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PREFACE

The present work is constructed on the same plan as my treatise on Plane
Trigonometry, to which it is intended as a sequel; it contains all the propositions
usually included under the head of Spherical Trigonometry, together with a large
collection of examples for exercise. In the course of the work reference is made
to preceding writers from whom assistance has been obtained; besides these
writers I have consulted the treatises on Trigonometry by Lardner, Lefebure de
Fourcy, and Snowball, and the treatise on Geometry published in the Library of
Useful Knowledge. The examples have been chiefly selected from the University
and College Examination Papers.

In the account of Napier’s Rules of Circular Parts an explanation has been
given of a method of proof devised by Napier, which seems to have been over-
looked by most modern writers on the subject. I have had the advantage of
access to an unprinted Memoir on this point by the late R. L. Ellis of Trinity
College; Mr Ellis had in fact rediscovered for himself Napier’s own method. For
the use of this Memoir and for some valuable references on the subject I am
indebted to the Dean of Ely.

Considerable labour has been bestowed on the text in order to render it
comprehensive and accurate, and the examples have all been carefully verified;
and thus I venture to hope that the work will be found useful by Students and
Teachers.

I. TODHUNTER.

St John’s College,

August 15, 1859.
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In the third edition I have made some additions which I hope will be found
valuable. I have considerably enlarged the discussion on the connexion of For-
mulæ in Plane and Spherical Trigonometry; so as to include an account of the
properties in Spherical Trigonometry which are analogous to those of the Nine
Points Circle in Plane Geometry. The mode of investigation is more elementary
than those hitherto employed; and perhaps some of the results are new. The
fourteenth Chapter is almost entirely original, and may deserve attention from
the nature of the propositions themselves and of the demonstrations which are
given.

Cambridge,

July, 1871.
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I

GREAT AND SMALL

CIRCLES.

1. A sphere is a solid bounded by a surface every point of which is equally

distant from a fixed point which is called the centre of the sphere. The straight

line which joins any point of the surface with the centre is called a radius. A

straight line drawn through the centre and terminated both ways by the surface

is called a diameter.

2. The section of the surface of a sphere made by any plane is a circle.

Let AB be the section of the surface of a sphere made by any plane, O the

centre of the sphere. Draw OC perpendicular to the plane; take any point D

in the section and join OD, CD. Since OC is perpendicular to the plane, the

1



2 GREAT AND SMALL CIRCLES.

angle OCD is a right angle; therefore CD =
√

(OD2 − OC2). Now O and C

are fixed points, so that OC is constant; and OD is constant, being the radius

of the sphere; hence CD is constant. Thus all points in the plane section are

equally distant from the fixed point C; therefore the section is a circle of which

C is the centre.

3. The section of the surface of a sphere by a plane is called a great circle if

the plane passes through the centre of the sphere, and a small circle if the plane

does not pass through the centre of the sphere. Thus the radius of a great circle

is equal to the radius of the sphere.

4. Through the centre of a sphere and any two points on the surface a plane

can be drawn; and only one plane can be drawn, except when the two points

are the extremities of a diameter of the sphere, and then an infinite number of

such planes can be drawn. Hence only one great circle can be drawn through

two given points on the surface of a sphere, except when the points are the

extremities of a diameter of the sphere. When only one great circle can be

drawn through two given points, the great circle is unequally divided at the two

points; we shall for brevity speak of the shorter of the two arcs as the arc of a

great circle joining the two points.

5. The axis of any circle of a sphere is that diameter of the sphere which is

perpendicular to the plane of the circle; the extremities of the axis are called

the poles of the circle. The poles of a great circle are equally distant from the

plane of the circle. The poles of a small circle are not equally distant from the

plane of the circle; they may be called respectively the nearer and further pole;

sometimes the nearer pole is for brevity called the pole.

6. A pole of a circle is equally distant from every point of the circumference of

the circle.

Let O be the centre of the sphere, AB any circle of the sphere, C the centre of

the circle, P and P ′ the poles of the circle. Take any pointD in the circumference

of the circle; join CD, OD, PD. Then PD =
√

(PC2 +CD2); and PC and CD

are constant, therefore PD is constant. Suppose a great circle to pass through

the points P and D; then the chord PD is constant, and therefore the arc of a
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great circle intercepted between P and D is constant for all positions of D on

the circle AB.

Thus the distance of a pole of a circle from every point of the circumference

of the circle is constant, whether that distance be measured by the straight line

joining the points, or by the arc of a great circle intercepted between the points.

7. The arc of a great circle which is drawn from a pole of a great circle to any

point in its circumference is a quadrant.

Let P be a pole of the great circle ABC; then the arc PA is a quadrant.

For let O be the centre of the sphere, and draw PO. Then PO is at right

angles to the plane ABC, because P is the pole of ABC, therefore POA is a

right angle, and the arc PA is a quadrant.

8. The angle subtended at the centre of a sphere by the arc of a great circle

which joins the poles of two great circles is equal to the inclination of the planes

of the great circles.
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Let O be the centre of the sphere, CD, CE the great circles intersecting at

C, A and B the poles of CD and CE respectively.

Draw a great circle through A and B, meeting CD and CE at M and N

respectively. Then AO is perpendicular to OC, which is a straight line in the

plane OCD; and BO is perpendicular to OC, which is a straight line in the

plane OCE; therefore OC is perpendicular to the plane AOB (Euclid, xi. 4);

and therefore OC is perpendicular to the straight lines OM and ON , which are

in the plane AOB. Hence MON is the angle of inclination of the planes OCD

and OCE. And the angle

AOB = AOM −BOM = BON −BOM = MON.

9. By the angle between two great circles is meant the angle of inclination of

the planes of the circles. Thus, in the figure of the preceding Article, the angle

between the great circles CD and CE is the angle MON .

In the figure to Art. 6, since PO is perpendicular to the plane ACB, every

plane which contains PO is at right angles to the plane ACB. Hence the angle

between the plane of any circle and the plane of a great circle which passes

through its poles is a right angle.

10. Two great circles bisect each other.

For since the plane of each great circle passes through the centre of the

sphere, the line of intersection of these planes is a diameter of the sphere, and

therefore also a diameter of each great circle; therefore the great circles are

bisected at the points where they meet.



GREAT AND SMALL CIRCLES. 5

11. If the arcs of great circles joining a point P on the surface of a sphere with

two other points A and C on the surface of the sphere, which are not at opposite

extremities of a diameter, be each of them equal to a quadrant, P is a pole of

the great circle through A and C. (See the figure of Art. 7.)

For suppose PA and PC to be quadrants, and O the centre of the sphere;

then since PA and PC are quadrants, the angles POC and POA are right

angles. Hence PO is at right angles to the plane AOC, and P is a pole of the

great circle AC.

12. Great circles which pass through the poles of a great circle are called

secondaries to that circle. Thus, in the figure of Art. 8 the point C is a pole of

ABMN , and therefore CM and CN are parts of secondaries to ABMN . And

the angle between CM and CN is measured by MN ; that is, the angle between

any two great circles is measured by the arc they intercept on the great circle to

which they are secondaries.

13. If from a point on the surface of a sphere there can be drawn two arcs of

great circles, not parts of the same great circle, the planes of which are at right

angles to the plane of a given circle, that point is a pole of the given circle.

For, since the planes of these arcs are at right angles to the plane of the

given circle, the line in which they intersect is perpendicular to the plane of the

given circle, and is therefore the axis of the given circle; hence the point from

which the arcs are drawn is a pole of the circle.

14. To compare the arc of a small circle subtending any angle at the centre of

the circle with the arc of a great circle subtending the same angle at its centre.

Let ab be the arc of a small circle, C the centre of the circle, P the pole of the

circle, O the centre of the sphere. Through P draw the great circles PaA and

PbB, meeting the great circle of which P is a pole, at A and B respectively; draw

Ca, Cb, OA, OB. Then Ca, Cb, OA, OB are all perpendicular to OP , because

the planes aCb and AOB are perpendicular to OP ; therefore Ca is parallel

to OA, and Cb is parallel to OB. Therefore the angle aCb = the angle AOB

(Euclid, xi. 10). Hence,

arc ab

radiusCa
=

arcAB

radiusOA
, (Plane Trigonometry, Art. 18);
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therefore,
arc ab

arcAB
=
Ca

OA
=
Ca

Oa
= sinPOa.



II

SPHERICAL

TRIANGLES.

15. Spherical Trigonometry investigates the relations which subsist between

the angles of the plane faces which form a solid angle and the angles at which

the plane faces are inclined to each other.

16. Suppose that the angular point of a solid angle is made the centre of a

sphere; then the planes which form the solid angle will cut the sphere in arcs of

great circles. Thus a figure will be formed on the surface of the sphere which is

called a spherical triangle if it is bounded by three arcs of great circles; this will

be the case when the solid angle is formed by the meeting of three plane angles.

If the solid angle be formed by the meeting of more than three plane angles,

the corresponding figure on the surface of the sphere is bounded by more than

three arcs of great circles, and is called a spherical polygon.

17. The three arcs of great circles which form a spherical triangle are called

the sides of the spherical triangle; the angles formed by the arcs at the points

where they meet are called the angles of the spherical triangle. (See Art. 9.)

18. Thus, let O be the centre of a sphere, and suppose a solid angle formed at

O by the meeting of three plane angles. Let AB, BC, CA be the arcs of great

circles in which the planes cut the sphere; then ABC is a spherical triangle, and

7



8 SPHERICAL TRIANGLES.

the arcs AB, BC, CA are its sides. Suppose Ab the tangent at A to the arc

AB, and Ac the tangent at A to the arc AC, the tangents being drawn from

A towards B and C respectively; then the angle bAc is one of the angles of the

spherical triangle. Similarly angles formed in like manner at B and C are the

other angles of the spherical triangle.

19. The principal part of a treatise on Spherical Trigonometry consists of

theorems relating to spherical triangles; it is therefore necessary to obtain an

accurate conception of a spherical triangle and its parts.

It will be seen that what are called sides of a spherical triangle are really arcs

of great circles, and these arcs are proportional to the three plane angles which

form the solid angle corresponding to the spherical triangle. Thus, in the figure

of the preceding Article, the arc AB forms one side of the spherical triangle

ABC, and the plane angle AOB is measured by the fraction
arcAB

radiusOA
; and

thus the arc AB is proportional to the angle AOB so long as we keep to the

same sphere.

The angles of a spherical triangle are the inclinations of the plane faces which

form the solid angle; for since Ab and Ac are both perpendicular to OA, the

angle bAc is the angle of inclination of the planes OAB and OAC.

20. The letters A, B, C are generally used to denote the angles of a spherical

triangle, and the letters a, b, c are used to denote the sides. As in the case of

plane triangles, A, B, and C may be used to denote the numerical values of the

angles expressed in terms of any unit, provided we understand distinctly what

the unit is. Thus, if the angle C be a right angle, we may say that C = 90◦, or

that C =
π

2
, according as we adopt for the unit a degree or the angle subtended

at the centre by an arc equal to the radius. So also, as the sides of a spherical
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triangle are proportional to the angles subtended at the centre of the sphere, we

may use a, b, c to denote the numerical values of those angles in terms of any

unit. We shall usually suppose both the angles and sides of a spherical triangle

expressed in circular measure. (Plane Trigonometry, Art. 20.)

21. In future, unless the contrary be distinctly stated, any arc drawn on the

surface of a sphere will be supposed to be an arc of a great circle.

22. In spherical triangles each side is restricted to be less than a semicircle;

this is of course a convention, and it is adopted because it is found convenient.

Thus, in the figure, the arc ADEB is greater than a semicircumference, and

we might, if we pleased, consider ADEB, AC, and BC as forming a triangle,

having its angular points at A, B, and C. But we agree to exclude such triangles

from our consideration; and the triangle having its angular points at A, B, and

C, will be understood to be that formed by AFB, BC, and CA.

23. From the restriction of the preceding Article it will follow that any angle

of a spherical triangle is less than two right angles.

For suppose a triangle formed by BC, CA, and BEDA, having the angle

BCA greater than two right angles. Then suppose D to denote the point at

which the arc BC, if produced, will meet AE; then BED is a semicircle by Art.

10, and therefore BEA is greater than a semicircle; thus the proposed triangle

is not one of those which we consider.
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III

SPHERICAL

GEOMETRY.

24. The relations between the sides and angles of a Spherical Triangle, which

are investigated in treatises on Spherical Trigonometry, are chiefly such as in-

volve the Trigonometrical Functions of the sides and angles. Before proceeding

to these, however, we shall collect, under the head of Spherical Geometry, some

theorems which involve the sides and angles themselves, and not their trigono-

metrical ratios.

25. Polar triangle. Let ABC be any spherical triangle, and let the points A′,

B′, C ′ be those poles of the arcs BC, CA, AB respectively which lie on the

same sides of them as the opposite angles A, B, C; then the triangle A′B′C ′ is

said to be the polar triangle of the triangle ABC.

Since there are two poles for each side of a spherical triangle, eight triangles

can be formed having for their angular points poles of the sides of the given

11



12 SPHERICAL GEOMETRY.

triangle; but there is only one triangle in which these poles A′, B′, C ′ lie towards

the same parts with the corresponding angles A, B, C; and this is the triangle

which is known under the name of the polar triangle.

The triangle ABC is called the primitive triangle with respect to the triangle

A′B′C ′.

26. If one triangle be the polar triangle of another, the latter will be the polar

triangle of the former.

Let ABC be any triangle, A′B′C ′ the polar triangle: then ABC will be the

polar triangle of A′B′C ′.

For since B′ is a pole of AC, the arc AB′ is a quadrant, and since C ′ is a

pole of BA, the arc AC ′ is a quadrant (Art. 7); therefore A is a pole of B′C ′

(Art. 11). Also A and A′ are on the same side of B′C ′; for A and A′ are by

hypothesis on the same side of BC, therefore A′A is less than a quadrant; and

since A is a pole of B′C ′, and AA′ is less than a quadrant, A and A′ are on the

same side of B′C ′.

Similarly it may be shewn that B is a pole of C ′A′, and that B and B′ are

on the same side of C ′A′; also that C is a pole of A′B′, and that C and C ′ are

on the same side of A′B′. Thus ABC is the polar triangle of A′B′C ′.

27. The sides and angles of the polar triangle are respectively the supplements

of the angles and sides of the primitive triangle.

For let the arc B′C ′, produced if necessary, meet the arcs AB, AC, produced

if necessary, at the points D and E respectively; then since A is a pole of B′C ′,

the spherical angle A is measured by the arc DE (Art. 12). But B′E and C ′D

are each quadrants; therefore DE and B′C ′ are together equal to a semicircle;

that is, the angle subtended by B′C ′ at the centre of the sphere is the supplement

of the angle A. This we may express for shortness thus; B′C ′ is the supplement
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of A. Similarly it may be shewn that C ′A′ is the supplement of B, and A′B′

the supplement of C.

And since ABC is the polar triangle of A′B′C ′, it follows that BC, CA, AB

are respectively the supplements of A′, B′, C ′; that is, A′, B′, C ′ are respectively

the supplements of BC, CA, AB.

From these properties a primitive triangle and its polar triangle are some-

times called supplemental triangles.

Thus, if A, B, C, a, b, c denote respectively the angles and the sides of a

spherical triangle, all expressed in circular measure, and A′, B′, C ′, a′, b′, c′

those of the polar triangle, we have

A′ = π − a, B′ = π − b, C ′ = π − c,

a′ = π −A, b′ = π −B, c′ = π − C.

28. The preceding result is of great importance; for if any general theorem be

demonstrated with respect to the sides and the angles of any spherical triangle

it holds of course for the polar triangle also. Thus any such theorem will remain

true when the angles are changed into the supplements of the corresponding

sides and the sides into the supplements of the corresponding angles. We shall

see several examples of this principle in the next Chapter.

29. Any two sides of a spherical triangle are together greater than the third

side. (See the figure of Art. 18.)

For any two of the three plane angles which form the solid angle at O are

together greater than the third (Euclid, xi. 20). Therefore any two of the arcs

AB, BC, CA, are together greater than the third.

From this proposition it is obvious that any side of a spherical triangle is

greater than the difference of the other two.

30. The sum of the three sides of a spherical triangle is less than the circum-

ference of a great circle. (See the figure of Art. 18.)

For the sum of the three plane angles which form the solid angle at O is less

than four right angles (Euclid, xi. 21); therefore

AB

OA
+
BC

OA
+
CA

OA
is less than 2π,
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therefore, AB +BC + CD is less than 2π ×OA;

that is, the sum of the arcs is less than the circumference of a great circle.

31. The propositions contained in the preceding two Articles may be extended.

Thus, if there be any polygon which has each of its angles less than two right

angles, any one side is less than the sum of all the others. This may be proved

by repeated use of Art. 29. Suppose, for example, that the figure has four sides,

and let the angular points be denoted by A, B, C, D. Then

AD +BC is greater than AC;

therefore, AB +BC + CD is greater than AC + CD,

and à fortiori greater than AD.

Again, if there be any polygon which has each of its angles less than two

right angles, the sum of its sides will be less than the circumference of a great

circle. This follows from Euclid, xi. 21, in the manner shewn in Art. 30.

32. The three angles of a spherical triangle are together greater than two right

angles and less than six right angles.

Let A, B, C be the angles of a spherical triangle; let a′, b′, c′ be the sides

of the polar triangle. Then by Art. 30,

a′ + b′ + c′ is less than 2π,

that is, π −A+ π −B + π − C is less than 2π;

therefore, A+B + C is greater than π.

And since each of the angles A, B, C is less than π, the sum A + B + C is

less than 3π.

33. The angles at the base of an isosceles spherical triangle are equal.

Let ABC be a spherical triangle having AC = BC; let O be the centre of

the sphere. Draw tangents at the points A and B to the arcs AC and BC

respectively; these will meet OC produced at the same point S, and AS will be

equal to BS.

Draw tangents AT , BT at the points A, B to the arc AB; then AT = TB;
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join TS. In the two triangles SAT , SBT the sides SA, AT , TS are equal to

SB, BT , TS respectively; therefore the angle SAT is equal to the angle SBT ;

and these are the angles at the base of the spherical triangle.

The figure supposes AC and BC to be less than quadrants; if they are greater

than quadrants the tangents to AC and BC will meet on CO produced through

O instead of through C, and the demonstration may be completed as before. If

AC and BC are quadrants, the angles at the base are right angles by Arts. 11

and 9.

34. If two angles of a spherical triangle are equal, the opposite sides are equal.

Since the primitive triangle has two equal angles, the polar triangle has two

equal sides; therefore in the polar triangle the angles opposite the equal sides

are equal by Art. 33. Hence in the primitive triangle the sides opposite the

equal angles are equal.

