which when y is given us (as a

function of x), we can find
dy

dx
.

Like every other mathematical operation, the process of differentia-

tion may be reversed; thus, if differentiating y = x4 gives us
dy

dx
= 4x3;

if one begins with
dy

dx
= 4x3 one would say that reversing the process

would yield y = x4. But here comes in a curious point. We should get
dy

dx
= 4x3 if we had begun with any of the following: x4, or x4 + a,

or x4 + c, or x4 with any added constant. So it is clear that in working

backwards from
dy

dx
to y, one must make provision for the possibility

of there being an added constant, the value of which will be unde-

termined until ascertained in some other way. So, if differentiating xn

yields nxn−1, going backwards from
dy

dx
= nxn−1 will give us y = xn+C;

where C stands for the yet undetermined possible constant.

Clearly, in dealing with powers of x, the rule for working backwards

will be: Increase the power by 1, then divide by that increased power,

and add the undetermined constant.
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So, in the case where
dy

dx
= xn,

working backwards, we get

y =
1

n+ 1
xn+1 + C.

If differentiating the equation y = axn gives us

dy

dx
= anxn−1,

it is a matter of common sense that beginning with

dy

dx
= anxn−1,

and reversing the process, will give us

y = axn.

So, when we are dealing with a multiplying constant, we must simply

put the constant as a multiplier of the result of the integration.

Thus, if
dy

dx
= 4x2, the reverse process gives us y = 4

3
x3.

But this is incomplete. For we must remember that if we had started

with

y = axn + C,

where C is any constant quantity whatever, we should equally have

found
dy

dx
= anxn−1.

So, therefore, when we reverse the process we must always remember

to add on this undetermined constant, even if we do not yet know what

its value will be.
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This process, the reverse of differentiating, is called integrating ; for

it consists in finding the value of the whole quantity y when you are

given only an expression for dy or for
dy

dx
. Hitherto we have as much as

possible kept dy and dx together as a differential coefficient: henceforth

we shall more often have to separate them.

If we begin with a simple case,

dy

dx
= x2.

We may write this, if we like, as

dy = x2 dx.

Now this is a “differential equation” which informs us that an ele-

ment of y is equal to the corresponding element of x multiplied by x2.

Now, what we want is the integral; therefore, write down with the

proper symbol the instructions to integrate both sides, thus:∫
dy =

∫
x2 dx.

[Note as to reading integrals: the above would be read thus:

“Integral dee-wy equals integral eks-squared dee-eks.”]

We haven’t yet integrated: we have only written down instructions

to integrate—if we can. Let us try. Plenty of other fools can do it—why

not we also? The left-hand side is simplicity itself. The sum of all the

bits of y is the same thing as y itself. So we may at once put:

y =

∫
x2 dx.
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But when we come to the right-hand side of the equation we must

remember that what we have got to sum up together is not all the dx’s,

but all such terms as x2 dx; and this will not be the same as x2

∫
dx,

because x2 is not a constant. For some of the dx’s will be multiplied

by big values of x2, and some will be multiplied by small values of x2,

according to what x happens to be. So we must bethink ourselves as

to what we know about this process of integration being the reverse

of differentiation. Now, our rule for this reversed process—see p. 189

ante—when dealing with xn is “increase the power by one, and divide

by the same number as this increased power.” That is to say, x2 dx will

be changed* to 1
3
x3. Put this into the equation; but don’t forget to add

the “constant of integration” C at the end. So we get:

y = 1
3
x3 + C.

You have actually performed the integration. How easy!

Let us try another simple case.

Let
dy

dx
= ax12,

where a is any constant multiplier. Well, we found when differentiat-

ing (see p. 27) that any constant factor in the value of y reappeared

*You may ask, what has become of the little dx at the end? Well, remember

that it was really part of the differential coefficient, and when changed over to the

right-hand side, as in the x2 dx, serves as a reminder that x is the independent

variable with respect to which the operation is to be effected; and, as the result of

the product being totalled up, the power of x has increased by one. You will soon

become familiar with all this.
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unchanged in the value of
dy

dx
. In the reversed process of integrating, it

will therefore also reappear in the value of y. So we may go to work as

before, thus

dy = ax12 · dx,∫
dy =

∫
ax12 · dx,∫

dy = a

∫
x12 dx,

y = a× 1
13
x13 + C.

So that is done. How easy!

We begin to realize now that integrating is a process of finding our

way back, as compared with differentiating. If ever, during differentiat-

ing, we have found any particular expression—in this example ax12—we

can find our way back to the y from which it was derived. The contrast

between the two processes may be illustrated by the following remark

due to a well-known teacher. If a stranger were set down in Trafalgar

Square, and told to find his way to Euston Station, he might find the

task hopeless. But if he had previously been personally conducted from

Euston Station to Trafalgar Square, it would be comparatively easy to

him to find his way back to Euston Station.

Integration of the Sum or Difference of two Functions.

Let
dy

dx
= x2 + x3,

then dy = x2 dx+ x3 dx.
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There is no reason why we should not integrate each term separately:

for, as may be seen on p. 34, we found that when we differentiated the

sum of two separate functions, the differential coefficient was simply the

sum of the two separate differentiations. So, when we work backwards,

integrating, the integration will be simply the sum of the two separate

integrations.

Our instructions will then be:∫
dy =

∫
(x2 + x3) dx

=

∫
x2 dx+

∫
x3 dx

y = 1
3
x3 + 1

4
x4 + C.

If either of the terms had been a negative quantity, the correspond-

ing term in the integral would have also been negative. So that differ-

ences are as readily dealt with as sums.

How to deal with Constant Terms.

Suppose there is in the expression to be integrated a constant term—

such as this:
dy

dx
= xn + b.

This is laughably easy. For you have only to remember that when

you differentiated the expression y = ax, the result was
dy

dx
= a. Hence,

when you work the other way and integrate, the constant reappears
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multiplied by x. So we get

dy = xn dx+ b · dx,∫
dy =

∫
xn dx+

∫
b dx,

y =
1

n+ 1
xn+1 + bx+ C.

Here are a lot of examples on which to try your newly acquired

powers.

Examples.

(1) Given
dy

dx
= 24x11. Find y. Ans. y = 2x12 + C.

(2) Find

∫
(a+ b)(x+ 1) dx. It is (a+ b)

∫
(x+ 1) dx

or (a+ b)

[∫
x dx+

∫
dx

]
or (a+ b)

(
x2

2
+ x

)
+ C.

(3) Given
du

dt
= gt

1
2 . Find u. Ans. u = 2

3
gt

3
2 + C.

(4)
dy

dx
= x3 − x2 + x. Find y.

dy = (x3 − x2 + x) dx or

dy = x3 dx− x2 dx+ x dx; y =

∫
x3 dx−

∫
x2 dx+

∫
x dx;

and y = 1
4
x4 − 1

3
x3 + 1

2
x2 + C.

(5) Integrate 9.75x2.25 dx. Ans. y = 3x3.25 + C.
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All these are easy enough. Let us try another case.

Let
dy

dx
= ax−1.

Proceeding as before, we will write

dy = ax−1 · dx,
∫

dy = a

∫
x−1 dx.

Well, but what is the integral of x−1 dx?

If you look back amongst the results of differentiating x2 and x3

and xn, etc., you will find we never got x−1 from any one of them as

the value of
dy

dx
. We got 3x2 from x3; we got 2x from x2; we got 1

from x1 (that is, from x itself); but we did not get x−1 from x0, for

two very good reasons. First, x0 is simply = 1, and is a constant, and

could not have a differential coefficient. Secondly, even if it could be

differentiated, its differential coefficient (got by slavishly following the

usual rule) would be 0 × x−1, and that multiplication by zero gives it

zero value! Therefore when we now come to try to integrate x−1 dx, we

see that it does not come in anywhere in the powers of x that are given

by the rule: ∫
xn dx =

1

n+ 1
xn+1.

It is an exceptional case.

Well; but try again. Look through all the various differentials ob-

tained from various functions of x, and try to find amongst them x−1.

A sufficient search will show that we actually did get
dy

dx
= x−1 as the

result of differentiating the function y = logϵ x (see p. 145).
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Then, of course, since we know that differentiating logϵ x gives

us x−1, we know that, by reversing the process, integrating dy = x−1 dx

will give us y = logϵ x. But we must not forget the constant factor a

that was given, nor must we omit to add the undetermined constant of

integration. This then gives us as the solution to the present problem,

y = a logϵ x+ C.

N.B.—Here note this very remarkable fact, that we could not have

integrated in the above case if we had not happened to know the cor-

responding differentiation. If no one had found out that differentiating

logϵ x gave x−1, we should have been utterly stuck by the problem how

to integrate x−1 dx. Indeed it should be frankly admitted that this is

one of the curious features of the integral calculus:—that you can’t in-

tegrate anything before the reverse process of differentiating something

else has yielded that expression which you want to integrate. No one,

even to-day, is able to find the general integral of the expression,

dy

dx
= a−x2 ,

because a−x2 has never yet been found to result from differentiating

anything else.

Another simple case.

Find

∫
(x+ 1)(x+ 2) dx.

On looking at the function to be integrated, you remark that it

is the product of two different functions of x. You could, you think,

integrate (x+1) dx by itself, or (x+2) dx by itself. Of course you could.

But what to do with a product? None of the differentiations you have



CALCULUS MADE EASY 198

learned have yielded you for the differential coefficient a product like

this. Failing such, the simplest thing is to multiply up the two functions,

and then integrate. This gives us∫
(x2 + 3x+ 2) dx.

And this is the same as∫
x2 dx+

∫
3x dx+

∫
2 dx.

And performing the integrations, we get

1
3
x3 + 3

2
x2 + 2x+ C.

Some other Integrals.

Now that we know that integration is the reverse of differentiation,

we may at once look up the differential coefficients we already know, and

see from what functions they were derived. This gives us the following

integrals ready made:

x−1 (p. 145);

∫
x−1 dx = logϵ x+ C.

1

x+ a
(p. 145);

∫
1

x+ a
dx = logϵ(x+ a) + C.

ϵx (p. 139);

∫
ϵx dx = ϵx + C.

ϵ−x

∫
ϵ−x dx = −ϵ−x + C
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(for if y = − 1

ϵx
,

dy

dx
= −ϵx × 0− 1× ϵx

ϵ2x
= ϵ−x).

sinx (p. 165);

∫
sinx dx = − cosx+ C.

cosx (p. 163);

∫
cosx dx = sinx+ C.

