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CONTINUITY AND IRRATIONAL NUMBERS

My attention was first directed toward the considerations which form the
subject of this pamphlet in the autumn of 1858. As professor in the Polytechnic
School in Zürich I found myself for the first time obliged to lecture upon the
elements of the differential calculus and felt more keenly than ever before the
lack of a really scientific foundation for arithmetic. In discussing the notion of
the approach of a variable magnitude to a fixed limiting value, and especially
in proving the theorem that every magnitude which grows continually, but not
beyond all limits, must certainly approach a limiting value, I had recourse to
geometric evidences. Even now such resort to geometric intuition in a first pre-
sentation of the differential calculus, I regard as exceedingly useful, from the
didactic standpoint, and indeed indispensable, if one does not wish to lose too
much time. But that this form of introduction into the differential calculus
can make no claim to being scientific, no one will deny. For myself this feel-
ing of dissatisfaction was so overpowering that I made the fixed resolve to keep
meditating on the question till I should find a purely arithmetic and perfectly
rigorous foundation for the principles of infinitesimal analysis. The statement is
so frequently made that the differential calculus deals with continuous magni-
tude, and yet an explanation of this continuity is nowhere given; even the most
rigorous expositions of the differential calculus do not base their proofs upon
continuity but, with more or less consciousness of the fact, they either appeal
to geometric notions or those suggested by geometry, or depend upon theorems
which are never established in a purely arithmetic manner. Among these, for ex-
ample, belongs the above-mentioned theorem, and a more careful investigation
convinced me that this theorem, or any one equivalent to it, can be regarded in
some way as a sufficient basis for infinitesimal analysis. It then only remained to
discover its true origin in the elements of arithmetic and thus at the same time
to secure a real definition of the essence of continuity. I succeeded Nov. 24, 1858,
and a few days afterward I communicated the results of my meditations to my
dear friend Durège with whom I had a long and lively discussion. Later I ex-
plained these views of a scientific basis of arithmetic to a few of my pupils, and
here in Braunschweig read a paper upon the subject before the scientific club
of professors, but I could not make up my mind to its publication, because, in
the first place, the presentation did not seem altogether simple, and further, the
theory itself had little promise. Nevertheless I had already half determined to
select this theme as subject for this occasion, when a few days ago, March 14,
by the kindness of the author, the paper Die Elemente der Funktionenlehre by
E. Heine (Crelle’s Journal, Vol. 74) came into my hands and confirmed me in
my decision. In the main I fully agree with the substance of this memoir, and
indeed I could hardly do otherwise, but I will frankly acknowledge that my own
presentation seems to me to be simpler in form and to bring out the vital point
more clearly. While writing this preface (March 20, 1872), I am just in receipt
of the interesting paper Ueber die Ausdehnung eines Satzes aus der Theorie der
trigonometrischen Reihen, by G. Cantor (Math. Annalen, Vol. 5), for which I
owe the ingenious author my hearty thanks. As I find on a hasty perusal, the
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axiom given in Section II. of that paper, aside from the form of presentation,
agrees with what I designate in Section III. as the essence of continuity. But
what advantage will be gained by even a purely abstract definition of real num-
bers of a higher type, I am as yet unable to see, conceiving as I do of the domain
of real numbers as complete in itself.

I.

PROPERTIES OF RATIONAL NUMBERS.

The development of the arithmetic of rational numbers is here presupposed,
but still I think it worth while to call attention to certain important matters
without discussion, so as to show at the outset the standpoint assumed in what
follows. I regard the whole of arithmetic as a necessary, or at least natural,
consequence of the simplest arithmetic act, that of counting, and counting it-
self as nothing else than the successive creation of the infinite series of positive
integers in which each individual is defined by the one immediately preceding;
the simplest act is the passing from an already-formed individual to the con-
secutive new one to be formed. The chain of these numbers forms in itself an
exceedingly useful instrument for the human mind; it presents an inexhaustible
wealth of remarkable laws obtained by the introduction of the four fundamental
operations of arithmetic. Addition is the combination of any arbitrary repeti-
tions of the above-mentioned simplest act into a single act; from it in a similar
way arises multiplication. While the performance of these two operations is
always possible, that of the inverse operations, subtraction and division, proves
to be limited. Whatever the immediate occasion may have been, whatever com-
parisons or analogies with experience, or intuition, may have led thereto; it is
certainly true that just this limitation in performing the indirect operations has
in each case been the real motive for a new creative act; thus negative and
fractional numbers have been created by the human mind; and in the system of
all rational numbers there has been gained an instrument of infinitely greater
perfection. This system, which I shall denote by R, possesses first of all a com-
pleteness and self-containedness which I have designated in another place1 as
characteristic of a body of numbers [Zahlkörper] and which consists in this that
the four fundamental operations are always performable with any two individu-
als in R, i. e., the result is always an individual of R, the single case of division
by the number zero being excepted.

For our immediate purpose, however, another property of the system R is
still more important; it may be expressed by saying that the system R forms
a well-arranged domain of one dimension extending to infinity on two opposite
sides. What is meant by this is sufficiently indicated by my use of expressions
borrowed from geometric ideas; but just for this reason it will be necessary
to bring out clearly the corresponding purely arithmetic properties in order to
avoid even the appearance as if arithmetic were in need of ideas foreign to it.

1Vorlesungen über Zahlentheorie, by P. G. Lejeune Dirichlet. 2d ed. §159.
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To express that the symbols a and b represent one and the same rational
number we put a = b as well as b = a. The fact that two rational numbers a,
b are different appears in this that the difference a − b has either a positive or
negative value. In the former case a is said to be greater than b, b less than a;
this is also indicated by the symbols a > b, b < a.2 As in the latter case b − a
has a positive value it follows that b > a, a < b. In regard to these two ways in
which two numbers may differ the following laws will hold:

i. If a > b, and b > c, then a > c. Whenever a, c are two different (or
unequal) numbers, and b is greater than the one and less than the other, we
shall, without hesitation because of the suggestion of geometric ideas, express
this briefly by saying: b lies between the two numbers a, c.

ii. If a, c are two different numbers, there are infinitely many different
numbers lying between a, c.

iii. If a is any definite number, then all numbers of the system R fall into two
classes, A1 and A2, each of which contains infinitely many individuals; the first
class A1 comprises all numbers a1 that are < a, the second class A2 comprises
all numbers a2 that are > a; the number a itself may be assigned at pleasure
to the first or second class, being respectively the greatest number of the first
class or the least of the second. In every case the separation of the system R
into the two classes A1, A2 is such that every number of the first class A1 is less
than every number of the second class A2.

II.

COMPARISON OF THE RATIONAL NUMBERS WITH THE POINTS OF
A STRAIGHT LINE.

The above-mentioned properties of rational numbers recall the corresponding
relations of position of the points of a straight line L. If the two opposite
directions existing upon it are distinguished by “right” and “left,” and p, q are
two different points, then either p lies to the right of q, and at the same time q
to the left of p, or conversely q lies to the right of p and at the same time p to
the left of q. A third case is impossible, if p, q are actually different points. In
regard to this difference in position the following laws hold:

i. If p lies to the right of q, and q to the right of r, then p lies to the right
of r; and we say that q lies between the points p and r.

ii. If p, r are two different points, then there always exist infinitely many
points that lie between p and r.

iii. If p is a definite point in L, then all points in L fall into two classes, P1,
P2, each of which contains infinitely many individuals; the first class P1 contains
all the points p1, that lie to the left of p, and the second class P2 contains all
the points p2 that lie to the right of p; the point p itself may be assigned at
pleasure to the first or second class. In every case the separation of the straight

2Hence in what follows the so-called “algebraic” greater and less are understood unless the
word “absolute” is added.
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line L into the two classes or portions P1, P2, is of such a character that every
point of the first class P1 lies to the left of every point of the second class P2.

This analogy between rational numbers and the points of a straight line, as
is well known, becomes a real correspondence when we select upon the straight
line a definite origin or zero-point o and a definite unit of length for the mea-
surement of segments. With the aid of the latter to every rational number a a
corresponding length can be constructed and if we lay this off upon the straight
line to the right or left of o according as a is positive or negative, we obtain a
definite end-point p, which may be regarded as the point corresponding to the
number a; to the rational number zero corresponds the point o. In this way to
every rational number a, i. e., to every individual in R, corresponds one and
only one point p, i. e., an individual in L. To the two numbers a, b respectively
correspond the two points, p, q, and if a > b, then p lies to the right of q. To
the laws i, ii, iii of the previous Section correspond completely the laws i, ii, iii
of the present.

III.

CONTINUITY OF THE STRAIGHT LINE.

Of the greatest importance, however, is the fact that in the straight line L
there are infinitely many points which correspond to no rational number. If
the point p corresponds to the rational number a, then, as is well known, the
length o p is commensurable with the invariable unit of measure used in the
construction, i. e., there exists a third length, a so-called common measure, of
which these two lengths are integral multiples. But the ancient Greeks already
knew and had demonstrated that there are lengths incommensurable with a
given unit of length, e. g., the diagonal of the square whose side is the unit of
length. If we lay off such a length from the point o upon the line we obtain
an end-point which corresponds to no rational number. Since further it can be
easily shown that there are infinitely many lengths which are incommensurable
with the unit of length, we may affirm: The straight line L is infinitely richer in
point-individuals than the domain R of rational numbers in number-individuals.

If now, as is our desire, we try to follow up arithmetically all phenomena in
the straight line, the domain of rational numbers is insufficient and it becomes
absolutely necessary that the instrument R constructed by the creation of the
rational numbers be essentially improved by the creation of new numbers such
that the domain of numbers shall gain the same completeness, or as we may say
at once, the same continuity, as the straight line.

The previous considerations are so familiar and well known to all that many
will regard their repetition quite superfluous. Still I regarded this recapitulation
as necessary to prepare properly for the main question. For, the way in which the
irrational numbers are usually introduced is based directly upon the conception
of extensive magnitudes—which itself is nowhere carefully defined—and explains
number as the result of measuring such a magnitude by another of the same
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kind.3 Instead of this I demand that arithmetic shall be developed out of itself.
That such comparisons with non-arithmetic notions have furnished the im-

mediate occasion for the extension of the number-concept may, in a general
way, be granted (though this was certainly not the case in the introduction of
complex numbers); but this surely is no sufficient ground for introducing these
foreign notions into arithmetic, the science of numbers. Just as negative and
fractional rational numbers are formed by a new creation, and as the laws of
operating with these numbers must and can be reduced to the laws of operat-
ing with positive integers, so we must endeavor completely to define irrational
numbers by means of the rational numbers alone. The question only remains
how to do this.

The above comparison of the domain R of rational numbers with a straight
line has led to the recognition of the existence of gaps, of a certain incom-
pleteness or discontinuity of the former, while we ascribe to the straight line
completeness, absence of gaps, or continuity. In what then does this continu-
ity consist? Everything must depend on the answer to this question, and only
through it shall we obtain a scientific basis for the investigation of all continu-
ous domains. By vague remarks upon the unbroken connection in the smallest
parts obviously nothing is gained; the problem is to indicate a precise charac-
teristic of continuity that can serve as the basis for valid deductions. For a
long time I pondered over this in vain, but finally I found what I was seeking.
This discovery will, perhaps, be differently estimated by different people; the
majority may find its substance very commonplace. It consists of the following.
In the preceding section attention was called to the fact that every point p of
the straight line produces a separation of the same into two portions such that
every point of one portion lies to the left of every point of the other. I find the
essence of continuity in the converse, i. e., in the following principle:

“If all points of the straight line fall into two classes such that every point
of the first class lies to the left of every point of the second class, then there
exists one and only one point which produces this division of all points into two
classes, this severing of the straight line into two portions.”

As already said I think I shall not err in assuming that every one will at
once grant the truth of this statement; the majority of my readers will be very
much disappointed in learning that by this commonplace remark the secret of
continuity is to be revealed. To this I may say that I am glad if every one
finds the above principle so obvious and so in harmony with his own ideas of
a line; for I am utterly unable to adduce any proof of its correctness, nor has
any one the power. The assumption of this property of the line is nothing else
than an axiom by which we attribute to the line its continuity, by which we find
continuity in the line. If space has at all a real existence it is not necessary for
it to be continuous; many of its properties would remain the same even were it
discontinuous. And if we knew for certain that space was discontinuous there

3The apparent advantage of the generality of this definition of number disappears as soon
as we consider complex numbers. According to my view, on the other hand, the notion of
the ratio between two numbers of the same kind can be clearly developed only after the
introduction of irrational numbers.
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would be nothing to prevent us, in case we so desired, from filling up its gaps,
in thought, and thus making it continuous; this filling up would consist in a
creation of new point-individuals and would have to be effected in accordance
with the above principle.

IV.

CREATION OF IRRATIONAL NUMBERS.

From the last remarks it is sufficiently obvious how the discontinuous domain
R of rational numbers may be rendered complete so as to form a continuous
domain. In Section I it was pointed out that every rational number a effects a
separation of the system R into two classes such that every number a1 of the
first class A1 is less than every number a2 of the second class A2; the number a
is either the greatest number of the class A1 or the least number of the class A2.
If now any separation of the system R into two classes A1, A2 is given which
possesses only this characteristic property that every number a1 in A1 is less
than every number a2 in A2, then for brevity we shall call such a separation a
cut [Schnitt] and designate it by (A1, A2). We can then say that every rational
number a produces one cut or, strictly speaking, two cuts, which, however,
we shall not look upon as essentially different; this cut possesses, besides, the
property that either among the numbers of the first class there exists a greatest
or among the numbers of the second class a least number. And conversely, if a
cut possesses this property, then it is produced by this greatest or least rational
number.

But it is easy to show that there exist infinitely many cuts not produced by
rational numbers. The following example suggests itself most readily.

Let D be a positive integer but not the square of an integer, then there exists
a positive integer λ such that

λ2 < D < (λ+ 1)2.

If we assign to the second class A2, every positive rational number a2 whose
square is > D, to the first class A1 all other rational numbers a1, this separation
forms a cut (A1, A2), i. e., every number a1 is less than every number a2. For
if a1 = 0, or is negative, then on that ground a1 is less than any number a2,
because, by definition, this last is positive; if a1 is positive, then is its square
5 D, and hence a1 is less than any positive number a2 whose square is > D.

But this cut is produced by no rational number. To demonstrate this it must
be shown first of all that there exists no rational number whose square = D.
Although this is known from the first elements of the theory of numbers, still
the following indirect proof may find place here. If there exist a rational number
whose square = D, then there exist two positive integers t, u, that satisfy the
equation

t2 −Du2 = 0,
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and we may assume that u is the least positive integer possessing the property
that its square, by multiplication by D, may be converted into the square of an
integer t. Since evidently

λu < t < (λ+ 1)u,

the number u′ = t− λu is a positive integer certainly less than u. If further we
put

t′ = Du− λt,

t′ is likewise a positive integer, and we have

t′2 −Du′2 = (λ2 −D)(t2 −Du2) = 0,

which is contrary to the assumption respecting u.
Hence the square of every rational number x is either < D or > D. From

this it easily follows that there is neither in the class A1 a greatest, nor in the
class A2 a least number. For if we put

y =
x(x2 + 3D)

3x2 +D
,

we have

y − x =
2x(D − x2)

3x2 +D
and

y2 −D =
(x2 −D)3

(3x2 +D)2
.

If in this we assume x to be a positive number from the class A1, then
x2 < D, and hence y > x and y2 < D. Therefore y likewise belongs to the class
A1. But if we assume x to be a number from the class A2, then x2 > D, and
hence y < x, y > 0, and y2 > D. Therefore y likewise belongs to the class A2.
This cut is therefore produced by no rational number.

In this property that not all cuts are produced by rational numbers consists
the incompleteness or discontinuity of the domain R of all rational numbers.

Whenever, then, we have to do with a cut (A1, A2) produced by no rational
number, we create a new, an irrational number α, which we regard as completely
defined by this cut (A1, A2); we shall say that the number α corresponds to this
cut, or that it produces this cut. From now on, therefore, to every definite
cut there corresponds a definite rational or irrational number, and we regard
two numbers as different or unequal always and only when they correspond to
essentially different cuts.

In order to obtain a basis for the orderly arrangement of all real, i. e., of
all rational and irrational numbers we must investigate the relation between
any two cuts (A1, A2) and (B1, B2) produced by any two numbers α and β.
Obviously a cut (A1, A2) is given completely when one of the two classes, e. g.,
the first A1 is known, because the second A2 consists of all rational numbers
not contained in A1, and the characteristic property of such a first class lies in
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this that if the number a1 is contained in it, it also contains all numbers less
than a1. If now we compare two such first classes A1, B1 with each other, it
may happen

1. That they are perfectly identical, i. e., that every number contained in A1

is also contained in B1, and that every number contained in B1 is also contained
in A1. In this case A2 is necessarily identical with B2, and the two cuts are
perfectly identical, which we denote in symbols by α = β or β = α.