35. If one angle of a spherical triangle be greater than another, the side oppo-

site the greater angle is greater than the side opposite the less angle.

Let ABC be a spherical triangle, and let the angle ABC be greater than the

angle BAC: then the side AC will be greater than the side BC. At B make

the angle ABD equal to the angle BAD; then BD is equal to AD (Art. 34),

and BD+DC is greater than BC (Art. 29); therefore AD+DC is greater than
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BC; that is, AC is greater than BC.

36. If one side of a spherical triangle be greater than another, the angle oppo-

site the greater side is greater than the angle opposite the less side.

This follows from the preceding Article by means of the polar triangle.

Or thus; suppose the side AC greater than the side BC, then the angle ABC

will be greater than the angle BAC. For the angle ABC cannot be less than the

angle BAC by Art. 35, and the angle ABC cannot be equal to the angle BAC

by Art. 34; therefore the angle ABC must be greater than the angle BAC.

This Chapter might be extended; but it is unnecessary to do so because

the Trigonometrical formulæ of the next Chapter supply an easy method of

investigating the theorems of Spherical Geometry. See Arts. 56, 57, and 58.



IV

Relations between the

Trigonometrical Functions

of the Sides and the Angles

of a Spherical Triangle.

37. To express the cosine of an angle of a triangle in terms of sines and cosines

of the sides.

Let ABC be a spherical triangle, O the centre of the sphere. Let the tangent

at A to the arc AC meet OC produced at E, and let the tangent at A to the

arc AB meet OB produced at D; join ED. Thus the angle EAD is the angle

A of the spherical triangle, and the angle EOD measures the side a.

17



18 RELATIONS BETWEEN THE FUNCTIONS.

From the triangles ADE and ODE we have

DE2 = AD2 +AE2 − 2AD �AE cosA,

DE2 = OD2 +OE2 − 2OD �OE cos a;

also the angles OAD and OAE are right angles, so that OD2 = OA2 + AD2

and OE2 = OA2 +AE2. Hence by subtraction we have

0 = 2OA2 + 2AD �AE cosA− 2OD �OE cos a;

therefore cos a =
OA

OE
�
OA

OD
+
AE

OE
�
AD

OD
cosA;

that is cos a = cos b cos c+ sin b sin c cosA.

Therefore cosA =
cos a− cos b cos c

sin b sin c
.

38. We have supposed, in the construction of the preceding Article, that the

sides which contain the angle A are less than quadrants, for we have assumed

that the tangents at A meet OB and OC respectively produced. We must

now shew that the formulæ obtained is true when these sides are not less than

quadrants. This we shall do by special examination of the cases in which one

side or each side is greater than a quadrant or equal to a quadrant.

(1) Suppose only one of the sides which contain the angle A to be greater

than a quadrant, for example, AB. Produce BA and BC to meet at B′; and

put AB′ = c′, CB′ = a′.

Then we have from the triangle AB′C, by what has been already proved,

cos a′ = cos b cos c′ + sin b sin c′ cosB′AC;

but a′ = π − a, c′ = π − c, B′AC = π −A; thus

cos a = cos b cos c+ sin b sin c cosA.
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(2) Suppose both the sides which contain the angle A to be greater than

quadrants. Produce AB and AC to meet at A′; put A′B = c′, A′C = b′; then

from the triangle A′BC, as before,

cos a = cos b′ cos c′ + sin b′ sin c′ cosA′;

but b′ = π − b, c′ = π − c, A′ = A; thus

cos a = cos b cos c+ sin b sin c cosA.

(3) Suppose that one of the sides which contain the angle A is a quadrant,

for example, AB; on AC, produced if necessary, take AD equal to a quadrant

and draw BD. If BD is a quadrant B is a pole of AC (Art. 11); in this case

a =
π

2
and A =

π

2
as well as c =

π

2
. Thus the formula to be verified reduces to

the identity 0 = 0. If BD be not a quadrant, the triangle BDC gives

cos a = cosCD cosBD + sinCD sinBD cosCDB,

and cosCDB = 0, cosCD = cos
(π

2
− b
)

= sin b, cosBD = cosA;

thus cos a = sin b cosA;

and this is what the formula in Art. 37 becomes when c =
π

2
.

(4) Suppose that both the sides which contain the angle A are quadrants.

The formula then becomes cos a = cosA; and this is obviously true, for A is

now the pole of BC, and thus A = a.
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Thus the formula in Art. 37 is proved to be universally true.

39. The formula in Art. 37 may be applied to express the cosine of any angle

of a triangle in terms of sines and cosines of the sides; thus we have the three

formulæ,

cos a = cos b cos c+ sin b sin c cosA,

cos b = cos c cos a+ sin c sin a cosB,

cos c = cos a cos b+ sin a sin b cosC.

These may be considered as the fundamental equations of Spherical Trigonom-

etry; we shall proceed to deduce various formulæ from them.

40. To express the sine of an angle of a spherical triangle in terms of trigono-

metrical functions of the sides.

We have cosA =
cos a− cos b cos c

sin b sin c
;

therefore sin2A = 1−
(

cos a− cos b cos c

sin b sin c

)2

=
(1− cos2 b)(1− cos2 c)− (cos a− cos b cos c)2

sin2 b sin2 c

=
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin2 b sin2 c
;

therefore sinA =

√
(1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c)

sin b sin c
.

The radical on the right-hand side must be taken with the positive sign, because

sin b, sin c, and sinA are all positive.

41. From the value of sinA in the preceding Article it follows that

sinA

sin a
=

sinB

sin b
=

sinC

sin c
,
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for each of these is equal to the same expression, namely,

√
(1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c)

sin a sin b sin c
.

Thus the sines of the angles of a spherical triangle are proportional to the sines

of the opposite sides. We will give an independent proof of this proposition in

the following Article.

42. The sines of the angles of a spherical triangle are proportional to the sines

of the opposite sides.

Let ABC be a spherical triangle, O the centre of the sphere. Take any point

P in OA, draw PD perpendicular to the plane BOC, and from D draw DE,

DF perpendicular to OB, OC respectively; join PE, PF , OD.

Since PD is perpendicular to the plane BOC, it makes right angles with

every straight line meeting it in that plane; hence

PE2 = PD2 +DE2 = PO2 −OD2 +DE2 = PO2 −OE2;

thus PEO is a right angle. Therefore PE = OP sinPOE = OP sin c; and

PD = PE sinPED = PE sinB = OP sin c sinB.

Similarly, PD = OP sin b sinC; therefore

OP sin c sinB = OP sin b sinC;

therefore
sinB

sinC
=

sin b

sin c
.

The figure supposes b, c, B, and C each less than a right angle; it will be

found on examination that the proof will hold when the figure is modified to

meet any case which can occur. If, for instance, B alone is greater than a right
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angle, the point D will fall beyond OB instead of between OB and OC; then

PED will be the supplement of B, and thus sinPED is still equal to sinB.

43. To shew that cot a sin b = cotA sinC + cos b cosC.

We have cos a = cos b cos c+ sin b sin c cosA,

cos c = cos a cos b+ sin a sin b cosC,

sin c = sin a
sinC

sinA
.

Substitute the values of cos c and sin c in the first equation; thus

cos a = (cos a cos b+ sin a sin b cosC) cos b+
sin a sin b cosA sinC

sinA
;

by transposition

cos a sin2 b = sin a sin b cos b cosC + sin a sin b cotA sinC;

divide by sin a sin b; thus

cot a sin b = cos b cosC + cotA sinC.

44. By interchanging the letters five other formulæ may be obtained like that

in the preceding Article; the whole six formulæ will be as follows:

cot a sin b = cotA sinC + cos b cosC,

cot b sin a = cotB sinC + cos a cosC,

cot b sin c = cotB sinA+ cos c cosA,

cot c sin b = cotC sinA+ cos b cosA,

cot c sin a = cotC sinB + cos a cosB,

cot a sin c = cotA sinB + cos c cosB.

45. To express the sine, cosine, and tangent, of half an angle of a triangle as

functions of the sides.

We have, by Art. 37, cosA =
cos a− cos b cos c

sin b sin c
;
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therefore 1− cosA = 1− cos a− cos b cos c

sin b sin c
=

cos(b− c)− cos a

sin b sin c
;

therefore sin2 A

2
=

sin 1
2 (a+ b− c) sin 1

2 (a− b+ c)

sin b sin c
.

Let 2s = a+ b+ c, so that s is half the sum of the sides of the triangle; then

a+ b− c = 2s− 2c = 2(s− c), a− b+ c = 2s− 2b = 2(s− b);

thus, sin2 A

2
=

sin(s− b) sin(s− c)
sin b sin c

,

and sin
A

2
=

√{
sin(s− b) sin(s− c)

sin b sin c

}
Also, 1 + cosA = 1 +

cos a− cos b cos c

sin b sin c
=

cos a− cos(b+ c)

sin b sin c
;

therefore

cos2
A

2
=

sin 1
2 (a+ b+ c) sin 1

2 (b+ c− a)

sin b sin c
=

sin s sin(s− a)

sin b sin c
,

and cos
A

2
=

√{
sin s sin(s− a)

sin b sin c

}

From the expressions for sin
A

2
and cos

A

2
we deduce

tan
A

2
=

√{
sin(s− b) sin(s− c)

sin s sin(s− a)

}
.

The positive sign must be given to the radicals which occur in this Article,

because
A

2
is less than a right angle, and therefore its sine, cosine, and tangent

are all positive.

46. Since sinA = 2 sin
A

2
cos

A

2
, we obtain

sinA =
2

sin b sin c
{sin s sin(s− a) sin(s− b) sin(s− c)}

1
2 .

It may be shewn that the expression for sinA in Art. 40 agrees with the

present expression by putting the numerator of that expression in factors, as in
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Plane Trigonometry, Art. 115. We shall find it convenient to use a symbol for

the radical in the value of sinA; we shall denote it by n, so that

n2 = sin s sin(s− a) sin(s− b) sin(s− c),

and 4n2 = 1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c.

47. To express the cosine of a side of a triangle in terms of sines and cosines

of the angles.

In the formula of Art. 37 we may, by Art. 28, change the sides into the

supplements of the corresponding angles and the angle into the supplement of

the corresponding side; thus

cos(π −A) = cos(π −B) cos(π − C) + sin(π −B) sin(π − C) cos(π − a),

that is, cosA = − cosB cosC + sinB sinC cos a.

Similarly cosB = − cosC cosA+ sinC sinA cos b,

and cosC = − cosA cosB + sinA sinB cos c.

48. The formulæ in Art. 44 will of course remain true when the angles and

sides are changed into the supplements of the corresponding sides and angles

respectively; it will be found, however, that no new formulæ are thus obtained,

but only the same formulæ over again. This consideration will furnish some

assistance in retaining those formulæ accurately in the memory.

49. To express the sine, cosine, and tangent, of half a side of a triangle as

functions of the angles.

We have, by Art. 47, cos a =
cosA+ cosB cosC

sinB sinC
;

therefore

1− cos a = 1− cosA+ cosB cosC

sinB sinC
= −cosA+ cos(B + C)

sinB sinC
;

therefore sin2 a

2
= −

cos 1
2 (A+B + C) cos 1

2 (B + C −A)

sinB sinC
.

Let 2S = A+B + C; then B + C −A = 2(S −A), therefore

sin2 a

2
= −cosS cos(S −A)

sinB sinC
,
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and sin
a

2
=

√{
−cosS cos(S −A)

sinB sinC

}
.

Also 1 + cos a = 1 +
cosA+ cosB cosC

sinB sinC
=

cosA+ cos(B − C)

sinB sinC
;

therefore

cos2
a

2
=

cos 1
2 (A−B + C) cos 1

2 (A+B − C)

sinB sinC
=

cos(S −B) cos(S − C)

sinB sinC
,

and cos
a

2
=

√{
cos(S −B) cos(S − C)

sinB sinC

}
.

Hence tan
a

2
=

√{
− cosS cos(S −A)

cos(S −B) cos(S − C)

}
.

The positive sign must be given to the radicals which occur in this Article,

because
a

2
is less than a right angle.

50. The expressions in the preceding Article may also be obtained immediately

from those given in Art. 45 by means of Art. 28.

It may be remarked that the values of sin
a

2
, cos

a

2
, and tan

a

2
are real. For

S is greater than one right angle and less than three right angles by Art. 32;

therefore cosS is negative. And in the polar triangle any side is less than the

sum of the other two; thus π−A is less than π−B+π−C; therefore B+C−A is

less than π; therefore S−A is less than
π

2
, and B+C−A is algebraically greater

than −π, so that S − A is algebraically greater than −π
2

; therefore cos(S − A)

is positive. Similarly also cos(S − B) and cos(S − C) are positive. Hence the

values of sin
a

2
, cos

a

2
, and tan

a

2
are real.

51. Since sin a = 2 sin
a

2
cos

a

2
, we obtain

sin a =
2

sinB sinC
{− cosS cos(S −A) cos(S −B) cos(S − C)}

1
2 .

We shall use N for {− cosS cos(S −A) cos(S −B) cos(S − C)}
1
2 .
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52. To demonstrate Napier’s Analogies.

We have
sinA

sin a
=

sinB

sin b
= m suppose;

then, by a theorem of Algebra,

m =
sinA+ sinB

sin a+ sin b
, (1)

and also m =
sinA− sinB

sin a− sin b
. (2)

Now cosA+ cosB cosC = sinB sinC cos a = m sinC sin b cos a,

and cosB + cosA cosC = sinA sinC cos b = m sinC sin a cos b,

therefore, by addition,

(cosA+ cosB)(1 + cosC) = m sinC sin(a+ b); (3)

therefore by (1) we have

sinA+ sinB

cosA+ cosB
=

sin a+ sin b

sin(a+ b)

1 + cosC

sinC
,

that is, tan 1
2 (A+B) =

cos 1
2 (a− b)

cos 1
2 (a+ b)

cot
C

2
. (4)

Similarly from (3) and (2) we have

sinA− sinB

cosA+ cosB
=

sin a− sin b

sin(a+ b)

1 + cosC

sinC
,

that is, tan
1

2
(A−B) =

sin 1
2 (a− b)

sin 1
2 (a+ b)

cot
C

2
. (5)

By writing π −A for a, and so on in (4) and (5) we obtain

tan 1
2 (a+ b) =

cos 1
2 (A−B)

cos 1
2 (A+B)

tan
c

2
, (6)

tan 1
2 (a− b) =

sin 1
2 (A−B)

sin 1
2 (A+B)

tan
c

2
. (7)

The formulæ (4), (5), (6), (7) may be put in the form of proportions or

analogies, and are called from their discoverer Napier’s Analogies: the last two
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may be demonstrated without recurring to the polar triangle by starting with

the formulæ in Art. 39.

53. In equation (4) of the preceding Article, cos 1
2 (a − b) and cot

C

2
are nec-

essarily positive quantities; hence the equation shews that tan 1
2 (A + B) and

cos 1
2 (a + b) are of the same sign; thus 1

2 (A + B) and 1
2 (a + b) are either both

less than a right angle or both greater than a right angle. This is expressed by

saying that 1
2 (A+B) and 1

2 (a+ b) are of the same affection.

54. To demonstrate Delambre’s Analogies.

We have cos c = cos a cos b+ sin a sin b cosC; therefore

1 + cos c = 1 + cos a cos b+ sin a sin b(cos2 1
2C − sin2 1

2C)

= {1 + cos(a− b)} cos2 1
2C + {1 + cos(a+ b)} sin2 1

2C;

therefore cos2 1
2c = cos2 1

2 (a− b) cos2 1
2C + cos2 1

2 (a+ b) sin2 1
2C.

Similarly, sin2 1
2c = sin2 1

2 (a− b) cos2 1
2C + sin2 1

2 (a+ b) sin2 1
2C.

Now add unity to the square of each member of Napier’s first two analogies;

hence by the formulæ just proved

sec2 1
2 (A+B) =

cos2 1
2c

cos2 1
2 (a+ b) sin2 1

2C
,

sec2 1
2 (A−B) =

sin2 1
2c

sin2 1
2 (a+ b) sin2 1

2C
.

Extract the square roots; thus, since 1
2 (A+B) and 1

2 (a+ b) are of the same

affection, we obtain

cos 1
2 (A+B) cos 1

2c = cos 1
2 (a+ b) sin 1

2C, (1)

cos 1
2 (A−B) sin 1

2c = sin 1
2 (a+ b) sin 1

2C. (2)

Multiply the first two of Napier’s analogies respectively by these results; thus

sin 1
2 (A+B) cos 1

2c = cos 1
2 (a− b) cos 1

2C, (3)

sin 1
2 (A−B) sin 1

2c = sin 1
2 (a− b) cos 1

2C. (4)
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The last four formulæ are commonly, but improperly, called Gauss’s Theo-

rems; they were first given by Delambre in the Connaissance des Tems for 1809,

page 445. See the Philosophical Magazine for February, 1873.

55. The properties of supplemental triangles were proved geometrically in

Art. 27, and by means of these properties the formulæ in Art. 47 were ob-

tained; but these formulæ may be deduced analytically from those in Art. 39,

and thus the whole subject may be made to depend on the formulæ of Art. 39.

For from Art. 39 we obtain expressions for cosA, cosB, cosC; and from

these we find

cosA+ cosB cosC

=
(cos a− cos b cos c) sin2 a+ (cos b− cos a cos c)(cos c− cos a cos b)

sin2 a sin b sin c
.

In the numerator of this fraction write 1− cos2 a for sin2 a; thus the numerator

will be found to reduce to

cos a(1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c),

and this is equal to cos a sinB sinC sin2 a sin b sin c, (Art. 41);

therefore cosA+ cosB cosC − cos a sinB sinC.

Similarly the other two corresponding formulæ may be proved.

Thus the formulæ in Art. 47 are established; and therefore, without assuming

the existence and properties of the Polar Triangle, we deduce the following

theorem: If the sides and angles of a spherical triangle be changed respectively

into the supplements of the corresponding angles and sides, the fundamental

formulæ of Art. 39 hold good, and therefore also all results deducible from them.

56. The formulæ in the present Chapter may be applied to establish analyti-

cally various propositions respecting spherical triangles which either have been

proved geometrically in the preceding Chapter, or may be so proved. Thus, for

example, the second of Napier’s analogies is

tan 1
2 (A−B) =

sin 1
2 (a− b)

sin 1
2 (a+ b)

cot
C

2
;
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this shews that 1
2 (A − B) is positive, negative, or zero, according as

1

2
(a −

b) is positive, negative, or zero; thus we obtain all the results included in

Arts. 33. . . 36.

57. If two triangles have two sides of the one equal to two sides of the other,

each to each, and likewise the included angles equal, then their other angles will

be equal, each to each, and likewise their bases will be equal.