Also we may deduce the following:

logϵ x;

∫
logϵ x dx = x(logϵ x− 1) + C

(for if y = x logϵ x− x,
dy

dx
=

x

x
+ logϵ x− 1 = logϵ x).

log10 x;

∫
log10 x dx = 0.4343x(logϵ x− 1) + C.

ax (p. 146);

∫
ax dx =

ax

logϵ a
+ C.

cos ax;

∫
cos ax dx =

1

a
sin ax+ C

(for if y = sin ax,
dy

dx
= a cos ax; hence to get cos ax one must differen-

tiate y =
1

a
sin ax).

sin ax;

∫
sin ax dx = −1

a
cos ax+ C.

Try also cos2 θ; a little dodge will simplify matters:

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1;

hence cos2 θ = 1
2
(cos 2θ + 1),
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and

∫
cos2 θ dθ = 1

2

∫
(cos 2θ + 1) dθ

= 1
2

∫
cos 2θ dθ + 1

2

∫
dθ.

=
sin 2θ

4
+

θ

2
+ C. (See also p. 225).

See also the Table of Standard Forms on pp. 249–251. You should

make such a table for yourself, putting in it only the general functions

which you have successfully differentiated and integrated. See to it that

it grows steadily!

On Double and Triple Integrals.

In many cases it is necessary to integrate some expression for two or

more variables contained in it; and in that case the sign of integration

appears more than once. Thus,∫∫
f(x, y, ) dx dy

means that some function of the variables x and y has to be integrated

for each. It does not matter in which order they are done. Thus, take

the function x2 + y2. Integrating it with respect to x gives us:∫
(x2 + y2) dx = 1

3
x3 + xy2.

Now, integrate this with respect to y:∫
(1
3
x3 + xy2) dy = 1

3
x3y + 1

3
xy3,
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to which of course a constant is to be added. If we had reversed the

order of the operations, the result would have been the same.

In dealing with areas of surfaces and of solids, we have often to

integrate both for length and breadth, and thus have integrals of the

form ∫∫
u · dx dy,

where u is some property that depends, at each point, on x and on y.

This would then be called a surface-integral. It indicates that the value

of all such elements as u · dx · dy (that is to say, of the value of u over

a little rectangle dx long and dy broad) has to be summed up over the

whole length and whole breadth.

Similarly in the case of solids, where we deal with three dimen-

sions. Consider any element of volume, the small cube whose dimen-

sions are dx dy dz. If the figure of the solid be expressed by the function

f(x, y, z), then the whole solid will have the volume-integral,

volume =

∫∫∫
f(x, y, z) · dx · dy · dz.

Naturally, such integrations have to be taken between appropriate lim-

its* in each dimension; and the integration cannot be performed unless

one knows in what way the boundaries of the surface depend on x, y,

and z. If the limits for x are from x1 to x2, those for y from y1 to y2,

and those for z from z1 to z2, then clearly we have

volume =

∫ z2

z1

∫ y2

y1

∫ x2

x1

f(x, y, z) · dx · dy · dz.

*See p. 206 for integration between limits.
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There are of course plenty of complicated and difficult cases; but, in

general, it is quite easy to see the significance of the symbols where they

are intended to indicate that a certain integration has to be performed

over a given surface, or throughout a given solid space.

Exercises XVII. (See p. 264 for the Answers.)

(1) Find

∫
y dx when y2 = 4ax.

(2) Find

∫
3

x4
dx. (3) Find

∫
1

a
x3 dx.

(4) Find

∫
(x2 + a) dx. (5) Integrate 5x− 7

2 .

(6) Find

∫
(4x3 + 3x2 + 2x+ 1) dx.

(7) If
dy

dx
=

ax

2
+

bx2

3
+

cx3

4
; find y.

(8) Find

∫ (
x2 + a

x+ a

)
dx. (9) Find

∫
(x+ 3)3 dx.

(10) Find

∫
(x+ 2)(x− a) dx.

(11) Find

∫
(
√
x+ 3
√
x)3a2 dx.

(12) Find

∫
(sin θ − 1

2
)
dθ

3
.

(13) Find

∫
cos2 aθ dθ. (14) Find

∫
sin2 θ dθ.
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(15) Find

∫
sin2 aθ dθ. (16) Find

∫
ϵ3x dx.

(17) Find

∫
dx

1 + x
. (18) Find

∫
dx

1− x
.



CHAPTER XIX.

ON FINDING AREAS BY INTEGRATING.

One use of the integral calculus is to enable us to ascertain the values

of areas bounded by curves.

Let us try to get at the subject bit by bit.

A

P

Q
B

M N

y1

y2

x1

x2

O

Y

Fig. 52.

Let AB (Fig. 52) be a curve, the equation to which is known. That

is, y in this curve is some known function of x. Think of a piece of the

curve from the point P to the point Q.
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Let a perpendicular PM be dropped from P , and another QN from

the point Q. Then call OM = x1 and ON = x2, and the ordinates

PM = y1 and QN = y2. We have thus marked out the area PQNM

that lies beneath the piece PQ. The problem is, how can we calculate

the value of this area?

The secret of solving this problem is to conceive the area as be-

ing divided up into a lot of narrow strips, each of them being of the

width dx. The smaller we take dx, the more of them there will be

between x1 and x2. Now, the whole area is clearly equal to the sum of

the areas of all such strips. Our business will then be to discover an

expression for the area of any one narrow strip, and to integrate it so

as to add together all the strips. Now think of any one of the strips. It

will be like this: being bounded between two vertical sides,

with a flat bottom dx, and with a slightly curved sloping top.

Suppose we take its average height as being y; then, as its

width is dx, its area will be y dx. And seeing that we may take

the width as narrow as we please, if we only take it narrow

enough its average height will be the same as the height at the

middle of it. Now let us call the unknown value of the whole

area S, meaning surface. The area of one strip will be simply a bit of

the whole area, and may therefore be called dS. So we may write

area of 1 strip = dS = y · dx.

If then we add up all the strips, we get

total area S =

∫
dS =

∫
y dx.
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So then our finding S depends on whether we can integrate y ·dx for

the particular case, when we know what the value of y is as a function

of x.

For instance, if you were told that for the particular curve in ques-

tion y = b+ax2, no doubt you could put that value into the expression

and say: then I must find

∫
(b+ ax2) dx.

That is all very well; but a little thought will show you that some-

thing more must be done. Because the area we are trying to find is not

the area under the whole length of the curve, but only the area limited

on the left by PM , and on the right by QN , it follows that we must

do something to define our area between those ‘limits.’

This introduces us to a new notion, namely that of integrating be-

tween limits. We suppose x to vary, and for the present purpose we do

not require any value of x below x1 (that is OM), nor any value of x

above x2 (that is ON). When an integral is to be thus defined between

two limits, we call the lower of the two values the inferior limit, and the

upper value the superior limit. Any integral so limited we designate as

a definite integral, by way of distinguishing it from a general integral

to which no limits are assigned.

In the symbols which give instructions to integrate, the limits are

marked by putting them at the top and bottom respectively of the sign

of integration. Thus the instruction∫ x=x2

x=x1

y · dx

will be read: find the integral of y ·dx between the inferior limit x1 and

the superior limit x2.
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Sometimes the thing is written more simply∫ x2

x1

y · dx.

Well, but how do you find an integral between limits, when you have

got these instructions?

Look again at Fig. 52 (p. 204). Suppose we could find the area under

the larger piece of curve from A to Q, that is from x = 0 to x = x2,

naming the area AQNO. Then, suppose we could find the area under

the smaller piece from A to P , that is from x = 0 to x = x1, namely

the area APMO. If then we were to subtract the smaller area from

the larger, we should have left as a remainder the area PQNM , which

is what we want. Here we have the clue as to what to do; the definite

integral between the two limits is the difference between the integral

worked out for the superior limit and the integral worked out for the

lower limit.

Let us then go ahead. First, find the general integral thus:∫
y dx,

and, as y = b+ ax2 is the equation to the curve (Fig. 52),∫
(b+ ax2) dx

is the general integral which we must find.

Doing the integration in question by the rule (p. 193), we get

bx+
a

3
x3 + C;

and this will be the whole area from 0 up to any value of x that we

may assign.
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Therefore, the larger area up to the superior limit x2 will be

bx2 +
a

3
x3
2 + C;

and the smaller area up to the inferior limit x1 will be

bx1 +
a

3
x3
1 + C.

Now, subtract the smaller from the larger, and we get for the area S

the value,

area S = b(x2 − x1) +
a

3
(x3

2 − x3
1).

This is the answer we wanted. Let us give some numerical values.

Suppose b = 10, a = 0.06, and x2 = 8 and x1 = 6. Then the area S is

equal to

10(8− 6) +
0.06

3
(83 − 63)

= 20 + 0.02(512− 216)

= 20 + 0.02× 296

= 20 + 5.92

= 25.92.

Let us here put down a symbolic way of stating what we have as-

certained about limits: ∫ x=x2

x=x1

y dx = y2 − y1,

where y2 is the integrated value of y dx corresponding to x2, and y1 that

corresponding to x1.
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All integration between limits requires the difference between two

values to be thus found. Also note that, in making the subtraction the

added constant C has disappeared.

Examples.

(1) To familiarize ourselves with the process, let us take a case of

which we know the answer beforehand. Let us find the area of the

triangle (Fig. 53), which has base x = 12 and height y = 4. We know

beforehand, from obvious mensuration, that the answer will come 24.

12

4

O x

y

Fig. 53.

Now, here we have as the “curve” a sloping line for which the equa-

tion is

y =
x

3
.

The area in question will be∫ x=12

x=0

y · dx =

∫ x=12

x=0

x

3
· dx.

Integrating
x

3
dx (p. 192), and putting down the value of the general

integral in square brackets with the limits marked above and below, we
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get

area =

[
1

3
· 1
2
x2

]x=12

x=0

+ C

=

[
x2

6

]x=12

x=0

+ C

=

[
122

6

]
−

[
02

6

]
=

144

6
= 24. Ans.

Let us satisfy ourselves about this rather surprising dodge of cal-

culation, by testing it on a simple example. Get some squared paper,

preferably some that is ruled in little squares of one-eighth inch or one-

3 6 9 12

1

2

3

4

5

x

y

O

Fig. 54.

tenth inch each way. On this squared paper plot out the graph of the

equation,

y =
x

3
.