But if the two classes A1, B1 are not identical, then there exists in the one,
e. g., in A1, a number a′

1 = b′2 not contained in the other B1 and consequently
found in B2; hence all numbers b1 contained in B1 are certainly less than this
number a′

1 = b′2 and therefore all numbers b1 are contained in A1.
2. If now this number a′

1 is the only one in A1 that is not contained in
B1, then is every other number a1 contained in A1 also contained in B1 and is
consequently < a′

1, i. e., a′
1 is the greatest among all the numbers a1, hence the

cut (A1, A2) is produced by the rational number a = a′
1 = b′2. Concerning the

other cut (B1, B2) we know already that all numbers b1 in B1 are also contained
in A1 and are less than the number a′

1 = b′2 which is contained in B2; every other
number b2 contained in B2 must, however, be greater than b′2, for otherwise it
would be less than a′

1, therefore contained in A1 and hence in B1; hence b′2 is
the least among all numbers contained in B2, and consequently the cut (B1, B2)
is produced by the same rational number β = b′2 = a′

1 = α. The two cuts are
then only unessentially different.

3. If, however, there exist in A1 at least two different numbers a′
1 = b′2

and a′′
1 = b′′2 , which are not contained in B1, then there exist infinitely many

of them, because all the infinitely many numbers lying between a′
1 and a′′

1 are
obviously contained in A1 (Section I, ii) but not in B1. In this case we say
that the numbers α and β corresponding to these two essentially different cuts
(A1, A2) and (B1, B2) are different, and further that α is greater than β, that β
is less than α, which we express in symbols by α > β as well as β < α. It is to
be noticed that this definition coincides completely with the one given earlier,
when α, β are rational.

The remaining possible cases are these:
4. If there exists in B1 one and only one number b′1 = a′

2, that is not
contained in A1 then the two cuts (A1, A2) and (B1, B2) are only unessentially
different and they are produced by one and the same rational number α = a′

2 =
b′1 = β.

5. But if there are in B1 at least two numbers which are not contained in
A1, then β > α, α < β.

As this exhausts the possible cases, it follows that of two different numbers
one is necessarily the greater, the other the less, which gives two possibilities. A
third case is impossible. This was indeed involved in the use of the comparative
(greater, less) to designate the relation between α, β; but this use has only now
been justified. In just such investigations one needs to exercise the greatest
care so that even with the best intention to be honest he shall not, through
a hasty choice of expressions borrowed from other notions already developed,
allow himself to be led into the use of inadmissible transfers from one domain
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to the other.
If now we consider again somewhat carefully the case α > β it is obvious

that the less number β, if rational, certainly belongs to the class A1; for since
there is in A1 a number a′

1 = b′2 which belongs to the class B2, it follows that
the number β, whether the greatest number in B1 or the least in B2 is certainly
5 a′

1 and hence contained in A1. Likewise it is obvious from α > β that the
greater number α, if rational, certainly belongs to the class B2, because α = a′

1.
Combining these two considerations we get the following result: If a cut is
produced by the number α then any rational number belongs to the class A1 or
to the class A2 according as it is less or greater than α; if the number α is itself
rational it may belong to either class.

From this we obtain finally the following: If α > β, i. e., if there are infinitely
many numbers in A1 not contained in B1 then there are infinitely many such
numbers that at the same time are different from α and from β; every such
rational number c is < α, because it is contained in A1 and at the same time it
is > β because contained in B2.

V.

CONTINUITY OF THE DOMAIN OF REAL NUMBERS.

In consequence of the distinctions just established the system R of all real
numbers forms a well-arranged domain of one dimension; this is to mean merely
that the following laws prevail:

i. If α > β, and β > γ, then is also α > γ. We shall say that the number β
lies between α and γ.

ii. If α, γ are any two different numbers, then there exist infinitely many
different numbers β lying between α, γ.

iii. If α is any definite number then all numbers of the system R fall into
two classes A1 and A2 each of which contains infinitely many individuals; the
first class A1 comprises all the numbers α1 that are less than α, the second A2

comprises all the numbers α2 that are greater than α; the number α itself may be
assigned at pleasure to the first class or to the second, and it is respectively the
greatest of the first or the least of the second class. In each case the separation
of the system R into the two classes A1, A2 is such that every number of first
class A1 is smaller than every number of the second class A2 and we say that
this separation is produced by the number α.

For brevity and in order not to weary the reader I suppress the proofs of
these theorems which follow immediately from the definitions of the previous
section.

Beside these properties, however, the domain R possesses also continuity ;
i. e., the following theorem is true:

iv. If the system R of all real numbers breaks up into two classes A1, A2

such that every number α1 of the class A1 is less than every number α2 of the
class A2 then there exists one and only one number α by which this separation
is produced.
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Proof. By the separation or the cut of R into A1 and A2 we obtain at
the same time a cut (A1, A2) of the system R of all rational numbers which is
defined by this that A1 contains all rational numbers of the class A1 and A2

all other rational numbers, i. e., all rational numbers of the class A2. Let α
be the perfectly definite number which produces this cut (A1, A2). If β is any
number different from α, there are always infinitely many rational numbers c
lying between α and β. If β < α, then c < α; hence c belongs to the class A1

and consequently also to the class A1, and since at the same time β < c then β
also belongs to the same class A1, because every number in A2 is greater than
every number c in A1. But if β > α, then is c > α; hence c belongs to the class
A2 and consequently also to the class A2, and since at the same time β > c,
then β also belongs to the same class A2, because every number in A1 is less
than every number c in A2. Hence every number β different from α belongs to
the class A1 or to the class A2 according as β < α or β > α; consequently α
itself is either the greatest number in A1 or the least number in A2, i. e., α is
one and obviously the only number by which the separation of R into the classes
A1, A2 is produced. Which was to be proved.

VI.

OPERATIONS WITH REAL NUMBERS.

To reduce any operation with two real numbers α, β to operations with
rational numbers, it is only necessary from the cuts (A1, A2), (B1, B2) produced
by the numbers α and β in the system R to define the cut (C1, C2) which is
to correspond to the result of the operation, γ. I confine myself here to the
discussion of the simplest case, that of addition.

If c is any rational number, we put it into the class C1, provided there are
two numbers one a1 in A1 and one b1 in B1 such that their sum a1 + b1 = c;
all other rational numbers shall be put into the class C2. This separation of
all rational numbers into the two classes C1, C2 evidently forms a cut, since
every number c1 in C1 is less than every number c2 in C2. If both α and β are
rational, then every number c1 contained in C1 is 5 α + β, because a1 5 α,
b1 5 β, and therefore a1 + b1 5 α + β; further, if there were contained in C2 a
number c2 < α+β, hence α+β = c2 +p, where p is a positive rational number,
then we should have

c2 = (α− 1
2
p) + (β − 1

2
p),

which contradicts the definition of the number c2, because α− 1
2p is a number

in A1, and β − 1
2p a number in B1; consequently every number c2 contained in

C2 is = α + β. Therefore in this case the cut (C1, C2) is produced by the sum
α+ β. Thus we shall not violate the definition which holds in the arithmetic of
rational numbers if in all cases we understand by the sum α+β of any two real
numbers α, β that number γ by which the cut (C1, C2) is produced. Further,
if only one of the two numbers α, β is rational, e. g., α, it is easy to see that it
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makes no difference with the sum γ = α+ β whether the number α is put into
the class A1 or into the class A2.

Just as addition is defined, so can the other operations of the so-called el-
ementary arithmetic be defined, viz., the formation of differences, products,
quotients, powers, roots, logarithms, and in this way we arrive at real proofs of
theorems (as, e. g.,

√
2 ·

√
3 =

√
6), which to the best of my knowledge have

never been established before. The excessive length that is to be feared in the
definitions of the more complicated operations is partly inherent in the nature of
the subject but can for the most part be avoided. Very useful in this connection
is the notion of an interval, i. e., a system A of rational numbers possessing the
following characteristic property: if a and a′ are numbers of the system A, then
are all rational numbers lying between a and a′ contained in A. The system
R of all rational numbers, and also the two classes of any cut are intervals. If
there exist a rational number a1 which is less and a rational number a2 which
is greater than every number of the interval A, then A is called a finite inter-
val; there then exist infinitely many numbers in the same condition as a1 and
infinitely many in the same condition as a2; the whole domain R breaks up into
three parts A1, A, A2 and there enter two perfectly definite rational or irrational
numbers α1, α2 which may be called respectively the lower and upper (or the
less and greater) limits of the interval; the lower limit α1 is determined by the
cut for which the system A1 forms the first class and the upper α2 by the cut
for which the system A2 forms the second class. Of every rational or irrational
number α lying between α1 and α2 it may be said that it lies within the interval
A. If all numbers of an interval A are also numbers of an interval B, then A is
called a portion of B.

Still lengthier considerations seem to loom up when we attempt to adapt the
numerous theorems of the arithmetic of rational numbers (as, e. g., the theorem
(a + b)c = ac + bc) to any real numbers. This, however, is not the case. It is
easy to see that it all reduces to showing that the arithmetic operations possess
a certain continuity. What I mean by this statement may be expressed in the
form of a general theorem:

“If the number λ is the result of an operation performed on the numbers α,
β, γ, . . . and λ lies within the interval L, then intervals A, B, C, . . . can be
taken within which lie the numbers α, β, γ, . . . such that the result of the same
operation in which the numbers α, β, γ, . . . are replaced by arbitrary numbers of
the intervals A, B, C, . . . is always a number lying within the interval L.” The
forbidding clumsiness, however, which marks the statement of such a theorem
convinces us that something must be brought in as an aid to expression; this
is, in fact, attained in the most satisfactory way by introducing the ideas of
variable magnitudes, functions, limiting values, and it would be best to base the
definitions of even the simplest arithmetic operations upon these ideas, a matter
which, however, cannot be carried further here.
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VII.

INFINITESIMAL ANALYSIS.

Here at the close we ought to explain the connection between the preceding
investigations and certain fundamental theorems of infinitesimal analysis.

We say that a variable magnitude x which passes through successive definite
numerical values approaches a fixed limiting value α when in the course of the
process x lies finally between two numbers between which α itself lies, or, what
amounts to the same, when the difference x−α taken absolutely becomes finally
less than any given value different from zero.

One of the most important theorems may be stated in the following manner:
“If a magnitude x grows continually but not beyond all limits it approaches a
limiting value.”

I prove it in the following way. By hypothesis there exists one and hence
there exist infinitely many numbers α2 such that x remains continually < α2;
I designate by A2 the system of all these numbers α2, by A1 the system of all
other numbers α1; each of the latter possesses the property that in the course
of the process x becomes finally = α1, hence every number α1 is less than every
number α2 and consequently there exists a number α which is either the greatest
in A1 or the least in A2 (V, iv). The former cannot be the case since x never
ceases to grow, hence α is the least number in A2. Whatever number α1 be
taken we shall have finally α1 < x < α, i. e., x approaches the limiting value α.

This theorem is equivalent to the principle of continuity, i. e., it loses its
validity as soon as we assume a single real number not to be contained in the
domain R; or otherwise expressed: if this theorem is correct, then is also theorem
iv. in V. correct.

Another theorem of infinitesimal analysis, likewise equivalent to this, which
is still oftener employed, may be stated as follows: “If in the variation of a
magnitude x we can for every given positive magnitude δ assign a corresponding
position from and after which x changes by less than δ then x approaches a
limiting value.”

This converse of the easily demonstrated theorem that every variable mag-
nitude which approaches a limiting value finally changes by less than any given
positive magnitude can be derived as well from the preceding theorem as directly
from the principle of continuity. I take the latter course. Let δ be any positive
magnitude (i. e., δ > 0), then by hypothesis a time will come after which x will
change by less than δ, i. e., if at this time x has the value a, then afterwards we
shall continually have x > a−δ and x < a+δ. I now for a moment lay aside the
original hypothesis and make use only of the theorem just demonstrated that
all later values of the variable x lie between two assignable finite values. Upon
this I base a double separation of all real numbers. To the system A2 I assign
a number α2 (e.g., a + δ) when in the course of the process x becomes finally
5 α2; to the system A1 I assign every number not contained in A2; if α1 is such
a number, then, however far the process may have advanced, it will still happen
infinitely many times that x > α2. Since every number α1 is less than every
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number α2 there exists a perfectly definite number α which produces this cut
(A1,A2) of the system R and which I will call the upper limit of the variable x
which always remains finite. Likewise as a result of the behavior of the variable
x a second cut (B1,B2) of the system R is produced; a number β2 (e. g., a− δ)
is assigned to B2 when in the course of the process x becomes finally = β; every
other number β2, to be assigned to B2, has the property that x is never finally
= β2; therefore infinitely many times x becomes < β2; the number β by which
this cut is produced I call the lower limiting value of the variable x. The two
numbers α, β are obviously characterised by the following property: if ε is an
arbitrarily small positive magnitude then we have always finally x < α+ ε and
x > β − ε, but never finally x < α − ε and never finally x > β + ε. Now two
cases are possible. If α and β are different from each other, then necessarily
α > β, since continually α2 = β2; the variable x oscillates, and, however far the
process advances, always undergoes changes whose amount surpasses the value
(α − β) − 2ε where ε is an arbitrarily small positive magnitude. The original
hypothesis to which I now return contradicts this consequence; there remains
only the second case α = β since it has already been shown that, however small
be the positive magnitude ε, we always have finally x < α+ ε and x > β − ε, x
approaches the limiting value α, which was to be proved.

These examples may suffice to bring out the connection between the principle
of continuity and infinitesimal analysis.
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THE NATURE AND MEANING OF NUMBERS

PREFACE TO THE FIRST EDITION.

In science nothing capable of proof ought to be accepted without proof.
Though this demand seems so reasonable yet I cannot regard it as having been
met even in the most recent methods of laying the foundations of the simplest
science; viz., that part of logic which deals with the theory of numbers.4 In
speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I
consider the number-concept entirely independent of the notions or intuitions of
space and time, that I consider it an immediate result from the laws of thought.
My answer to the problems propounded in the title of this paper is, then, briefly
this: numbers are free creations of the human mind; they serve as a means of
apprehending more easily and more sharply the difference of things. It is only
through the purely logical process of building up the science of numbers and by
thus acquiring the continuous number-domain that we are prepared accurately
to investigate our notions of space and time by bringing them into relation with
this number-domain created in our mind.5 If we scrutinise closely what is done
in counting an aggregate or number of things, we are led to consider the ability
of the mind to relate things to things, to let a thing correspond to a thing, or to
represent a thing by a thing, an ability without which no thinking is possible.
Upon this unique and therefore absolutely indispensable foundation, as I have
already affirmed in an announcement of this paper,6 must, in my judgment, the
whole science of numbers be established. The design of such a presentation I
had formed before the publication of my paper on Continuity, but only after its
appearance and with many interruptions occasioned by increased official duties
and other necessary labors, was I able in the years 1872 to 1878 to commit to
paper a first rough draft which several mathematicians examined and partially
discussed with me. It bears the same title and contains, though not arranged
in the best order, all the essential fundamental ideas of my present paper, in
which they are more carefully elaborated. As such main points I mention here
the sharp distinction between finite and infinite (64), the notion of the number
[Anzahl ] of things (161), the proof that the form of argument known as complete
induction (or the inference from n to n+ 1) is really conclusive (59), (60), (80),
and that therefore the definition by induction (or recursion) is determinate and
consistent (126).

4Of the works which have come under my observation I mention the valuable Lehrbuch
der Arithmetik und Algebra of E. Schröder (Leipzig, 1873), which contains a bibliography of
the subject, and in addition the memoirs of Kronecker and von Helmholtz upon the Number-
Concept and upon Counting and Measuring (in the collection of philosophical essays published
in honor of E. Zeller, Leipzig, 1887). The appearance of these memoirs has induced me to
publish my own views, in many respects similar but in foundation essentially different, which
I formulated many years ago in absolute independence of the works of others.

5See Section III. of my memoir, Continuity and Irrational Numbers (Braunschweig, 1872),
translated at pages 4 et seq. of the present volume.