We may shew that the bases are equal by applying the first formula in Art. 39

to each triangle, supposing b, c, and A the same in the two triangles; then the

remaining two formulæ of Art. 39 will shew that B and C are the same in the

two triangles.

It should be observed that the two triangles in this case are not necessarily

such that one may be made to coincide with the other by superposition. The

sides of one may be equal to those of the other, each to each, but in a reverse

order, as in the following figures.

Two triangles which are equal in this manner are said to be symmetrically

equal; when they are equal so as to admit of superposition they are said to be

absolutely equal.

58. If two spherical triangles have two sides of the one equal to two sides of

the other, each to each, but the angle which is contained by the two sides of the

one greater than the angle which is contained by the two sides which are equal

to them of the other, the base of that which has the greater angle will be greater

than the base of the other; and conversely.

Let b and c denote the sides which are equal in the two triangles; let a be the

base and A the opposite angle of one triangle, and a′ and A′ similar quantities
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for the other. Then

cos a = cos b cos c+ sin b sin c cosA,

cos a′ = cos b cos c+ sin b sin c cosA′;

therefore cos a− cos a′ + sin b sin c(cosA− cosA′);

that is,

sin 1
2 (a+ a′) sin 1

2 (a− a′) = sin b sin c sin 1
2 (A+A′) sin 1

2 (A−A′);

this shews that 1
2 (a− a′) and 1

2 (A−A′) are of the same sign.

59. If on a sphere any point be taken within a circle which is not its pole, of all

the arcs which can be drawn from that point to the circumference, the greatest is

that in which the pole is, and the other part of that produced is the least; and of

any others, that which is nearer to the greatest is always greater than one more

remote; and from the same point to the circumference there can be drawn only

two arcs which are equal to each other, and these make equal angles with the

shortest arc on opposite sides of it.

This follows readily from the preceding three Articles.

60. We will give another proof of the fundamental formulæ in Art. 39, which

is very simple, requiring only a knowledge of the elements of Co-ordinate Ge-

ometry.

Suppose ABC any spherical triangle, O the centre of the sphere, take O as

the origin of co-ordinates, and let the axis of z pass through C. Let x1, y1, z1

be the co-ordinates of A, and x2, y2, z2 those of B; let r be the radius of the

sphere. Then the square on the straight line AB is equal to

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

and also to r2 + r2 − 2r2 cosAOB;

and x21 + y21 + z21 = r2, x22 + y22 + z22 = r2, thus

x1x2 + y1y2 + z1z2 = r2 cosAOB.
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Now make the usual substitutions in passing from rectangular to polar co-

ordinates, namely,

z1 = r cos θ1, x1 = r sin θ1 cosφ1, y1 = r sin θ1 sinφ1,

z2 = r cos θ2, x2 = r sin θ2 cosφ2, y2 = r sin θ2 sinφ2;

thus we obtain

cos θ2 cos θ1 + sin θ2 sin θ1 cos(φ1 − φ2) = cosAOB,

that is, in the ordinary notation of Spherical Trigonometry,

cos a cos b+ sin a sin b cosC = cos c.

This method has the advantage of giving a perfectly general proof, as all the

equations used are universally true.

EXAMPLES.

1. If A = a, shew that B and b are equal or supplemental, as also C and c.

2. If one angle of a triangle be equal to the sum of the other two, the greatest

side is double of the distance of its middle point from the opposite angle.

3. When does the polar triangle coincide with the primitive triangle?

4. If D be the middle point of AB, shew that

cosAC + cosBC = 2 cos 1
2AB cosCD.

5. If two angles of a spherical triangle be respectively equal to the sides op-

posite to them, shew that the remaining side is the supplement of the remaining

angle; or else that the triangle has two quadrants and two right angles, and then

the remaining side is equal to the remaining angle.

6. In an equilateral triangle, shew that 2 cos
a

2
sin

A

2
= 1.

7. In an equilateral triangle, shew that tan2 a

2
= 1− 2 cosA;

hence deduce the limits between which the sides and the angles of an equilateral

triangle are restricted.
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8. In an equilateral triangle, shew that secA = 1 + sec a.

9. If the three sides of a spherical triangle be halved and a new triangle

formed, the angle θ between the new sides
b

2
and

c

2
is given by cos θ = cosA+

1
2 tan

b

2
tan

c

2
sin2 θ.

10. AB, CD are quadrants on the surface of a sphere intersecting at E, the

extremities being joined by great circles: shew that

cosAEC = cosAC cosBD − cosBC cosAD.

11. If b+ c = π, shew that sin 2B + sin 2C = 0.

12. If DE be an arc of a great circle bisecting the sides AB, AC of a spherical

triangle at D and E, P a pole of DE, and PB, PD, PE, PC be joined by arcs

of great circles, shew that the angle BPC = twice the angle DPE.

13. In a spherical triangle shew that

sin b sin c+ cos b cos c cosA = sinB sinC − cosB cosC cos a.

14. If D be any point in the side BC of a triangle, shew that

cosAD sinBC = cosAB sinDC + cosAC sinBD.

15. In a spherical triangle shew that θ, φ, ψ be the lengths of arcs of great

circles drawn from A, B, C perpendicular to the opposite sides,

sin a sin θ = sin b sinφ = sin c sinψ

=
√

(1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c).

16. In a spherical triangle, if θ, φ, ψ be the arcs bisecting the angles A, B,

C respectively and terminated by the opposite sides, shew that

cot θ cos
A

2
+ cotφ cos

B

2
+ cotψ cos

C

2
= cot a+ cot b+ cot c.

17. Two ports are in the same parallel of latitude, their common latitude

being l and their difference of longitude 2λ: shew that the saving of distance in

sailing from one to the other on the great circle, instead of sailing due East or
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West, is

2r{λ cos l − sin−1(sinλ cos l)},

λ being expressed in circular measure, and r being the radius of the Earth.

18. If a ship be proceeding uniformly along a great circle and the observed

latitudes be l1, l2, l3, at equal intervals of time, in each of which the distance

traversed is s, shew that

s = r cos−1
sin 1

2 (l1 + l3) cos 1
2 (l1 − l3)

sin l2
,

r denoting the Earth’s radius: and shew that the change of longitude may also

be found in terms of the three latitudes.
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V

SOLUTION OF

RIGHT-ANGLED

TRIANGLES.

61. In every spherical triangle there are six elements, namely, the three sides

and the three angles, besides the radius of the sphere, which is supposed con-

stant. The solution of spherical triangles is the process by which, when the

values of a sufficient number of the six elements are given, we calculate the

values of the remaining elements. It will appear, as we proceed, that when the

values of three of the elements are given, those of the remaining three can gen-

erally be found. We begin with the right-angled triangle: here two elements, in

addition to the right angle, will be supposed known.

62. The formulæ requisite for the solution of right-angled triangles may be

obtained from the preceding Chapter by supposing one of the angles a right an-

gle, as C for example. They may also be obtained very easily in an independent

manner, as we will now shew.

Let ABC be a spherical triangle having a right angle at C; let O be the

centre of the sphere. From any point P in OA draw PM perpendicular to

OC, and from M draw MN perpendicular to OB, and join PN . Then PM

is perpendicular to MN , because the plane AOC is perpendicular to the plane

35
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BOC; hence

PN2 = PM2 +MN2 = OP 2 −OM2 +OM2 −ON2 = OP 2 −ON2;

therefore PNO is a right angle. And

ON

OP
=
ON

OM
�
OM

OP
, that is, cos c = cos a cos b, (1)

PM

OP
=
PM

PN
�
PN

OP
, that is, sin b = sinB sin c

Similarly, sin a = sinA sin c

 , (2)

MN

ON
=
MN

PN
�
PN

ON
, that is, tan a = cosB tan c

Similarly, tan b = cosA tan c

 , (3)

PM

OM
=
PM

MN
�
MN

OM
, that is, tan b = tanB sin a

Similarly, tan a = tanA sin b

 . (4)

Multiply together the two formulæ (4); thus,

tanA tanB =
tan a tan b

sin a sin b
=

1

cos a cos b
=

1

cos c
by (1);

therefore cos c = cotA cotB. (5)

Multiply crosswise the second formula in (2) and the first in (3); thus

sin a cosB tan c = tan a sinA sin c;

therefore cosB =
sinA cos c

cos a
= sinA cos b by (1).
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Thus

Similarly

cosB = sinA cos b

cosA = sinB cos a

. (6)

These six formulæ comprise ten equations; and thus we can solve every case

of right-angled triangles. For every one of these ten equations is a distinct

combination involving three out of the five quantities a, b, c, A, B; and out of

five quantities only ten combinations of three can be formed. Thus any two of

the five quantities being given and a third required, some one of the preceding

ten equations will serve to determine that third quantity.

63. As we have stated, the above six formulæ may be obtained from those

given in the preceding Chapter by supposing C a right angle. Thus (1) follows

from Art. 39, (2) from Art. 41, (3) from the fourth and fifth equations of Art. 44,

(4) from the first and second equations of Art. 44, (5) from the third equation

of Art. 47, (6) from the first and second equations of Art. 47.

Since the six formulæ may be obtained from those given in the preceding

Chapter which have been proved to be universally true, we do not stop to shew

that the demonstration of Art. 62 may be applied to every case which can

occur; the student may for exercise investigate the modifications which will be

necessary when we suppose one or more of the quantities a, b, c, A, B equal to

a right angle or greater than a right angle.

64. Certain properties of right-angled triangles are deducible from the formulæ

of Art. 62.

From (1) it follows that cos c has the same sign as the product cos a cos b;

hence either all the cosines are positive, or else only one is positive. Therefore

in a right-angled triangle either all the three sides are less than quadrants, or

else one side is less than a quadrant and the other two sides are greater than

quadrants.

From (4) it follows that tan a has the same sign as tanA. Therefore A and a

are either both greater than
π

2
, or both less than

π

2
; this is expressed by saying

that A and a are of the same affection. Similarly B and b are of the same

affection.

65. The formulæ of Art. 62 are comprised in the following enunciations, which

the student will find it useful to remember; the results are distinguished by the
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same numbers as have been already applied to them in Art. 62; the side opposite

the right angle is called the hypotenuse:

Cos hyp = product of cosines of sides . . . . . . . . . . . . . . . (1),

Cos hyp = product of cotangents of angles . . . . . . . . . . (5),

Sine side = sine of opposite angle × sine hyp . . . . . . . . (2),

Tan side = tan hyp × cos included angle . . . . . . . . . . . . (3),

Tan side = tan opposite angle × sine of other side . . . (4),

Cos angle = cos opposite side × sine of other angle . . . (6).

66. Napier’s Rules. The formulæ of Art. 62 are comprised in two rules, which

are called, from their inventor, Napier’s Rules of Circular Parts. Napier was

also the inventor of Logarithms, and the Rules of Circular Parts were first

published by him in a work entitled Mirifici Logarithmorum Canonis Descrip-

tio. . . . . . Edinburgh, 1614. These rules we will now explain.

The right angle is left out of consideration; the two sides which include the

right angle, the complement of the hypotenuse, and the complements of the

other angles are called the circular parts of the triangle. Thus there are five

circular parts, namely, a, b,
π

2
−A,

π

2
− c, π

2
−B; and these are supposed to be

ranged round a circle in the order in which they naturally occur with respect to

the triangle.

Any one of the five parts may be selected and called the middle part, then

the two parts next to it are called adjacent parts, and the remaining two parts

are called opposite parts. For example, if
π

2
−B is selected as the middle part,
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then the adjacent parts are a and
π

2
−c, and the opposite parts are b and

π

2
−A.

Then Napier’s Rules are the following:

sine of the middle part = product of tangents of adjacent parts,

sine of the middle part = product of cosines of opposite parts.

67. Napier’s Rules may be demonstrated by shewing that they agree with the

results already established. The following table shews the required agreement:

in the first column are given the middle parts, in the second column the results

of Napier’s Rules, and in the third column the same results expressed as in

Art. 62, with the number for reference used in that Article.

π

2
− c sin

(π
2
− c
)

= tan
(π

2
−A

)
tan

(π
2
−B

)
cos c = cotA cotB . . .(5),

sin
(π

2
− c
)

= cos a cos b cos c = cos a cos b . . . .(1),

π

2
−B sin

(π
2
−B

)
= tan a tan

(π
2
− c
)

cosB = tan a cot c . . . .(3),

sin
(π

2
−B

)
= cos b cos

(π
2
−A

)
cosB = cos b sinA . . . .(6),

a sin a = tan b tan
(π

2
−B

)
sin a = tan b cotB . . ..(4),

sin a = cos
(π

2
−A

)
cos
(π

2
− c
)

sin a = sinA sin c . . . .(2),

b sin b = tan
(π

2
−A

)
tan a sin b = cotA tan a . . .(4),

sin b = cos
(π

2
−B

)
cos
(π

2
− c
)

sin b = sinB sin c . . . .(2),

π

2
−A sin

(π
2
−A

)
= tan b tan

(π
2
− c
)

cosA = tan b cot c . . . .(3),

sin
(π

2
−A

)
= cos a cos

(π
2
−B

)
cosA = cos a sinB . . . .(6).

The last four cases need not have been given, since it is obvious that they

are only repetitions of what had previously been given; the seventh and eighth

are repetitions of the fifth and sixth, and the ninth and tenth are repetitions of

the third and fourth.
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68. It has been sometimes stated that the method of the preceding Article

is the only one by which Napier’s Rules can be demonstrated; this statement,

however, is inaccurate, since besides this method Napier himself indicated an-

other method of proof in his Mirifici Logarithmorum Canonis Descriptio, pp.

32, 35. This we will now briefly explain.

Let ABC be a spherical triangle right-angled at C; with B as pole describe

a great circle DEFG, and with A as pole describe a great circle HFKL, and

produce the sides of the original triangle ABC to meet these great circles. Then

since B is a pole of DEFG the angles at D and G are right angles, and since

A is a pole of HFKL the angles at H and L are right angles. Hence the five

triangles BAC, AED, EFH, FKG, KBL are all right-angled ; and moreover it

will be found on examination that, although the elements of these triangles are

different, yet their circular parts are the same. We will consider, for example,

the triangle AED; the angle EAD is equal to the angle BAC, the side AD is the

complement of AB; as the angles at C and G are right angles E is a pole of GC

(Art. 13), therefore EA is the complement of AC; as B is a pole of DE the angle

BED is a right angle, therefore the angle AED is the complement of the angle

BEC, that is, the angle AED is the complement of the side BC (Art. 12);

and similarly the side DE is equal to the angle DBE, and is therefore the

complement of the angle ABC. Hence, if we denote the elements of the triangle

ABC as usual by a, b, c, A, B, we have in the triangle AED the hypotenuse

equal to
π

2
− b, the angles equal to A and

π

2
− a, and the sides respectively

opposite these angles equal to
π

2
− B and

π

2
− c. The circular parts of AED

are therefore the same as those of ABC. Similarly the remaining three of the

five right-angled triangles may be shewn to have the same circular parts as the

triangle ABC has.
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Now take two of the theorems in Art. 65, for example (1) and (3); then

the truth of the ten cases comprised in Napier’s Rules will be found to follow

from applying the two theorems in succession to the five triangles formed in the

preceding figure. Thus this method of considering Napier’s Rules regards each

Rule, not as the statement of dissimilar properties of one triangle, but as the

statement of similar properties of five allied triangles.

69. In Napier’s work a figure is given of which that in the preceding Article

is a copy, except that different letters are used; Napier briefly intimates that

the truth of the Rules can be easily seen by means of this figure, as well as by

the method of induction from consideration of all the cases which can occur.

The late T. S. Davies, in his edition of Dr Hutton’s Course of Mathematics,

drew attention to Napier’s own views and expanded the demonstration by a

systematic examination of the figure of the preceding Article.

It is however easy to evade the necessity of examining the whole figure; all

that is wanted is to observe the connexion between the triangle AED and the

triangle BAC. For let a1, a2, a3, a4, a5 represent the elements of the triangle

BAC taken in order, beginning with the hypotenuse and omitting the right

angle; then the elements of the triangle AED taken in order, beginning with

the hypotenuse and omitting the right angle, are
π

2
−a3,

π

2
−a4,

π

2
−a5,

π

2
−a1,

and a2. If, therefore, to characterise the former we introduce a new set of

quantities p1, p2, p3, p4, p5, such that a1 + p1 = a2 + p2 = a5 + p5 =
π

2
, and

that p3 = a3 and p4 = a4, then the original triangle being characterised by p1,

p2, p3, p4, p5, the second triangle will be similarly characterised by p3, p4, p5,

p1, p2. As the second triangle can give rise to a third in like manner, and so on,

we see that every right-angled triangle is one of a system of five such triangles

which are all characterised by the quantities p1, p2, p3, p4, p5, always taken in

order, each quantity in its turn standing first.

The late R. L. Ellis pointed out this connexion between the five triangles,

and thus gave the true significance of Napier’s Rules. The memoir containing

Mr Ellis’s investigations, which was unpublished when the first edition of the

present work appeared, will be found in pages 328. . . 335 of The Mathematical

and other writings of Robert Leslie Ellis. . . Cambridge, 1863.

Napier’s own method of considering his Rules was neglected by writers on

the subject until the late T. S. Davies drew attention to it. Hence, as we
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have already remarked in Art. 68, an erroneous statement was made respecting

the Rules. For instance, Woodhouse says, in his Trigonometry : “There is no

separate and independent proof of these rules;. . . .” Airy says, in the treatise on

Trigonometry in the Encyclopædia Metropolitana: “These rules are proved to

be true only by showing that they comprehend all the equations which we have

just found.”

70. Opinions have differed with respect to the utility of Napier’s Rules in

practice. Thus Woodhouse says, “In the whole compass of mathematical sci-

ence there cannot be found, perhaps, rules which more completely attain that

which is the proper object of rules, namely, facility and brevity of computation.”

(Trigonometry, chap. x.) On the other hand may be set the following sentence

from Airy’s Trigonometry (Encyclopædia Metropolitana): “In the opinion of

Delambre (and no one was better qualified by experience to give an opinion)

these theorems are best recollected by the practical calculator in their uncon-

nected form.” See Delambre’s Astronomie, vol. i. p. 205. Professor De Morgan

strongly objects to Napier’s Rules, and says (Spherical Trigonometry, Art. 17):

“There are certain mnemonical formulæ called Napier’s Rules of Circular Parts,

which are generally explained. We do not give them, because we are convinced

that they only create confusion instead of assisting the memory.”

71. We shall now proceed to apply the formulæ of Art. 62 to the solution of

right-angled triangles. We shall assume that the given quantities are subject to

the limitations which are stated in Arts. 22 and 23, that is, a given side must

be less than the semicircumference of a great circle, and a given angle less than

two right angles. There will be six cases to consider.