The values to be plotted will be:

x 0 3 6 9 12

y 0 1 2 3 4
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The plot is given in Fig. 54.

Now reckon out the area beneath the curve by counting the little

squares below the line, from x = 0 as far as x = 12 on the right. There

are 18 whole squares and four triangles, each of which has an area equal

to 11
2
squares; or, in total, 24 squares. Hence 24 is the numerical value

of the integral of
x

3
dx between the lower limit of x = 0 and the higher

limit of x = 12.

As a further exercise, show that the value of the same integral be-

tween the limits of x = 3 and x = 15 is 36.

a x

b

a

X

Y

O

Fig. 55.

(2) Find the area, between limits x = x1 and x = 0, of the curve

y =
b

x+ a
.

Area =

∫ x=x1

x=0

y · dx =

∫ x=x1

x=0

b

x+ a
dx

= b
[
logϵ(x+ a)

]x1
0

+ C

= b
[
logϵ(x1 + a)− logϵ(0 + a)

]
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= b logϵ
x1 + a

a
. Ans.

N.B.—Notice that in dealing with definite integrals the constant C

always disappears by subtraction.

Let it be noted that this process of subtracting one part from a

larger to find the difference is really a common practice. How do you

find the area of a plane ring (Fig. 56), the outer radius of which is r2

r1

r 2

Fig. 56.

and the inner radius is r1? You know from mensuration that the area

of the outer circle is πr22; then you find the area of the inner circle, πr21;

then you subtract the latter from the former, and find area of ring

= π(r22 − r21); which may be written

π(r2 + r1)(r2 − r1)

= mean circumference of ring× width of ring.

(3) Here’s another case—that of the die-away curve (p. 153). Find

the area between x = 0 and x = a, of the curve (Fig. 57) whose equation

is

y = bϵ−x.

Area = b

∫ x=a

x=0

ϵ−x · dx.
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The integration (p. 198) gives

= b
[
−ϵ−x

]a
0

= b
[
−ϵ−a − (−ϵ−0)

]
= b(1− ϵ−a).

a

b

O X

Y

Fig. 57.

v1

v2

p1

p2
O v

p

Fig. 58.

(4) Another example is afforded by the adiabatic curve of a perfect

gas, the equation to which is pvn = c, where p stands for pressure, v for

volume, and n is of the value 1.42 (Fig. 58).

Find the area under the curve (which is proportional to the work

done in suddenly compressing the gas) from volume v2 to volume v1.

Here we have

area =

∫ v=v2

v=v1

cv−n · dv

= c

[
1

1− n
v1−n

]v2
v1

= c
1

1− n
(v1−n

2 − v1−n
1 )

=
−c
0.42

(
1

v0.422

− 1

v0.421

)
.
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An Exercise.

Prove the ordinary mensuration formula, that the area A of a circle

whose radius is R, is equal to πR2.

dr

r

R

Fig. 59.

Consider an elementary zone or annulus of the surface (Fig. 59), of

breadth dr, situated at a distance r from the centre. We may consider

the entire surface as consisting of such narrow zones, and the whole

area A will simply be the integral of all such elementary zones from

centre to margin, that is, integrated from r = 0 to r = R.

We have therefore to find an expression for the elementary area dA

of the narrow zone. Think of it as a strip of breadth dr, and of a length

that is the periphery of the circle of radius r, that is, a length of 2πr.

Then we have, as the area of the narrow zone,

dA = 2πr dr.

Hence the area of the whole circle will be:

A =

∫
dA =

∫ r=R

r=0

2πr · dr = 2π

∫ r=R

r=0

r · dr.
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Now, the general integral of r · dr is 1
2
r2. Therefore,

A = 2π
[
1
2
r2
]r=R

r=0
;

or A = 2π
[
1
2
R2 − 1

2
(0)2

]
;

whence A = πR2.

Another Exercise.

Let us find the mean ordinate of the positive part of the curve

y = x − x2, which is shown in Fig. 60. To find the mean ordinate, we

N

M

1

1/4

O

Y

Fig. 60.

shall have to find the area of the piece OMN , and then divide it by

the length of the base ON . But before we can find the area we must

ascertain the length of the base, so as to know up to what limit we are

to integrate. At N the ordinate y has zero value; therefore, we must

look at the equation and see what value of x will make y = 0. Now,

clearly, if x is 0, y will also be 0, the curve passing through the origin O;

but also, if x = 1, y = 0; so that x = 1 gives us the position of the

point N .
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Then the area wanted is

=

∫ x=1

x=0

(x− x2) dx

=
[
1
2
x2 − 1

3
x3
]1
0

=
[
1
2
− 1

3

]
− [0− 0]

= 1
6
.

But the base length is 1.

Therefore, the average ordinate of the curve = 1
6
.

[N.B.—It will be a pretty and simple exercise in maxima and minima

to find by differentiation what is the height of the maximum ordinate.

It must be greater than the average.]

The mean ordinate of any curve, over a range from x = 0 to x = x1,

is given by the expression,

mean y =
1

x1

∫ x=x1

x=0

y · dx.

One can also find in the same way the surface area of a solid of

revolution.

Example.

The curve y = x2−5 is revolving about the axis of x. Find the area

of the surface generated by the curve between x = 0 and x = 6.

A point on the curve, the ordinate of which is y, describes a circum-

ference of length 2πy, and a narrow belt of the surface, of width dx,

corresponding to this point, has for area 2πy dx. The total area is

2π

∫ x=6

x=0

y dx = 2π

∫ x=6

x=0

(x2 − 5) dx = 2π

[
x3

3
− 5x

]6
0

= 6.28× 42 = 263.76.
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Areas in Polar Coordinates.

When the equation of the boundary of an area is given as a function

of the distance r of a point of it from a fixed point O (see Fig. 61) called

the pole, and of the angle which r makes with the positive horizontal

AB

rdθ

θ

O X

Fig. 61.

direction OX, the process just explained can be applied just as easily,

with a small modification. Instead of a strip of area, we consider a

small triangle OAB, the angle at O being dθ, and we find the sum of

all the little triangles making up the required area.

The area of such a small triangle is approximately
AB

2
× r or

r dθ

2
× r; hence the portion of the area included between the curve and

two positions of r corresponding to the angles θ1 and θ2 is given by

1
2

∫ θ=θ2

θ=θ1

r2 dθ.

Examples.

(1) Find the area of the sector of 1 radian in a circumference of

radius a inches.
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The polar equation of the circumference is evidently r = a. The

area is
1
2

∫ θ=θ2

θ=θ1

a2 dθ =
a2

2

∫ θ=1

θ=0

dθ =
a2

2
.

(2) Find the area of the first quadrant of the curve (known as “Pas-

cal’s Snail”), the polar equation of which is r = a(1 + cos θ).

Area = 1
2

∫ θ=π
2

θ=0

a2(1 + cos θ)2 dθ

=
a2

2

∫ θ=π
2

θ=0

(1 + 2 cos θ + cos2 θ) dθ

=
a2

2

[
θ + 2 sin θ +

θ

2
+

sin 2θ

4

]π
2

0

=
a2(3π + 8)

8
.

Volumes by Integration.

What we have done with the area of a little strip of a surface, we

can, of course, just as easily do with the volume of a little strip of a

solid. We can add up all the little strips that make up the total solid,

and find its volume, just as we have added up all the small little bits

that made up an area to find the final area of the figure operated upon.

Examples.

(1) Find the volume of a sphere of radius r.

A thin spherical shell has for volume 4πx2 dx (see Fig. 59, p. 214);

summing up all the concentric shells which make up the sphere, we
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have

volume sphere =

∫ x=r

x=0

4πx2 dx = 4π

[
x3

3

]r
0

= 4
3
πr3.

dx y

x

O x

y

Fig. 62.

We can also proceed as follows: a slice of the sphere, of thickness dx,

has for volume πy2 dx (see Fig. 62). Also x and y are related by the

expression

y2 = r2 − x2.

Hence volume sphere = 2

∫ x=r

x=0

π(r2 − x2) dx

= 2π

[∫ x=r

x=0

r2 dx−
∫ x=r

x=0

x2 dx

]
= 2π

[
r2x− x3

3

]r
0

=
4π

3
r3.

(2) Find the volume of the solid generated by the revolution of the

curve y2 = 6x about the axis of x, between x = 0 and x = 4.
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The volume of a strip of the solid is πy2 dx.

Hence volume =

∫ x=4

x=0

πy2 dx = 6π

∫ x=4

x=0

x dx

= 6π

[
x2

2

]4
0

= 48π = 150.8.

On Quadratic Means.

In certain branches of physics, particularly in the study of alternat-

ing electric currents, it is necessary to be able to calculate the quadratic

mean of a variable quantity. By “quadratic mean” is denoted the square

root of the mean of the squares of all the values between the limits con-

sidered. Other names for the quadratic mean of any quantity are its

“virtual” value, or its “r.m.s.” (meaning root-mean-square) value. The

French term is valeur efficace. If y is the function under consideration,

and the quadratic mean is to be taken between the limits of x = 0 and

x = l; then the quadratic mean is expressed as

2

√
1

l

∫ l

0

y2 dx.

Examples.

(1) To find the quadratic mean of the function y = ax (Fig. 63).

Here the integral is

∫ l

0

a2x2 dx, which is 1
3
a2l3.

Dividing by l and taking the square root, we have

quadratic mean =
1√
3
al.
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y

l
O X

Y

Fig. 63.

Here the arithmetical mean is 1
2
al; and the ratio of quadratic to

arithmetical mean (this ratio is called the form-factor) is
2√
3
= 1.155.

(2) To find the quadratic mean of the function y = xa.

The integral is

∫ x=l

x=0

x2a dx, that is
l2a+1

2a+ 1
.

Hence quadratic mean =
2

√
l2a

2a+ 1
.

(3) To find the quadratic mean of the function y = a
x
2 .

The integral is

∫ x=l

x=0

(a
x
2 )2 dx, that is

∫ x=l

x=0

ax dx,

or

[
ax

logϵ a

]x=l

x=0

,

which is
al − 1

logϵ a
.

Hence the quadratic mean is 2

√
al − 1

l logϵ a
.

Exercises XVIII. (See p. 265 for Answers.)