6Dirichlet’s Vorlesungen über Zahlentheorie, third edition, 1879, § 163, note on page 470.
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This memoir can be understood by any one possessing what is usually called
good common sense; no technical philosophic, or mathematical, knowledge is in
the least degree required. But I feel conscious that many a reader will scarcely
recognise in the shadowy forms which I bring before him his numbers which all
his life long have accompanied him as faithful and familiar friends; he will be
frightened by the long series of simple inferences corresponding to our step-by-
step understanding, by the matter-of-fact dissection of the chains of reasoning
on which the laws of numbers depend, and will become impatient at being com-
pelled to follow out proofs for truths which to his supposed inner consciousness
seem at once evident and certain. On the contrary in just this possibility of
reducing such truths to others more simple, no matter how long and apparently
artificial the series of inferences, I recognise a convincing proof that their posses-
sion or belief in them is never given by inner consciousness but is always gained
only by a more or less complete repetition of the individual inferences. I like to
compare this action of thought, so difficult to trace on account of the rapidity
of its performance, with the action which an accomplished reader performs in
reading; this reading always remains a more or less complete repetition of the
individual steps which the beginner has to take in his wearisome spelling-out; a
very small part of the same, and therefore a very small effort or exertion of the
mind, is sufficient for the practised reader to recognise the correct, true word,
only with very great probability, to be sure; for, as is well known, it occasionally
happens that even the most practised proof-reader allows a typographical error
to escape him, i. e., reads falsely, a thing which would be impossible if the chain
of thoughts associated with spelling were fully repeated. So from the time of
birth, continually and in increasing measure we are led to relate things to things
and thus to use that faculty of the mind on which the creation of numbers de-
pends; by this practice continually occurring, though without definite purpose,
in our earliest years and by the attending formation of judgments and chains of
reasoning we acquire a store of real arithmetic truths to which our first teachers
later refer as to something simple, self-evident, given in the inner consciousness;
and so it happens that many very complicated notions (as for example that
of the number [Anzahl ] of things) are erroneously regarded as simple. In this
sense which I wish to express by the word formed after a well-known saying
�eÈ å �njrwpoc �rijmhtÐzai, I hope that the following pages, as an attempt to
establish the science of numbers upon a uniform foundation will find a generous
welcome and that other mathematicians will be led to reduce the long series of
inferences to more moderate and attractive proportions.

In accordance with the purpose of this memoir I restrict myself to the con-
sideration of the series of so-called natural numbers. In what way the gradual
extension of the number-concept, the creation of zero, negative, fractional, irra-
tional and complex numbers are to be accomplished by reduction to the earlier
notions and that without any introduction of foreign conceptions (such as that of
measurable magnitudes, which according to my view can attain perfect clearness
only through the science of numbers), this I have shown at least for irrational
numbers in my former memoir on Continuity (1872); in a way wholly similar, as
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I have already shown in Section III. of that memoir,7 may the other extensions
be treated, and I propose sometime to present this whole subject in systematic
form. From just this point of view it appears as something self-evident and not
new that every theorem of algebra and higher analysis, no matter how remote,
can be expressed as a theorem about natural numbers,—a declaration I have
heard repeatedly from the lips of Dirichlet. But I see nothing meritorious–and
this was just as far from Dirichlet’s thought—in actually performing this weari-
some circumlocution and insisting on the use and recognition of no other than
rational numbers. On the contrary, the greatest and most fruitful advances in
mathematics and other sciences have invariably been made by the creation and
introduction of new concepts, rendered necessary by the frequent recurrence of
complex phenomena which could be controlled by the old notions only with
difficulty. On this subject I gave a lecture before the philosophic faculty in the
summer of 1854 on the occasion of my admission as privat-docent in Göttingen.
The scope of this lecture met with the approval of Gauss; but this is not the
place to go into further detail.

Instead of this I will use the opportunity to make some remarks relating to
my earlier work, mentioned above, on Continuity and Irrational Numbers. The
theory of irrational numbers there presented, wrought out in the fall of 1853,
is based on the phenomenon (Section IV.)8 occurring in the domain of rational
numbers which I designate by the term cut [Schnitt ] and which I was the first
to investigate carefully; it culminates in the proof of the continuity of the new
domain of real numbers (Section V., iv.).9 It appears to me to be somewhat
simpler, I might say easier, than the two theories, different from it and from
each other, which have been proposed by Weierstrass and G. Cantor, and which
likewise are perfectly rigorous. It has since been adopted without essential mod-
ification by U. Dini in his Fondamenti per la teorica delle funzioni di variabili
reali (Pisa, 1878); but the fact that in the course of this exposition my name
happens to be mentioned, not in the description of the purely arithmetic phe-
nomenon of the cut but when the author discusses the existence of a measurable
quantity corresponding to the cut, might easily lead to the supposition that my
theory rests upon the consideration of such quantities. Nothing could be fur-
ther from the truth; rather have I in Section III.10 of my paper advanced several
reasons why I wholly reject the introduction of measurable quantities; indeed,
at the end of the paper I have pointed out with respect to their existence that
for a great part of the science of space the continuity of its configurations is not
even a necessary condition, quite aside from the fact that in works on geometry
arithmetic is only casually mentioned by name but is never clearly defined and
therefore cannot be employed in demonstrations. To explain this matter more
clearly I note the following example: If we select three non-collinear points A,
B, C at pleasure, with the single limitation that the ratios of the distances AB,

7Pages 4 et seq. of the present volume.
8Pages 6 et seq. of the present volume.
9Page 9 of the present volume.

10Pages 4 et seq. of the present volume.
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AC, BC are algebraic numbers,11 and regard as existing in space only those
points M , for which the ratios of AM , BM , CM to AB are likewise algebraic
numbers, then is the space made up of the points M , as is easy to see, every-
where discontinuous; but in spite of this discontinuity, and despite the existence
of gaps in this space, all constructions that occur in Euclid’s Elements, can, so
far as I can see, be just as accurately effected as in perfectly continuous space;
the discontinuity of this space would not be noticed in Euclid’s science, would
not be felt at all. If any one should say that we cannot conceive of space as
anything else than continuous, I should venture to doubt it and to call atten-
tion to the fact that a far advanced, refined scientific training is demanded in
order to perceive clearly the essence of continuity and to comprehend that be-
sides rational quantitative relations, also irrational, and besides algebraic, also
transcendental quantitative relations are conceivable. All the more beautiful
it appears to me that without any notion of measurable quantities and simply
by a finite system of simple thought-steps man can advance to the creation of
the pure continuous number-domain; and only by this means in my view is it
possible for him to render the notion of continuous space clear and definite.

The same theory of irrational numbers founded upon the phenomenon of
the cut is set forth in the Introduction à la théorie des fonctions d’une variable
by J. Tannery (Paris, 1886). If I rightly understand a passage in the preface
to this work, the author has thought out his theory independently, that is, at
a time when not only my paper, but Dini’s Fondamenti mentioned in the same
preface, was unknown to him. This agreement seems to me a gratifying proof
that my conception conforms to the nature of the case, a fact recognised by
other mathematicians, e. g., by Pasch in his Einleitung in die Differential- und
Integralrechnung (Leipzig, 1883). But I cannot quite agree with Tannery when
he calls this theory the development of an idea due to J. Bertrand and contained
in his Traité d’arithmétique, consisting in this that an irrational number is de-
fined by the specification of all rational numbers that are less and all those that
are greater than the number to be defined. As regards this statement which is
repeated by Stolz—apparently without careful investigation—in the preface to
the second part of his Vorlesungen über allgemeine Arithmetik (Leipzig, 1886),
I venture to remark the following: That an irrational number is to be consid-
ered as fully defined by the specification just described, this conviction certainly
long before the time of Bertrand was the common property of all mathematicians
who concerned themselves with the notion of the irrational. Just this manner
of determining it is in the mind of every computer who calculates the irrational
root of an equation by approximation, and if, as Bertrand does exclusively in
his book, (the eighth edition, of the year 1885, lies before me,) one regards the
irrational number as the ratio of two measurable quantities, then is this manner
of determining it already set forth in the clearest possible way in the celebrated
definition which Euclid gives of the equality of two ratios (Elements, V., 5). This
same most ancient conviction has been the source of my theory as well as that of
Bertrand and many other more or less complete attempts to lay the foundations

11Dirichlet’s Vorlesungen über Zahlentheorie, § 159 of the second edition, § 160 of the third.
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for the introduction of irrational numbers into arithmetic. But though one is so
far in perfect agreement with Tannery, yet in an actual examination he cannot
fail to observe that Bertrand’s presentation, in which the phenomenon of the
cut in its logical purity is not even mentioned, has no similarity whatever to
mine, inasmuch as it resorts at once to the existence of a measurable quantity,
a notion which for reasons mentioned above I wholly reject. Aside from this
fact this method of presentation seems also in the succeeding definitions and
proofs, which are based on the postulate of this existence, to present gaps so
essential that I still regard the statement made in my paper (Section VI.),12

that the theorem
√

2 ·
√

3 =
√

6 has nowhere yet been strictly demonstrated, as
justified with respect to this work also, so excellent in many other regards and
with which I was unacquainted at that time.

R. Dedekind.

Harzburg, October 5, 1887.

12Pages 10 et seq. of this volume.
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PREFACE TO THE SECOND EDITION.

The present memoir soon after its appearance met with both favorable and
unfavorable criticisms; indeed serious faults were charged against it. I have
been unable to convince myself of the justice of these charges, and I now issue a
new edition of the memoir, which for some time has been out of print, without
change, adding only the following notes to the first preface.

The property which I have employed as the definition of the infinite system
had been pointed out before the appearance of my paper by G. Cantor (Ein
Beitrag zur Mannigfaltigkeitslehre, Crelle’s Journal, Vol. 84, 1878), as also by
Bolzano (Paradoxien des Unendlichen, § 20, 1851). But neither of these authors
made the attempt to use this property for the definition of the infinite and upon
this foundation to establish with rigorous logic the science of numbers, and just
in this consists the content of my wearisome labor which in all its essentials I
had completed several years before the appearance of Cantor’s memoir and at
a time when the work of Bolzano was unknown to me even by name. For the
benefit of those who are interested in and understand the difficulties of such an
investigation, I add the following remark. We can lay down an entirely different
definition of the finite and infinite, which appears still simpler since the notion
of similarity of transformation is not even assumed, viz.:

“A system S is said to be finite when it may be so transformed in itself (36)
that no proper part (6) of S is transformed in itself; in the contrary case S is
called an infinite system.”

Now let us attempt to erect our edifice upon this new foundation! We shall
soon meet with serious difficulties, and I believe myself warranted in saying
that the proof of the perfect agreement of this definition with the former can be
obtained only (and then easily) when we are permitted to assume the series of
natural numbers as already developed and to make use of the final considerations
in (131); and yet nothing is said of all these things in either the one definition
or the other! From this we can see how very great is the number of steps in
thought needed for such a remodeling of a definition.

About a year after the publication of my memoir I became acquainted with
G. Frege’s Grundlagen der Arithmetik, which had already appeared in the year
1884. However different the view of the essence of number adopted in that work
is from my own, yet it contains, particularly from § 79 on, points of very close
contact with my paper, especially with my definition (44). The agreement, to
be sure, is not easy to discover on account of the different form of expression;
but the positiveness with which the author speaks of the logical inference from
n to n + 1 (page 47, below) shows plainly that here he stands upon the same
ground with me. In the meantime E. Schröder’s Vorlesungen über die Algebra
der Logik has been almost completed (1890–1891). Upon the importance of this
extremely suggestive work, to which I pay my highest tribute, it is impossible
here to enter further; I will simply confess that in spite of the remark made on
p. 253 of Part I., I have retained my somewhat clumsy symbols (8) and (17);
they make no claim to be adopted generally but are intended simply to serve the
purpose of this arithmetic paper to which in my view they are better adapted
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than sum and product symbols.

R. Dedekind.

Harzburg, August 24, 1893.
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THE NATURE AND MEANING OF NUMBERS.

I.

SYSTEMS OF ELEMENTS.

1. In what follows I understand by thing every object of our thought. In
order to be able easily to speak of things, we designate them by symbols, e. g.,
by letters, and we venture to speak briefly of the thing a or of a simply, when
we mean the thing denoted by a and not at all the letter a itself. A thing is
completely determined by all that can be affirmed or thought concerning it. A
thing a is the same as b (identical with b), and b the same as a, when all that
can be thought concerning a can also be thought concerning b, and when all
that is true of b can also be thought of a. That a and b are only symbols or
names for one and the same thing is indicated by the notation a = b, and also
by b = a. If further b = c, that is, if c as well as a is a symbol for the thing
denoted by b, then is also a = c. If the above coincidence of the thing denoted
by a with the thing denoted by b does not exist, then are the things a, b said
to be different, a is another thing than b, b another thing than a; there is some
property belonging to the one that does not belong to the other.

2. It very frequently happens that different things, a, b, c, . . . for some
reason can be considered from a common point of view, can be associated in
the mind, and we say that they form a system S; we call the things a, b, c,
. . . elements of the system S, they are contained in S; conversely, S consists of
these elements. Such a system S (an aggregate, a manifold, a totality) as an
object of our thought is likewise a thing (1); it is completely determined when
with respect to every thing it is determined whether it is an element of S or
not.13 The system S is hence the same as the system T , in symbols S = T ,
when every element of S is also element of T , and every element of T is also
element of S. For uniformity of expression it is advantageous to include also the
special case where a system S consists of a single (one and only one) element
a, i. e., the thing a is element of S, but every thing different from a is not an
element of S. On the other hand, we intend here for certain reasons wholly to
exclude the empty system which contains no element at all, although for other
investigations it may be appropriate to imagine such a system.

3. Definition. A system A is said to be part of a system S when every
element of A is also element of S. Since this relation between a system A and

13In what manner this determination is brought about, and whether we know a way of
deciding upon it, is a matter of indifference for all that follows; the general laws to be developed
in no way depend upon it; they hold under all circumstances. I mention this expressly because
Kronecker not long ago (Crelle’s Journal, Vol. 99, pp. 334–336) has endeavored to impose
certain limitations upon the free formation of concepts in mathematics which I do not believe
to be justified; but there seems to be no call to enter upon this matter with more detail until
the distinguished mathematician shall have published his reasons for the necessity or merely
the expediency of these limitations.
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a system S will occur continually in what follows, we shall express it briefly by
the symbol A 3 S. The inverse symbol S 3A, by which the same fact might
be expressed, for simplicity and clearness I shall wholly avoid, but for lack of
a better word I shall sometimes say that S is whole of A, by which I mean to
express that among the elements of S are found all the elements of A. Since
further every element s of a system S by (2) can be itself regarded as a system,
we can hereafter employ the notation s 3 S.

4. Theorem. A 3 A, by reason of (3).

5. Theorem. If A 3 B and B 3 A, then A = B.
The proof follows from (3), (2).

6. Definition. A system A is said to be a proper [echter ] part of S, when A
is part of S, but different from S. According to (5) then S is not a part of A,
i. e., there is in S an element which is not an element of A.

7. Theorem. If A 3 B and B 3 C, which may be denoted briefly by
A 3 B 3 C, then is A 3 C, and A is certainly a proper part of C, if A is a proper
part of B or if B is a proper part of C.

The proof follows from (3), (6).

8. Definition. By the system compounded out of any systems A, B, C, . . .
to be denoted by M(A,B,C, . . .) we mean that system whose elements are
determined by the following prescription: a thing is considered as element of
M(A,B,C, . . .) when and only when it is element of some one of the systems
A, B, C, . . . , i. e., when it is element of A, or B, or C, . . . . We include also
the case where only a single system A exists; then obviously M(A) = A. We
observe further that the system M(A,B,C, . . .) compounded out of A, B, C, . . .
is carefully to be distinguished from the system whose elements are the systems
A, B, C, . . . themselves.

9. Theorem. The systems A, B, C, . . . are parts of M(A,B,C, . . .).
The proof follows from (8), (3).

10. Theorem. If A, B, C, . . . are parts of a system S, then is M(A,B,C, . . .)
3 S.

The proof follows from (8), (3).

11. Theorem. If P is part of one of the systems A, B, C, . . . then is
P 3 M(A,B,C, . . .).

The proof follows from (9), (7).

12. Theorem. If each of the systems P , Q, . . . is part of one of the systems
A, B, C, . . . then is M(P,Q, . . .) 3 M(A,B,C, . . .).

The proof follows from (11), (10).

13. Theorem. If A is compounded out of any of the systems P , Q, . . . then
is A 3 M(P,Q, . . .).

Proof. For every element of A is by (8) element of one of the systems P ,
Q, . . . , consequently by (8) also element of M(P,Q, . . .), whence the theorem
follows by (3).
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14. Theorem. If each of the systems A, B, C, . . . is compounded out of any
of the systems P , Q, . . . then is

M(A,B,C, . . .) 3 M(P,Q, . . .)

The proof follows from (13), (10).

15. Theorem. If each of the systems P , Q, . . . is part of one of the systems
A, B, C, . . . , and if each of the latter is compounded out of any of the former,
then is

M(P,Q, . . .) = M(A,B,C, . . .).