72. Having given the hypotenuse c and an angle A.

Here we have from (3), (5) and (2) of Art. 62,

tan b = tan c cosA, cotB = cos c tanA, sin a = sin c sinA.

Thus b and B are determined immediately without ambiguity; and as a must

be of the same affection as A (Art. 64), a also is determined without ambiguity.

It is obvious from the formulæ of solution, that in this case the triangle is

always possible.



SOLUTION OF RIGHT-ANGLED TRIANGLES. 43

If c and A are both right angles, a is a right angle, and b and B are indeter-

minate.

73. Having given a side b and the adjacent angle A.

Here we have from (3), (4) and (6) of Art. 62,

tan c =
tan b

cosA
, tan a = tanA sin b, cosB = cos b sinA.

Here c, a, B are determined without ambiguity, and the triangle is always

possible.

74. Having given the two sides a and b.

Here we have from (1) and (4) of Art. 62,

cos c = cos a cos b, cotA = cot a sin b, cotB = cot b sin a.

Here c, A, B are determined without ambiguity, and the triangle is always

possible.

75. Having given the hypotenuse c and a side a.

Here we have from (1), (3) and (2) of Art. 62,

cos b =
cos c

cos a
, cosB =

tan a

tan c
, sinA =

sin a

sin c
.

Here b, B, A are determined without ambiguity, since A must be of the same

affection as a. It will be seen from these formulæ that there are limitations of

the data in order to insure a possible triangle; in fact, c must lie between a

and π − a in order that the values found for cos b, cosB, and sinA may be

numerically not greater than unity.

If c and a are right angles, A is a right angle, and b and B are indeterminate.

76. Having given the two angles A and B.

Here we have from (5) and (6) of Art. 62,

cos c = cotA cotB, cos a =
cosA

sinB
, cos b =

cosB

sinA
.
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Here c, a, b are determined without ambiguity. There are limitations of the

data in order to insure a possible triangle. First suppose A less than
π

2
, then

B must lie between
π

2
−A and

π

2
+A; next suppose A greater than

π

2
, then B

must lie between
π

2
− (π − A) and

π

2
+ (π − A), that is, between A − π

2
and

3π

2
−A.

77. Having given a side a and the opposite angle A.

Here we have from (2), (4) and (6) of Art. 62,

sin c =
sin a

sinA
, sin b = tan a cotA, sinB =

cosA

cos a
.

Here there is an ambiguity, as the parts are determined from their sines.

If sin a be less than sinA, there are two values admissible for c; corresponding

to each of these there will be in general only one admissible value of b, since

we must have cos c = cos a cos b, and only one admissible value of B, since we

must have cos c = cotA cotB. Thus if one triangle exists with the given parts,

there will be in general two, and only two, triangles with the given parts. We

say in general in the preceding sentences, because if a = A there will be only

one triangle, unless a and A are each right angles, and then b and B become

indeterminate.

It is easy to see from a figure that the ambiguity must occur in general.

For, suppose BAC to be a triangle which satisfies the given conditions;

produce AB and AC to meet again at A′; then the triangle A′BC also satisfies

the given conditions, for it has a right angle at C, BC the given side, and A′ = A

the given angle.

If a = A, then the formulæ of solution shew that c, b, and B are right angles;

in this case A is the pole of BC, and the triangle A′BC is symmetrically equal

to the triangle ABC (Art. 57).

If a and A are both right angles, B is the pole of AC; B and b are then

equal, but may have any value whatever.

There are limitations of the data in order to insure a possible triangle. A
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and a must have the same affection by Art. 64; hence the formulæ of solution

shew that a must be less than A if both are acute, and greater than A if both

are obtuse.

EXAMPLES.

If ABC be a triangle in which the angle C is a right angle, prove the following

relations contained in Examples 1 to 5.

1. Sin2 c

2
= sin2 a

2
cos2

b

2
+ cos2

a

2
sin2 b

2
.

2. Tan 1
2 (c+ a) tan 1

2 (c− a) = tan2 b

2
.

3. Sin(c− b) = tan2 A

2
sin(c+ b).

4. Sin a tan 1
2A− sin b tan 1

2B = sin(a− b).

5. Sin(c− a) = sin b cos a tan 1
2B,

Sin(c− a) = tan b cos c tan 1
2B.

6. If ABC be a spherical triangle, right-angled at C, and cosA = cos2 a,

shew that if A be not a right angle b+ c = 1
2π or

3

2
π, according as b and c are

both less or both greater than
π

2
.

7. If α, β be the arcs drawn from the right angle respectively perpendicular

to and bisecting the hypotenuse c, shew that

sin2 c

2
(1 + sin2 α) = sin2 β.

8. In a triangle, if C be a right angle and D the middle point of AB, shew

that

4 cos2
c

2
sin2 CD = sin2 a+ sin2 b.

9. In a right-angled triangle, if δ be the length of the arc drawn from C

perpendicular to the hypotenuse AB, shew that

cot δ =
√

(cot2 a+ cot2 b).
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10. OAA1 is a spherical triangle right-angled at A1 and acute-angled at A;

the arc A1A2 of a great circle is drawn perpendicular to OA, then A2A3 is drawn

perpendicular to OA1, and so on: shew that AnAn+1 vanishes when n becomes

infinite; and find the value of cosAA1 cosA1A2 cosA2A3 . . . . . . to infinity.

11. ABC is a right-angled spherical triangle, A not being the right angle:

shew that if A = a, then c and b are quadrants.

12. If δ be the length of the arc drawn from C perpendicular to AB in any

triangle, shew that

cos δ = cosec c (cos2 a+ cos2 b− 2 cos a cos b cos c)
1
2 .

13. ABC is a great circle of a sphere; AA′, BB′, CC ′, are arcs of great

circles drawn at right angles to ABC and reckoned positive when they lie on

the same side of it: shew that the condition of A′, B′, C ′ lying in a great circle

is

tanAA′ sinBC + tanBB′ sinCA+ tanCC ′ sinAB = 0.

14. Perpendiculars are drawn from the angles A, B, C of any triangle

meeting the opposite sides at D, E, F respectively: shew that

tanBD tanCE tanAF = tanDC tanEA tanFB.

15. Ox, Oy are two great circles of a sphere at right angles to each other, P

is any point in AB another great circle. OC = p is the arc perpendicular to AB

from O, making the angle COx = a with Ox. PM , PN are arcs perpendicular

to Ox, Oy respectively: shew that if OM = x and ON = y,

cos a tanx+ sin a tan y = tan p.

16. The position of a point on a sphere, with reference to two great circles

at right angles to each other as axes, is determined by the portions θ, φ of these

circles cut off by great circles through the point, and through two points on the

axes, each
π

2
from their point of intersection: shew that if the three points (θ,

φ), (θ′, φ′), (θ′′, φ′′) lie on the same great circle

tanφ (tan θ′ − tan θ′′) + tanφ′ (tan θ′′ − tan θ)
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+ tanφ′′ (tan θ − tan θ′) = 0.

17. If a point on a sphere be referred to two great circles at right angles

to each other as axes, by means of the portions of these axes cut off by great

circles drawn through the point and two points on the axes each 90◦ from their

intersection, shew that the equation to a great circle is

tan θ cotα+ tanφ cotβ = 1.

18. In a spherical triangle, if A =
π

5
, B =

π

3
, and, C =

π

2
, shew that

a+ b+ c =
π

2
.
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VI

SOLUTION OF

OBLIQUE-ANGLED

TRIANGLES.

78. The solution of oblique-angled triangles may be made in some cases to

depend immediately on the solution of right-angled triangles; we will indicate

these cases before considering the subject generally.

(1) Suppose a triangle to have one of its given sides equal to a quadrant. In

this case the polar triangle has its corresponding angle a right angle; the polar

triangle can therefore be solved by the rules of the preceding Chapter, and thus

the elements of the primitive triangle become known.

(2) Suppose among the given elements of a triangle there are two equal sides

or two equal angles. By drawing an arc from the vertex to the middle point

of the base, the triangle is divided into two equal right-angled triangles; by

the solution of one of these right-angled triangles the required elements can be

found.

(3) Suppose among the given elements of a triangle there are two sides, one

of which is the supplement of the other, or two angles, one of which is the

supplement of the other. Suppose, for example, that b + c = π, or else that

B + C = π; produce BA and BC to meet at B′ (see the first figure to Art.

38); then the triangle B′AC has two equal sides given, or else two equal angles

49
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given; and by the preceding case the solution of it can be made to depend on

the solution of a right-angled triangle.

79. We now proceed to the solution of oblique-angled triangles in general.

There will be six cases to consider.

80. Having given the three sides.

Here we have cosA =
cos a− cos b cos c

sin b sin c
, and similar formulæ for cosB and

cosC. Or if we wish to use formulæ suited to logarithms, we may take the for-

mula for the sine, cosine, or tangent of half an angle given in Art. 45. In select-

ing a formula, attention should be paid to the remarks in Plane Trigonometry,

Chap. XII. towards the end.

81. Having given the three angles.

Here we have cos a =
cosA+ cosB cosC

sinB sinC
, and similar formulæ for cos b and

cos c. Or if we wish to use formulæ suited to logarithms, we may take the

formula for the sine, cosine, or tangent of half a side given in Art. 49.

There is no ambiguity in the two preceding cases; the triangles however may

be impossible with the given elements.

82. Having given two sides and the included angle (a, C, b).

By Napier’s analogies

tan 1
2 (A+B) =

cos 1
2 (a− b)

cos 1
2 (a+ b)

cot 1
2C,

tan 1
2 (A−B) =

sin 1
2 (a− b)

sin 1
2 (a+ b)

cot 1
2C;

these determine 1
2 (A+B) and 1

2 (A−B), and thence A and B.

Then c may be found from the formula sin c =
sin a sinC

sinA
; in this case, since

c is found from its sine, it may be uncertain which of two values is to be given

to it; the point may be sometimes settled by observing that the greater side of a

triangle is opposite to the greater angle. Or we may determine c from equation

(1) of Art. 54, which is free from ambiguity.

Or we may determine c, without previously determining A and B, from the

formula cos c = cos a cos b + sin a sin b cosC; this is free from ambiguity. This
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formula may be adapted to logarithms thus:

cos c = cos b (cos a+ sin a tan b cosC);

assume tan θ = tan b cosC; then

cos c = cos b (cos a+ sin a tan θ) =
cos b cos(a− θ)

cos θ
;

this is adapted to logarithms.

Or we may treat this case conveniently by resolving the triangle into the

sum or difference of two right-angled triangles. From A draw the arc AD per-

pendicular to CB or CB produced; then, by Art. 62, tanCD = tan b cosC, and

this determines CD, and then DB is known. Again, by Art. 62,

cos c = cosAD cosDB = cosDB
cos b

cosCD
;

this finds c. It is obvious that CD is what was denoted by θ in the former part

of the Article.

By Art. 62,

tanAD = tanC sinCD, and tanAD = tanABD sinDB;

thus tanABD sinDB = tanC sin θ,

where DB = a − θ or θ − a, according as D is on CB or CB produced, and

ABD is either B or the supplement of B; this formula enables us to find B

independently of A.

Thus, in the present case, there is no real ambiguity, and the triangle is

always possible.

83. Having given two angles and the included side (A, c,B).
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By Napier’s analogies,

tan 1
2 (a+ b) =

cos 1
2 (A−B)

cos 1
2 (A+B)

tan 1
2c,

tan 1
2 (a− b) =

sin 1
2 (A−B)

sin 1
2 (A+B)

tan 1
2c;

these determine 1
2 (a+ b) and 1

2 (a− b), and thence a and b.

Then C may be found from the formula sinC =
sinA sin c

sin a
; in this case,

since C is found from its sine, it may be uncertain which of two values is to be

given to it; the point may be sometimes settled by observing that the greater

angle of a triangle is opposite to the greater side. Or we may determine C from

equation (3) of Art. 54, which is free from ambiguity.

Or we may determine C without previously determining a and b from the

formula cosC = − cosA cosB + sinA sinB cos c. This formula may be adapted

to logarithms, thus:

cosC = cosB(− cosA+ sinA tanB cos c);

assume cotφ = tanB cos c; then

cosC = cosB(− cosA+ cotφ sinA) =
cosB sin(A− φ)

sinφ
;

this is adapted to logarithms.

Or we may treat this case conveniently by resolving the triangle into the

sum or difference of two right-angled triangles. From A draw the arc AD

perpendicular to CB (see the right-hand figure of Art. 82); then, by Art. 62,

cos c = cotB cotDAB, and this determines DAB, and then CAD is known.

Again, by Art. 62,

cosAD sinCAD = cosC, and cosAD sinBAD = cosB;

therefore
cosC

sinCAD
=

cosB

sinBAD
; this finds C.

It is obvious that DAB is what was denoted by φ in the former part of the

Article.
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By Art. 62,

tanAD = tanAC cosCAD, and tanAD = tanAB cosBAD;

thus tan b cosCAD = tan c cosφ,

where CAD = A− φ; this formula enables us to find b independently of a.

Similarly we may proceed when the perpendicular AD falls on CB produced ;

(see the left-hand figure of Art. 82).

Thus, in the present case, there is no real ambiguity; moreover the triangle

is always possible.

84. Having given two sides and the angle opposite one of them (a, b, A).

The angle B may be found from the formula

sinB =
sin b

sin a
sinA;

and then C and c may be found from Napier’s analogies,

tan 1
2C =

cos 1
2 (a− b)

cos 1
2 (a+ b)

cot 1
2 (A+B),

tan 1
2c =

cos 1
2 (A+B)

cos 1
2 (A−B)

tan 1
2 (a+ b).

In this case, since B is found from its sine, there will sometimes be two solutions;

and sometimes there will be no solution at all, namely, when the value found for

sinB is greater than unity. We will presently return to this point. (See Art. 86.)

We may also determine C and c independently of B by formulæ adapted to

logarithms. For, by Art. 44,

cot a sin b = cos b cosC + sinC cotA = cos b (cosC +
cotA

cos b
sinC);

assume tanφ =
cotA

cos b
; thus

cot a sin b = cos b(cosC + tanφ sinC) =
cos b cos(C − φ)

cosφ
;

therefore cos(C − φ) = cosφ cot a tan b;
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from this equation C−φ is to be found, and then C. The ambiguity still exists;

for if the last equation leads to C−φ = α, it will be satisfied also by φ−C = α;

so that we have two admissible values for C, if φ+ α is less than π, and φ− α
is positive.

And

cos a = cos b cos c+ sin b sin c cosA = cos b(cos c+ sin c tan b cosA);

assume tan θ = tan b cosA; thus

cos a = cos b(cos c+ sin c tan θ) =
cos b cos(c− θ)

cos θ
;

therefore cos(c− θ) =
cos a cos θ

cos b
;

from this equation c − θ is to be found, and then c; and there may be an

ambiguity as before.

Or we may treat this case conveniently by resolving the triangle into the

sum or difference of two right-angled triangles.

Let CA = b, and let CAE = the given angle A; from C draw CD per-

pendicular to AE, and let CB and CB′ = a; thus the figure shews that

there may be two triangles which have the given elements. Then, by Art. 62,

cos b = cotA cotACD; this finds ACD. Again, by Art. 62,

tanCD = tanAC cosACD,

and tanCD = tanCB cosBCD, or tanCB′ cosB′CD,

therefore tanAC cosACD = tanCB cosBCD, or tanCB′ cosB′CD; this finds

BCD or B′CD.

It is obvious that ACD is what was denoted by φ in the former part of the

Article.
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Also, by Art. 62, tanAD = tanAC cosA; this finds AD. Then

cosAC = cosCD cosAD,

cosCB = cosCD cosBD,

or cosCB′ = cosCD cosB′D;

therefore
cosAC

cosAD
=

cosCB

cosBD
or

cosCB′

cosB′D
;

this finds BD or B′D.

It is obvious that AD is what was denoted by θ in the former part of the

Article.

85. Having given two angles and the side opposite one of them (A, B, a).

This case is analogous to that immediately preceding, and gives rise to the

same ambiguities. The side b may be found from the formula

sin b =
sinB sin a

sinA
;

and then C and c may be found from Napier’s analogies,

tan 1
2C =

cos 1
2 (a− b)

cos 1
2 (a+ b)

cot 1
2 (A+B),

tan 1
2c =

cos 1
2 (A+B)

cos 1
2 (A−B)

tan 1
2 (a+ b),

We may also determine C and c independently of b by formulæ adapted to

logarithms. For

cosA = − cosB cosC + sinB sinC cos a

= cosB(− cosC + tanB sinC cos a),

assume cotφ = tanB cos a; thus

cosA = cosB(− cosC + sinC cotφ) =
cosB sin(C − φ)

sinφ
;
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therefore sin(C − φ) =
cosA sinφ

cosB
;

from this equation C − φ is to be found and then C. Since C − φ is found from

its sine there may be an ambiguity. Again, by Art. 44,

cotA sinB = cot a sin c− cos c cosB = cosB

(
− cos c+

cot a sin c

cosB

)
,

assume cot θ =
cot a

cosB
; then

cotA sinB = cosB(− cos c+ sin c cot θ) =
cosB sin(c− θ)

sin θ
;

therefore sin(c− θ) = cotA tanB sin θ;

from this equation c − θ is to be found, and then c. Since c − θ is found from

its sine there may be an ambiguity. As before, it may be shewn that these

results agree with those obtained by resolving the triangle into two right-angled

triangles; for if in the triangle ACB′ the arc CD be drawn perpendicular to

AB′, then B′CD will = φ, and B′D = θ.

86. We now return to the consideration of the ambiguity which may occur in

the case of Art. 84, when two sides are given and the angle opposite one of them.

The discussion is somewhat tedious from its length, but presents no difficulty.

Before considering the problem generally, we will take the particular case in

which a = b; then A must = B. The first and third of Napier’s analogies give

cot 1
2C = tanA cos a, tan 1

2c = tan a cosA;

now cot 1
2C and tan 1

2c must both be positive, so that A and a must be of the

same affection. Hence, when a = b, there will be no solution at all, unless A and

a are of the same affection, and then there will be only one solution; except when

A and a are both right angles, and then cot 1
2C and tan 1

2c are indeterminate,

and there is an infinite number of solutions.

We now proceed to the general discussion.

If sin b sinA be greater than sin a, there is no triangle which satisfies the given

conditions; if sin b sinA is not greater than sin a, the equation sinB =
sin b sinA

sin a
furnishes two values of B, which we will denote by β and β′, so that β′ = π−β;
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we will suppose that β is the one which is not greater than the other.