(1) Find the area of the curve y = x2 + x − 5 between x = 0 and

x = 6, and the mean ordinates between these limits.
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(2) Find the area of the parabola y = 2a
√
x between x = 0 and

x = a. Show that it is two-thirds of the rectangle of the limiting

ordinate and of its abscissa.

(3) Find the area of the positive portion of a sine curve and the

mean ordinate.

(4) Find the area of the positive portion of the curve y = sin2 x, and

find the mean ordinate.

(5) Find the area included between the two branches of the curve

y = x2 ± x
5
2 from x = 0 to x = 1, also the area of the positive portion

of the lower branch of the curve (see Fig. 30, p. 106).

(6) Find the volume of a cone of radius of base r, and of height h.

(7) Find the area of the curve y = x3 − logϵ x between x = 0 and

x = 1.

(8) Find the volume generated by the curve y =
√
1 + x2, as it

revolves about the axis of x, between x = 0 and x = 4.

(9) Find the volume generated by a sine curve revolving about the

axis of x. Find also the area of its surface.

(10) Find the area of the portion of the curve xy = a included be-

tween x = 1 and x = a. Find the mean ordinate between these limits.

(11) Show that the quadratic mean of the function y = sinx, between

the limits of 0 and π radians, is

√
2

2
. Find also the arithmetical mean

of the same function between the same limits; and show that the form-

factor is = 1.11.
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(12) Find the arithmetical and quadratic means of the function x2+

3x+ 2, from x = 0 to x = 3.

(13) Find the quadratic mean and the arithmetical mean of the func-

tion y = A1 sinx+ A1 sin 3x.

(14) A certain curve has the equation y = 3.42ϵ0.21x. Find the area

included between the curve and the axis of x, from the ordinate at x = 2

to the ordinate at x = 8. Find also the height of the mean ordinate of

the curve between these points.

(15) Show that the radius of a circle, the area of which is twice the

area of a polar diagram, is equal to the quadratic mean of all the values

of r for that polar diagram.

(16) Find the volume generated by the curve y = ±x

6

√
x(10− x)

rotating about the axis of x.



CHAPTER XX.

DODGES, PITFALLS, AND TRIUMPHS.

Dodges. A great part of the labour of integrating things consists in

licking them into some shape that can be integrated. The books—and

by this is meant the serious books—on the Integral Calculus are full of

plans and methods and dodges and artifices for this kind of work. The

following are a few of them.

Integration by Parts. This name is given to a dodge, the formula

for which is ∫
u dx = ux−

∫
x du+ C.

It is useful in some cases that you can’t tackle directly, for it shows

that if in any case

∫
x du can be found, then

∫
u dx can also be found.

The formula can be deduced as follows. From p. 37, we have,

d(ux) = u dx+ x du,

which may be written

u(dx) = d(ux)− x du,

which by direct integration gives the above expression.
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Examples.

(1) Find

∫
w · sinw dw.

Write u = w, and for sinw · dw write dx. We shall then have

du = dw, while

∫
sinw · dw = − cosw = x.

Putting these into the formula, we get∫
w · sinw dw = w(− cosw)−

∫
− cosw dw

= −w cosw + sinw + C.

(2) Find

∫
xϵx dx.

Write u = x, ϵx dx = dv;

then du = dx, v = ϵx,

and

∫
xϵx dx = xϵx −

∫
ϵx dx (by the formula)

= xϵx − ϵx = ϵx(x− 1) + C.

(3) Try

∫
cos2 θ dθ.

u = cos θ, cos θ dθ = dv.

Hence du = − sin θ dθ, v = sin θ,∫
cos2 θ dθ = cos θ sin θ +

∫
sin2 θ dθ

=
2 cos θ sin θ

2
+

∫
(1− cos2 θ) dθ

=
sin 2θ

2
+

∫
dθ −

∫
cos2 θ dθ.
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Hence 2

∫
cos2 θ dθ =

sin 2θ

2
+ θ

and

∫
cos2 θ dθ =

sin 2θ

4
+

θ

2
+ C.

(4) Find

∫
x2 sinx dx.

Write x2 = u, sinx dx = dv;

then du = 2x dx, v = − cosx,∫
x2 sinx dx = −x2 cosx+ 2

∫
x cosx dx.

Now find

∫
x cosx dx, integrating by parts (as in Example 1 above):

∫
x cosx dx = x sinx+ cosx+ C.

Hence ∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cosx+ C ′

= 2

[
x sinx+ cosx

(
1− x2

2

)]
+ C ′.

(5) Find

∫ √
1− x2 dx.

Write u =
√
1− x2, dx = dv;

then du = − x dx√
1− x2

(see Chap. IX., p. 66)
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and x = v; so that∫ √
1− x2 dx = x

√
1− x2 +

∫
x2 dx√
1− x2

.

Here we may use a little dodge, for we can write∫ √
1− x2 dx =

∫
(1− x2) dx√

1− x2
=

∫
dx√
1− x2

−
∫

x2 dx√
1− x2

.

Adding these two last equations, we get rid of

∫
x2 dx√
1− x2

, and we

have

2

∫ √
1− x2 dx = x

√
1− x2 +

∫
dx√
1− x2

.

Do you remember meeting
dx√
1− x2

? it is got by differentiating

y = arc sin x (see p. 168); hence its integral is arc sinx, and so∫ √
1− x2 dx =

x
√
1− x2

2
+ 1

2
arc sinx+ C.

You can try now some exercises by yourself; you will find some at

the end of this chapter.

Substitution. This is the same dodge as explained in Chap. IX.,

p. 66. Let us illustrate its application to integration by a few examples.

(1)

∫ √
3 + x dx.

Let 3 + x = u, dx = du;

replace

∫
u

1
2 du = 2

3
u

3
2 = 2

3
(3 + x)

3
2 .
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(2)

∫
dx

ϵx + ϵ−x
.

Let ϵx = u,
du

dx
= ϵx, and dx =

du

ϵx
;

so that

∫
dx

ϵx + ϵ−x
=

∫
du

ϵx(ϵx + ϵ−x)
=

∫
du

u

(
u+

1

u

) =

∫
du

u2 + 1
.

du

1 + u2
is the result of differentiating arc tanx.

Hence the integral is arc tan ϵx.

(3)

∫
dx

x2 + 2x+ 3
=

∫
dx

x2 + 2x+ 1 + 2
=

∫
dx

(x+ 1)2 + (
√
2)2

.

Let x+ 1 = u, dx = du;

then the integral becomes

∫
du

u2 + (
√
2)2

; but
du

u2 + a2
is the result of

differentiating u =
1

a
arc tan

u

a
.

Hence one has finally
1√
2
arc tan

x+ 1√
2

for the value of the given

integral.

Formulæ of Reduction are special forms applicable chiefly to bino-

mial and trigonometrical expressions that have to be integrated, and

have to be reduced into some form of which the integral is known.

Rationalization, and Factorization of Denominator are dodges ap-

plicable in special cases, but they do not admit of any short or general

explanation. Much practice is needed to become familiar with these

preparatory processes.

The following example shows how the process of splitting into partial

fractions, which we learned in Chap. XIII., p. 118, can be made use of

in integration.
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Take again

∫
dx

x2 + 2x+ 3
; if we split

1

x2 + 2x+ 3
into partial frac-

tions, this becomes (see p. 230):

1

2
√
−2

[∫
dx

x+ 1−
√
−2 −

∫
dx

x+ 1 +
√
−2

]
=

1

2
√
−2 logϵ

x+ 1−
√
−2

x+ 1 +
√
−2 .

Notice that the same integral can be expressed sometimes in more than

one way (which are equivalent to one another).

Pitfalls. A beginner is liable to overlook certain points that a prac-

tised hand would avoid; such as the use of factors that are equivalent to

either zero or infinity, and the occurrence of indeterminate quantities

such as 0
0
. There is no golden rule that will meet every possible case.

Nothing but practice and intelligent care will avail. An example of a

pitfall which had to be circumvented arose in Chap. XVIII., p. 189,

when we came to the problem of integrating x−1 dx.

Triumphs. By triumphs must be understood the successes with

which the calculus has been applied to the solution of problems other-

wise intractable. Often in the consideration of physical relations one

is able to build up an expression for the law governing the interac-

tion of the parts or of the forces that govern them, such expression

being naturally in the form of a differential equation, that is an equa-

tion containing differential coefficients with or without other algebraic

quantities. And when such a differential equation has been found, one

can get no further until it has been integrated. Generally it is much

easier to state the appropriate differential equation than to solve it:—

the real trouble begins then only when one wants to integrate, unless
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indeed the equation is seen to possess some standard form of which the

integral is known, and then the triumph is easy. The equation which

results from integrating a differential equation is called* its “solution”;

and it is quite astonishing how in many cases the solution looks as if it

had no relation to the differential equation of which it is the integrated

form. The solution often seems as different from the original expression

as a butterfly does from the caterpillar that it was. Who would have

supposed that such an innocent thing as

dy

dx
=

1

a2 − x2

could blossom out into

y =
1

2a
logϵ

a+ x

a− x
+ C?

yet the latter is the solution of the former.

As a last example, let us work out the above together.

By partial fractions,

1

a2 − x2
=

1

2a(a+ x)
+

1

2a(a− x)
,

dy =
dx

2a(a+ x)
+

dx

2a(a− x)
,

y =
1

2a

(∫
dx

a+ x
+

∫
dx

a− x

)
*This means that the actual result of solving it is called its “solution.” But many

mathematicians would say, with Professor Forsyth, “every differential equation is

considered as solved when the value of the dependent variable is expressed as a

function of the independent variable by means either of known functions, or of

integrals, whether the integrations in the latter can or cannot be expressed in terms

of functions already known.”
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=
1

2a
(logϵ(a+ x)− logϵ(a− x))

=
1

2a
logϵ

a+ x

a− x
+ C.

Not a very difficult metamorphosis!

There are whole treatises, such as Boole’s Differential Equations,

devoted to the subject of thus finding the “solutions” for different orig-

inal forms.

Exercises XIX. (See p. 266 for Answers.)

(1) Find

∫ √
a2 − x2 dx. (2) Find

∫
x logϵ x dx.

(3) Find

∫
xa logϵ x dx. (4) Find

∫
ϵx cos ϵx dx.

(5) Find

∫
1

x
cos(logϵ x) dx. (6) Find

∫
x2ϵx dx.

(7) Find

∫
(logϵ x)

a

x
dx. (8) Find

∫
dx

x logϵ x
.