The proof follows from (12), (14), (5).

16. Theorem. If

A = M(P,Q) and B = M(Q,R)
then is M(A,R) = M(P,B).

Proof. For by the preceding theorem (15)

M(A,R) as well as M(P,B) = M(P,Q,R).

17. Definition. A thing g is said to be common element of the systems A,
B, C, . . . , if it is contained in each of these systems (that is in A and in B and
in C . . . ). Likewise a system T is said to be a common part of A, B, C, . . .
when T is part of each of these systems; and by the community [Gemeinheit ]
of the systems A, B, C, . . . we understand the perfectly determinate system
G(A,B,C, . . .) which consists of all the common elements g of A, B, C, . . . and
hence is likewise a common part of those systems. We again include the case
where only a single system A occurs; then G(A) (is to be put) = A. But the case
may also occur that the systems A, B, C, . . . possess no common element at all,
therefore no common part, no community; they are then called systems without
common part, and the symbol G(A,B,C, . . .) is meaningless (compare the end
of (2)). We shall however almost always in theorems concerning communities
leave it to the reader to add in thought the condition of their existence and
to discover the proper interpretation of these theorems for the case of non-
existence.

18. Theorem. Every common part of A, B, C, . . . is part of G(A,B,C, . . .).
The proof follows from (17).

19. Theorem. Every part of G(A,B,C, . . .) is common part of A, B, C, . . . .
The proof follows from (17), (7).

20. Theorem. If each of the systems A, B, C, . . . is whole (3) of one of the
systems P , Q, . . . then is

G(P,Q, . . .) 3 G(A,B,C, . . .)

Proof. For every element of G(P,Q, . . .) is common element of P , Q, . . . ,
therefore also common element of A, B, C, . . . , which was to be proved.
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II.

TRANSFORMATION OF A SYSTEM.

21. Definition.14 By a transformation [Abbildung ] φ of a system S we
understand a law according to which to every determinate element s of S there
belongs a determinate thing which is called the transform of s and denoted by
φ(s); we say also that φ(s) corresponds to the element s, that φ(s) results or
is produced from s by the transformation φ, that s is transformed into φ(s) by
the transformation φ. If now T is any part of S, then in the transformation
φ of S is likewise contained a determinate transformation of T , which for the
sake of simplicity may be denoted by the same symbol φ and consists in this
that to every element t of the system T there corresponds the same transform
φ(t), which t possesses as element of S; at the same time the system consisting
of all transforms φ(t) shall be called the transform of T and be denoted by
φ(T ), by which also the significance of φ(S) is defined. As an example of a
transformation of a system we may regard the mere assignment of determinate
symbols or names to its elements. The simplest transformation of a system is
that by which each of its elements is transformed into itself; it will be called
the identical transformation of the system. For convenience, in the following
theorems (22), (23), (24), which deal with an arbitrary transformation φ of an
arbitrary system S, we shall denote the transforms of elements s and parts T
respectively by s′ and T ′; in addition we agree that small and capital italics
without accent shall always signify elements and parts of this system S.

22. Theorem.15 If A 3 B then A′ 3 B′.
Proof. For every element of A′ is the transform of an element contained in

A, and therefore also in B, and is therefore element of B′, which was to be
proved.

23. Theorem. The transform of M(A,B,C, . . .) is M(A′, B′, C ′, . . .).
Proof. If we denote the system M(A,B,C, . . .) which by (10) is likewise

part of S by M , then is every element of its transform M ′ the transform m′

of an element m of M ; since therefore by (8) m is also element of one of the
systems A, B, C, . . . and consequently m′ element of one of the systems A′, B′,
C ′, . . . , and hence by (8) also element of M(A′, B′, C ′, . . .), we have by (3)

M ′ 3 M(A′, B′, C ′, . . .).

On the other hand, since A, B, C, . . . are by (9) parts of M , and hence A′, B′,
C ′, . . . by (22) parts of M ′, we have by (10)

M(A′, B′, C ′, . . .) 3 M ′.

By combination with the above we have by (5) the theorem to be proved

M ′ = M(A′, B′, C ′, . . .).
14See Dirichlet’s Vorlesungen über Zahlentheorie, 3d edition, 1879, § 163.
15See theorem 27.
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24. Theorem.16 The transform of every common part of A, B, C, . . . , and
therefore that of the community G(A,B,C, . . .) is part of G(A′, B′, C ′, . . .).

Proof. For by (22) it is common part of A′, B′, C ′, . . . , whence the theorem
follows by (18).

25. Definition and theorem. If φ is a transformation of a system S, and ψ a
transformation of the transform S′ = φ(S), there always results a transformation
θ of S, compounded17 out of φ and ψ, which consists of this that to every element
s of S there corresponds the transform

θ(s) = ψ(s′) = ψ
(
φ(s)

)
,

where again we have put φ(s) = s′. This transformation θ can be denoted
briefly by the symbol ψ � φ or ψφ, the transform θ(s) by ψφ(s) where the order
of the symbols φ, ψ is to be considered, since in general the symbol φψ has no
interpretation and actually has meaning only when ψ(s′) 3 s. If now χ signifies a
transformation of the system ψ(s′) = ψφ(s) and η the transformation χψ of the
system S′ compounded out of ψ and χ, then is χθ(s) = χψ(s′) = η(s′) = ηφ(s);
therefore the compound transformations χθ and ηφ coincide for every element
s of S, i. e., χθ = ηφ. In accordance with the meaning of θ and η this theorem
can finally be expressed in the form

χ � ψφ = χψ � φ,

and this transformation compounded out of φ, ψ, χ can be denoted briefly by
χψφ.

III.

SIMILARITY OF A TRANSFORMATION. SIMILAR SYSTEMS.

26. Definition. A transformation φ of a system S is said to be similar [ähn-
lich] or distinct, when to different elements a, b of the system S there always
correspond different transforms a′ = φ(a), b′ = φ(b). Since in this case con-
versely from s′ = t′ we always have s = t, then is every element of the system
S′ = φ(S) the transform s′ of a single, perfectly determinate element s of the
system S, and we can therefore set over against the transformation φ of S an
inverse transformation of the system S′, to be denoted by φ, which consists in
this that to every element s′ of S′ there corresponds the transform φ(s′) = s,
and obviously this transformation is also similar. It is clear that φ(S′) = S, that
further φ is the inverse transformation belonging to φ and that the transforma-
tion φφ compounded out of φ and φ by (25) is the identical transformation of
S (21). At once we have the following additions to II., retaining the notation
there given.

16See theorem 29.
17A confusion of this compounding of transformations with that of systems of elements is

hardly to be feared.

25



27. Theorem.18 If A′ 3 B′, then A 3 B.
Proof. For if a is an element of A then is a′ an element of A′, therefore

also of B′, hence = b′, where b is an element of B; but since from a′ = b′ we
always have a = b, then is every element of A also element of B, which was to
be proved.

28. Theorem. If A′ = B′, then A = B.
The proof follows from (27), (4), (5).

29. Theorem.19 If G = G(A,B,C, . . .), then

G′ = G(A′, B′, C ′, . . .).

Proof. Every element of G(A′, B′, C ′, . . .) is certainly contained in S′, and is
therefore the transform g′ of an element g contained in S; but since g′ is common
element of A′, B′, C ′, . . . then by (27) must g be common element of A, B,
C, . . . therefore also element of G; hence every element of G(A′, B′, C ′, . . .) is
transform of an element g of G, therefore element of G′, i. e., G(A′, B′, C ′, . . .) 3

G′, and accordingly our theorem follows from (24), (5).

30. Theorem. The identical transformation of a system is always a similar
transformation.

31. Theorem. If φ is a similar transformation of S and ψ a similar transfor-
mation of φ(S), then is the transformation ψφ of S, compounded of φ and ψ, a
similar transformation, and the associated inverse transformation ψ φ = φψ.

Proof. For to different elements a, b of S correspond different transforms
a′ = φ(a), b′ = φ(b), and to these again different transforms ψ(a′) = ψφ(a),
ψ(b′) = ψφ(b) and therefore ψφ is a similar transformation. Besides every
element ψφ(s) = ψ(s′) of the system ψφ(S) is transformed by ψ into s′ = φ(s)
and this by φ into s, therefore ψφ(s) is transformed by φψ into s, which was to
be proved.

32. Definition. The systems R, S are said to be similar when there exists
such a similar transformation φ of S that φ(S) = R, and therefore φ(R) = S.
Obviously by (30) every system is similar to itself.

33. Theorem. If R, S are similar systems, then every system Q similar to
R is also similar to S.

Proof. For if φ, ψ are similar transformations of S, R such that φ(S) = R,
ψ(R) = Q, then by (31) ψφ is a similar transformation of S such that ψφ(S) =
Q, which was to be proved.

34. Definition. We can therefore separate all systems into classes by putting
into a determinate class all systems Q, R, S, . . . , and only those, that are similar
to a determinate system R, the representative of the class; according to (33) the
class is not changed by taking as representative any other system belonging to
it.

18See theorem 22.
19See theorem 24.
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35. Theorem. If R, S are similar systems, then is every part of S also similar
to a part of R, every proper part of S also similar to a proper part of R.

Proof. For if φ is a similar transformation of S, φ(S) = R, and T 3 S, then
by (22) is the system similar to T φ(T ) 3 R; if further T is proper part of S, and
s an element of S not contained in T , then by (27) the element φ(s) contained
in R cannot be contained in φ(T ); hence φ(T ) is proper part of R, which was
to be proved.

IV.

TRANSFORMATION OF A SYSTEM IN ITSELF.

36. Definition. If φ is a similar or dissimilar transformation of a system
S, and φ(S) part of a system Z, then φ is said to be a transformation of S in
Z, and we say S is transformed by φ in Z. Hence we call φ a transformation
of the system S in itself, when φ(S) 3 S, and we propose in this paragraph to
investigate the general laws of such a transformation φ. In doing this we shall
use the same notations as in II. and again put φ(s) = s′, φ(T ) = T ′. These
transforms s′, T ′ are by (22), (7) themselves again elements or parts of S, like
all things designated by italic letters.

37. Definition. K is called a chain [Kette], when K ′ 3 K. We remark
expressly that this name does not in itself belong to the part K of the system S,
but is given only with respect to the particular transformation φ; with reference
to another transformation of the system S in itself K can very well not be a
chain.

38. Theorem. S is a chain.

39. Theorem. The transform K ′ of a chain K is a chain.
Proof. For from K ′ 3 K it follows by (22) that (K ′)′ 3 K ′, which was to be

proved.

40. Theorem. If A is part of a chain K, then is also A′ 3 K.
Proof. For from A 3 K it follows by (22) that A′ 3 K ′, and since by (37)

K ′ 3 K, therefore by (7) A′ 3 K, which was to be proved.

41. Theorem. If the transform A′ is part of a chain L, then is there a chain
K, which satisfies the conditions A 3 K, K ′ 3 L; and M(A,L) is just such a
chain K.

Proof. If we actually put K = M(A,L), then by (9) the one condition
A 3 K is fulfilled. Since further by (23) K ′ = M(A′, L′) and by hypothesis
A′ 3 L, L′ 3 L, then by (10) is the other condition K ′ 3 L also fulfilled and
hence it follows because by (9) L 3 K, that also K ′ 3 K, i. e., K is a chain,
which was to be proved.

42. Theorem. A system M compounded simply out of chains A, B, C, . . .
is a chain.
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Proof. Since by (23) M ′ = M(A′, B′, C ′, . . .) and by hypothesis A′ 3 A,
B′ 3 B, C ′ 3 C, . . . therefore by (12) M ′ 3 M , which was to be proved.

43. Theorem. The community G of chains A, B, C, . . . is a chain.
Proof. Since by (17) G is common part of A, B, C, . . . , therefore by (22) G′

common part of A′, B′, C ′, . . . , and by hypothesis A′ 3 A, B′ 3 B, C ′ 3 C, . . . ,
then by (7) G′ is also common part of A, B, C, . . . and hence by (18) also part
of G, which was to be proved.

44. Definition. If A is any part of S, we will denote by A0 the community
of all those chains (e. g., S) of which A is part; this community A0 exists (17)
because A is itself common part of all these chains. Since further by (43) A0 is a
chain, we will call A0 the chain of the system A, or briefly the chain of A. This
definition too is strictly related to the fundamental determinate transformation
φ of the system S in itself, and if later, for the sake of clearness, it is necessary
we shall at pleasure use the symbol φ0(A) instead of A0, and likewise designate
the chain of A corresponding to another transformation ω by ω0(A). For this
very important notion the following theorems hold true.

45. Theorem. A 3 A0.
Proof. For A is common part of all those chains whose community is A0,

whence the theorem follows by (18).

46. Theorem. (A0)′ 3 A0.
Proof. For by (44) A0 is a chain (37).

47. Theorem. If A is part of a chain K, then is also A0 3 K.
Proof. For A0 is the community and hence also a common part of all the

chains K, of which A is part.

48. Remark. One can easily convince himself that the notion of the chain
A0 defined in (44) is completely characterised by the preceding theorems, (45),
(46), (47).

49. Theorem. A′ 3 (A0)′.
The proof follows from (45), (22).

50. Theorem. A′ 3 A0.
The proof follows from (49), (46), (7).

51. Theorem. If A is a chain, then A0 = A.
Proof. Since A is part of the chain A, then by (47) A0 3 A, whence the

theorem follows by (45), (5).

52. Theorem. If B 3 A, then B 3 A0.
The proof follows from (45), (7).

53. Theorem. If B 3 A0, then B0 3 A0, and conversely.
Proof. Because A0 is a chain, then by (47) from B 3 A0, we also get B0 3 A0;

conversely, if B0 3 A0, then by (7) we also get B 3 A0, because by (45) B 3 B0.

54. Theorem. If B 3 A, then is B0 3 A0.
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The proof follows from (52), (53).

55. Theorem. If B 3 A0, then is also B′ 3 A0.
Proof. For by (53) B0 3 A0, and since by (50) B′ 3 B0, the theorem to be

proved follows by (7). The same result, as is easily seen, can be obtained from
(22), (46), (7), or also from (40).

56. Theorem. If B 3 A0, then is (B0)′ 3 (A0)′.
The proof follows from (53), (22).

57. Theorem and definition. (A0)′ = (A′)0, i. e., the transform of the
chain of A is at the same time the chain of the transform of A. Hence we can
designate this system in short by A′

0 and at pleasure call it the chain-transform
or transform-chain of A. With the clearer notation given in (44) the theorem
might be expressed by φ

(
φ0(A)

)
= φ0

(
φ(A)

)
.

Proof. If for brevity we put (A′)0 = L, L is a chain (44) and by (45) A′ 3 L;
hence by (41) there exists a chain K satisfying the conditions A 3 K, K ′ 3 L;
hence from (47) we have A0 3 K, therefore (A0)′ 3 K ′, and hence by (7) also
(A0)′ 3 L, i. e.,

(A0)′ 3 (A′)0.

Since further by (49) A′ 3 (A0)′, and by (44), (39) (A0)′ is a chain, then by (47)
also

(A′)0 3 (A0)′,

whence the theorem follows by combining with the preceding result (5).

58. Theorem. A0 = M(A,A′
0), i. e., the chain of A is compounded out of A

and the transform-chain of A.
Proof. If for brevity we again put

L = A′
0 = (A0)′ = (A′)0 and K = M(A,L),

then by (45) A′ 3 L, and since L is a chain, by (41) the same thing is true of
K; since further A 3 K (9), therefore by (47)

A0 3 K.

On the other hand, since by (45) A 3 A0, and by (46) also L 3 A0, then by (10)
also

K 3 A0,

whence the theorem to be proved A0 = K follows by combining with the pre-
ceding result (5).

59. Theorem of complete induction. In order to show that the chain A0 is
part of any system Σ—be this latter part of S or not—it is sufficient to show,

ρ. that A 3 Σ, and
σ. that the transform of every common element of A0 and Σ is likewise

element of Σ.
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Proof. For if ρ is true, then by (45) the community G = G(A0,Σ) certainly
exists, and by (18) A 3 G; since besides by (17)

G 3 A0,

then is G also part of our system S, which by φ is transformed in itself and at
once by (55) we have also G′ 3 A0. If then σ is likewise true, i. e. if G′ 3 Σ,
then must G′ as common part of the systems A0, Σ by (18) be part of their
community G, i. e. G is a chain (37), and since, as above noted, A 3 G, then by
(47) is also

A0 3 G,

and therefore by combination with the preceding result G = A0, hence by (17)
also A0 3 Σ, which was to be proved.