Now, in order that these values of B may be admissible, it is necessary and

sufficient that the values of cot 1
2C and of tan 1

2c should both be positive, that

is, A−B and a−b must have the same sign by the second and fourth of Napier’s

analogies. We have therefore to compare the sign of A−β and the sign of A−β′

with that of a− b.
We will suppose that A is less than a right angle, and separate the corre-

sponding discussion into three cases.

I. Let b be less than
π

2
.

(1) Let a be less than b; the formula sinB =
sin b

sin a
sinA make β greater than

A, and à fortiori β′ greater than A. Hence there are two solutions.

(2) Let a be equal to b; then there is one solution, as previously shewn.

(3) Let a be greater than b; we may have then a+ b less than π or equal to π

or greater than π. If a+b is less than π, then sin a is greater than sin b; thus β is

less than A and therefore admissible, and β′ is greater than A and inadmissible.

Hence there is one solution. If a+ b is equal to π, then β is equal to A, and β′

greater than A, and both are inadmissible. Hence there is no solution. If a+ b

is greater than π, then sin a is less than sin b, and β and β′ are both greater

than A, and both inadmissible. Hence there is no solution.

II. Let b be equal to
π

2
.

(1) Let a be less than b; then β and β′ are both greater than A, and both

admissible. Hence there are two solutions.

(2) Let a be equal to b; then there is no solution, as previously shewn.

(3) Let a be greater than b; then sin a is less than sin b, and β and β′ are

both greater than A, and inadmissible. Hence there is no solution.

III. Let b be greater than
π

2
.

(1) Let a be less than b; we may have then a + b less than π or equal to π

or greater than π. If a+ b is less than π, then sin a is less than sin b, and β and

β′ are both greater than A and both admissible. Hence there are two solutions.

If a + b is equal to π, then β is equal to A and inadmissible, and β′ is greater

than A and admissible. Hence there is one solution. If a+ b is greater than π,

then sin a is greater than sin b; β is less than A and admissible, and β′ is greater

than A and admissible. Hence there is one solution.

(2) Let a be equal to b; then there is no solution, as previously shewn.
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(3) Let a be greater than b; then sin a is less than sin b, and β and β′ are

both greater than A and both inadmissible. Hence there is no solution.

We have then the following results when A is less than a right angle.

b <
π

2


a < b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .two solutions,

a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .one solution,

a > b and a+ b < π . . . . . . . . . . . . . . . . . . . . . . . . . . one solution,

a > b and a+ b = π or > π . . . . . . . . . . . . . . . . . . no solution.

b =
π

2

{
a < b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .two solutions,

a = b or a > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution.

b >
π

2


a < b and a+ b < π . . . . . . . . . . . . . . . . . . . . . . . . . . two solutions,

a < b and a+ b = π or > π . . . . . . . . . . . . . . . . . . one solution,

a = b or > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution.

It must be remembered, however, that in the cases in which two solutions

are indicated, there will be no solution at all if sin a be less than sin b sinA.

In the same manner the cases in which A is equal to a right angle or greater

than a right angle may be discussed, and the following results obtained.

When A is equal to a right angle,

b <
π

2


a < b or a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution,

a > b and a+ b < π . . . . . . . . . . . . . . . . . . . . . . . . . . one solution,

a > b and a+ b = π or > π . . . . . . . . . . . . . . . . . . no solution.

b =
π

2

{
a < b or a > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution,

a = b . . . . . . . . . . . . . . . . . . . . . . . . . infinite number of solutions.

b >
π

2


a < b and a+ b > π . . . . . . . . . . . . . . . . . . . . . . . . . . one solution,

a < b and a+ b = π or < π . . . . . . . . . . . . . . . . . . no solution,

a = b or a > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution.

When A is greater than a right angle,
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b <
π

2


a < b or a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution,

a > b and a+ b = π or < π . . . . . . . . . . . . . . . . . . one solution,

a > b and a+ b > π . . . . . . . . . . . . . . . . . . . . . . . . . . two solutions.

b =
π

2

{
a < b or a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no solution,

a > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .two solutions.

b >
π

2


a < b and a+ b > π . . . . . . . . . . . . . . . . . . . . . . . . . . one solution,

a < b and a+ b = π or < π . . . . . . . . . . . . . . . . . . no solution,

a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .one solution,

a > b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .two solutions.

As before in the cases in which two solutions are indicated, there will be no

solution at all if sin a be less than sin b sinA.

It will be seen from the above investigations that if a lies between b and

π − b, there will be one solution; if a does not lie between b and π − b either

there are two solutions or there is no solution; this enunciation is not meant to

include the cases in which a = b or = π − b.

87. The results of the preceding Article may be illustrated by a figure.

Let ADA′E be a great circle; suppose PA and PA′ the projections on the

plane of this circle of arcs which are each equal to b and inclined at an angle A

to ADA′; let PD and PE be the projections of the least and greatest distances

of P from the great circle (see Art. 59). Thus the figure supposes A and b each

less than
π

2
.
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If a be less than the arc which is represented by PD there is no triangle; if

a be between PD and PA in magnitude, there are two triangles, since B will

fall on ADA′, and we have two triangles BPA and BPA′; if a be between PA

and PH there will be only one triangle, as B will fall on A′H or AH ′, and the

triangle will be either APB with B between A′ and H, or else A′PB with B

between A and H ′; but these two triangles are symmetrically equal (Art. 57); if

a be greater than PH there will be no triangle. The figure will easily serve for

all the cases; thus if A is greater than
π

2
, we can suppose PAE and PA′E to

be equal to A; if b is greater than
π

2
, we can take PH and PH ′ to represent b.

88. The ambiguities which occur in the last case in the solution of oblique-

angled triangles (Art. 85) may be discussed in the same manner as those in Art.

86; or, by means of the polar triangle, the last case may be deduced from that

of Art. 86.

EXAMPLES.

1. The sides of a triangle are 105◦, 90◦, and 75◦ respectively: find the sines

of all the angles.

2. Shew that tan 1
2A tan 1

2B =
sin(s− c)

sin s
. Solve a triangle when a side, an

adjacent angle, and the sum of the other two sides are given.

3. Solve a triangle having given a side, an adjacent angle, and the sum of

the other two angles.

4. A triangle has the sum of two sides equal to a semicircumference: find

the arc joining the vertex with the middle of the base.

5. If a, b, c are known, c being a quadrant, determine the angles: shew also

that if δ be the perpendicular on c from the opposite angle, cos2 δ = cos2 a +

cos2 b.

6. If one side of a spherical triangle be divided into four equal parts, and θ1,

θ2, θ3, θ4, be the angles subtended at the opposite angle by the parts taken in

order, shew that

sin(θ1 + θ2) sin θ2 sin θ4 = sin(θ3 + θ4) sin θ1 sin θ3.
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7. In a spherical triangle if A = B = 2C, shew that

8 sin
(
a+

c

2

)
sin2 c

2
cos

c

2
= sin3 a.

8. In a spherical triangle if A = B = 2C, shew that

8 sin2 C

2

(
cos s+ sin

C

2

) cos
c

2
cos a

= 1.

9. If the equal sides of an isosceles triangle ABC be bisected by an arc DE,

and BC be the base, shew that

sin
DE

2
= 1

2 sin
BC

2
sec

AC

2
.

10. If c1, c2 be the two values of the third side when A, a, b are given and

the triangle is ambiguous, shew that

tan
c1
2

tan
c2
2

= tan 1
2 (b− a) tan 1

2 (b+ a).
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VII

CIRCUMSCRIBED AND

INSCRIBED CIRCLES.

89. To find the angular radius of the small circle inscribed in a given triangle.

Let ABC be the triangle; bisect the angles A and B by arcs meeting at P ;

from P draw PD, PE, PF perpendicular to the sides. Then it may be shewn

that PD, PE, PF are all equal; also that AE = AF , BF = BD, CD = CE.

Hence BC + AF = half the sum of the sides = s; therefore AF = s − a. Let

PF = r.

Now tanPF = tanPAF sinAF (Art. 62);

thus tan r = tan
A

2
sin(s− a). (1)

63



64 CIRCUMSCRIBED AND INSCRIBED CIRCLES.

The value of tan r may be expressed in various forms; thus from Art. 45, we

obtain

tan
A

2
=

√
sin(s− b) sin(s− c)

sin s sin(s− a)
;

substitute this value in (1), thus

tan r =

√{
sin(s− a) sin(s− b) sin(s− c)

sin s

}
=

n

sin s
(Art. 46). (2)

Again

sin(s− a) = sin{ 12 (b+ c)− 1
2a}

= sin 1
2 (b+ c) cos 1

2a− cos 1
2 (b+ c) sin 1

2a

=
sin 1

2a cos 1
2a

sin 1
2A

{cos 1
2 (B − C)− cos 1

2 (B + C)}, (Art. 54)

=
sin a sin 1

2B sin 1
2C

sin 1
2A

;

therefore from (1) tan r =
sin 1

2B sin 1
2C

cos 1
2A

sin a; (3)

hence, by Art. 51,

tan r =

√
{− cosS cos(S −A) cos(S −B) cos(S − C)}

2 cos 1
2A cos 1

2B cos 1
2C

=
N

2 cos 1
2A cos 1

2B cos 1
2C

. (4)

It may be shewn by common trigonometrical formulæ that

4 cos 1
2A cos 1

2B cos 1
2C = cosS + cos(S −A) + cos(S −B) + cos(S − C);

hence we have from (4)

cot r =
1

2N

{
cosS + cos(S −A) + cos(S −B) + cos(S − C)

}
. (5)
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90. To find the angular radius of the small circle described so as to touch one

side of a given triangle, and the other sides produced.

Let ABC be the triangle; and suppose we require the radius of the small

circle which touches BC, and AB and AC produced. Produce AB and AC to

meet at A′; then we require the radius of the small circle inscribed in A′BC, and

the sides of A′BC are a, π − b, π − c respectively. Hence if r1 be the required

radius, and s denote as usual 1
2 (a+ b+ c), we have from Art. 89,

tan r1 = tan
A

2
sin s. (1)

From this result we may derive other equivalent forms as in the preceding

Article; or we may make use of those forms immediately, observing that the

angles of the triangle A′BC are A, π − B, π − C respectively. Hence s being
1
2 (a+ b+ c) and S being 1

2 (A+B + C) we shall obtain

tan r1 =

√{
sin s sin(s− b) sin(s− c)

sin(s− a)

}
=

n

sin(s− a)
, (2)

tan r1 =
cos 1

2B cos 1
2C

cos 1
2A

sin a, (3)

tan r1=

√
{− cosS cos(S −A) cos(S −B) cos(S − C)}

2 cos 1
2A sin 1

2B sin 1
2C

=
N

2 cos 1
2A sin 1

2B sin 1
2C

,

(4)

cot r1 =
1

2N
{−c cosS − cos(S −A) + cos(S −B) + cos(S − C)}. (5)

These results may also be found independently by bisecting two of the an-

gles of the triangle A′BC, so as to determine the pole of the small circle, and

proceeding as in Art. 89.

91. A circle which touches one side of a triangle and the other sides produced

is called an escribed circle; thus there are three escribed circles belonging to a
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given triangle. We may denote the radii of the escribed circles which touch CA

and AB respectively by r2 and r3, and values of tan r2 and tan r3 may be found

from what has been already given with respect to tan r1 by appropriate changes

in the letters which denote the sides and angles.

In the preceding Article a triangle A′BC was formed by producing AB and

AC to meet again at A′; similarly another triangle may be formed by producing

BC and BA to meet again, and another by producing CA and CB to meet

again. The original triangle ABC and the three formed from it have been called

associated triangles, ABC being the fundamental triangle. Thus the inscribed

and escribed circles of a given triangle are the same as the circles inscribed in

the system of associated triangles of which the given triangle is the fundamental

triangle.

92. To find the angular radius of the small circle described about a given tri-

angle.

Let ABC be the given triangle; bisect the sides CB, CA at D and E respec-

tively, and draw from D and E arcs at right angles to CB and CA respectively,

and let P be the intersection of these arcs. Then P will be the pole of the small

circle described about ABC. For draw PA, PB, PC; then from the right-angled

triangles PCD and PBD it follows that PB = PC; and from the right-angled

triangles PCE and PAE it follows that PA = PC; hence PA = PB = PC.

Also the angle PAB = the angle PBA, the angle PBC = the angle PCB, and

the angle PCA = the angle PAC; therefore PCB + A = 1
2 (A + B + C), and

PCB = S −A.
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Let PC = R.

Now tanCD = tanCP cosPCD, (Art. 62,)

thus tan 1
2a = tanR cos(S −A),

therefore tanR =
tan 1

2a

cos(S −A)
. (1)

The value of tanR may be expressed in various forms; thus if we substitute

for tan
a

2
from Art. 49, we obtain

tanR =

√{
− cosS

cos(S −A) cos(S −B) cos(S − C)

}
=

cosS

N
. (2)

Again cos(S −A) = cos
{

1
2 (B + C)− 1

2A
}

= cos 1
2 (B + C) cos 1

2A+ sin 1
2 (B + C) sin 1

2A

=
sin 1

2A cos 1
2A

cos 1
2a

{
cos 1

2 (b+ c) + cos 1
2 (b− c)

}
, (Art. 54,)

=
sinA

cos 1
2a

cos 1
2b cos 1

2c;

therefore from (1)

tanR =
sin 1

2a

sinA cos 1
2b cos 1

2c
. (3)

Substitute in the last expression the value of sinA from Art. 46; thus

tanR =
2 sin 1

2a sin 1
2b sin 1

2c√
{sin s sin(s− a) sin(s− b) sin(s− c)}

=
2 sin 1

2a sin 1
2b sin 1

2c

n
. (4)

It may be shewn, by common trigonometrical formulæ that

4 sin 1
2a sin 1

2b sin 1
2c = sin(s− a) + sin(s− b) + sin(s− c)− sin s;
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hence we have from (4)

tanR =
1

2n
{sin(s− a) + sin(s− b) + sin(s− c)− sin s}. (5)

93. To find the angular radii of the small circles described round the triangles

associated with a given fundamental triangle.

Let R1 denote the radius of the circle described round the triangle formed by

producing AB and AC to meet again at A′; similarly let R2 and R3 denote the

radii of the circles described round the other two triangles which are similarly

formed. Then we may deduce expressions for tanR1, tanR2, and tanR3 from

those found in Art. 92 for tanR. The sides of the triangle A′BC are a, π − b,
π − c, and its angles are A, π − B, π − C; hence if s = 1

2 (a + b + c) and

S = 1
2 (A+B + C) we shall obtain from Art. 92

tanR1 =
tan 1

2a

− cosS
, (1)

tanR1 =

√{
cos(S −A)

− cosS cos(S −B) cos(S − C)

}
=

cos(S −A)

N
, (2)

tanR1 =
sin 1

2a

sinA sin 1
2b sin 1

2c
, (3)

tanR1 =
2 sin 1

2a cos 1
2b cos 1

2c√
{sin s sin(s− a) sin(s− b) sin(s− c)}

, (4)

tanR1 =
1

2n
{sin s− sin(s− a) + sin(s− b) + sin(s− c)}. (5)

Similarly we may find expressions for tanR2 and tanR3.

94. Many examples may be proposed involving properties of the circles in-

scribed in and described about the associated triangles. We will give one that

will be of use hereafter.

To prove that

(cot r + tanR)2 =
1

4n2
(sin a+ sin b+ sin c)2 − 1.
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We have

4n2 = 1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c;

therefore

(sin a+ sin b+ sin c)2 − 4n2

= 2 (1 + sin a sin b+ sin b sin c+ sin c sin a− cos a cos b cos c ).

Also cot r + tanR =
1

2n

{
sin s + sin(s − a) + sin(s − b) + sin(s − c)

}
; and by

squaring both members of this equation the required result will be obtained.

For it may be shewn by reduction that

sin2 s+ sin2(s− a) + sin2(s− b) + sin2(s− c) = 2− 2 cos a cos b cos c,

and

sin s sin(s− a) + sin s sin(s− b) + sin s sin(s− c)

+ sin(s− a) sin(s− b) + sin(s− b) sin(s− c) + sin(s− c) sin(s− a)

= sin a sin b+ sin b sin c+ sin c sin a.

Similarly we may prove that

(cot r1 − tanR)2 =
1

4n2
(sin b+ sin c− sin a)2 − 1.

95. In the figure to Art. 89, suppose DP produced through P to a point A′

such that DA′ is a quadrant, then A′ is a pole of BC, and PA′ =
π

2
−r; similarly,

suppose EP produced through P to a point B′ such that EB′ is a quadrant,

and FP produced through P to a point C ′ such that FC ′ is a quadrant. Then

A′B′C ′ is the polar triangle of ABC, and PA′ = PB′ = PC ′ =
π

2
− r. Thus P

is the pole of the small circle described round the polar triangle, and the angular

radius of the small circle described round the polar triangle is the complement

of the angular radius of the small circle inscribed in the primitive triangle. And

in like manner the point which is the pole of the small circle inscribed in the

polar triangle is also the pole of the small circle described round the primitive

triangle, and the angular radii of the two circles are complementary.
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EXAMPLES.

In the following examples the notation of the Chapter is retained. Shew that

in any triangle the following relations hold contained in Examples 1 to 7:

1. Tan r1 tan r2 tan r3 = tan r sin2 s.

2. TanR+ cot r = tanR1 + cot r1 = tanR2 + cot r2

= tanR3 + cot r3 = 1
2 (cot r + cot r1 + cot r2 + cot r3).

3. Tan2R+ tan2R1 + tan2R2 + tan2R3

= cot2 r + cot2 r1 + cot2 r2 + cot2 r3.

4.
Tan r1 + tan r2 + tan r3 − tan r

cot r1 + cot r2 + cot r3 − cot r
= 1

2 (1 + cos a+ cos b+ cos c).

5. Cosec2 r = cot(s− a) cot(s− b) + cot(s− b) cot(s− c) + cot(s− c)(s− a).

6. Cosec2 r1 = cot(s− b) cot(s− c)− cot s cot(s− b)− cot s cot(s− c).

7. TanR1 tanR2 tanR3 = tanR sec2 S.

8. Shew that in an equilateral triangle tanR = 2 tan r.

9. If ABC be an equilateral spherical triangle, P the pole of the circle

circumscribing it, Q any point on the sphere, shew that

cosQA+ cosQB + cosQC = 3 cosPA cosPQ.

10. If three small circles be inscribed in a spherical triangle having each of

its angles 120◦, so that each touches the other two as well as two sides of the

triangle, shew that the radius of each of the small circles = 30◦, and that the

centres of the three small circles coincide with the angular points of the polar

triangle.



VIII

AREA OF A SPHERICAL

TRIANGLE. SPHERICAL

EXCESS.