(9) Find

∫
5x+ 1

x2 + x− 2
dx. (10) Find

∫
(x2 − 3) dx

x3 − 7x+ 6
.

(11) Find

∫
b dx

x2 − a2
. (12) Find

∫
4x dx

x4 − 1
.

(13) Find

∫
dx

1− x4
. (14) Find

∫
dx

x
√
a− bx2

.



CHAPTER XXI.

FINDING SOME SOLUTIONS.

In this chapter we go to work finding solutions to some important

differential equations, using for this purpose the processes shown in the

preceding chapters.

The beginner, who now knows how easy most of those processes

are in themselves, will here begin to realize that integration is an art.

As in all arts, so in this, facility can be acquired only by diligent and

regular practice. He who would attain that facility must work out

examples, and more examples, and yet more examples, such as are

found abundantly in all the regular treatises on the Calculus. Our

purpose here must be to afford the briefest introduction to serious work.

Example 1. Find the solution of the differential equation

ay + b
dy

dx
= 0.

Transposing we have

b
dy

dx
= −ay.
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Now the mere inspection of this relation tells us that we have got

to do with a case in which
dy

dx
is proportional to y. If we think of the

curve which will represent y as a function of x, it will be such that its

slope at any point will be proportional to the ordinate at that point,

and will be a negative slope if y is positive. So obviously the curve

will be a die-away curve (p. 153), and the solution will contain ϵ−x as

a factor. But, without presuming on this bit of sagacity, let us go to

work.

As both y and dy occur in the equation and on opposite sides, we

can do nothing until we get both y and dy to one side, and dx to the

other. To do this, we must split our usually inseparable companions

dy and dx from one another.

dy

y
= −a

b
dx.

Having done the deed, we now can see that both sides have got into

a shape that is integrable, because we recognize
dy

y
, or

1

y
dy, as a differ-

ential that we have met with (p. 143) when differentiating logarithms.

So we may at once write down the instructions to integrate,∫
dy

y
=

∫
−a

b
dx;

and doing the two integrations, we have:

logϵ y = −a

b
x+ logϵ C,

where logϵC is the yet undetermined constant* of integration. Then,

*We may write down any form of constant as the “constant of integration,” and

the form logϵ C is adopted here by preference, because the other terms in this line

of equation are, or are treated as logarithms; and it saves complications afterward

if the added constant be of the same kind.
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delogarizing, we get:

y = Cϵ−
a
b x,

which is the solution required. Now, this solution looks quite unlike

the original differential equation from which it was constructed: yet to

an expert mathematician they both convey the same information as to

the way in which y depends on x.

Now, as to the C, its meaning depends on the initial value of y. For

if we put x = 0 in order to see what value y then has, we find that this

makes y = Cϵ−0; and as ϵ−0 = 1 we see that C is nothing else than the

particular value* of y at starting. This we may call y0, and so write the

solution as

y = y0ϵ
−a

b x.

Example 2.

Let us take as an example to solve

ay + b
dy

dx
= g,

where g is a constant. Again, inspecting the equation will suggest,

(1) that somehow or other ϵx will come into the solution, and (2) that

if at any part of the curve y becomes either a maximum or a minimum,

so that
dy

dx
= 0, then y will have the value =

g

a
. But let us go to work

as before, separating the differentials and trying to transform the thing

*Compare what was said about the “constant of integration,” with reference to

Fig. 48 on p. 184, and Fig. 51 on p. 187.
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into some integrable shape.

b
dy

dx
= g − ay;

dy

dx
=

a

b

(g
a
− y

)
;

dy

y − g

a

= −a

b
dx.

Now we have done our best to get nothing but y and dy on one

side, and nothing but dx on the other. But is the result on the left side

integrable?

It is of the same form as the result on p. 145; so, writing the in-

structions to integrate, we have:∫
dy

y − g

a

= −
∫

a

b
dx;

and, doing the integration, and adding the appropriate constant,

logϵ

(
y − g

a

)
= −a

b
x+ logϵ C;

whence y − g

a
= Cϵ−

a
b x;

and finally, y =
g

a
+ Cϵ−

a
b x,

which is the solution.

If the condition is laid down that y = 0 when x = 0 we can find C;

for then the exponential becomes = 1; and we have

0 =
g

a
+ C,

or C = −g

a
.
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Putting in this value, the solution becomes

y =
g

a
(1− ϵ−

a
b x).

But further, if x grows indefinitely, y will grow to a maximum; for

when x =∞, the exponential = 0, giving ymax. =
g

a
. Substituting this,

we get finally

y = ymax.(1− ϵ−
a
b x).

This result is also of importance in physical science.

Example 3.

Let ay + b
dy

dt
= g · sin 2πnt.

We shall find this much less tractable than the preceding. First

divide through by b.

dy

dt
+

a

b
y =

g

b
sin 2πnt.

Now, as it stands, the left side is not integrable. But it can be

made so by the artifice—and this is where skill and practice suggest a

plan—of multiplying all the terms by ϵ
a
b t, giving us:

dy

dt
ϵ
a
b t +

a

b
yϵ

a
b t =

g

b
ϵ
a
b t · sin 2πnt,

which is the same as

dy

dt
ϵ
a
b t + y

d(ϵ
a
b t)

dt
=

g

b
ϵ
a
b t · sin 2πnt;
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and this being a perfect differential may be integrated thus:—since, if

u = yϵ
a
b t,

du

dt
=

dy

dt
ϵ
a
b t + y

d(ϵ
a
b t)

dt
,

yϵ
a
b t =

g

b

∫
ϵ
a
b t · sin 2πnt · dt+ C,

or y =
g

b
ϵ−

a
b t

∫
ϵ
a
b t · sin 2πnt · dt+ Cϵ−

a
b t. [a]

The last term is obviously a term which will die out as t increases,

and may be omitted. The trouble now comes in to find the integral

that appears as a factor. To tackle this we resort to the device (see

p. 224) of integration by parts, the general formula for which is

∫
udv =

uv −
∫

vdu. For this purpose write u = ϵ
a
b t;

dv = sin 2πnt · dt.

We shall then have 
du = ϵ

a
b t × a

b
dt;

v = − 1

2πn
cos 2πnt.

Inserting these, the integral in question becomes:∫
ϵ
a
b t · sin 2πnt · dt

= − 1

2πn
· ϵa

b t · cos 2πnt−
∫
− 1

2πn
cos 2πnt · ϵa

b t · a
b
dt

= − 1

2πn
ϵ
a
b t cos 2πnt+

a

2πnb

∫
ϵ
a
b t · cos 2πnt · dt. [b]
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The last integral is still irreducible. To evade the difficulty, repeat

the integration by parts of the left side, but treating it in the reverse

way by writing:  u = sin 2πnt;

dv = ϵ
a
b t · dt;

whence


du = 2πn · cos 2πnt · dt;

v =
b

a
ϵ
a
b t

Inserting these, we get∫
ϵ
a
b t · sin 2πnt · dt

=
b

a
· ϵa

b t · sin 2πnt− 2πnb

a

∫
ϵ
a
b t · cos 2πnt · dt. [c]

Noting that the final intractable integral in [c] is the same as that

in [b], we may eliminate it, by multiplying [b] by
2πnb

a
, and multiply-

ing [c] by
a

2πnb
, and adding them.

The result, when cleared down, is:∫
ϵ
a
b t · sin 2πnt · dt = ϵ

a
b t

{
ab · sin 2πnt− 2πnb2 · cos 2πnt

a2 + 4π2n2b2

}
[d]

Inserting this value in [a], we get

y = g

{
a · sin 2πnt− 2πnb · cos 2πnt

a2 + 4π2n2b2

}
.

To simplify still further, let us imagine an angle ϕ such that tanϕ =
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2πnb

a
.

Then sinϕ =
2πnb√

a2 + 4π2n2b2
,

and cosϕ =
a√

a2 + 4π2n2b2
.

Substituting these, we get:

y = g
cosϕ · sin 2πnt− sinϕ · cos 2πnt√

a2 + 4π2n2b2
,

which may be written

y = g
sin(2πnt− ϕ)√
a2 + 4π2n2b2

,

which is the solution desired.

This is indeed none other than the equation of an alternating electric

current, where g represents the amplitude of the electromotive force,

n the frequency, a the resistance, b the coefficient of self-induction of

the circuit, and ϕ is an angle of lag.

Example 4.

Suppose that M dx+N dy = 0.

We could integrate this expression directly, ifM were a function of x

only, and N a function of y only; but, if both M and N are functions

that depend on both x and y, how are we to integrate it? Is it itself

an exact differential? That is: have M and N each been formed by
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partial differentiation from some common function U , or not? If they

have, then 
∂U

∂x
= M,

∂U

∂y
= N.

And if such a common function exists, then

∂U

∂x
dx+

∂U

∂y
dy

is an exact differential (compare p. 172).

Now the test of the matter is this. If the expression is an exact

differential, it must be true that

dM

dy
=

dN

dx
;

for then
d(dU)

dx dy
=

d(dU)

dy dx
,

which is necessarily true.

Take as an illustration the equation

(1 + 3xy) dx+ x2 dy = 0.

Is this an exact differential or not? Apply the test.
d(1 + 3xy)

dy
= 3x,

d(x2)

dx
= 2x,

which do not agree. Therefore, it is not an exact differential, and the

two functions 1 + 3xy and x2 have not come from a common original

function.
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It is possible in such cases to discover, however, an integrating fac-

tor, that is to say, a factor such that if both are multiplied by this factor,

the expression will become an exact differential. There is no one rule

for discovering such an integrating factor; but experience will usually

suggest one. In the present instance 2x will act as such. Multiplying

by 2x, we get

(2x+ 6x2y) dx+ 2x3 dy = 0.

Now apply the test to this.
d(2x+ 6x2y)

dy
= 6x2,

d(2x3)

dx
= 6x2,

which agrees. Hence this is an exact differential, and may be integrated.

Now, if w = 2x3y,

dw = 6x2y dx+ 2x3 dy.

Hence

∫
6x2y dx+

∫
2x3 dy = w = 2x3y;

so that we get U = x2 + 2x3y + C.

Example 5. Let
d2y

dt2
+ n2y = 0.

In this case we have a differential equation of the second degree, in

which y appears in the form of a second differential coefficient, as well

as in person.