60. The preceding theorem, as will be shown later, forms the scientific basis
for the form of demonstration known by the name of complete induction (the
inference from n to n + 1); it can also be stated in the following manner: In
order to show that all elements of the chain A0 possess a certain property E (or
that a theorem S dealing with an undetermined thing n actually holds good for
all elements n of the chain A0) it is sufficient to show

ρ. that all elements a of the system A possess the property E (or that S
holds for all a’s) and

σ. that to the transform n′ of every such element n of A0 possessing the
property E, belongs the same property E (or that the theorem S, as soon as it
holds for an element n of A0, certainly must also hold for its transform n′).

Indeed, if we denote by Σ the system of all things possessing the property E
(or for which the theorem S holds) the complete agreement of the present man-
ner of stating the theorem with that employed in (59) is immediately obvious.

61. Theorem. The chain of M(A,B,C, . . .) is M(A0, B0, C0, . . .).
Proof. If we designate by M the former, by K the latter system, then by

(42) K is a chain. Since then by (45) each of the systems A, B, C, . . . is part
of one of the systems A0, B0, C0, . . . , and therefore by (12) M 3 K, then by
(47) we also have

M0 3 K.

On the other hand, since by (9) each of the systems A, B, C, . . . is part of M ,
and hence by (45), (7) also part of the chain M0, then by (47) must also each
of the systems A0, B0, C0, . . . be part of M0, therefore by (10)

K 3 M0

whence by combination with the preceding result follows the theorem to be
proved M0 = K (5).

62. Theorem. The chain of G(A,B,C, . . .) is part of G(A0, B0, C0, . . .).
Proof. If we designate by G the former, by K the latter system, then by

(43) K is a chain. Since then each of the systems A0, B0, C0, . . . by (45) is
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whole of one of the systems A, B, C, . . . , and hence by (20) G 3 K, therefore
by (47) we obtain the theorem to be proved G0 3 K.

63. Theorem. If K ′ 3 L 3 K, and therefore K is a chain, L is also a chain.
If the same is proper part of K, and U the system of all those elements of K
which are not contained in L, and if further the chain U0 is proper part of K,
and V the system of all those elements of K which are not contained in U0, then
is K = M(U0, V ) and L = M(U ′

0, V ). If finally L = K ′ then V 3 V ′.
The proof of this theorem of which (as of the two preceding) we shall make

no use may be left for the reader.

V.

THE FINITE AND INFINITE.

64. Definition.20 A system S is said to be infinite when it is similar to a
proper part of itself (32); in the contrary case S is said to be a finite system.

65. Theorem. Every system consisting of a single element is finite.
Proof. For such a system possesses no proper part (2), (6).

66. Theorem. There exist infinite systems.
Proof.21 My own realm of thoughts, i. e., the totality S of all things, which

can be objects of my thought, is infinite. For if s signifies an element of S, then
is the thought s′, that s can be object of my thought, itself an element of S. If
we regard this as transform φ(s) of the element s then has the transformation
φ of S, thus determined, the property that the transform S′ is part of S; and
S′ is certainly proper part of S, because there are elements in S (e. g., my own
ego) which are different from such thought s′ and therefore are not contained in
S′. Finally it is clear that if a, b are different elements of S, their transforms a′,
b′ are also different, that therefore the transformation φ is a distinct (similar)
transformation (26). Hence S is infinite, which was to be proved.

67. Theorem. If R, S are similar systems, then is R finite or infinite
according as S is finite or infinite.

Proof. If S is infinite, therefore similar to a proper part S′ of itself, then if R
and S are similar, S′ by (33) must be similar to R and by (35) likewise similar
to a proper part of R, which therefore by (33) is itself similar to R; therefore R
is infinite, which was to be proved.

20If one does not care to employ the notion of similar systems (32) he must say: S is said
to be infinite, when there is a proper part of S (6) in which S can be distinctly (similarly)
transformed (26), (36). In this form I submitted the definition of the infinite which forms the
core of my whole investigation in September, 1882, to G. Cantor and several years earlier to
Schwarz and Weber. All other attempts that have come to my knowledge to distinguish the
infinite from the finite seem to me to have met with so little success that I think I may be
permitted to forego any criticism of them.

21A similar consideration is found in § 13 of the Paradoxien des Unendlichen by Bolzano
(Leipzig, 1851).

31



68. Theorem. Every system S, which possesses an infinite part is likewise
infinite; or, in other words, every part of a finite system is finite.

Proof. If T is infinite and there is hence such a similar transformation ψ of
T , that ψ(T ) is a proper part of T , then, if T is part of S, we can extend this
transformation ψ to a transformation φ of S in which, if s denotes any element
of S, we put φ(s) = ψ(s) or φ(s) = s according as s is element of T or not.
This transformation φ is a similar one; for, if a, b denote different elements of
S, then if both are contained in T , the transform φ(a) = ψ(a) is different from
the transform φ(b) = ψ(b), because ψ is a similar transformation; if further
a is contained in T , but b not, then is φ(a) = ψ(a) different from φ(b) = b,
because ψ(a) is contained in T ; if finally neither a nor b is contained in T then
also is φ(a) = a different from φ(b) = b, which was to be shown. Since further
ψ(T ) is part of T , because by (7) also part of S, it is clear that also φ(S) 3 S.
Since finally ψ(T ) is proper part of T there exists in T and therefore also in S,
an element t, not contained in ψ(T ) = φ(T ); since then the transform φ(s) of
every element s not contained in T is equal to s, and hence is different from t, t
cannot be contained in φ(S); hence φ(S) is proper part of S and consequently
S is infinite, which was to be proved.

69. Theorem. Every system which is similar to a part of a finite system, is
itself finite.

The proof follows from (67), (68).

70. Theorem. If a is an element of S, and if the aggregate T of all the
elements of S different from a is finite, then is also S finite.

Proof. We have by (64) to show that if φ denotes any similar transformation
of S in itself, the transform φ(S) or S′ is never a proper part of S but always
= S. Obviously S = M(a, T ) and hence by (23), if the transforms are again
denoted by accents, S′ = M(a′, T ′), and, on account of the similarity of the
transformation φ, a′ is not contained in T ′ (26). Since further by hypothesis
S′ 3 S, then must a′ and likewise every element of T ′ either = a, or be element
of T . If then—a case which we will treat first—a is not contained in T ′, then
must T ′ 3 T and hence T ′ = T , because φ is a similar transformation and
because T is a finite system; and since a′, as remarked, is not contained in T ′,
i. e., not in T , then must a′ = a, and hence in this case we actually have S′ = S
as was stated. In the opposite case when a is contained in T ′ and hence is the
transform b′ of an element b contained in T , we will denote by U the aggregate
of all those elements u of T , which are different from b; then T = M(b, U) and
by (15) S = M(a, b, U), hence S′ = M(a′, a, U ′). We now determine a new
transformation ψ of T in which we put ψ(b) = a′, and generally ψ(u) = u′,
whence by (23) ψ(T ) = M(a′, U ′). Obviously ψ is a similar transformation,
because φ was such, and because a is not contained in U and therefore also
a′ not in U ′. Since further a and every element u is different from b then (on
account of the similarity of φ) must also a′ and every element u′ be different
from a and consequently contained in T ; hence ψ(T ) 3 T and since T is finite,
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therefore must ψ(T ) = T , and M(a′, U ′) = T . From this by (15) we obtain

M(a′, a, U ′) = M(a, T )

i. e., according to the preceding S′ = S. Therefore in this case also the proof
demanded has been secured.

VI.

SIMPLY INFINITE SYSTEMS. SERIES OF NATURAL NUMBERS.

71. Definition. A system N is said to be simply infinite when there exists a
similar transformation φ of N in itself such that N appears as chain (44) of an
element not contained in φ(N). We call this element, which we shall denote in
what follows by the symbol 1, the base-element of N and say the simply infinite
system N is set in order [geordnet ] by this transformation φ. If we retain the
earlier convenient symbols for transforms and chains (IV) then the essence of a
simply infinite system N consists in the existence of a transformation φ of N
and an element 1 which satisfy the following conditions α, β, γ, δ:

α. N ′ 3 N .

β. N = 10.

γ. The element 1 is not contained in N ′.

δ. The transformation φ is similar.

Obviously it follows from α, γ, δ that every simply infinite system N is actually
an infinite system (64) because it is similar to a proper part N ′ of itself.

72. Theorem. In every infinite system S a simply infinite system N is
contained as a part.

Proof. By (64) there exists a similar transformation φ of S such that φ(S)
or S′ is a proper part of S; hence there exists an element 1 in S which is not
contained in S′. The chain N = 10, which corresponds to this transformation
φ of the system S in itself (44), is a simply infinite system set in order by φ; for
the characteristic conditions α, β, γ, δ in (71) are obviously all fulfilled.

73. Definition. If in the consideration of a simply infinite system N set
in order by a transformation φ we entirely neglect the special character of the
elements; simply retaining their distinguishability and taking into account only
the relations to one another in which they are placed by the order-setting trans-
formation φ, then are these elements called natural numbers or ordinal numbers
or simply numbers, and the base-element 1 is called the base-number of the
number-series N . With reference to this freeing the elements from every other
content (abstraction) we are justified in calling numbers a free creation of the hu-
man mind. The relations or laws which are derived entirely from the conditions
α, β, γ, δ in (71) and therefore are always the same in all ordered simply infinite
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systems, whatever names may happen to be given to the individual elements
(compare 134), form the first object of the science of numbers or arithmetic.
From the general notions and theorems of IV. about the transformation of a
system in itself we obtain immediately the following fundamental laws where a,
b, . . . m, n, . . . always denote elements of N , therefore numbers, A, B, C, . . .
parts of N , a′, b′, . . . m′, n′, . . . A′, B′, C ′ . . . the corresponding transforms,
which are produced by the order-setting transformation φ and are always ele-
ments or parts of N ; the transform n′ of a number n is also called the number
following n.

74. Theorem. Every number n by (45) is contained in its chain n0 and by
(53) the condition n 3 m0 is equivalent to n0 3 m0.

75. Theorem. By (57) n′
0 = (n0)′ = (n′)0.

76. Theorem. By (46) n′
0

3 n0.

77. Theorem. By (58) n0 = M(n, n′
0).

78. Theorem. N = M(1, N ′), hence every number different from the base-
number 1 is element of N ′, i. e., transform of a number.

The proof follows from (77) and (71).

79. Theorem. N is the only number-chain containing the base-number 1.
Proof. For if 1 is element of a number-chain K, then by (47) the associated

chain N 3 K, hence N = K, because it is self-evident that K 3 N .

80. Theorem of complete induction (inference from n to n′). In order to
show that a theorem holds for all numbers n of a chain m0, it is sufficient to
show,

ρ. that it holds for n = m, and
σ. that from the validity of the theorem for a number n of the chain m0 its

validity for the following number n′ always follows.
This results immediately from the more general theorem (59) or (60). The

most frequently occurring case is where m = 1 and therefore m0 is the complete
number-series N .

VII.

GREATER AND LESS NUMBERS.

81. Theorem. Every number n is different from the following number n′.
Proof by complete induction (80):
ρ. The theorem is true for the number n = 1, because it is not contained in

N ′ (71), while the following number 1′ as transform of the number 1 contained
in N is element of N ′.

σ. If the theorem is true for a number n and we put the following number
n′ = p, then is n different from p, whence by (26) on account of the similarity
(71) of the order-setting transformation φ it follows that n′, and therefore p, is
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different from p′. Hence the theorem holds also for the number p following n,
which was to be proved.

82. Theorem. In the transform-chain n′
0 of a number n by (74), (75) is

contained its transform n′, but not the number n itself.
Proof by complete induction (80):
ρ. The theorem is true for n = 1, because 1′

0 = N ′, and because by (71) the
base-number 1 is not contained in N ′.

σ. If the theorem is true for a number n, and we again put n′ = p, then is n
not contained in p0, therefore is it different from every number q contained in
p0, whence by reason of the similarity of φ it follows that n′, and therefore p,
is different from every number q′ contained in p′

0, and is hence not contained in
p′
0. Therefore the theorem holds also for the number p following n, which was

to be proved.

83. Theorem. The transform-chain n′
0 is proper part of the chain n0.

The proof follows from (76), (74), (82).

84. Theorem. From m0 = n0 it follows that m = n.
Proof. Since by (74) m is contained in m0, and

m0 = n0 = M(n, n′
0)

by (77), then if the theorem were false and hence m different from n, m would
be contained in the chain n′

0, hence by (74) also m0 3 n′
0, i. e., n0 3 n′

0; but this
contradicts theorem (83). Hence our theorem is established.

85. Theorem. If the number n is not contained in the number-chain K,
then is K 3 n′

0.
Proof by complete induction (80):
ρ. By (78) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then is it also true for the following

number, p = n′; for if p is not contained in the number-chain K, then by (40) n
also cannot be contained in K and hence by our hypothesis K 3 n′

0; now since
by (77) n′

0 = p0 = M(p, p′
0), hence K 3 M(p, p′

0) and p is not contained in K,
then must K 3 p′

0, which was to be proved.

86. Theorem. If the number n is not contained in the number-chain K, but
its transform n′ is, then K = n′

0.
Proof. Since n is not contained in K, then by (85) K 3 n′

0, and since n′ 3 K,
then by (47) is also n′

0
3 K, and hence K = n′

0, which was to be proved.

87. Theorem. In every number-chain K there exists one, and by (84) only
one, number k, whose chain k0 = K.

Proof. If the base-number 1 is contained in K, then by (79) K = N = 10.
In the opposite case let Z be the system of all numbers not contained in K;
since the base-number 1 is contained in Z, but Z is only a proper part of the
number-series N , then by (79) Z cannot be a chain, i. e., Z ′ cannot be part of
Z; hence there exists in Z a number n, whose transform n′ is not contained in
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Z, and is therefore certainly contained in K; since further n is contained in Z,
and therefore not in K, then by (86) K = n′

0, and hence k = n′, which was to
be proved.

88. Theorem. If m, n are different numbers then by (83), (84) one and
only one of the chains m0, n0 is proper part of the other and either n0 3 m′

0 or
m0 3 n′

0.
Proof. If n is contained in m0, and hence by (74) also n0 3 m0, then m can

not be contained in the chain n0 (because otherwise by (74) we should have
m0 3 n0, therefore m0 = n0, and hence by (84) also m = n) and thence it
follows by (85) that n0 3 m′

0. In the contrary case, when n is not contained in
the chain m0, we must have by (85) m0 3 n′

0, which was to be proved.

89. Definition. The number m is said to be less than the number n and at
the same time n greater than m, in symbols

m < n, n > m,

when the condition
n0 3 m′

0

is fulfilled, which by (74) may also be expressed

n 3 m′
0.

90. Theorem. If m, n are any numbers, then always one and only one of
the following cases λ, µ, ν occurs:

λ. m = n, n = m, i. e., m0 = n0

µ. m < n, n > m, i. e., n0 3 m′
0

ν. m > n, n < m, i. e., m0 3 n′
0.

Proof. For if λ occurs (84) then can neither µ nor ν occur because by (83)
we never have n0 3 n′

0. But if λ does not occur then by (88) one and only one
of the cases µ, ν occurs, which was to be proved.

91. Theorem. n < n′.
Proof. For the condition for the case ν in (90) is fulfilled by m = n′.

92. Definition. To express that m is either = n or < n, hence not > n (90)
we use the symbols

m 5 n or also n = m

and we say m is at most equal to n, and n is at least equal to m.

93. Theorem. Each of the conditions

m 5 n, m < n′, n0 3 m0

is equivalent to each of the others.
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Proof. For if m 5 n, then from λ, µ in (90) we always have n0 3 m0, because
by (76) m′

0
3 m. Conversely, if n0 3 m0, and therefore by (74) also n 3 m0, it

follows from m0 = M(m,m′
0) that either n = m, or n 3 m′

0, i. e., n > m. Hence
the condition m 5 n is equivalent to n0 3 m0. Besides it follows from (22), (27),
(75) that this condition n0 3 m0 is again equivalent to n′

0
3 m′

0, i. e., by µ in
(90) to m < n′, which was to be proved.

94. Theorem. Each of the conditions

m′ 5 n, m′ < n′, m < n

is equivalent to each of the others.
The proof follows immediately from (93), if we replace in it m by m′, and

from µ in (90).

95. Theorem. If l < m and m 5 n or if l 5 m, and m < n, then is l < n.
But if l 5 m and m 5 n, then is l 5 n.

Proof. For from the corresponding conditions (89), (93)m0 3 l′0 and n0 3 m0,
we have by (7) n0 3 l′0 and the same thing comes also from the conditions m0 3 l0
and n0 3 m′

0, because in consequence of the former we have also m′
0

3 l′0. Finally
from m0 3 l0 and n0 3 m0 we have also n0 3 l0 which was to be proved.