96. To find the area of a Lune.

A Lune is that portion of the surface of a sphere which is comprised between

two great semicircles.

Let ACBDA, ADBEA be two lunes having equal angles at A; then one of

these lunes may be supposed placed on the other so as to coincide exactly with

it; thus lunes having equal angles are equal. Then by a process similar to that

used in the first proposition of the Sixth Book of Euclid it may be shewn that

71
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lunes are proportional to their angles. Hence since the whole surface of a sphere

may be considered as a lune with an angle equal to four right angles, we have

for a lune with an angle of which the circular measure is A,

area of lune

surface of sphere
=

A

2π
.

Suppose r the radius of the sphere, then the surface is 4πr2 (Integral Calcu-

lus, Chap. vii.); thus

area of lune =
A

2π
4πr2 = 2Ar2.

97. To find the area of a Spherical Triangle.

Let ABC be a spherical triangle; produce the arcs which form its sides until

they meet again two and two, which will happen when each has become equal

to the semicircumference. The triangle ABC now forms a part of three lunes,

namely, ABDCA, BCEAB, and CAFBC. Now the triangles CDE and AFB

are subtended by vertically opposite solid angles at O, and we will assume that

their areas are equal; therefore the lune CAFBC is equal to the sum of the two

triangles ABC and CDE. Hence if A, B, C denote the circular measures of the

angles of the triangle, we have

triangle ABC +BGDC = lune ABDCA = 2Ar2,

triangle ABC +AHEC = lune BCEAB = 2Br2,

triangle ABC + triangle CDE = lune CAFBC = 2Cr2;
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hence, by addition,

twice triangle ABC + surface of hemisphere = 2(A+B + C)r2;

therefore triangle ABC = (A+B + C − π)r2.

The expression A+B + C − π is called the spherical excess of the triangle;

and since

(A+B + C − π)r2 =
A+B + C − π

2π
2πr2,

the result obtained may be thus enunciated: the area of a spherical triangle is

the same fraction of half the surface of the sphere as the spherical excess is of

four right angles.

98. We have assumed, as is usually done, that the areas of the triangles CDE

and AFB in the preceding Article are equal. The triangles are, however, not ab-

solutely equal, but symmetrically equal (Art. 57), so that one cannot be made to

coincide with the other by superposition. It is, however, easy to decompose two

such triangles into pieces which admit of superposition, and thus to prove that

their areas are equal. For describe a small circle round each, then the angular

radii of these circles will be equal by Art. 92. If the pole of the circumscribing

circle falls inside each triangle, then each triangle is the sum of three isosceles

triangles, and if the pole falls outside each triangle, then each triangle is the

excess of two isosceles triangles over a third; and in each case the isosceles tri-

angles of one set are respectively absolutely equal to the corresponding isosceles

triangles of the other set.

99. To find the area of a spherical polygon.

Let n be the number of sides of the polygon, Σ the sum of all its angles.

Take any point within the polygon and join it with all the angular points; thus

the figure is divided into n triangles. Hence, by Art. 97,

area of polygon = (sum of the angles of the triangles− nπ)r2,

and the sum of the angles of the triangles is equal to Σ together with the four

right angles which are formed round the common vertex; therefore

area of polygon =
{

Σ− (n− 2)π
}
r2.
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This expression is true even when the polygon has some of its angles greater

than two right angles, provided it can be decomposed into triangles, of which

each of the angles is less than two right angles.

100. We shall now give some expressions for certain trigonometrical functions

of the spherical excess of a triangle. We denote the spherical excess by E, so

that E = A+B + C − π.

101. Cagnoli’s Theorem. To shew that

sin 1
2E =

√
{sin s sin(s− a) sin(s− b) sin(s− c)}x

2 cos 1
2a cos 1

2b cos 1
2c

.

Sin 1
2E = sin 1

2 (A+B + C − π) = sin{ 12 (A+B)− 1
2 (π − C)}

= sin 1
2 (A+B) sin 1

2C − cos 1
2 (A+B) cos 1

2C

=
sin 1

2C cos 1
2C

cos 1
2c

{cos 1
2 (a− b)− cos 1

2 (a− b)}, (Art. 54),

=
sinC sin 1

2a sin 1
2b

cos 1
2c

=
sin 1

2a sin 1
2b

cos 1
2c

�
2

sin a sin b
�
√
{sin s sin(s− a) sin(s− b) sin(s− c)}

=

√
{sin s sin(s− a) sin(s− b) sin(s− c)}

2 cos 1
2a cos 1

2b cos 1
2c

.

102. Lhuilier’s Theorem. To shew that

tan 1
4E =

√
{tan 1

2s tan 1
2 (s− a) tan 1

2 (s− b) tan 1
2 (s− c)}.

Tan 1
4E =

sin 1
2 (A+B + C − π)

cos 1
4 (A+B + C − π)

=
sin 1

2 (A+B)− sin 1
2 (π − C)

cos 1
2 (A+B) + cos 1

2 (π − C)
, (Plane Trig. Art. 84),

=
sin 1

2 (A+B)− cos 1
2C

cos 1
2 (A+B) + sin 1

2C
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=
cos 1

2 (a− b)− cos 1
2c

cos 1
2 (a+ b) + cos 1

2c
�

cos 1
2C

sin 1
2C

, (Art. 54).

Hence, by Art. 45, we obtain

tan 1
4E =

sin 1
4 (c+ a− b) sin 1

4 (c+ b− a)

cos 1
4 (a+ b+ c) cos 1

4 (a+ b− c)

√{
sin s sin(s− c)

sin(s− a) sin(s− b)

}
=
√
{tan 1

2s tan 1
2 (s− a) tan 1

2 (s− b) tan 1
2 (s− c)}.

103. We may obtain many other formulæ involving trigonometrical functions

of the spherical excess. Thus, for example,

cos 1
2E = cos

{
1
2 (A+B)− 1

2 (π − C)
}

= cos 1
2 (A+B) sin 1

2C + sin 1
2 (A+B) cos 1

2C

=
{

cos 1
2 (a+ b) sin2 1

2C + cos 1
2 (a− b) cos2 1

2C
}

sec 1
2c, (Art. 54),

=
{

cos 1
2a cos 1

2b(cos2 C + sin2 1
2C)

+ sin 1
2a sin 1

2b(cos2 1
2C − sin2 1

2C)
}

sec 1
2c

=
{

cos 1
2a cos 1

2b+ sin 1
2a sin 1

2b cosC
}

sec 1
2c. (1)

Again, it was shewn in Art. 101, that

sin 1
2E = sinC sin 1

2a sin 1
2b sec 1

2c;

therefore tan 1
2E =

sin 1
2a sin 1

2b sinC

cos 1
2a cos 1

2b+ sin 1
2a sin 1

2b cosC
. (2)

Again, we have from above

cos 1
2E =

{
cos 1

2a cos 1
2b+ sin 1

2a sin 1
2b cosC

}
sec 1

2c

=
(1 + cos a)(1 + cos b) + sin a sin b cosC

4 cos 1
2a cos 1

2b cos 1
2c
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=
1 + cos a+ cos b cos c

4 cos 1
2a cos 1

2b cos 1
2c

=
cos2 1

2a+ cos2 1
2b+ cos2 1

2c− 1

2 cos 1
2a cos 1

2b cos 1
2c

. (3)

In (3) put 1− 2 sin2 1
4E for cos 1

2E; thus

sin2 1
4E =

1 + 2 cos 1
2a cos 1

2b cos 1
2c− cos2 1

2a− cos2 1
2b− cos2 1

2c

4 cos 1
2a cos 1

2b cos 1
2c

.

By ordinary development we can shew that the numerator of the above

fraction is equal to

4 sin 1
2s sin 1

2 (s− a) sin 1
2 (s− b) sin 1

2 (s− c);

therefore

sin2 1
4E =

sin 1
2s sin 1

2 (s− a) sin 1
2 (s− b) sin 1

2 (s− c)
cos 1

2a cos 1
2b cos 1

2c
. (4)

Similarly

cos2 1
4E =

cos 1
2s cos 1

2 (s− a) cos 1
2 (s− b) cos 1

2 (s− c)
cos 1

2a cos 1
2b cos 1

2c
. (5)

Hence by division we obtain Lhuilier’s Theorem.

Again,

sin(C − 1
2E)

sin 1
2E

= sinC cot 1
2E − cosC

= sinC
cos 1

2a cos 1
2b+ sin 1

2a sin 1
2b cosC

sin 1
2a sin 1

2b sinC
− cosC, by (2),

= cos 1
2a cot 1

2b;

therefore, by Art. 101,

sin(C − 1
2E) =

√
{sin s sin(s− a) sin(s− b) sin(s− c)}

2 sin 1
2a sin 1

2b cos 1
2c

.
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Again, cos(C − 1
2E) = cosC cos 1

2E + sinC sin 1
2E

=
(1 + cos a)(1 + cos b) cosC + sin a sin b cos2 C

4 cos 1
2a cos 1

2b cos 1
2c

+ sin2 C sin 1
2a sin 1

2b sec 1
2c

=
(1 + cos a)(1 + cos b) cosC + sin a sin b

4 cos 1
2a cos 1

2b cos 1
2c

=
{

cos 1
2a cos 1

2b cosC + sin 1
2a sin 1

2b
}

sec 1
2c

=
sin a sin b cosC + 4 sin2 1

2a sin2 1
2b

4 sin 1
2a sin 1

2b cos 1
2c

=
cos c− cos a cos b+ (1− cos a)(1− cos b)

4 sin 1
2a sin 1

2b cos 1
2c

=
1 + cos c− cos a− cos b

4 sin 1
2a sin 1

2b cos 1
2c

=
cos2 1

2c− cos2 1
2a− cos2 1

2b+ 1

2 sin 1
2a sin 1

2b cos 1
2c

. (6)

From this result we can deduce two other results, in the same manner as (4)

and (5) were deduced from (3); or we may observe that the right-hand member

of (6) can be obtained from the right-hand member of (3) by writing π− a and

π − b for a and b respectively, and thus we may deduce the results more easily.

We shall have then

sin2( 1
2C −

1
4E) =

cos 1
2s sin 1

2 (s− a) sin 1
2 (s− b) cos 1

2 (s− c)
sin 1

2a sin 1
2b cos 1

2c
,

cos2( 1
2C −

1
4E) =

sin 1
2s cos 1

2 (s− a) cos 1
2 (s− b) sin 1

2 (s− c)
sin 1

2a sin 1
2b cos 1

2c
.

EXAMPLES.

1. Find the angles and sides of an equilateral triangle whose area is one-

fourth of that of the sphere on which it is described.

2. Find the surface of an equilateral and equiangular spherical polygon of

n sides, and determine the value of each of the angles when the surface equals

half the surface of the sphere.

3. If a = b =
π

3
, and c =

π

2
, shew that E = cos−1

7

9
.
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4. If the angle C of a spherical triangle be a right angle, shew that

sin 1
2E = sin 1

2a sin 1
2b sec 1

2c, cos 1
2E = cos 1

2a cos 1
2b sec 1

2c.

5. If the angle C be a right angle, shew that

sin2 c

cos c
cosE =

sin2 a

cos a
+

sin2 b

cos b
.

6. If a = b and C =
π

2
, shew that tanE =

sin2 a

2 cos a
.

7. The sum of the angles in a right-angled triangle is less than four right

angles.

8. Draw through a given point in the side of a spherical triangle an arc of a

great circle cutting off a given part of the triangle.

9. In a spherical triangle if cosC = − tan
a

2
tan

b

2
, then C = A+B.

10. If the angles of a spherical triangle be together equal to four right angles

cos2 1
2a+ cos2 1

2b+ cos2 1
2c = 1.

11. If r1, r2, r3 be the radii of three small circles of a sphere of radius r

which touch one another at P , Q, R, and A, B, C be the angles of the spherical

triangle formed by joining their centres,

area PQR = (A cos r1 +B cos r2 + C cos r3 − π)r2.

12. Shew that

sin s =

{
sin 1

2E sin(A− 1
2E) sin(B − 1

2E) sin(C − 1
2E)

} 1
2

2 sin 1
2A sin 1

2B sin 1
2C

.

13. Given two sides of a spherical triangle, determine when the area is a

maximum.

14. Find the area of a regular polygon of a given number of sides formed by

arcs of great circles on the surface of a sphere; and hence deduce that, if α be

the angular radius of a small circle, its area is to that of the whole surface of

the sphere as versinα is to 2.
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15. A, B, C are the angular points of a spherical triangle; A′, B′, C ′ are the

middle points of the respectively opposite sides. If E be the spherical excess of

the triangle, shew that

cos 1
2E =

cosA′B′

cos 1
2c

=
cosB′C ′

cos 1
2a

=
cosC ′A′

cos 1
2b

.

16. If one of the arcs of great circles which join the middle points of the

sides of a spherical triangle be a quadrant, shew that the other two are also

quadrants.
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IX

ON CERTAIN

APPROXIMATE

FORMULÆ.

104. We shall now investigate certain approximate formulæ which are often

useful in calculating spherical triangles when the radius of the sphere is large

compared with the lengths of the sides of the triangles.

105. Given two sides and the included angle of a spherical triangle, to find the

angle between the chords of these sides.

Let AB, AC be the two sides of the triangle ABC; let O be the centre of

the sphere. Describe a sphere round A as a centre, and suppose it to meet AO,

AB, AC at D, E, F respectively. Then the angle EDF is the inclination of the

81
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planes OAB, OAC, and is therefore equal to A. From the spherical triangle

DEF

cosEF = cosDE cosDF + sinDE sinDF cosA;

and DE = 1
2 (π − c), DF = 1

2 (π − b);

therefore cosEF = sin 1
2b sin 1

2c+ cos 1
2b cos 1

2c cosA.

If the sides of the triangle are small compared with the radius of the sphere,

EF will not differ much from A; suppose EF = A− θ, then approximately

cosEF = cosA+ θ sinA;

and sin 1
2b sin 1

2c = sin2 1
4 (b+ c)− sin2 1

4 (b− c),

cos 1
2b cos 1

2c = cos2 1
4 (b+ c)− sin2 1

4 (b− c);

therefore

cosA+ θ sinA = sin2 1
4 (b+ c)− sin2 1

4 (b− c)

+
{

1− sin2 1
4 (b+ c)− sin2 1

4 (b− c)
}

cosA;

therefore

θ sinA = (1− cosA) sin2 1
4 (b+ c)− (1 + cosA) sin2 1

4 (b− c),

therefore θ = tan 1
2A sin2 1

4 (b+ c)− cot 1
2A sin2 1

4 (b− c).

This gives the circular measure of θ; the number of seconds in the angle is

found by dividing the circular measure by the circular measure of one second,

or approximately by the sine of one second (Plane Trigonometry, Art. 123). If

the lengths of the arcs corresponding to a and b respectively be α and β, and

r the radius of the sphere, we have
α

r
and

β

r
as the circular measures of a and

b respectively; and the lengths of the sides of the chordal triangle are 2r sin
α

2r

and 2r sin
β

2r
respectively. Thus when the sides of the spherical triangle and

the radius of the sphere are known, we can calculate the angles and sides of the

chordal triangle.
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106. Legendre’s Theorem. If the sides of a spherical triangle be small compared

with the radius of the sphere, then each angle of the spherical triangle exceeds by

one third of the spherical excess the corresponding angle of the plane triangle,

the sides of which are of the same length as the arcs of the spherical triangle.

Let A, B, C be the angles of the spherical triangle; a, b, c the sides; r the

radius of the sphere; α, β, γ the lengths of the arcs which form the sides, so

that
α

r
,
β

r
,
γ

r
are the circular measures of a, b, c respectively. Then

cosA =
cos a− cos b cos c

sin b sin c
;

now cos a = 1− α2

2r2
+

α4

24r4
− . . . ,

sin a =
α

r
− α3

6r3
+ . . . .

Similar expressions hold for cos b and sin b, and for cos c and sin c respectively.

Hence, if we neglect powers of the circular measure above the fourth, we have

cosA =

1− α2

2r2
+

α4

24r4
−
(

1− β2

2r2
+

β4

24r4

)(
1− γ2

2r2
+

γ4

24r4

)
βγ

r2

(
1− β2

6r2

)(
1− γ2

6r2

)

=

1

2r2
(β2 + γ2 − α2) +

1

24r4
(α4 − β4 − γ4 − 6β2γ2)

βγ

r2

(
1− β2 + γ2

6r2

)

=
1

2βγ

{
β2 + γ2 − α2 +

1

12r2
(α2 − β2 − γ2 − 6β2γ2)

}{
1 +

β2 + γ2

6r2

}

=
β2 + γ2 − α2

2βγ
+
α4 + β4 + γ4 − 2α2β2 − 2β2γ2 − 2γ2α2

24βγr2
.

Now let A′, B′, C ′ be the angles of the plane triangle whose sides are α, β,

γ respectively; then

cosA′ =
β2 + γ2 − α2

2βγ
,

thus cosA = cosA′ − βγ sin2A′

6r2
.
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Suppose A = A′ + θ; then

cosA = cosA′ − θ sinA′ approximately;

therefore θ =
βγ sinA′

6r2
=

S

3r2
,

where S denotes the area of the plane triangle whose sides are α, β, γ. Similarly

B = B′ +
S

3r2
and C = C ′ +

S

3r2
;

hence approximately

A+B + C = A′ +B′ + C ′ +
S

r2
= π +

S

r2
;

therefore
S

r2
is approximately equal to the spherical excess of the spherical

triangle, and thus the theorem is established.

It will be seen that in the above approximation the area of the spherical

triangle is considered equal to the area of the plane triangle which can be formed

with sides of the same length.

107. Legendre’s Theorem may be used for the approximate solution of spher-

ical triangles in the following manner.

(1) Suppose the three sides of a spherical triangle known; then the values of

α, β, γ are known, and by the formulæ of Plane Trigonometry we can calculate

S and A′, B′, C ′; then A, B, C are known from the formulæ.

A = A′ +
S

3r2
, B = B′ +

S

3r2
, C = C ′ +

S

3r2
.

(2) Suppose two sides and the included angle of a spherical triangle known,

for example A, b, c. Then

S = 1
2βγ sinA′ = 1

2βγ sinA approximately.

Then A′ is known from the formula A′ = A − S

3r2
. Thus in the plane triangle

two sides and the included angle are known; therefore its remaining parts can

be calculated, and then those of the spherical triangle become known.

(3) Suppose two sides and the angle opposite to one of them in a spherical
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triangle known, for example A, a, b. Then

sinB′ =
β

α
sinA′ =

β

α
sinA approximately;

and C ′ = π−A′−B′ = π−A−B′ approximately; then S = 1
2αβ sinC ′. Hence

A′ is known and the plane triangle can be solved, since two sides and the angle

opposite to one of them are known.