Transposing, we have
d2y

dt2
= −n2y.
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It appears from this that we have to do with a function such that its

second differential coefficient is proportional to itself, but with reversed

sign. In Chapter XV. we found that there was such a function—namely,

the sine (or the cosine also) which possessed this property. So, without

further ado, we may infer that the solution will be of the form y =

A sin(pt+ q). However, let us go to work.

Multiply both sides of the original equation by 2
dy

dt
and integrate,

giving us 2
d2y

dt2
dy

dt
+ 2x2y

dy

dt
= 0, and, as

2
d2y

dt2
dy

dt
=

d

(
dy

dt

)2

dt
,

(
dy

dt

)2

+ n2(y2 − C2) = 0,

C being a constant. Then, taking the square roots,

dy

dt
= −n

√
y2 − C2 and

dy√
C2 − y2

= n · dt.

But it can be shown that (see p. 168)

1√
C2 − y2

=
d(arc sin

y

C
)

dy
;

whence, passing from angles to sines,

arc sin
y

C
= nt+ C1 and y = C sin(nt+ C1),

where C1 is a constant angle that comes in by integration.

Or, preferably, this may be written

y = A sinnt+B cosnt, which is the solution.
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Example 6.
d2y

dt2
− n2y = 0.

Here we have obviously to deal with a function y which is such

that its second differential coefficient is proportional to itself. The only

function we know that has this property is the exponential function

(see p. 139), and we may be certain therefore that the solution of the

equation will be of that form.

Proceeding as before, by multiplying through by 2
dy

dx
, and integrat-

ing, we get 2
d2y

dx2

dy

dx
− 2x2y

dy

dx
= 0,

and, as 2
d2y

dx2

dy

dx
=

d

(
dy

dx

)2

dx
,

(
dy

dx

)2

− n2(y2 + c2) = 0,

dy

dx
− n

√
y2 + c2 = 0,

where c is a constant, and
dy√
y2 + c2

= n dx.

Now, if w = logϵ(y +
√

y2 + c2) = logϵ u,

dw

du
=

1

u
,

du

dy
= 1 +

y√
y2 + c2

=
y +

√
y2 + c2√

y2 + c2

and
dw

dy
=

1√
y2 + c2

.

Hence, integrating, this gives us

logϵ(y +
√

y2 + c2) = nx+ logϵ C,

y +
√

y2 + c2 = Cϵnx. (1)

Now (y +
√
y2 + c2)× (−y +

√
y2 + c2) = c2;

whence −y +
√

y2 + c2 =
c2

C
ϵ−nx. (2)
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Subtracting (2) from (1) and dividing by 2, we then have

y =
1

2
Cϵnx − 1

2

c2

C
ϵ−nx,

which is more conveniently written

y = Aϵnx +Bϵ−nx.

Or, the solution, which at first sight does not look as if it had anything

to do with the original equation, shows that y consists of two terms,

one of which grows logarithmically as x increases, and of a second term

which dies away as x increases.

Example 7.

Let b
d2y

dt2
+ a

dy

dt
+ gy = 0.

Examination of this expression will show that, if b = 0, it has the

form of Example 1, the solution of which was a negative exponential.

On the other hand, if a = 0, its form becomes the same as that of

Example 6, the solution of which is the sum of a positive and a negative

exponential. It is therefore not very surprising to find that the solution

of the present example is

y = (ϵ−mt)(Aϵnt +Bϵ−nt),

where m =
a

2b
and n =

√
a2

4b2
− g

b
.

The steps by which this solution is reached are not given here; they

may be found in advanced treatises.
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Example 8.
d2y

dt2
= a2

d2y

dx2
.

It was seen (p. 174) that this equation was derived from the original

y = F (x+ at) + f(x− at),

where F and f were any arbitrary functions of t.

Another way of dealing with it is to transform it by a change of

variables into
d2y

du · dv = 0,

where u = x+ at, and v = x− at, leading to the same general solution.

If we consider a case in which F vanishes, then we have simply

y = f(x− at);

and this merely states that, at the time t = 0, y is a particular func-

tion of x, and may be looked upon as denoting that the curve of the

relation of y to x has a particular shape. Then any change in the value

of t is equivalent simply to an alteration in the origin from which x is

reckoned. That is to say, it indicates that, the form of the function

being conserved, it is propagated along the x direction with a uniform

velocity a; so that whatever the value of the ordinate y at any par-

ticular time t0 at any particular point x0, the same value of y will

appear at the subsequent time t1 at a point further along, the abscissa

of which is x0+a(t1−t0). In this case the simplified equation represents

the propagation of a wave (of any form) at a uniform speed along the

x direction.
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If the differential equation had been written

m
d2y

dt2
= k

d2y

dx2
,

the solution would have been the same, but the velocity of propagation

would have had the value

a =

√
k

m
.

You have now been personally conducted over the frontiers into the

enchanted land. And in order that you may have a handy reference

to the principal results, the author, in bidding you farewell, begs to

present you with a passport in the shape of a convenient collection of

standard forms (see pp. 249–251). In the middle column are set down

a number of the functions which most commonly occur. The results of

differentiating them are set down on the left; the results of integrating

them are set down on the right. May you find them useful!



EPILOGUE AND APOLOGUE.

It may be confidently assumed that when this tractate “Calculus made

Easy” falls into the hands of the professional mathematicians, they will

(if not too lazy) rise up as one man, and damn it as being a thoroughly

bad book. Of that there can be, from their point of view, no possi-

ble manner of doubt whatever. It commits several most grievous and

deplorable errors.

First, it shows how ridiculously easy most of the operations of the

calculus really are.

Secondly, it gives away so many trade secrets. By showing you that

what one fool can do, other fools can do also, it lets you see that these

mathematical swells, who pride themselves on having mastered such an

awfully difficult subject as the calculus, have no such great reason to

be puffed up. They like you to think how terribly difficult it is, and

don’t want that superstition to be rudely dissipated.

Thirdly, among the dreadful things they will say about “So Easy”

is this: that there is an utter failure on the part of the author to

demonstrate with rigid and satisfactory completeness the validity of

sundry methods which he has presented in simple fashion, and has

even dared to use in solving problems! But why should he not? You

don’t forbid the use of a watch to every person who does not know how
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to make one? You don’t object to the musician playing on a violin that

he has not himself constructed. You don’t teach the rules of syntax to

children until they have already become fluent in the use of speech. It

would be equally absurd to require general rigid demonstrations to be

expounded to beginners in the calculus.

One other thing will the professed mathematicians say about this

thoroughly bad and vicious book: that the reason why it is so easy is

because the author has left out all the things that are really difficult.

And the ghastly fact about this accusation is that—it is true! That

is, indeed, why the book has been written—written for the legion of

innocents who have hitherto been deterred from acquiring the elements

of the calculus by the stupid way in which its teaching is almost al-

ways presented. Any subject can be made repulsive by presenting it

bristling with difficulties. The aim of this book is to enable beginners

to learn its language, to acquire familiarity with its endearing sim-

plicities, and to grasp its powerful methods of solving problems, with-

out being compelled to toil through the intricate out-of-the-way (and

mostly irrelevant) mathematical gymnastics so dear to the unpractical

mathematician.

There are amongst young engineers a number on whose ears the

adage that what one fool can do, another can, may fall with a familiar

sound. They are earnestly requested not to give the author away, nor

to tell the mathematicians what a fool he really is.



TABLE OF STANDARD FORMS.

dy

dx
←− y −→

∫
y dx

Algebraic.

1 x 1
2
x2 + C

0 a ax+ C

1 x± a 1
2
x2 ± ax+ C

a ax 1
2
ax2 + C

2x x2 1
3
x3 + C

nxn−1 xn 1

n+ 1
xn+1 + C

−x−2 x−1 logϵ x+ C

du

dx
± dv

dx
± dw

dx
u± v ± w

∫
u dx±

∫
v dx±

∫
w dx

u
dv

dx
+ v

du

dx
uv No general form known

v
du

dx
− u

dv

dx
v2

u

v
No general form known

du

dx
u ux−

∫
x du+ C
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dy

dx
←− y −→

∫
y dx

Exponential and Logarithmic.

ϵx ϵx ϵx + C

x−1 logϵ x x(logϵ x− 1) + C

0.4343× x−1 log10 x 0.4343x(logϵ x− 1) + C

ax logϵ a ax
ax

logϵ a
+ C

Trigonometrical.

cosx sinx − cosx+ C

− sinx cosx sinx+ C

sec2 x tanx − logϵ cosx+ C

Circular (Inverse).
1√

(1− x2)
arc sinx x · arc sinx+

√
1− x2 + C

− 1√
(1− x2)

arc cosx x · arc cosx−
√
1− x2 + C

1

1 + x2
arc tanx x · arc tanx− 1

2
logϵ(1 + x2) + C

Hyperbolic.

coshx sinhx coshx+ C

sinhx coshx sinhx+ C

sech2 x tanhx logϵ coshx+ C
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dy

dx
←− y −→

∫
y dx

Miscellaneous.

− 1

(x+ a)2
1

x+ a
logϵ(x+ a) + C

− x

(a2 + x2)
3
2

1√
a2 + x2

logϵ(x+
√
a2 + x2) + C

∓ b

(a± bx)2
1

a± bx
±1

b
logϵ(a± bx) + C

− 3a2x

(a2 + x2)
5
2

a2

(a2 + x2)
3
2

x√
a2 + x2

+ C

a · cos ax sin ax −1

a
cos ax+ C

−a · sin ax cos ax
1

a
sin ax+ C

a · sec2 ax tan ax −1

a
logϵ cos ax+ C

sin 2x sin2 x
x

2
− sin 2x

4
+ C

− sin 2x cos2 x
x

2
+

sin 2x

4
+ C

n · sinn−1 x · cosx sinn x − cosx

n
sinn−1 x+

n− 1

n

∫
sinn−2 x dx+ C

− cosx

sin2 x

1

sinx
logϵ tan

x

2
+ C

−sin 2x

sin4 x

1

sin2 x
− cotanx+ C

sin2 x− cos2 x

sin2 x · cos2 x
1

sinx · cosx logϵ tanx+ C

n · sinmx · cosnx+

m · sinnx · cosmx
sinmx · sinnx 1

2 cos(m− n)x− 1
2 cos(m+ n)x+ C

2a · sin 2ax sin2 ax
x

2
− sin 2ax

4a
+ C

−2a · sin 2ax cos2 ax
x

2
+

sin 2ax

4a
+ C



ANSWERS.