96. Theorem. In every part T of N there exists one and only one least
number k, i. e., a number k which is less than every other number contained in
T . If T consists of a single number, then is it also the least number in T .

Proof. Since T0 is a chain (44), then by (87) there exists one number k
whose chain k0 = T0. Since from this it follows by (45), (77) that T 3 M(k, k′

0),
then first must k itself be contained in T (because otherwise T 3 k′

0, hence by
(47) also T0 3 k′

0, i. e., k 3 k′
0, which by (83) is impossible), and besides every

number of the system T , different from k, must be contained in k′
0, i. e., be > k

(89), whence at once from (90) it follows that there exists in T one and only
one least number, which was to be proved.

97. Theorem. The least number of the chain n0 is n, and the base-number
1 is the least of all numbers.

Proof. For by (74), (93) the condition m 3 n0 is equivalent to m = n. Or
our theorem also follows immediately from the proof of the preceding theorem,
because if in that we assume T = n0, evidently k = n (51).

98. Definition. If n is any number, then will we denote by Zn the system of
all numbers that are not greater than n, and hence not contained in n′

0. The
condition

m 3 Zn

by (92), (93) is obviously equivalent to each of the following conditions:

m 5 n, m < n′, n0 3 m0.

99. Theorem. 1 3 Zn and n 3 Zn.
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The proof follows from (98) or from (71) and (82).

100. Theorem. Each of the conditions equivalent by (98)

m 3 Zn, m 5 n, m < n′, n0 3 m0

is also equivalent to the condition

Zm 3 Zn.

Proof. For if m 3 Zn, and hence m 5 n, and if l 3 Zm, and hence l 5 m,
then by (95) also l 5 n, i. e., l 3 Zn; if therefore m 3 Zn, then is every element
l of the system Zm also element of Zn, i. e., Zm 3 Zn. Conversely, if Zm 3 Zn,
then by (7) must also m 3 Zn, because by (99) m 3 Zm, which was to be proved.

101. Theorem. The conditions for the cases λ, µ, ν in (90) may also be put
in the following form:

λ. m = n, n = m, Zm = Zn

µ. m < n, n > m, Zm′ 3 Zn

ν. m > n, n < m, Zn′ 3 Zm

The proof follows immediately from (90) if we observe that by (100) the
conditions n0 3 m0 and Zm 3 Zn are equivalent.

102. Theorem. Z1 = 1.
Proof. For by (99) the base-number 1 is contained in Z1, while by (78) every

number different from 1 is contained in 1′
0, hence by (98) not in Z1, which was

to be proved.

103. Theorem. By (98) N = M(Zn, n
′
0).

104. Theorem. n = G(Zn, n0), i. e., n is the only common element of the
system Zn and n0.

Proof. From (99) and (74) it follows that n is contained in Zn and n0; but
every element of the chain n0, different from n by (77) is contained in n′

0, and
hence by (98) not in Zn, which was to be proved.

105. Theorem. By (91), (98) the number n′ is not contained in Zn.

106. Theorem. If m < n, then is Zm proper part of Zn and conversely.
Proof. If m < n, then by (100) Zm 3 Zn, and since the number n, by (99)

contained in Zn, can by (98) not be contained in Zm because n > m, therefore
Zm is proper part of Zn. Conversely if Zm is proper part of Zn then by (100)
m 5 n, and since m cannot be = n, because otherwise Zm = Zn, we must have
m < n, which was to be proved.

107. Theorem. Zn is proper part of Zn′ .
The proof follows from (106), because by (91) n < n′.

108. Theorem. Zn′ = M(Zn, n
′).
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Proof. For every number contained in Zn′ , by (98) is 5 n′, hence either
= n′ or < n′, and therefore by (98) element of Zn. Therefore certainly Zn′ 3

M(Zn, n
′). Since conversely by (107) Zn 3 Zn′ and by (99) n′ 3 Zn′ , then by

(10) we have
M(Zn, n

′) 3 Zn′ ,

whence our theorem follows by (5).

109. Theorem. The transform Z ′
n of the system Zn is proper part of the

system Zn′ .
Proof. For every number contained in Z ′

n is the transform m′ of a number
m contained in Zn, and since m 5 n, and hence by (94) m′ 5 n′, we have by
(98) Z ′

n
3 Zn′ . Since further the number 1 by (99) is contained in Zn′ , but by

(71) is not contained in the transform Z ′
n, then is Z ′

n proper part of Zn′ , which
was to be proved.

110. Theorem. Zn′ = M(1, Z ′
n).

Proof. Every number of the system Zn′ different from 1 by (78) is the
transform m′ of a number m and this must be 5 n, and hence by (98) contained
in Zn (because otherwise m > n, hence by (94) also m′ > n′ and consequently
by (98) m′ would not be contained in Zn′); but from m 3 Zn we have m′ 3 Z ′

n,
and hence certainly

Zn′ 3 M(1, Z ′
n).

Since conversely by (99) 1 3 Zn, and by (109) Z ′
n

3 Zn′ , then by (10) we have
M(1, Z ′

n) 3 Zn′ and hence our theorem follows by (5).

111. Definition. If in a system E of numbers there exists an element g,
which is greater than every other number contained in E, then g is said to be
the greatest number of the system E, and by (90) there can evidently be only
one such greatest number in E. If a system consists of a single number, then is
this number itself the greatest number of the system.

112. Theorem. By (98) n is the greatest number of the system Zn.

113. Theorem. If there exists in E a greatest number g, then is E 3 Zg.
Proof. For every number contained in E is 5 g, and hence by (98) contained

in Zg, which was to be proved.

114. Theorem. If E is part of a system Zn, or what amounts to the same
thing, there exists a number n such that all numbers contained in E are 5 n,
then E possesses a greatest number g.

Proof. The system of all numbers p satisfying the condition E 3 Zp—and
by our hypothesis such numbers exist—is a chain (37), because by (107), (7) it
follows also that E 3 Zp′ , and hence by (87) = g0, where g signifies the least of
these numbers (96), (97). Hence also E 3 Zg, therefore by (98) every number
contained in E is 5 g, and we have only to show that the number g is itself
contained in E. This is immediately obvious if g = 1, for then by (102) Zg, and
consequently also E consists of the single number 1. But if g is different from
1 and consequently by (78) the transform f ′ of a number f , then by (108) is
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E 3 M(Zf , g); if therefore g were not contained in E, then would E 3 Zf , and
there would consequently be among the numbers p a number f by (91) < g,
which is contrary to what precedes; hence g is contained in E, which was to be
proved.

115. Definition. If l < m and m < n we say the number m lies between l
and n (also between n and l).

116. Theorem. There exists no number lying between n and n′.
Proof. For as soon as m < n′, and hence by (93) m 5 n, then by (90) we

cannot have n < m, which was to be proved.

117. Theorem. If t is a number in T , but not the least (96), then there
exists in T one and only one next less number s, i. e., a number s such that
s < t, and that there exists in T no number lying between s and t. Similarly, if
t is not the greatest number in T (111) there always exists in T one and only
one next greater number u, i. e., a number u such that t < u, and that there
exists in T no number lying between t and u. At the same time in T t is next
greater than s and next less than u.

Proof. If t is not the least number in T , then let E be the system of all
those numbers of T that are < t; then by (98) E 3 Zt, and hence by (114) there
exists in E a greatest number s obviously possessing the properties stated in
the theorem, and also it is the only such number. If further t is not the greatest
number in T , then by (96) there certainly exists among all the numbers of T ,
that are > t, a least number u, which and which alone possesses the properties
stated in the theorem. In like manner the correctness of the last part of the
theorem is obvious.

118. Theorem. In N the number n′ is next greater than n, and n next less
than n′.

The proof follows from (116), (117).

VIII.

FINITE AND INFINITE PARTS OF THE NUMBER-SERIES.

119. Theorem. Every system Zn in (98) is finite.
Proof by complete induction (80).
ρ. By (65), (102) the theorem is true for n = 1.
σ. If Zn is finite, then from (108) and (70) it follows that Zn′ is also finite,

which was to be proved.

120. Theorem. If m, n are different numbers, then are Zm, Zn dissimilar
systems.

Proof. By reason of the symmetry we may by (90) assume that m < n; then
by (106) Zm is proper part of Zn, and since by (119) Zn is finite, then by (64)
Zm and Zn cannot be similar, which was to be proved.
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121. Theorem. Every part E of the number-series N , which possesses a
greatest number (111), is finite.

The proof follows from (113), (119), (68).

122. Theorem. Every part U of the number-series N , which possesses no
greatest number, is simply infinite (71).

Proof. If u is any number in U , there exists in U by (117) one and only
one next greater number than u, which we will denote by ψ(u) and regard as
transform of u. The thus perfectly determined transformation ψ of the system
U has obviously the property

α. ψ(U) 3 U ,
i. e., U transformed in itself by ψ. If further u, v are different numbers in U , then
by symmetry we may by (90) assume that u < v; thus by (117) it follows from
the definition of ψ that ψ(u) 5 v and v < ψ(v), and hence by (95) ψ(u) < ψ(v);
therefore by (90) the transforms ψ(u), ψ(v) are different, i. e.,

δ. the transformation ψ is similar.
Further, if u1 denotes the least number (96) of the system U , then every number
u contained in U is = u1, and since generally u < ψ(u), then by (95) u1 < ψ(u),
and therefore by (90) u1 is different from ψ(u), i. e.,

γ. the element u1 of U is not contained in ψ(u).
Therefore ψ(U) is proper part of U and hence by (64) U is an infinite system.
If then in agreement with (44) we denote by ψ0(V ), when V is any part of U ,
the chain of V corresponding to the transformation ψ, we wish to show finally
that

β. U = ψ0(u1).
In fact, since every such chain ψ0(V ) by reason of its definition (44) is a part of
the system U transformed in itself by ψ, then evidently is ψ0(u1) 3 U ; conversely
it is first of all obvious from (45) that the element u1 contained in U is certainly
contained in ψ0(u1); but if we assume that there exist elements of U , that are
not contained in ψ0(u1), then must there be among them by (96) a least number
w, and since by what precedes this is different from the least number u1 of the
system U , then by (117) must there exist in U also a number v which is next less
than w, whence it follows at once that w = φ(v); since therefore v < w, then
must v by reason of the definition of w certainly be contained in ψ0(u1); but
from this by (55) it follows that also ψ(v), and hence w must be contained in
ψ0(u1), and since this is contrary to the definition of w, our foregoing hypothesis
is inadmissible; therefore U 3 ψ0(u1) and hence also U = ψ0(u1) as stated. From
α, β, γ, δ it then follows by (71) that U is a simply infinite system set in order
by ψ, which was to be proved.

123. Theorem. In consequence of (121), (122) any part T of the number-
series N is finite or simply infinite, according as a greatest number exists or
does not exist in T .
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IX.

DEFINITION OF A TRANSFORMATION OF THE NUMBER-SERIES BY
INDUCTION.

124. In what follows we denote numbers by small Italics and retain through-
out all symbols of the previous sections VI. to VIII., while Ω designates an
arbitrary system whose elements are not necessarily contained in N .

125. Theorem. If there is given an arbitrary (similar or dissimilar) trans-
formation θ of a system Ω in itself, and besides a determinate element ω in Ω,
then to every number n corresponds one transformation ψn and one only of the
associated number-system Zn explained in (98), which satisfies the conditions:22

I. ψnZn 3 Ω
II. ψn(1) = ω

III. ψn(t′) = θψn(t), if t < n, where the symbol θψn has the meaning given
in (25).

Proof by complete induction (80).
ρ. The theorem is true for n = 1. In this case indeed by (102) the sys-

tem Zn consists of the single number 1, and the transformation ψ1 is therefore
completely defined by II alone so that I is fulfilled while III drops out entirely.

σ. If the theorem is true for a number n then we show that it is also true
for the following number p = n′, and we begin by proving that there can be
only a single corresponding transformation ψp of the system Zp. In fact, if a
transformation ψp satisfies the conditions

I′. ψp(Zp) 3 Ω
II′. ψp(1) = ω

III′. ψp(m′) = θψp(m), when m < p, then there is also contained in it by
(21), because Zn 3 Zp (107) a transformation of Zn which obviously satisfies the
same conditions I, II, III as ψn, and therefore coincides throughout with ψn; for
all numbers contained in Zn, and hence (98) for all numbers m which are < p,
i. e., 5 n, must therefore

ψp(m) = ψn(m) (m)

whence there follows, as a special case,

ψp(n) = ψn(n); (n)

since further by (105), (108) p is the only number of the system Zp not contained
in Zn, and since by III′ and (n) we must also have

ψp(p) = θψn(n) (p)

there follows the correctness of our foregoing statement that there can be only
one transformation ψp of the system Zp satisfying the conditions I′, II′, III′,

22For clearness here and in the following theorem (126) I have especially mentioned condition
I., although properly it is a consequence of II. and III.
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because by the conditions (m) and (p) just derived ψp is completely reduced to
ψn. We have next to show conversely that this transformation ψp of the system
Zp completely determined by (m) and (p) actually satisfies the conditions I′,
II′, III′. Obviously I′ follows from (m) and (p) with reference to I, and because
θ(Ω) 3 Ω. Similarly II′ follows from (m) and II, since by (99) the number 1 is
contained in Zn. The correctness of III′ follows first for those numbers m which
are < n from (m) and III, and for the single number m = n yet remaining
it results from (p) and (n). Thus it is completely established that from the
validity of our theorem for the number n always follows its validity for the
following number p, which was to be proved.

126. Theorem of the definition by induction. If there is given an arbitrary
(similar or dissimilar) transformation θ of a system Ω in itself, and besides a
determinate element ω in Ω, then there exists one and only one transformation
ψ of the number-series N , which satisfies the conditions

I. ψ(N) 3 Ω
II. ψ(1) = ω

III. ψ(n′) = θψ(n), where n represents every number.
Proof. Since, if there actually exists such a transformation ψ, there is con-

tained in it by (21) a transformation ψn, of the system Zn, which satisfies the
conditions I, II, III stated in (125), then because there exists one and only one
such transformation ψn must necessarily

ψ(n) = ψn(n). (n)

Since thus ψ is completely determined it follows also that there can exist only
one such transformation ψ (see the closing remark in (130)). That conversely
the transformation ψ determined by (n) also satisfies our conditions I, II, III,
follows easily from (n) with reference to the properties I, II and (p) shown in
(125), which was to be proved.

127. Theorem. Under the hypotheses made in the foregoing theorem,

ψ(T ′) = θψ(T ),

where T denotes any part of the number-series N .
Proof. For if t denotes every number of the system T , then ψ(T ′) consists of

all elements ψ(t′), and θψ(T ) of all elements θψ(t); hence our theorem follows
because by III in (126) ψ(t′) = θψ(t).

128. Theorem. If we maintain the same hypotheses and denote by θ0 the
chains (44) which correspond to the transformation θ of the system Ω in itself,
then is

ψ(N) = θ0(ω).

Proof. We show first by complete induction (80) that

ψ(N) 3 θ0(ω),

i. e., that every transform ψ(n) is also element of θ0(ω). In fact,
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ρ. this theorem is true for n = 1, because by (126, II) ψ(1) = ω, and because
by (45) ω 3 θ0(ω).

σ. If the theorem is true for a number n, and hence ψ(n) 3 θ0(ω), then by
(55) also θ

(
ψ(n)

)
3 θ0(ω), i. e., by (126, III) ψ(n′) 3 θ0(ω), hence the theorem

is true for the following number n′, which was to be proved.
In order further to show that every element ν of the chain θ0(ω) is contained

in ψ(N), therefore that
θ0(ω) 3 ψ(N)

we likewise apply complete induction, i. e., theorem (59) transferred to Ω and
the transformation θ. In fact,

ρ. the element ω = ψ(1), and hence is contained in ψ(N).
σ. If ν is a common element of the chain θ0(ω) and the system ψ(N), then

ν = ψ(n), where n denotes a number, and by (126, III) we get θ(ν) = θψ(n) =
ψ(n′), and therefore θ(ν) is contained in ψ(N), which was to be proved.

From the theorems just established, ψ(N) 3 θ0(ω) and θ0(ω) 3 ψ(N), we get
by (5) ψ(N) = θ0(ω), which was to be proved.

129. Theorem. Under the same hypotheses we have generally:

ψ(n0) = θ0
(
ψ(n)

)
.