(4) Suppose two angles and the included side of a spherical triangle known,

for example A, B, c.

Then S =
γ2 sinA′ sinB′

2 sin(A′ +B′)
=
γ2 sinA sinB

2 sin(A+B)
nearly.

Hence in the plane triangle two angles and the included side are known.

(5) Suppose two angles and the side opposite to one of them in a spherical

triangle known, for example A, B, a. Then

C ′ = π −A′ −B′ = π −A−B, approximately, and

S =
α2 sinB′ sinC ′

2 sin(B′ + C ′)
,

which can be calculated, since B′ and C ′ are approximately known.

108. The importance of Legendre’s Theorem in the application of Spherical

Trigonometry to the measurement of the Earth’s surface has given rise to various

developments of it which enable us to test the degree of exactness of the approx-

imation. We shall finish the present Chapter with some of these developments,

which will serve as exercises for the student. We have seen that approximately

the spherical excess is equal to
S

r2
, and we shall begin with investigating a closer

approximate formula for the spherical excess.

109. To find an approximate value of the spherical excess.

Let E denote the spherical excess; then

sin
1

2
E =

sin 1
2a sin 1

2b sinC

cos 1
2c

;
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therefore approximately

sin 1
2E = sinC

αβ

4r2

(
1− α2

24r2

)(
1− β2

24r2

)(
1− γ2

8r2

)−1

= sinC
αβ

4r2

(
1 +

3γ2 − α2 − β2

24r2

)
;

therefore E = sinC
αβ

2r2

(
1 +

3γ2 − α2 − β2

24r2

)
, (1)

and sinC = sin

(
C ′ + 1

3E

)
= sinC ′ + 1

3E cosC ′

= sinC ′ +
sinC ′ cosC ′

3

αβ

2r2
= sinC ′

(
1 +

α2 + β2 − γ2

12r2

)
. (2)

From (1) and (2)

E = sinC ′
αβ

2r2

(
1 +

α2 + β2 + γ2

24r2

)
.

Hence to this order of approximation the area of the spherical triangle ex-

ceeds that of the plane triangle by the fraction
α2 + β2 + γ2

24r2
of the latter.

110. To find an approximate value of
sinA

sinB
.

SinA

SinB
=

sin a

sin b
;

hence approximately
sinA

sinB
=

α

(
1− α2

6r2
+

α4

120r4

)
β

(
1− β2

6r2
+

β4

120r4

)

=
α

β

(
1− α2

6r2
+

α4

120r4
+
β2

6r2
− α2β2

36r4
− β4

120r4
+

β4

36r4

)

=
α

β

{
1 +

β2 − α2

6r2
+
α4 − β4

120r4
+
β2(β2 − α2)

36r4

}
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=
α

β

{
1 +

β2 − α2

6r2

(
1 +

β2

6r2
− α2 + β2

20r2

)}

=
α

β

{
1 +

β2 − α2

6r2

(
1 +

7β2 − 3α2

60r2

)}
.

111. To express cotB − cotA approximately.

CotB − cotA =
1

sinB
(cosB − sinB

sinA
cosA);

hence, approximately, by Art. 110,

cotB − cotA =
1

sinB
(cosB − β

α
cosA− β

α

α2 − β2

6r2
cosA).

Now we have shewn in Art. 106, that approximately

cosA =
β2 + γ2 − α2

2βγ
+
α4 + β4 + γ4 − 2α2β2 − 2β2γ2 − 2γ2α2

24βγr2
,

therefore cosB − β

α
cosA =

α2 − β2

αγ
approximately,

and cotB − cotA =
α2 − β2

αγ sinB
− α2 − β2

αγ sinB

β2 + γ2 − α2

12r2

=
α2 − β2

αγ sinB

(
1− β2 + γ2 − α2

12r2

)
.

112. The approximations in Arts. 109 and 110 are true so far as terms involv-

ing r4; that in Art. 111 is true so far as terms involving r2, and it will be seen

that we are thus able to carry the approximations in the following Article so far

as terms involving r4.

113. To find an approximate value of the error in the length of a side of a

spherical triangle when calculated by Legendre’s Theorem.

Suppose the side β known and the side α required; let 3µ denote the spherical

excess which is adopted. Then the approximate value
β sin(A− µ)

sin(B − µ)
is taken for

the side of which α is the real value. Let x = α− β(A− µ)

sin(B − µ)
; we have then to
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find x approximately. Now approximately

sin(A− µ)

sin(B − µ)
=

sinA− µ cosA− µ2

2
sinA

sinB − µ cosB − µ2

2
sinB

=
sinA

sinB

(
1− µ cotA− µ2

2

)(
1− µ cotB − µ2

2

)−1
=

sinA

sinB

{
1 + µ(cotB − cotA) + µ2 cotB(cotB − cotA)

}
=

sinA

sinB
+
µ sinA

sinB
(cotB − cotA)(1 + µ cotB).

Also the following formulæ are true so far as terms involving r2 :

sinA

sinB
=
α

β

(
1 +

β2 − α2

6r2

)
,

cotB − cotA =
α2 − β2

αγ sinB

(
1− β2 + γ2 − α2

12r2

)
,

1 + µ cotB = 1 +
α2 + γ2 − β2

12r2
.

Hence, approximately,

sinA

sinB
(cotB − cotA)(1 + µ cotB) =

α2 − β2

βγ sinB
.

Therefore x = α− β sinA

sinB
− µ(α2 − β2)

γ sinB

=
α(β2 − α2)

6

{
6µ

αγ sinB
− 1

r2
+

3α2 − 7β2

60r4

}
, by Art. 110.

If we calculate µ from the formula µ =
αγ sinB

6r2
we obtain

x =
α(β2 − α2)(3α2 − 7β2)

360r4
.
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If we calculate µ from an equation corresponding to (1) of Art. 109, we have

µ =
αγ sinB

6r2

(
1 +

3β2 − α2 − γ2

24r2

)
;

therefore x =
α(β2 − α2)(α2 + β2 − 5γ2)

720r4
.

MISCELLANEOUS EXAMPLES.

1. If the sides of a spherical triangle AB, AC be produced to B′, C ′, so

that BB′, CC ′ are the semi-supplements of AB, AC respectively, shew that the

arc B′C ′ will subtend an angle at the centre of the sphere equal to the angle

between the chords of AB and AC.

2. Deduce Legendre’s Theorem from the formula

tan2 A

2
=

sin 1
2 (a+ b− c) sin 1

2 (c+ a− b)
sin 1

2 (b+ c− a) sin 1
2 (a+ b+ c)

.

3. Four points A, B, C, D on the surface of a sphere are joined by arcs of

great circles, and E, F are the middle points of the arcs AC, BD: shew that

cosAB + cosBC + cosCD + cosDA = 4 cosAE cosBF cosFE.

4. If a quadrilateral ABCD be inscribed in a small circle on a sphere so that

two opposite angles A and C may be at opposite extremities of a diameter, the

sum of the cosines of the sides is constant.

5. In a spherical triangle if A = B = 2C, shew that

cos a cos
a

2
= cos

(
c+

a

2

)
.

6. ABC is a spherical triangle each of whose sides is a quadrant; P is any

point within the triangle: shew that

cosPA cosPB cosPC + cotBPC cotCPA cotAPB = 0,

and tanABP tanBCP tanCAP = 1.

7. If O be the middle point of an equilateral triangle ABC, and P any point
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on the surface of the sphere, then

1
4 (tanPO tanOA)2(cosPA+ cosPB + cosPC)2 =

cos2 PA+ cos2 PB + cos2 PC − cosPA cosPB − cosPB cosPC − cosPC cosPA.

8. If ABC be a triangle having each side a quadrant, O the pole of the

inscribed circle, P any point on the sphere, then

(cosPA+ cosPB + cosPC)2 = 3 cos2 PO.

9. From each of three points on the surface of a sphere arcs are drawn on

the surface to three other points situated on a great circle of the sphere, and

their cosines are a, b, c; a′, b′, c′; a′′, b′′, c′′. Shew that ab′′c′ + a′bc′′ + a′′b′c =

ab′c′′ + a′b′′c+ a′′bc′.

10. From Arts. 110 and 111, shew that approximately

log β = logα+ log sinB − log sinA+
S

3r2
(cotA− cotB).

11. By continuing the approximation in Art. 106 so as to include the terms

involving r4, shew that approximately

cosA = cosA′ − βγ sin2A′

6r2
+
βγ(α2 − 3β2 − 3γ2) sin2A′

180r4
.

12. From the preceding result shew that if A = A′ + θ then approximately

θ =
βγ sinA′

6r2

(
1 +

7β2 + 7γ2 + α2

120r2

)
.



X

GEODETICAL

OPERATIONS.

114. One of the most important applications of Trigonometry, both Plane

and Spherical, is to the determination of the figure and dimensions of the Earth

itself, and of any portion of its surface. We shall give a brief outline of the

subject, and for further information refer to Woodhouse’s Trigonometry, to the

article Geodesy in the English Cyclopædia, and to Airy’s treatise on the Figure

of the Earth in the Encyclopædia Metropolitana. For practical knowledge of the

details of the operations it will be necessary to study some of the published

accounts of the great surveys which have been effected in different parts of the

world, as for example, the Account of the measurement of two sections of the

Meridional arc of India, by Lieut.-Colonel Everest, 1847; or the Account of the

Observations and Calculations of the Principal Triangulation in the Ordnance

Survey of Great Britain and Ireland, 1858.

115. An important part of any survey consists in the measurement of a hor-

izontal line, which is called a base. A level plain of a few miles in length is

selected and a line is measured on it with every precaution to ensure accuracy.

Rods of deal, and of metal, hollow tubes of glass, and steel chains, have been

used in different surveys; the temperature is carefully observed during the op-

erations, and allowance is made for the varying lengths of the rods or chains,

which arise from variations in the temperature.

91
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116. At various points of the country suitable stations are selected and signals

erected; then by supposing lines to be drawn connecting the signals, the country

is divided into a series of triangles. The angles of these triangles are observed,

that is, the angles which any two signals subtend at a third. For example,

suppose A and B to denote the extremities of the base, and C a signal at a

third point visible from A and B; then in the triangle ABC the angles ABC

and BAC are observed, and then AC and BC can be calculated. Again, let

D be a signal at a fourth point, such that it is visible from C and A; then the

angles ACD and CAD are observed, and as AC is known, CD and AD can be

calculated.

117. Besides the original base other lines are measured in convenient parts

of the country surveyed, and their measured lengths are compared with their

lengths obtained by calculation through a series of triangles from the original

base. The degree of closeness with which the measured length agrees with the

calculated length is a test of the accuracy of the survey. During the progress

of the Ordnance Survey of Great Britain and Ireland, several lines have been

measured; the last two are, one near Lough Foyle in Ireland, which was measured

in 1827 and 1828, and one on Salisbury Plain, which was measured in 1849. The

line near Lough Foyle is nearly 8 miles long, and the line on Salisbury Plain is

nearly 7 miles long; and the difference between the length of the line on Salisbury

Plain as measured and as calculated from the Lough Foyle base is less than 5

inches (An Account of the Observations . . . page 419).

118. There are different methods of effecting the calculations for determining

the lengths of the sides of all the triangles in the survey. One method is to use

the exact formulæ of Spherical Trigonometry. The radius of the Earth may be

considered known very approximately; let this radius be denoted by r, then if α

be the length of any arc the circular measure of the angle which the arc subtends

at the centre of the earth is
α

r
. The formulæ of Spherical Trigonometry gives

expressions for the trigonometrical functions of
α

r
, so that

α

r
may be found

and then α. Since in practice
α

r
is always very small, it becomes necessary to

pay attention to the methods of securing accuracy in calculations which involve

the logarithmic trigonometrical functions of small angles (Plane Trigonometry,

Art. 205).
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Instead of the exact calculation of the triangles by Spherical Trigonometry,

various methods of approximation have been proposed; only two of these meth-

ods however have been much used. One method of approximation consists in

deducing from the angles of the spherical triangles the angles of the chordal

triangles, and then computing the latter triangles by Plane Trigonometry (see

Art. 105). The other method of approximation consists in the use of Legendre’s

Theorem (see Art. 106).

119. The three methods which we have indicated were all used by Delambre

in calculating the triangles in the French survey (Base du Système Métrique,

Tome iii. page 7). In the earlier operations of the Trigonometrical survey of

Great Britain and Ireland, the triangles were calculated by the chord method;

but this has been for many years discontinued, and in place of it Legendre’s

Theorem has been universally adopted (An Account of the Observations . . .

page 244). The triangles in the Indian Survey are stated by Lieut.-Colonel

Everest to be computed on Legendre’s Theorem. (An Account of the Measure-

ment . . . page clviii.)

120. If the three angles of a plane triangle be observed, the fact that their sum

ought to be equal to two right angles affords a test of the accuracy with which

the observations are made. We shall proceed to shew how a test of the accuracy

of observations of the angles of a spherical triangle formed on the Earth’s surface

may be obtained by means of the spherical excess.

121. The area of a spherical triangle formed on the Earth’s surface being

known in square feet, it is required to establish a rule for computing the spherical

excess in seconds.

Let n be the number of seconds in the spherical excess, s the number of

square feet in the area of the triangle, r the number of feet in the radius of the

Earth. Then if E be the circular measure of the spherical excess,

s = Er2,

and E =
nπ

180 � 60 � 60
=

n

206265
approximately;

therefore s =
nr2

206265
.
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Now by actual measurement the mean length of a degree on the Earth’s

surface is found to be 365155 feet; thus

πr

180
= 365155.

With the value of r obtained from this equation it is found by logarithmic

calculation, that

log n = log s− 9.326774.

Hence n is known when s is known.

This formula is called General Roy’s rule, as it was used by him in the

Trigonometrical survey of Great Britain and Ireland. Mr Davies, however,

claims it for Mr Dalby. (See Hutton’s Course of Mathematics, by Davies, Vol. ii.

p. 47.)

122. In order to apply General Roy’s rule, we must know the area of the

spherical triangle. Now the area is not known exactly unless the elements of the

spherical triangle are known exactly ; but it is found that in such cases as occur

in practice an approximate value of the area is sufficient. Suppose, for example,

that we use the area of the plane triangle considered in Legendre’s Theorem,

instead of the area of the Spherical Triangle itself; then it appears from Art.

109, that the error is approximately denoted by the fraction
α2 + β2 + γ2

24r2
of

the former area, and this fraction is less than .0001, if the sides do not exceed

100 miles in length. Or again, suppose we want to estimate the influence of

errors in the angles on the calculation of the area; let the circular measure of

an error be h, so that instead of
αβ sinC

2
we ought to use

αβ sin(C + h)

2
; the

error then bears to the area approximately the ratio expressed by h cotC. Now

in modern observations h will not exceed the circular measure of a few seconds,

so that, if C be not very small, h cotC is practically insensible.

123. The following example was selected by Woodhouse from the triangles

of the English survey, and has been adopted by other writers. The observed

angles of a triangle being respectively 42◦ 2′ 32′′, 67◦ 55′ 39′′, 70◦ 1′ 48′′, the sum

of the errors made in the observations is required, supposing the side opposite

to the angle A to be 27404.2 feet. The area is calculated from the expression
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a2 sinB sinC

2 sinA
, and by General Roy’s rule it is found that n = .23. Now the sum

of the observed angles is 180◦ − 1′′, and as it ought to have been 180◦ + .23′′, it

follows that the sum of the errors of the observations is 1′′.23. This total error

may be distributed among the observed angles in such proportion as the opinion

of the observer may suggest; one way is to increase each of the observed angles

by one-third of 1′′.23, and take the angles thus corrected for the true angles.

124. An investigation has been made with respect to the form of a triangle,

in which errors in the observations of the angles will exercise the least influence

on the lengths of the sides, and although the reasoning is allowed to be vague

it may be deserving of the attention of the student. Suppose the three angles

of a triangle observed, and one side, as a, known, it is required to find the form

of the triangle in order that the other sides may be least affected by errors in

the observations. The spherical excess of the triangle may be supposed known

with sufficient accuracy for practice, and if the sum of the observed angles does

not exceed two right angles by the proper spherical excess, let these angles be

altered by adding the same quantity to each, so as to make their sum correct. Let

A, B, C be the angles thus furnished by observation and altered if necessary;

and let δA, δB and δC denote the respective errors of A, B and C. Then

δA + δB + δC = 0, because by supposition the sum of A, B and C is correct.

Considering the triangle as approximately plane, the true value of the side c is
a sin(C + δC)

sin(A+ δA)
, that is,

a sin(C + δC)

sin(A− δB − δC)
. Now approximately

sin(C + δC) = sinC + δC cosC, (Plane Trig. Chap. xii.),

sin(A− δB − δC) = sinA− (δB + δC) cosA.

Hence approximately

c =
a sinC

sinA

{
1 + δC cotC

}{
1− (δB + δC) cotA

}−1
=
a sinC

sinA

{
1 + δB cotA+ δC(cotC + cotA)

}
;

and cotC + cotA =
sin(A+ C)

sinA sinC
=

sinB

sinA sinC
approximately.
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Hence the error of c is approximately

a sinB

sin2A
δC +

a sinC cosA

sin2A)
δB.

Similarly the error of b is approximately

a sinC

sin2A
δB +

a sinB cosA

sin2A
δC.

Now it is impossible to assign exactly the signs and magnitudes of the errors

δB and δC, so that the reasoning must be vague. It is obvious that to make the

error small sinA must not be small. And as the sum of δA, δB and δC is zero,

two of them must have the same sign, and the third the opposite sign; we may

therefore consider that it is more probable than any two as δB and δC have

different signs, than that they have the same sign.

If δB and δC have different signs the errors of b and c will be less when cosA

is positive than when cosA is negative; A therefore ought to be less than a right

angle. And if δB and δC are probably not very different, B and C should be

nearly equal. These conditions will be satisfied by a triangle differing not much

from an equilateral triangle.

If two angles only, A and B, be observed, we obtain the same expressions as

before for the errors in b and c; but we have no reason for considering that δB

and δC are of different signs rather than of the same sign. In this case then the

supposition that A is a right angle will probably make the errors smallest.

125. The preceding article is taken from the Treatise on Trigonometry in the

Encyclopædia Metropolitana. The least satisfactory part is that in which it is

considered that δB and δC may be supposed nearly equal; for since δA+ δB +

δC = 0, if we suppose δB and δC nearly equal and of opposite signs, we do

in effect suppose δA = 0 nearly; thus in observing three angles, we suppose

that in one observation a certain error is made, in a second observation the

same numerical error is made but with an opposite sign, and in the remaining

observation no error is made.