Exercises I. (p. 24.)

(1)
dy

dx
= 13x12. (2)

dy

dx
= −3

2
x− 5

2 . (3)
dy

dx
= 2ax(2a−1).

(4)
du

dt
= 2.4t1.4. (5)

dz

du
=

1

3
u− 2

3 . (6)
dy

dx
= −5

3
x− 8

3 .

(7)
du

dx
= −8

5
x− 13

5 . (8)
dy

dx
= 2axa−1.

(9)
dy

dx
=

3

q
x

3−q
q . (10)

dy

dx
= −m

n
x−m+n

n .

Exercises II. (p. 31.)

(1)
dy

dx
= 3ax2. (2)

dy

dx
= 13× 3

2
x

1
2 . (3)

dy

dx
= 6x− 1

2 .

(4)
dy

dx
=

1

2
c
1
2x− 1

2 . (5)
du

dz
=

an

c
zn−1. (6)

dy

dt
= 2.36t.

(7)
dlt
dt

= 0.000012× l0.

(8)
dC

dV
= abV b−1, 0.98, 3.00 and 7.47 candle power per volt respectively.

(9)
dn

dD
= − 1

LD2

√
gT

πσ
,

dn

dL
= − 1

DL2

√
gT

πσ
,

dn

dσ
= − 1

2DL

√
gT

πσ3
,

dn

dT
=

1

2DL

√
g

πσT
.
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(10)
Rate of change of P when t varies

Rate of change of P when D varies
= −D

t
.

(11) 2π, 2πr, πl, 2
3
πrh, 8πr, 4πr2. (12)

dD

dT
=

0.000012lt
π

.

Exercises III. (p. 45.)

(1) (a) 1 + x+
x2

2
+

x3

6
+

x4

24
+ . . . (b) 2ax+ b. (c) 2x+ 2a.

(d) 3x2 + 6ax+ 3a2.

(2)
dw

dt
= a− bt. (3)

dy

dx
= 2x.

(4) 14110x4 − 65404x3 − 2244x2 + 8192x+ 1379.

(5)
dx

dy
= 2y + 8. (6) 185.9022654x2 + 154.36334.

(7)
−5

(3x+ 2)2
. (8)

6x4 + 6x3 + 9x2

(1 + x+ 2x2)2
.

(9)
ad− bc

(cx+ d)2
. (10)

anx−n−1 + bnxn−1 + 2nx−1

(x−n + b)2
.

(11) b+ 2ct.

(12) R0(a+2bt), R0

(
a+

b

2
√
t

)
, − R0(a+ 2bt)

(1 + at+ bt2)2
or

R2(a+ 2bt)

R0

.

(13) 1.4340(0.000014t− 0.001024), −0.00117, −0.00107, −0.00097.

(14)
dE

dl
= b+

k

i
,

dE

di
= −c+ kl

i2
.
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Exercises IV. (p. 50.)

(1) 17 + 24x; 24. (2)
x2 + 2ax− a

(x+ a)2
;

2a(a+ 1)

(x+ a)3
.

(3) 1 + x+
x2

1× 2
+

x3

1× 2× 3
; 1 + x+

x2

1× 2
.

(4) (Exercises III.):

(1) (a)
d2y

dx2
=

d3y

dx3
= 1 + x+ 1

2
x2 + 1

6
x3 + . . ..

(b) 2a, 0. (c) 2, 0. (d) 6x+ 6a, 6.

(2) −b, 0. (3) 2, 0.

(4) 56440x3 − 196212x2 − 4488x+ 8192.

169320x2 − 392424x− 4488.

(5) 2, 0. (6) 371.80453x, 371.80453.

(7)
30

(3x+ 2)3
, − 270

(3x+ 2)4
.

(Examples, p. 40):

(1)
6a

b2
x,

6a

b2
. (2)

3a
√
b

2
√
x
− 6b 3

√
a

x3
,

18b 3
√
a

x4
− 3a

√
b

4
√
x3

.

(3)
2

3
√
θ8
− 1.056

5
√
θ11

,
2.3232
5
√
θ16
− 16

3
3
√
θ11

.

(4) 810t4 − 648t3 + 479.52t2 − 139.968t+ 26.64.

3240t3 − 1944t2 + 959.04t− 139.968.

(5) 12x+ 2, 12. (6) 6x2 − 9x, 12x− 9.

(7)
3

4

(
1√
θ
+

1√
θ5

)
+

1

4

(
15√
θ7
− 1√

θ3

)
.

3

8

(
1√
θ5
− 1√

θ3

)
− 15

8

(
7√
θ9

+
1√
θ7

)
.
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Exercises V. (p. 63.)

(2) 64; 147.2; and 0.32 feet per second.

(3) x = a− gt; ẍ = −g. (4) 45.1 feet per second.

(5) 12.4 feet per second per second. Yes.

(6) Angular velocity = 11.2 radians per second; angular acceleration

= 9.6 radians per second per second.

(7) v = 20.4t2 − 10.8. a = 40.8t. 172.8 in./sec., 122.4 in./sec2.

(8) v =
1

30 3
√

(t− 125)2
, a = − 1

45 3
√

(t− 125)5
.

(9) v = 0.8− 8t

(4 + t2)2
, a =

24t2 − 32

(4 + t2)3
, 0.7926 and 0.00211.

(10) n = 2, n = 11.

Exercises VI. (p. 72.)

(1)
x√

x2 + 1
. (2)

x√
x2 + a2

. (3) − 1

2
√
(a+ x)3

.

(4)
ax√

(a− x2)3
. (5)

2a2 − x2

x3
√
x2 − a2

.
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(6)
3
2
x2

[
8
9
x (x3 + a)− (x4 + a)

]
(x4 + a)

2
3 (x3 + a)

3
2

(7)
2a (x− a)

(x+ a)3
.

(8) 5
2
y3. (9)

1

(1− θ)
√
1− θ2

.

Exercises VII. (p. 74.)

(1)
dw

dx
=

3x2 (3 + 3x3)

27
(
1
2
x3 + 1

4
x6
)3 .

(2)
dv

dx
= − 12x√

1 +
√
2 + 3x2

(√
3 + 4

√
1 +
√
2 + 3x2

)2 .

(3)
du

dx
= − x2

(√
3 + x3

)√√√√[
1 +

(
1 +

x3

√
3

)2
]3

Exercises VIII. (p. 88.)

(2) 1.44.

(4)
dy

dx
= 3x2 + 3; and the numerical values are: 3, 33

4
, 6, and 15.

(5) ±
√
2.

(6)
dy

dx
= −4

9

x

y
. Slope is zero where x = 0; and is ∓ 1

3
√
2
where x = 1.



ANSWERS TO EXERCISES 257

(7) m = 4, n = −3.

(8) Intersections at x = 1, x = −3. Angles 153◦ 26′, 2◦ 28′.

(9) Intersection at x = 3.57, y = 3.50. Angle 16◦ 16′.

(10) x = 1
3
, y = 21

3
, b = −5

3
.

Exercises IX. (p. 107.)

(1) Min.: x = 0, y = 0; max.: x = −2, y = −4.

(2) x = a. (4) 25
√
3 square inches.

(5)
dy

dx
= −10

x2
+

10

(8− x)2
; x = 4; y = 5.

(6) Max. for x = −1; min. for x = 1.

(7) Join the middle points of the four sides.

(8) r = 2
3
R, r =

R

2
, no max.

(9) r = R

√
2

3
, r =

R√
2
, r = 0.8506R.

(10) At the rate of
8

r
square feet per second.

(11) r =
R
√
8

3
. (12) n =

√
NR

r
.
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Exercises X. (p. 115.)

(1) Max.: x = −2.19, y = 24.19; min.:, x = 1.52, y = −1.38.

(2)
dy

dx
=

b

a
− 2cx;

d2y

dx2
= −2c; x =

b

2ac
(a maximum).

(3) (a) One maximum and two minima.

(b) One maximum. (x = 0; other points unreal.)

(4) Min.: x = 1.71, y = 6.14. (5) Max: x = −.5, y = 4.

(6) Max.: x = 1.414, y = 1.7675.

Min.: x = −1.414, y = 1.7675.

(7) Max.: x = −3.565, y = 2.12.

Min.: x = +3.565, y = 7.88.

(8) 0.4N , 0.6N . (9) x =

√
a

c
.

(10) Speed 8.66 nautical miles per hour. Time taken 115.47 hours.

Minimum cost £112. 12s.

(11) Max. and min. for x = 7.5, y = ±5.414. (See example no. 10,

p. 71.)

(12) Min.: x = 1
2
, y = 0.25; max.: x = −1

3
, y = 1.408.
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Exercises XI. (p. 127.)

(1)
2

x− 3
+

1

x+ 4
. (2)

1

x− 1
+

2

x− 2
. (3)

2

x− 3
+

1

x+ 4
.

(4)
5

x− 4
− 4

x− 3
. (5)

19

13(2x+ 3)
− 22

13(3x− 2)
.

(6)
2

x− 2
+

4

x− 3
− 5

x− 4
.

(7)
1

6(x− 1)
+

11

15(x+ 2)
+

1

10(x− 3)
.

(8)
7

9(3x+ 1)
+

71

63(3x− 2)
− 5

7(2x+ 1)
.

(9)
1

3(x− 1)
+

2x+ 1

3(x2 + x+ 1)
. (10) x+

2

3(x+ 1)
+

1− 2x

3(x2 − x+ 1)
.

(11)
3

(x+ 1)
+

2x+ 1

x2 + x+ 1
. (12)

1

x− 1
− 1

x− 2
+

2

(x− 2)2
.

(13)
1

4(x− 1)
− 1

4(x+ 1)
+

1

2(x+ 1)2
.

(14)
4

9(x− 1)
− 4

9(x+ 2)
− 1

3(x+ 2)2
.

(15)
1

x+ 2
− x− 1

x2 + x+ 1
− 1

(x2 + x+ 1)2
.

(16)
5

x+ 4
− 32

(x+ 4)2
+

36

(x+ 4)3
.

(17)
7

9(3x− 2)2
+

55

9(3x− 2)3
+

73

9(3x− 2)4
.

(18)
1

6(x− 2)
+

1

3(x− 2)2
− x

6(x2 + 2x+ 4)
.
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Exercises XII. (p. 150.)