Proof by complete induction (80). For
ρ. By (128) the theorem holds for n = 1, since 10 = N and ψ(1) = ω.
σ. If the theorem is true for a number n, then

θ
(
ψ(n0)

)
= θ

(
θ0

(
ψ(n)

))
;

since by (127), (75)
θ
(
ψ(n0)

)
= ψ(n′

0),

and by (57), (126, III)

θ
(
θ0

(
ψ(n)

))
= θ0

(
θ
(
ψ(n)

))
= θ0

(
ψ(n′)

)
,

we get ψ(n′
0) = θ0

(
ψ(n′)

)
,

i. e., the theorem is true for the number n′ following n, which was to be proved.

130. Remark. Before we pass to the most important applications of the
theorem of definition by induction proved in (126), (sections X–XIV), it is worth
while to call attention to a circumstance by which it is essentially distinguished
from the theorem of demonstration by induction proved in (80) or rather in (59),
(60), however close may seem the relation between the former and the latter.
For while the theorem (59) is true quite generally for every chain A0 where A is
any part of a system S transformed in itself by any transformation φ (IV), the
case is quite different with the theorem (126), which declares only the existence
of a consistent (or one-to-one) transformation ψ of the simply infinite system
10. If in the latter theorem (still maintaining the hypotheses regarding Ω and θ)
we replace the number-series 10 by an arbitrary chain A0 out of such a system
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S, and define a transformation ψ of A0 in Ω in a manner analogous to that in
(126, II, III) by assuming that

ρ. to every element a of A there is to correspond a determinate element ψ(a)
selected from Ω, and

σ. for every element n contained in A0 and its transform n′ = φ(n), the con-
dition ψ(n′) = θψ(n) is to hold, then would the case very frequently occur that
such a transformation ψ does not exist, since these conditions ρ, σ may prove
incompatible, even though the freedom of choice contained in ρ be restricted
at the outset to conform to the condition σ. An example will be sufficient to
convince one of this. If the system S consisting of the different elements a and b
is so transformed in itself by φ that a′ = b, b′ = a, then obviously a0 = b0 = S;
suppose further the system Ω consisting of the different elements α, β, and γ
be so transformed in itself by θ that θ(α) = β, θ(β) = γ, θ(γ) = α; if we now
demand a transformation ψ of a0 in Ω such that ψ(a) = α, and that besides for
every element n contained in a0 always ψ(n′) = θψ(n), we meet a contradiction;
since for n = a, we get ψ(b) = θ(α) = β, and hence for n = b, we must have
ψ(a) = θ(β) = γ, while we had assumed ψ(a) = α.

But if there exists a transformation ψ of A0 in Ω, which satisfies the foregoing
conditions ρ, σ without contradiction, then from (60) it follows easily that it is
completely determined; for if the transformation χ satisfies the same conditions,
then we have, generally, χ(n) = ψ(n), since by ρ this theorem is true for all
elements n = a contained in A, and since if it is true for an element n of A0 it
must by σ be true also for its transform n′.

131. In order to bring out clearly the import of our theorem (126), we will
here insert a consideration which is useful for other investigations also, e. g., for
the so-called group-theory.

We consider a system Ω, whose elements allow a certain combination such
that from an element ν by the effect of an element ω, there always results again
a determinate element of the same system Ω, which may be denoted by ω � ν
or ων, and in general is to be distinguished from νω. We can also consider
this in such a way that to every determinate element ω, there corresponds a
determinate transformation of the system Ω in itself (to be denoted by ω̇), in
so far as every element ν furnishes the determinate transform ω̇(ν) = ων. If to
this system Ω and its element ω we apply theorem (126), designating by ω̇ the
transformation there denoted by θ, then there corresponds to every number n
a determinate element ψ(n) contained in Ω, which may now be denoted by the
symbol ωn and sometimes called the nth power of ω; this notion is completely
defined by the conditions imposed upon it

II. ω1 = ω

III. ωn′
= ω ωn,

and its existence is established by the proof of theorem (126).
If the foregoing combination of the elements is further so qualified that for

arbitrary elements µ, ν, ω, we always have ω(ν µ) = ω ν(µ), then are true also
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the theorems
ωn′

= ωn ω, ωm ωn = ωn ωm,

whose proofs can easily be effected by complete induction and may be left to
the reader.

The foregoing general consideration may be immediately applied to the fol-
lowing example. If S is a system of arbitrary elements, and Ω the associated
system whose elements are all the transformations ν of S in itself (36), then by
(25) can these elements be continually compounded, since ν(S) 3 S, and the
transformation ων compounded out of such transformations ν and ω is itself
again an element of Ω. Then are also all elements ωn transformations of S in
itself, and we say they arise by repetition of the transformation ω. We will now
call attention to a simple connection existing between this notion and the notion
of the chain ω0(A) defined in (44), where A again denotes any part of S. If for
brevity we denote by An the transform ωn(A) produced by the transformation
ωn, then from III and (25) it follows that ω(An) = An′ . Hence it is easily shown
by complete induction (80) that all these systems An are parts of the chain
ω0(A); for

ρ. by (50) this statement is true for n = 1, and
σ. if it is true for a number n, then from (55) and from An′ = ω(An) it

follows that it is also true for the following number n′, which was to be proved.
Since further by (45) A 3 ω0(A), then from (10) it results that the system K
compounded out of A and all transforms An is part of ω0(A). Conversely, since
by (23) ω(K) is compounded out of ω(A) = A1 and all systems ω(An) = An′ ,
therefore by (78) out of all systems An, which by (9) are parts of K, then by
(10) is ω(K) 3 K, i. e., K is a chain (37), and since by (9) A 3 K, then by (47)
it follows also that that ω0(A) 3 K. Therefore ω0(A) = K, i. e., the following
theorem holds: If ω is a transformation of a system S in itself, and A any part
of S, then is the chain of A corresponding to the transformation ω compounded
out of A and all the transforms ωn(A) resulting from repetitions of ω. We advise
the reader with this conception of a chain to return to the earlier theorems (57),
(58).

X.

THE CLASS OF SIMPLY INFINITE SYSTEMS.

132. Theorem. All simply infinite systems are similar to the number-series
N and consequently by (33) also to one another.

Proof. Let the simply infinite system Ω be set in order (71) by the transfor-
mation θ, and let ω be the base-element of Ω thus resulting; if we again denote
by θ0 the chains corresponding to the transformation θ (44), then by (71) is the
following true:

α. θ(Ω) 3 Ω.
β. Ω = θ0(ω).
γ. ω is not contained in θ(Ω).
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δ. The transformation θ is similar.
If then ψ denotes the transformation of the number-series N defined in (126),
then from β and (128) we get first

ψ(N) = Ω,

and hence we have only yet to show that ψ is a similar transformation, i. e., (26)
that to different numbers m, n correspond different transforms ψ(m), ψ(n). On
account of the symmetry we may by (90) assume that m > n, hence m 3 n′

0,
and the theorem to prove comes to this that ψ(n) is not contained in ψ(n′

0), and
hence by (127) is not contained in θψ(n0). This we establish for every number
n by complete induction (80). In fact,

ρ. this theorem is true by γ for n = 1, since ψ(1) = ω and ψ(10) = ψ(N) = Ω.
σ. If the theorem is true for a number n, then is it also true for the following

number n′; for if ψ(n′), i. e., θψ(n), were contained in θψ(n′
0), then by δ and

(27), ψ(n) would also be contained in ψ(n′
0) while our hypothesis states just the

opposite; which was to be proved.

133. Theorem. Every system which is similar to a simply infinite system
and therefore by (132), (33) to the number-series N is simply infinite.

Proof. If Ω is a system similar to the number-series N , then by (32) there
exists a similar transformation ψ of N such that

I. ψ(N) = Ω;
then we put

II. ψ(1) = ω.

If we denote, as in (26), by ψ the inverse, likewise similar transformation of Ω,
then to every element ν of Ω there corresponds a determinate number ψ(ν) = n,
viz., that number whose transform ψ(n) = ν. Since to this number n there
corresponds a determinate following number φ(n) = n′, and to this again a
determinate element ψ(n′) in Ω there belongs to every element ν of the sys-
tem Ω a determinate element ψ(n′) of that system which as transform of ν we
shall designate by θ(ν). Thus a transformation θ of Ω in itself is completely
determined,23 and in order to prove our theorem we will show that by θΩ is set
in order (71) as a simply infinite system, i. e., that the conditions α, β, γ, δ
stated in the proof of (132) are all fulfilled. First α is immediately obvious from
the definition of θ. Since further to every number n corresponds an element
ν = φ(n), for which θ(ν) = ψ(n′), we have generally,

III. ψ(n′) = θψ(n),

and thence in connection with I, II, α it results that the transformations θ, ψ
fulfill all the conditions of theorem (126); therefore β follows from (128) and I.
Further by (127) and I

ψ(N ′) = θψ(N) = θ(Ω),

23Evidently θ is the transformation ψ φψ compounded by (25) out of ψ, φ, ψ.
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and thence in combination with II and the similarity of the transformation ψ
follows γ, because otherwise ψ(1) must be contained in ψ(N ′), hence by (27) the
number 1 in N ′, which by (71, γ) is not the case. If finally µ, ν denote elements
of Ω and m, n the corresponding numbers whose transforms are ψ(m) = µ,
ψ(n) = ν, then from the hypothesis θ(µ) = θ(ν) it follows by the foregoing that
ψ(m′) = ψ(n′), thence on account of the similarity of ψ, φ that m′ = n′, m = n,
therefore also µ = ν; hence also δ is true, which was to be proved.

134. Remark. By the two preceding theorems (132), (133) all simply infinite
systems form a class in the sense of (34). At the same time, with reference to
(71), (73) it is clear that every theorem regarding numbers, i. e., regarding the
elements n of the simply infinite system N set in order by the transformation
φ, and indeed every theorem in which we leave entirely out of consideration the
special character of the elements n and discuss only such notions as arise from
the arrangement φ, possesses perfectly general validity for every other simply
infinite system Ω set in order by a transformation θ and its elements ν, and that
the passage from N to Ω (e. g., also the translation of an arithmetic theorem
from one language into another) is effected by the transformation ψ considered
in (132), (133), which changes every element n of N into an element ν of Ω, i. e.,
into ψ(n). This element ν can be called the nth element of Ω and accordingly the
number n is itself the nth number of the number-series N . The same significance
which the transformation φ possesses for the laws in the domain N , in so far as
every element n is followed by a determinate element φ(n) = n′, is found, after
the change effected by ψ, to belong to the transformation θ for the same laws
in the domain Ω, in so far as the element ν = ψ(n) arising from the change of
n is followed by the element θ(ν) = ψ(n′) arising from the change of n′; we are
therefore justified in saying that by ψφ is changed into θ, which is symbolically
expressed by θ = ψφψ, φ = ψθψ. By these remarks, as I believe, the definition
of the notion of numbers given in (73) is fully justified. We now proceed to
further applications of theorem (126).

XI.

ADDITION OF NUMBERS.

135. Definition. It is natural to apply the definition set forth in theorem
(126) of a transformation ψ of the number-series N , or of the function ψ(n)
determined by it to the case, where the system there denoted by Ω in which
the transform ψ(N) is to be contained, is the number-series N itself, because
for this system Ω a transformation θ of Ω in itself already exists, viz., that
transformation φ by which N is set in order as a simply infinite system (71),
(73). Then is also Ω = N , θ(n) = φ(n) = n′, hence

I. ψ(N) 3 N,

and it remains in order to determine ψ completely only to select the element ω
from Ω, i. e., from N , at pleasure. If we take ω = 1, then evidently ψ becomes
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the identical transformation (21) of N , because the conditions

ψ(1) = 1, ψ(n′) = (ψ(n))′

are generally satisfied by ψ(n) = n. If then we are to produce another trans-
formation ψ of N , then for ω we must select a number m′ different from 1, by
(78) contained in N , where m itself denotes any number; since the transforma-
tion ψ is obviously dependent upon the choice of this number m, we denote the
corresponding transform ψ(n) of an arbitrary number n by the symbol m+ n,
and call this number the sum which arises from the number m by the addition
of the number n, or in short the sum of the numbers m, n. Therefore by (126)
this sum is completely determined by the conditions24

II. m+ 1 = m′,

III. m+ n′ = (m+ n)′.

136. Theorem. m′ + n = m+ n′.
Proof by complete induction (80). For
ρ. the theorem is true for n = 1, since by (135, II)

m′ + 1 = (m′)′ = (m+ 1)′,

and by (135, III) (m+ 1)′ = m+ 1′.
σ. If the theorem is true for a number n, and we put the following number

n′ = p then is m′ + n = m + p, hence also (m′ + n)′ = (m + p)′, whence by
(135, III) m′ + p = m + p′; therefore the theorem is true also for the following
number p, which was to be proved.

137. Theorem. m′ + n = (m+ n)′.
The proof follows from (136) and (135, III).

138. Theorem. 1 + n = n′.
Proof by complete induction (80). For
ρ. by (135, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n and we put n′ = p, then 1 + n = p,

therefore also (1 + n)′ = p′, whence by (135, III) 1 + p = p′, i. e., the theorem
is true also for the following number p, which was to be proved.

139. Theorem. 1 + n = n+ 1.
The proof follows from (138) and (135, II).

140. Theorem. m+ n = n+m.
24The above definition of addition based immediately upon theorem (126) seems to me to

be the simplest. By the aid of the notion developed in (131) we can, however, define the sum
m + n by φn(m) or also by φm(n), where φ has again the foregoing meaning. In order to
show the complete agreement of these definitions with the foregoing, we need by (126) only to
show that if φn(m) or φm(n) is denoted by ψ(n), the conditions ψ(1) = m′, ψ(n′) = φψ(n)
are fulfilled which is easily done with the aid of complete induction (80) by the help of (131).
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Proof by complete induction (80). For
ρ. by (139) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then there follows also (m+ n)′ =

(n+m)′, i. e., by (135, III) m+ n′ = n+m′, hence by (136) m+ n′ = n′ +m;
therefore the theorem is also true for the following number n′, which was to be
proved.

141. Theorem. (l +m) + n = l + (m+ n).
Proof by complete induction (80). For
ρ. the theorem is true for n = 1, because by (135, II, III, II) (l +m) + 1 =

(l +m)′ = l +m′ = l + (m+ 1).
σ. If the theorem is true for a number n, then there follows also

(
(l +m) +

n
)′ =

(
l + (m+ n)

)′, i. e., by (135, III)

(l +m) + n′ = l + (m+ n)′ = l + (m+ n′),

therefore the theorem is also true for the following number n′, which was to be
proved.

142. Theorem. m+ n > m.
Proof by complete induction (80). For
ρ. by (135, II) and (91) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then by (95) it is also true for the

following number n′, because by (135, III) and (91)

m+ n′ = (m+ n)′ > m+ n,

which was to be proved.

143. Theorem. The conditions m > a and m+ n > a+ n are equivalent.
Proof by complete induction (80). For
ρ. by (135, II) and (94) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then is it also true for the following

number n′, since by (94) the condition m+n > a+n is equivalent to (m+n)′ >
(a+ n)′, hence by (135, III) also equivalent to

m+ n′ > a+ n′,

which was to be proved.

144. Theorem. If m > a and n > b, then is also

m+ n > a+ b.

Proof. For from our hypotheses we have by (143) m + n > a + n and
n+ a > b+ a or, what by (140) is the same, a+ n > a+ b, whence the theorem
follows by (95).

145. Theorem. If m+ n = a+ n then m = a.
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Proof. For if m does not = a, hence by (90) either m > a or m < a, then by
(143) respectively m+ n > a+ n or m+ n < a+ n, therefore by (90) we surely
cannot have m+ n = a+ n which was to be proved.

146. Theorem. If l > n, then there exists one and by (157) only one number
m which satisfies the condition m+ n = l.

Proof by complete induction (80). For
ρ. the theorem is true for n = 1. In fact, if l > 1, i. e., (89) if l is contained

in N ′, and hence is the transform m′ of a number m, then by (135, II) it follows
that l = m+ 1, which was to be proved.

σ. If the theorem is true for a number n, then we show that it is also true
for the following number n′. In fact, if l > n′, then by (91), (95) also l > n, and
hence there exists a number k which satisfies the condition l = k + n; since by
(138) this is different from 1 (otherwise l would be = n′) then by (78) is it the
transform m′ of a number m, consequently l = m′ + n, therefore also by (136)
l = m+ n′, which was to be proved.

XII.

MULTIPLICATION OF NUMBERS.

147. Definition. After having found in XI an infinite system of new trans-
formations of the number-series N in itself, we can by (126) use each of these
in order to produce new transformations ψ of N . When we take Ω = N , and
θ(n) = m + n = n +m, where m is a determinate number, we certainly again
have

I. ψ(N) 3 N,

and it remains, to determine ψ completely only to select the element ω from N
at pleasure. The simplest case occurs when we bring this choice into a certain
agreement with the choice of θ, by putting ω = m. Since the thus perfectly
determinate ψ depends upon this number m, we designate the corresponding
transform ψ(n) of any number n by the symbol m× n or m � n or mn, and call
this number the product arising from the number m by multiplication by the
number n, or in short the product of the numbers m, n. This therefore by (126)
is completely determined by the conditions

II. m � 1 = m

III. mn′ = mn+m

148. Theorem. m′n = mn+ n.
Proof by complete induction (80). For
ρ. by (147, II) and (135, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, we have

m′n+m′ = (mn+ n) +m′

51



and consequently by (147, III), (141), (140), (136), (141), (147, III)

m′n′ = mn+ (n+m′) = mn+ (m′ + n) = mn+ (m+ n′)

= (mn+m) + n′ = mn′ + n′;

therefore the theorem is true for the following number n′, which was to be
proved.

149. Theorem. 1 � n = n.
Proof by complete induction (80). For
ρ. by (147, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then we have 1 � n + 1 = n + 1,

i. e., by (147, III), (135, II) 1 � n′ = n′, therefore the theorem also holds for the
following number n′, which was to be proved.

150. Theorem. mn = nm.
Proof by complete induction (80). For
ρ. by (147, II), (149) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then we have

mn+m = nm+m,

i. e., by (147, III), (148) mn′ = n′m, therefore the theorem is also true for the
following number n′, which was to be proved.

151. Theorem. l(m+ n) = lm+ ln.
Proof by complete induction (80). For
ρ. by (135, II), (147, III), (147, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, we have

l(m+ n) + l = (lm+ ln) + l;

but by (147, III), (135, III) we have

l(m+ n) + l = l(m+ n)′ = l(m+ n′),

and by (141), (147, III)

(lm+ ln) + l = lm+ (ln+ l) = lm+ ln′,

consequently l(m+n′) = lm+ ln′, i. e., the theorem is true also for the following
number n′, which was to be proved.

152. Theorem. (m+ n)l = ml + nl.
The proof follows from (151), (150).

153. Theorem. (lm)n = l(mn).
Proof by complete induction (80). For
ρ. by (147, II) the theorem is true for n = 1.

52



σ. If the theorem is true for a number n, then we have

(lm)n+ lm = l(mn) + lm,

i. e., by (147, III), (151), (147, III)

(lm)n′ = l(mn+m) = l(mn′),

hence the theorem is also true for the following number n′, which was to be
proved.

154. Remark. If in (147) we had assumed no relation between ω and
θ, but had put ω = k, θ(n) = m + n, then by (126) we should have had a
less simple transformation ψ of the number-series N ; for the number 1 would
ψ(1) = k and for every other number (therefore contained in the form n′) would
ψ(n′) = mn + k; since thus would be fulfilled, as one could easily convince
himself by the aid of the foregoing theorems, the condition ψ(n′) = θψ(n), i. e.,
ψ(n′) = m+ ψ(n) for all numbers n.

XIII.

INVOLUTION OF NUMBERS.

155. Definition. If in theorem (126) we again put Ω = N , and further
ω = a, θ(n) = an = na, we get a transformation ψ of N which still satisfies the
condition

I. ψ(N) 3 N ;

the corresponding transform ψ(n) of any number n we denote by the symbol
an, and call this number a power of the base a, while n is called the exponent of
this power of a. Hence this notion is completely determined by the conditions

II. a1 = a

III. an′
= a � an = an � a.

156. Theorem. am+n = am � an.
Proof by complete induction (80). For
ρ. by (135, II), (155, III), (155, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, we have

am+n � a = (am � an)a;

but by (155, III), (135, III) am+n � a = a(m+n)′ = am+n′
, and by (153), (155,

III) (am �an)a = am(an �a) = am �an′
; hence am+n′

= am �an′
, i. e., the theorem

is also true for the following number n′, which was to be proved.

157. Theorem. (am)n = amn.
Proof by complete induction (80). For
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ρ. by (155, II), (147, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, we have

(am)n � am = amn � am

but by (155, III) (am)n � am = (am)n′
, and by (156), (147, III) amn � am =

amn+m = amn′
; hence (am)n′

= amn′
, i. e., the theorem is also true for the

following number n′, which was to be proved.

158. Theorem. (ab)n = an � bn

Proof by complete induction (80). For
ρ. by (155, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then by (150), (153), (155, III) we

have also (ab)n � a = a(an � bn) = (a � an)bn = an′
� bn, and thus

(
(ab)n � a

)
b =

(an′
� bn)b; but by (153), (155, III)

(
(ab)n � a

)
b = (ab)n � (ab) = (ab)n′

, and
likewise

(an′
� bn)b = an′

� (bn � b) = an′
� bn

′
;

therefore (ab)n′
= an′

�bn
′
i. e., the theorem is also true for the following number

n′, which was to be proved.

XIV.

NUMBER OF THE ELEMENTS OF A FINITE SYSTEM.

159. Theorem. If Σ is an infinite system, then is every one of the number-
systems Zn defined in (98) similarly transformable in Σ (i. e., similar to a part
of Σ), and conversely.

Proof. If Σ is infinite, then by (72) there certainly exists a part T of Σ,
which is simply infinite, therefore by (132) similar to the number-series N , and
consequently by (35) every system Zn as part of N is similar to a part of T ,
therefore also to a part of Σ, which was to be proved.

The proof of the converse—however obvious it may appear—is more compli-
cated. If every system Zn is similarly transformable in Σ, then to every number
n corresponds such a similar transformation αn of Zn that αn(Zn) 3 Σ. From
the existence of such a series of transformations αn, regarded as given, but re-
specting which nothing further is assumed, we derive first by the aid of theorem
(126) the existence of a new series of such transformations ψn possessing the
special property that whenever m 5 n, hence by (100) Zm 3 Zn, the transfor-
mation ψm of the part Zm is contained in the transformation ψn of Zn (21),
i. e., the transformations ψm and ψn completely coincide with each other for all
numbers contained in Zm, hence always

ψm(m) = ψn(m).

In order to apply the theorem stated to gain this end we understand by Ω that
system whose elements are all possible similar transformations of all systems Zn
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in Σ, and by aid of the given elements αn, likewise contained in Ω, we define in
the following manner a transformation θ of Ω in itself. If β is any element of Ω,
thus, e. g., a similar transformation of the determinate system Zn in Σ, then the
system αn′(Zn′) cannot be part of β(Zn), for otherwise Zn′ would be similar by
(35) to a part of Zn, hence by (107) to a proper part of itself, and consequently
infinite, which would contradict theorem (119); therefore there certainly exists in
Zn′ one number or several numbers p such that αn′(p) is not contained in β(Zn);
from these numbers p we select—simply to lay down something determinate—
always the least k (96) and, since Zn′ by (108) is compounded out of Zn and
n′, define a transformation γ of Zn′ such that for all numbers m contained in
Zn the transform γ(m) = β(m) and besides γ(n′) = αn′(k); this obviously
similar transformation γ of Zn′ in Σ we consider then as a transform θ(β) of
the transformation β, and thus a transformation θ of the system Ω in itself is
completely defined. After the things named Ω and θ in (126) are determined
we select finally for the element of Ω, denoted by ω the given transformation
α1; thus by (126) there is determined a transformation ψ of the number-series
N in Ω, which, if we denote the transform belonging to an arbitrary number n,
not by ψ(n) but by ψn, satisfies the conditions

II. ψ1 = α1

III. ψn′ = θ(ψn)

By complete induction (80) it results first that ψn is a similar transformation
of Zn in Σ; for

ρ. by II this is true for n = 1.
σ. if this statement is true for a number n, it follows from III and from the

character of the above described transition θ from β to γ, that the statement
is also true for the following number n′, which was to be proved. Afterward we
show likewise by complete induction (80) that if m is any number the above
stated property

ψn(m) = ψm(m)

actually belongs to all numbers n, which are = m, and therefore by (93), (74)
belong to the chain m0; in fact,

ρ. this is immediately evident for n = m, and
σ. if this property belongs to a number n it follows again from III and the

nature of θ, that it also belongs to the number n′, which was to be proved.
After this special property of our new series of transformations ψn has been
established, we can easily prove our theorem. We define a transformation χ of
the number-series N , in which to every number n we let the transform χ(n) =
ψn(n) correspond; obviously by (21) all transformations ψn are contained in this
one transformation χ. Since ψn was a transformation of Zn in Σ, it follows first
that the number-series N is likewise transformed by χ in Σ, hence χ(N) 3 Σ.
If further m, n are different numbers we may by reason of symmetry according
to (90) suppose m < n; then by the foregoing χ(m) = ψm(m) = ψn(m), and
χ(n) = ψn(n); but since ψn was a similar transformation of Zn in Σ, and m,
n are different elements of Zn, then is ψn(m) different from ψn(n), hence also
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χ(m) different from χ(n), i. e., χ is a similar transformation of N . Since further
N is an infinite system (71), the same thing is true by (67) of the system χ(N)
similar to it and by (68), because χ(N) is part of Σ, also of Σ, which was to be
proved.

160. Theorem. A system Σ is finite or infinite, according as there does or
does not exist a system Zn similar to it.

Proof. If Σ is finite, then by (159) there exist systems Zn which are not
similarly transformable in Σ; since by (102) the system Z1 consists of the single
number 1, and hence is similarly transformable in every system, then must the
least number k (96) to which a system Zk not similarly transformable in Σ
corresponds be different from 1 and hence by (78) = n′, and since n < n′ (91)
there exists a similar transformation ψ of Zn in Σ; if then ψ(zn) were only
a proper part of Σ, i. e., if there existed an element α in Σ not contained in
ψ(Zn), then since Zn′ = M(Zn, n

′) (108) we could extend this transformation
ψ to a similar transformation ψ of Zn′ in Σ by putting ψ(n′) = α while by our
hypothesis Zn′ is not similarly transformable in Σ. Hence ψ(Zn) = Σ, i. e., Zn

and Σ are similar systems. Conversely, if a system Σ is similar to a system Zn,
then by (119), (67) Σ is finite, which was to be proved.

161. Definition. If Σ is a finite system, then by (160) there exists one
and by (120), (33) only one single number n to which a system Zn similar
to the system Σ corresponds; this number n is called the number [Anzahl ] of
the elements contained in Σ (or also the degree of the system Σ) and we say
Σ consists of or is a system of n elements, or the number n shows how many
elements are contained in Σ.25 If numbers are used to express accurately this
determinate property of finite systems they are called cardinal numbers. As
soon as a determinate similar transformation ψ of the system Zn is chosen by
reason of which ψ(Zn) = Z, then to every number m contained in Zn (i. e.,
every number m which is 5 n) there corresponds a determinate element ψ(m)
of the system Σ, and conversely by (26) to every element of Σ by the inverse
transformation ψ there corresponds a determinate number m in Zn. Very often
we denote all elements of Σ by a single letter, e. g., α, to which we append
the distinguishing numbers m as indices so that ψ(m) is denoted by αm. We
say also that these elements are counted and set in order by ψ in determinate
manner, and call αm the mth element of Σ; if m < n then αm′ is called the
element following αm, and αn is called the last element. In this counting of the
elements therefore the numbers m appear again as ordinal numbers (73).

162. Theorem. All systems similar to a finite system possess the same
number of elements.

The proof follows immediately from (33), (161).

163. Theorem. The number of numbers contained in Zn, i. e., of those
numbers which are 5 n, is n.

25For clearness and simplicity in what follows we restrict the notion of the number through-
out to finite systems; if then we speak of a number of certain things, it is always understood
that the system whose elements these things are is a finite system.
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Proof. For by (32) Zn is similar to itself.

164. Theorem. If a system consists of a single element, then is the number
of its elements = 1, and conversely.

The proof follows immediately from (2), (26), (32), (102), (161).

165. Theorem. If T is proper part of a finite system Σ, then is the number
of the elements of T less than that of the elements of Σ.

Proof. By (68) T is a finite system, therefore similar to a system Zm, where
m denotes the number of the elements of T ; if further n is the number of elements
of Σ, therefore Σ similar to Zn, then by (35) T is similar to a proper part E
of Zn and by (33) also Zm and E are similar to each other; if then we were to
have n 5 m, hence Zn 3 Zm, by (7) E would also be proper part of Zm, and
consequently Zm an infinite system, which contradicts theorem (119); hence by
(90), m < n, which was to be proved.

166. Theorem. If Γ = M(B, γ), where B denotes a system of n elements,
and γ an element of Γ not contained in B, then Γ consists of n′ elements.

Proof. For if B = ψ(Zn), where ψ denotes a similar transformation of Zn,
then by (105), (108) it may be extended to a similar transformation ψ of Zn′ ,
by putting ψ(n′) = γ, and we get ψ(Zn′) = Γ, which was to be proved.

167. Theorem. If γ is an element of a system Γ consisting of n′ elements,
then is n the number of all other elements of Γ.

Proof. For if B denotes the aggregate of all elements in Γ different from γ,
then is Γ = M(B, γ); if then b is the number of elements of the finite system
B, by the foregoing theorem b′ is the number of elements of Γ, therefore = n′,
whence by (26) we get b = n, which was to be proved.

168. Theorem. If A consists of m elements, and B of n elements, and A
and B have no common element, then M(A,B) consists of m+ n elements.

Proof by complete induction (80). For
ρ. by (166), (164), (135, II) the theorem is true for n = 1.
σ. If the theorem is true for a number n, then is it also true for the following

number n′. In fact, if Γ is a system of n′ elements, then by (167) we can put Γ =
M(B, γ) where γ denotes an element and B the system of the n other elements
of Γ. If then A is a system of m elements each of which is not contained in Γ,
therefore also not contained in B, and we put M(A,B) = Σ, by our hypothesis
m+ n the number of elements of Σ, and since γ is not contained in Σ, then by
(166) the number of elements contained in M(Σ, γ) = (m+n′), therefore by (135,
III) = m + n′; but since by (15) obviously M(Σ, γ) = M(A,B, γ) = M(A,Γ),
then is m+ n′ the number of the elements of M(A,Γ), which was to be proved.

169. Theorem. If A, B are finite systems of m, n elements respectively,
then is M(A,B) a finite system and the number of its elements is 5 m+ n.

Proof. If B 3 A, then M(A,B) = A and the number m of the elements of
this system is by (142) < m+ n, as was stated. But if B is not part of A, and
T is the system of all those elements of B that are not contained in A, then by

57



(165) is their number p 5 n, and since obviously

M(A,B) = M(A, T ),

then by (143) is the number m + p of the elements of this system 5 m + n,
which was to be proved.

170. Theorem. Every system compounded out of a number n of finite
systems is finite.

Proof by complete induction (80). For
ρ. by (8) the theorem is self-evident for n = 1.
σ. If the theorem is true for a number n, and if Σ is compounded out of n′

finite systems, then let A be one of these systems and B the system compounded
out of all the rest; since their number by (167) = n, then by our hypothesis B
is a finite system. Since obviously Σ = M(A,B), it follows from this and from
(169) that Σ is also a finite system, which was to be proved.

171. Theorem. If ψ is a dissimilar transformation of a finite system Σ of n
elements, then is the number of elements of the transform ψ(Σ) less than n.

Proof. If we select from all those elements of Σ that possess one and the
same transform, always one and only one at pleasure, then is the system T of all
these selected elements obviously a proper part of Σ, because ψ is a dissimilar
transformation of Σ (26). At the same time it is clear that the transformation
by (21) contained in ψ of this part T is a similar transformation, and that
ψ(T ) = ψ(Σ); hence the system ψ(Σ) is similar to the proper part T of Σ, and
consequently our theorem follows by (162), (165).

172. Final remark. Although it has just been shown that the number m of
the elements of ψ(Σ) is less than the number n of the elements of Σ, yet in many
cases we like to say that the number of elements of ψ(Σ) = n. The word number
is then, of course, used in a different sense from that used hitherto (161); for if α
is an element of Σ and a the number of all those elements of Σ, that possess one
and the same transform ψ(α) then is the latter as element of ψ(Σ) frequently
regarded still as representative of a elements, which at least from their derivation
may be considered as different from one another, and accordingly counted as a-
fold element of ψ(Σ). In this way we reach the notion, very useful in many cases,
of systems in which every element is endowed with a certain frequency-number
which indicates how often it is to be reckoned as element of the system. In the
foregoing case, e. g., we would say that n is the number of the elements of ψ(Σ)
counted in this sense, while the number m of the actually different elements of
this system coincides with the number of the elements of T . Similar deviations
from the original meaning of a technical term which are simply extensions of
the original notion, occur very frequently in mathematics; but it does not lie in
the line of this memoir to go further into their discussion.
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