(1) ab(ϵax + ϵ−ax). (2) 2at+
2

t
. (3) logϵ n.

(5) npvn−1. (6)
n

x
.

(7)
3ϵ−

x
x−1

(x− 1)2
.

(8) 6xϵ−5x − 5(3x2 + 1)ϵ−5x. (9)
axa−1

xa + a
.

(10)

(
6x

3x2 − 1
+

1

2 (
√
x+ x)

)
(3x2 − 1) (

√
x+ 1).

(11)
1− logϵ (x+ 3)

(x+ 3)2
.

(12) ax (axa−1 + xa logϵ a). (14) Min.: y = 0.7 for x = 0.694.

(15)
1 + x

x
. (16)

3

x
(logϵ ax)

2.

Exercises XIII. (p. 160.)

(1) Let
t

T
= x (∴ t = 8x), and use the Table on page 157.

(2) T = 34.627; 159.46 minutes.

(3) Take 2t = x; and use the Table on page 157.

(5) (a) xx (1 + logϵ x); (b) 2x(ϵx)x; (c) ϵx
x × xx (1 + logϵ x).
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(6) 0.14 second. (7) (a) 1.642; (b) 15.58.

(8) µ = 0.00037, 31m 1
4
.

(9) i is 63.4% of i0, 220 kilometres.

(10) 0.133, 0.145, 0.155, mean 0.144; −10.2%, −0.9%, +77.2%.

(11) Min. for x =
1

ϵ
. (12) Max. for x = ϵ.

(13) Min. for x = logϵ a.

Exercises XIV. (p. 170.)

(1) (i)
dy

dθ
= A cos

(
θ − π

2

)
;

(ii)
dy

dθ
= 2 sin θ cos θ = sin 2θ and

dy

dθ
= 2 cos 2θ;

(iii)
dy

dθ
= 3 sin2 θ cos θ and

dy

dθ
= 3 cos 3θ.

(2) θ = 45◦ or
π

4
radians. (3)

dy

dt
= −n sin 2πnt.

(4) ax logϵ a cos a
x. (5)

cosx

sinx
= cotanx

(6) 18.2 cos (x+ 26◦).
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(7) The slope is
dy

dθ
= 100 cos (θ − 15◦), which is a maximum when

(θ−15◦) = 0, or θ = 15◦; the value of the slope being then = 100.

When θ = 75◦ the slope is 100 cos(75◦ − 15◦) = 100 cos 60◦ =

100× 1
2
= 50.

(8) cos θ sin 2θ + 2 cos 2θ sin θ = 2 sin θ
(
cos2 θ + cos 2θ

)
= 2 sin θ

(
3 cos2 θ − 1

)
.

(9) amnθn−1 tanm−1 (θn) sec2 θn.

(10) ϵx
(
sin2 x+ sin 2x

)
; ϵx

(
sin2 x+ 2 sin 2x+ 2 cos 2x

)
.

(11) (i)
dy

dx
=

ab

(x+ b)2
; (ii)

a

b
ϵ−

x
b ; (iii)

1

90
◦ × ab

(b2 + x2)
.

(12) (i)
dy

dx
= secx tanx;

(ii)
dy

dx
= − 1√

1− x2
;

(iii)
dy

dx
=

1

1 + x2
;

(iv)
dy

dx
=

1

x
√
x2 − 1

;

(v)
dy

dx
=

√
3 secx (3 sec2 x− 1)

2
.

(13)
dy

dθ
= 4.6 (2θ + 3)1.3 cos (2θ + 3)2.3.

(14)
dy

dθ
= 3θ2 + 3 cos (θ + 3)− logϵ 3

(
cos θ × 3sin θ + 3θ

)
.

(15) θ = cot θ; θ = ±0.86; is max. for +θ, min. for −θ.
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Exercises XV. (p. 177.)

(1) x3 − 6x2y − 2y2; 1
3
− 2x3 − 4xy.

(2) 2xyz + y2z + z2y + 2xy2z2;

2xyz + x2z + xz2 + 2x2yz2;

2xyz + x2y + xy2 + 2x2y2z.

(3)
1

r
{(x− a) + (y − b) + (z − c)} = (x+ y + z)− (a+ b+ c)

r
;
3

r
.

(4) dy = vuv−1 du+ uv logϵ u dv.

(5) dy = 3 sin vu2 du+ u3 cos v dv,

dy = u sinxu−1 cosx dx+ (sinx)u logϵ sinxdu,

dy =
1

v

1

u
du− logϵ u

1

v2
dv.

(7) Minimum for x = y = −1
2
.

(8) (a) Length 2 feet, width = depth = 1 foot, vol. = 2 cubic feet.

(b) Radius =
2

π
feet = 7.46 in., length = 2 feet, vol. = 2.54.

(9) All three parts equal; the product is maximum.

(10) Minimum for x = y = 1.

(11) Min.: x = 1
2
and y = 2.

(12) Angle at apex = 90◦; equal sides = length = 3
√
2V .
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Exercises XVI. (p. 187.)

(1) 11
3
. (2) 0.6344. (3) 0.2624.

(4) (a) y = 1
8
x2 + C; (b) y = sinx+ C.

(5) y = x2 + 3x+ C.

Exercises XVII. (p. 202.)

(1)
4
√
ax

3
2

3
+ C. (2) − 1

x3
+ C. (3)

x4

4a
+ C.

(4) 1
3
x3 + ax+ C. (5) −2x− 5

2 + C.

(6) x4 + x3 + x2 + x+ C. (7)
ax2

4
+

bx3

9
+

cx4

16
+ C.

(8)
x2 + a

x+ a
= x − a +

a2 + a

x+ a
by division. Therefore the answer is

x2

2
− ax+ (a2 + a) logϵ(x+ a) + C. (See pages 196 and 198.)

(9)
x4

4
+ 3x3 +

27

2
x2 + 27x+ C. (10)

x3

3
+

2− a

2
x2 − 2ax+ C.

(11) a2(2x
3
2 + 9

4
x

4
3 ) + C. (12) −1

3
cos θ − 1

6
θ + C.

(13)
θ

2
+

sin 2aθ

4a
+ C. (14)

θ

2
− sin 2θ

4
+ C.
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(15)
θ

2
− sin 2aθ

4a
+ C. (16) 1

3
ϵ3x.

(17) log(1 + x) + C. (18) − logϵ(1− x) + C.

Exercises XVIII. (p. 221.)

(1) Area = 60; mean ordinate = 10.

(2) Area = 2
3
of a× 2a

√
a.

(3) Area = 2; mean ordinate =
2

π
= 0.637.

(4) Area = 1.57; mean ordinate = 0.5.

(5) 0.572, 0.0476. (6) Volume = πr2
h

3
.

(7) 1.25. (8) 79.4.

(9) Volume = 4.9348; area of surface = 12.57 (from 0 to π).

(10) a logϵ a,
a

a− 1
logϵ a.

(12) Arithmetical mean = 9.5; quadratic mean = 10.85.

(13) Quadratic mean =
1√
2

√
A2

1 + A2
3; arithmetical mean = 0.

The first involves a somewhat difficult integral, and may be

stated thus: By definition the quadratic mean will be√
1

2π

∫ 2π

0

(A1 sinx+ A3 sin 3x)2 dx.
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Now the integration indicated by∫
(A2

1 sin
2 x+ 2A1A3 sinx sin 3x+ A2

3 sin
2 3x) dx

is more readily obtained if for sin2 x we write

1− cos 2x

2
.

For 2 sin x sin 3x we write cos 2x− cos 4x; and, for sin2 3x,

1− cos 6x

2
.

Making these substitutions, and integrating, we get (see p. 198)

A2
1

2

(
x− sin 2x

2

)
+ A1A3

(
sin 2x

2
− sin 4x

4

)
+

A2
3

2

(
x− sin 6x

6

)
.

At the lower limit the substitution of 0 for x causes all this to

vanish, whilst at the upper limit the substitution of 2π for x gives

A2
1π + A2

3π. And hence the answer follows.

(14) Area is 62.6 square units. Mean ordinate is 10.42.

(16) 436.3. (This solid is pear shaped.)

Exercises XIX. (p. 231.)

(1)
x
√
a2 − x2

2
+

a2

2
sin−1 x

a
+ C. (2)

x2

2
(logϵ x− 1

2
) + C.
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(3)
xa+1

a+ 1

(
logϵ x−

1

a+ 1

)
+ C. (4) sin ϵx + C.

(5) sin(logϵ x) + C. (6) ϵx(x2 − 2x+ 2) + C.

(7)
1

a+ 1
(logϵ x)

a+1 + C. (8) logϵ(logϵ x) + C.

(9) 2 logϵ(x− 1) + 3 logϵ(x+ 2) + C.

(10) 1
2
logϵ(x− 1) + 1

5
logϵ(x− 2) + 3

10
logϵ(x+ 3) + C.

(11)
b

2a
logϵ

x− a

x+ a
+ C. (12) logϵ

x2 − 1

x2 + 1
+ C.

(13) 1
4
logϵ

1 + x

1− x
+ 1

2
arc tanx+ C.

(14)
1√
a
logϵ

√
a−
√
a− bx2

x
√
a

. (Let
1

x
= v; then, in the result, let√

v2 − b

a
= v − u.)

You had better differentiate now the answer and work back to

the given expression as a check.

Every earnest student is exhorted to manufacture more examples

for himself at every stage, so as to test his powers. When integrating

he can always test his answer by differentiating it, to see whether he

gets back the expression from which he started.

There are lots of books which give examples for practice. It will suf-

fice here to name two: R. G. Blaine’s The Calculus and its Applications,

and F. M. Saxelby’s A Course in Practical Mathematics.
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transcriber’s note

The diagrams have been re-created, using accompanying

formulas or descriptions from the text where possible.

In Chapter XIV, pages 132–159, numerical values of
(
1 + 1

n

)n
,

ϵx, and related quantities of British currency have been verified

and rounded to the nearest digit.

On page 142 (page 146 in the original), the graphs of the

natural logarithm and exponential functions, Figures 38 and 39,

have been interchanged to match the surrounding text.

The vertical dashed lines in the natural logarithm graph,

Figure 39 (Figure 38 in the original), have been moved to

match the data in the corresponding table.

On page 164 (page 167 in the original), the graphs of the sine

and cosine functions, Figures 44 and 45, have been interchanged

to match the surrounding text.
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