126. We have hitherto proceeded on the supposition that the Earth is a sphere;

it is however approximately a spheroid of small eccentricity. For the small

corrections which must in consequence be introduced into the calculations we
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must refer to the works named in Art. 114. One of the results obtained is that the

error caused by regarding the Earth as a sphere instead of a spheroid increases

with the departure of the triangle from the well-conditioned or equilateral form

(An Account of the Observations . . . page 243). Under certain circumstances

the spherical excess is the same on a spheroid as on a sphere (Figure of the

Earth in the Encyclopædia Metropolitana, pages 198 and 215).

127. In geodetical operations it is sometimes required to determine the hori-

zontal angle between two points, which are at a small angular distance from the

horizon, the angle which the objects subtend being known, and also the angles

of elevation or depression.

Suppose OA and OB the directions in which the two points are seen from

O; and let the angle AOB be observed. Let OZ be the direction at right angles

to the observer’s horizon; describe a sphere round O as a centre, and let vertical

planes through OA and OB meet the horizon at OC and OD respectively: then

the angle COD is required.

Let AOB = θ, COD = θ+ x, AOC = h, BOD = k; from the triangle AZB

cosAZB =
cos θ − cosZA cosZB

sinZA sinZB
=

cos θ − sinh sin k

cosh cos k
;
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and cosAZB = cosCOD = cos(θ + x); thus

cos(θ + x) =
cos θ − sinh sin k

cosh cos k
.

This formula is exact; by approximation we obtain

cos θ − x sin θ =
cos θ − hk

1− 1
2 (h2 + k2)

;

therefore x sin θ = hk − 1
2 (h2 + k2) cos θ, nearly,

and x =
2hk − (h2 + k2)(cos2 1

2θ − sin2 1
2θ)

2 sin θ

= 1
4 (h+ k)2 tan 1

2θ −
1
4 (h− k)2 cot 1

2θ.

This process, by which we find the angle COD from the angle AOB, is called

reducing an angle to the horizon.



XI

ON SMALL VARIATIONS

IN THE PARTS OF A

SPHERICAL TRIANGLE.

128. It is sometimes important to know what amount of error will be intro-

duced into one of the calculated parts of a triangle by reason of any small error

which may exist in the given parts. We will here consider an example.

129. A side and the opposite angle of a spherical triangle remain constant:

determine the connexion between the small variations of any other pair of ele-

ments.

Suppose C and c to remain constant.

(1) Required the connexion between the small variations of the other sides.

We suppose a and b to denote the sides of one triangle which can be formed with

C and c as fixed elements, and a+ δa and b+ δb to denote the sides of another

such triangle; then we require the ratio of δa to δb when both are extremely

small. We have

cos c = cos a cos b+ sin a sin b cosC,

and cos c = cos(a+ δa) cos(b+ δb) + sin(a+ δa) sin(b+ δb) cosC;

also cos(a+ δa) = cos a− sin a δa,nearly,
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and sin(a+ δa) = sin a+ cos a δa,nearly,

with similar formulæ for cos(b+ δb) and sin(b+ δb). (See Plane Trigonometry,

Chap. xii.) Thus

cos c = (cos a− sin a δa)(cos b− sin b δb)

+ (sin a+ cos a δa)(sin b+ cos b δb) cosC.

Hence by subtraction, if we neglect the product δa, δb,

0 = δa(sin a cos b− cos a sin b cosC)

+ δb(sin b cos a− cos b sin a cosC);

this gives the ratio of δa to δb in terms of a, b, C. We may express the ratio more

simply in terms of A and B; for, dividing by sin a sin b, we get from Art. 44,

δa

sin a
cotB sinC +

δb

sin b
cotA sinC = 0;

therefore δa cosB + δb cosA = 0.

(2) Required the connexion between the small variations of the other angles.

In this case we may by means of the polar triangle deduce from the result just

found, that

δA cos b+ δB cos a = 0;

this may also be found independently as before.

(3) Required the connexion between the small variations of a side and the

opposite angle (A, a).

Here sinA sin c = sinC sin a,

and sin(A+ δA) sin c = sinC sin(a+ δa);

hence by subtraction

cosA sin c δA = sinC cos a δa,

and therefore δA cotA = δa cot a.



ON SMALL VARIATIONS. 101

(4) Required the connexion between the small variations of a side and the

adjacent angle (a, B).

We have cotC sinB = cot c sin a− cosB cos a;

proceeding as before we obtain

cotC cosBδB = cot c cos aδa+ cosB sin aδa+ cos a sinBδB;

therefore

(cotC cosB − cos a sinB)δB = (cot c cos a+ cosB sin a)δa;

therefore −cosA

sinC
δB =

cos b

sin c
δa;

therefore δB cosA = −δa cot b sinB.

130. Some more examples are proposed for solution at the end of this Chapter;

as they involve no difficulty they are left for the exercise of the student.

EXAMPLES.

1. In a spherical triangle, if C and c remain constant while a and b receive

the small increments δa and δb respectively, shew that

δa
√

(1− n2 sin2 a)
+

δb
√

(1− n2 sin2 b)
= 0 where n =

sinC

sin c
.

2. If C and c remain constant, and a small change be made in a, find the

consequent changes in the other parts of the triangle. Find also the change in

the area.

3. Supposing A and c to remain constant, prove the following equations,

connecting the small variations of pairs of the other elements:

sinCδb = sin aδB, δb sinC = −δC tan a, δa tanC = δB sin a,

δa tanC = −δC tan a, δb cosC = δa, δB cos a = −δC.

4. Supposing b and c to remain constant, prove the following equations
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connecting the small variations of pairs of the other elements:

δB tanC = δC tanB, δa cotC = −δB sin a,

δa = δA sin c sinB, δA sinB cosC = −δB sinA.

5. Supposing B and C to remain constant, prove the following equations

connecting the small variations of pairs of the other elements:

δb tan c = δc tan b, δA cot c = δb sinA,

δA = δa sin b sinC, δa sinB cos c = δb sinA.

6. If A and C are constant, and b be increased by a small quantity, shew

that a will be increased or diminished according as c is less or greater than a

quadrant.



XII

ON THE CONNEXION

OF FORMULÆ IN PLANE

AND SPHERICAL

TRIGONOMETRY.

131. The student must have perceived that many of the results obtained

in Spherical Trigonometry resemble others with which he is familiar in Plane

Trigonometry. We shall now pay some attention to this resemblance. We shall

first shew how we may deduce formulæ in Plane Trigonometry from formulæ in

Spherical Trigonometry; and we shall then investigate some theorems in Spheri-

cal Trigonometry which are interesting principally on account of their connexion

with known results in Plane Geometry and Trigonometry.

132. From any formula in Spherical Trigonometry involving the elements of

a triangle, one of them being a side, it is required to deduce the corresponding

formula in Plane Trigonometry.

Let α, β, γ be the lengths of the sides of the triangle, r the radius of the

sphere, so that
α

r
,
β

r
,
γ

r
are the circular measures of the sides of the triangle;

expand the functions of
α

r
,
β

r
,
γ

r
which occur in any proposed formula in powers

103
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of
α

r
,
β

r
,
γ

r
respectively; then if we suppose r to become indefinitely great, the

limiting form of the proposed formula will be a relation in Plane Trigonometry.

For example, in Art. 106, from the formula

cosA =
cos a− cos b cos c

sin b sin c

we deduce

cosA =
β2 + γ2 − α2

2βγ
+
α4 + β4 + γ4 − 2α2β2 − 2β2γ2 − 2γ2α2

24βγr2
+ . . . ;

now suppose r to become infinite; then ultimately

cosA =
β2 + γ2 − α2

2βγ
;

and this is the expression for the cosine of the angle of a plane triangle in terms

of the sides.

Again, in Art. 110, from the formula

sinA

sinB
=

sin a

sin b

we deduce
sinA

sinB
=
α

β
+
α(β2 − α2)

6βr2
+ . . . ;

now suppose r to become infinite; then ultimately

sinA

sinB
=
α

β
,

that is, in a plane triangle the sides are as the sines of the opposite angles.

133. To find the equation to a small circle of the sphere.

The student can easily draw the required diagram.

Let O be the pole of a small circle, S a fixed point on the sphere, SX a

fixed great circle of the sphere. Let OS = α, OSX = β; then the position of O

is determined by means of these angular co-ordinates α and β. Let P be any

point on the circumference of the small circle, PS = θ, PSX = φ, so that θ and
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φ are the angular co-ordinates of P . Let OP = r. Then from the triangle OSP

cos r = cosα cos θ + sinα sin θ cos(φ− β); (1)

this gives a relation between the angular co-ordinates of any point on the cir-

cumference of the circle.

If the circle be a great circle then r =
π

2
; thus the equation becomes

0 = cosα cos θ + sinα sin θ cos(φ− β). (2)

It will be observed that the angular co-ordinates here used are analogous to

the latitude and longitude which serve to determine the positions of places on

the Earth’s surface; θ is the complement of the latitude and φ is the longitude.

134. Equation (1) of the preceding Article may be written thus:

cos r

(
cos2

θ

2
+ sin2 θ

2

)
= cosα

(
cos2

θ

2
− sin2 θ

2

)
+ 2 sinα sin

θ

2
cos

θ

2
cos(φ− β).

Divide by cos2
θ

2
and rearrange; hence

tan2 θ

2
(cos r + cosα)− 2 tan

θ

2
sinα cos(φ− β) + cos r − cosα = 0.

Let tan
θ1
2

and tan
θ2
2

denote the values of tan
θ

2
found from this quadratic

equation; then by Algebra, Chapter xxii.

tan
θ1
2

tan
θ2
2

=
cos r − cosα

cos r + cosα
= tan

α+ r

2
tan

α− r
2

.

Thus the value of the product tan
θ1
2

tan
θ2
2

is independent of φ; this result

corresponds to the well-known property of a circle in Plane Geometry which is

demonstrated in Euclid iii. 36 Corollary.

135. Let three arcs OA, OB, OC meet at a point. From any point P in OB

draw PM perpendicular to OA, and PN perpendicular to OC. The student
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can easily draw the required diagram.

Then, by Art. 65,

sinPM = sinOP sinAOB, sinPN = sinOP sinCOB;

therefore
sinPM

sinPN
=

sinAOB

sinCOB
.

Thus the ratio of sinPM to sinPN is independent of the position of P on

the arc OB.

136. Conversely suppose that from any other point p arcs pm and pn are

drawn perpendicular to OA and OC respectively; then if

sin pm

sin pn
=

sinPM

sinPN
,

it will follow that p is on the same great circle as O and P .

137. From two points P1 and P2 arcs are drawn perpendicular to a fixed arc;

and from a point P on the same great circle as P1 and P2 a perpendicular

is drawn to the same fixed arc. Let PP1 = θ1 and PP2 = θ2; and let the

perpendiculars drawn from P , P1, and P2 be denoted by x, x1 and x2. Then

will

sinx =
sin θ2

sin(θ1 + θ2)
sinx1 +

sin θ1
sin(θ1 + θ2)

sinx2.

Let the arc P1P2, produced if necessary, cut the fixed arc at a point O; let α

denote the angle between the arcs. We will suppose that P1 is between O and

P2, and that P is between P1 and P2.

Then, by Art. 65,

sinx1 = sinα sinOP1 = sinα sin(OP − θ1)

= sinα(sinOP cos θ1 − cosOP sin θ1);

sinx2 = sinα sinOP2 = sinα sin(OP + θ2)

= sinα(sinOP cos θ2 + cosOP sin θ2).
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Multiply the former by sin θ2, and the latter by sin θ1, and add; thus

sin θ2 sinx1 + sin θ1 sinx2 = sin(θ1 + θ2) sinα sinOP

= sin(θ1 + θ2) sinx.

The student should convince himself by examination that the result holds

for all relative positions of P , P1 and P2, when due regard is paid to algebraical

signs.

138. The principal use of Art. 137 is to determine whether three given points

are on the same great circle; an illustration will be given in Art. 146.

139. The arcs drawn from the angles of a spherical triangle perpendicular to

the opposite sides respectively meet at a point.

Let CF be perpendicular to AB. From F suppose arcs drawn perpendicular

to CB and CA respectively; denote the former by ξ and the latter by η. Then,

by Art. 135,
sin ξ

sin η
=

sinFCB

sinFCA
.

But, by Art. 65,

cosB = cosCF sinFCB, cosA = cosCF sinFCA;

therefore
sin ξ

sin η
=

cosB

cosA
=

cosB cosC

cosA cosC
.

And if from any point in CF arcs are drawn perpendicular to CB and CA
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respectively, the ratio of the sine of the former perpendicular to the sine of the

latter perpendicular is equal to
sin ξ

sin η
by Art. 135.

In like manner suppose AD perpendicular to BC; then if from any point in

AD arcs are drawn perpendicular to AC and AB respectively, the ratio of the

sine of the former perpendicular to the sine of the latter perpendicular is equal

to
cosA cosC

cosA cosB
.

Let CF and AD meet at P , and from P let perpendiculars be drawn on

the sides a, b, c of the triangle; and denote these perpendiculars by x, y, z

respectively: then we have shewn that

sinx

sin y
=

cosB cosC

cosA cosC
,

and that
sin y

sin z
=

cosA cosC

cosA cosB
;

hence it follows that

sinx

sin z
=

cosB cosC

cosB cosA
,

and this shews that the point P is on the arc drawn from B perpendicular to

AC.

Thus the three perpendiculars meet at a point, and this point is determined

by the relations

sinx

cosB cosC
=

sin y

cosC cosA
=

sin z

cosA cosB
.

140. In the same manner it may be shewn that the arcs drawn from the angles

of a spherical triangle to the middle points of the opposite sides meet at a point;

and if from this point arcs x, y, z are drawn perpendicular to the sides a, b, c

respectively,
sinx

sinB sinC
=

sin y

sinC sinA
=

sin z

sinA sinB
.

141. It is known in Plane Geometry that a certain circle touches the inscribed

and escribed circles of any triangle; this circle is called the Nine points circle:

see Appendix to Euclid, pages 317, 318, and Plane Trigonometry, Chapter xxiv.
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We shall now shew that a small circle can always be determined on the

sphere to touch the inscribed and escribed circles of any spherical triangle.

142. Let α denote the distance from A of the pole of the small circle inscribed

within a spherical triangle ABC. Suppose that a small circle of angular radius

ρ touches this inscribed circle internally; let β be the distance from A of the

pole of this touching circle; let γ be the angle between arcs drawn from A to

the pole of the inscribed circle and the pole of the touching circle respectively.

Then we must have

cos(ρ− r) = cosα cosβ + sinα sinβ cos γ. (1)

Suppose that this touching circle also touches externally the escribed circle of

angular radius r1; then if α1 denote the distance from A of the pole of this

escribed circle, we must have

cos(ρ+ r1) = cosα1 cosβ + sinα1 sinβ cos γ. (2)

Similarly, if α2 and α3 denote the distances from A of the poles of the other

escribed circles, in order that the touching circle may touch these escribed circles

externally, we must also have

cos(ρ+ r2) = cosα2 cosβ + sinα2 sinβ cos
(π

2
− γ
)
, (3)

cos(ρ+ r3) = cosα3 cosβ + sinα3 sinβ cos
(π

2
+ γ
)
. (4)

We shall shew that real values of ρ, β, and γ can be found to satisfy these

four equations.

Eliminate cos γ from (1) and (2); thus

cos ρ(cos r sinα1 − cos r1 sinα) + sin ρ(sin r sinα1 + sin r1 sinα)

= cosβ(cosα sinα1 − cosα1 sinα). (5)

Suppose that the inscribed circle touches AB at the distance m from A, and

that the escribed circle of angular radius r1 touches AB at the distance m1 from
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A. Then, by Art. 65,

cotα = cotm cos
A

2
, cosα = cos r cosm, sin r = sinα sin

A

2
;

therefore
cos r

sinα
=

cotα

cosm
=

1

sinm
cos

A

2
.

Similarly we may connect α1 and r1 with m1. Thus we obtain from (5)

cos ρ cos
A

2

(
1

sinm
− 1

sinm1

)
+ 2 sin ρ sin

A

2

= cosβ cos
A

2
(cotm− cotm1) ;

therefore cos ρ(sinm1 − sinm) + 2 sin ρ sinm sinm1 tan
A

2
= cosβ sin(m1 −m).

But by Arts. 89 and 90 we have m = s − a, and m1 = s; therefore by the

aid of Art. 45 we obtain

2 cos ρ sin
a

2
cos

b+ c

2
+ 2n sin ρ = cosβ sin a, (6)

where n has the meaning assigned in Art. 46.

In like manner if we eliminate sin γ between (3) and (4), putting m2 for s−c,
and m3 for s− b, we obtain

cos ρ(sinm2 + sinm3)− 2 sin ρ sinm2 sinm3 cot
A

2

= cosβ sin(m2 +m3),

therefore 2 cos ρ sin
a

2
cos

b− c
2
− 2n sin ρ = cosβ sin a. (7)

From (6) and (7) we get

tan ρ =
sin

a

2
sin

b

2
sin

c

2
n

=
1

2
tanR, by Art. 92 (8)
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and cosβ =
cos

b

2
cos

c

2
cos ρ

cos
a

2

. (9)

We may suppose that cos
a

2
is not less than cos

b

2
or cos

c

2
, so that we are

sure of a possible value of cosβ from (9).

It remains to shew that when ρ and β are thus determined, all the four

fundamental equations are satisfied.

It will be observed that, ρ and β being considered known, cos γ can be found

from (1) or (2), and sin γ can be found from (3) or (4): we must therefore shew

that (1) and (2) give the same value for cos γ, and that (3) and (4) give the same

value for sin γ; and we must also shew that these values satisfy the condition

cos2 γ + sin2 γ = 1.

From (1) we have

cos ρ sin r

sinα

(
cot r + tan ρ− cosm cot r

cosβ

cos ρ

)
= sinβ cos γ,

that is,

cos ρ sin
A

2
n

sin s+ sin 1
2a sin 1

2b sin 1
2c−

cos(s− a) sin s cos
b

2
cos

c

2

cos
a

2


= sinβ cos γ;

this reduces to

cos ρ sin
A

2
n

cos
a

2
sin

b+ c

2
−

sin(b+ c) cos
b

2
cos

c

2

2 cos
a

2

 = sinβ cos γ :

and it will be found that (2) reduces to the same; so that (1) and (2) give the

same value for cos γ.

In like manner it will be found that (3) and (4) agree in reducing to

cos ρ cos
A

2
n

cos
a

2
sin

c− b
2
−

sin(c− b) cos
b

2
cos

c

2

2 cos
a

2

 = sinβ cos γ.
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It only remains to shew that the condition cos2 γ + sin2 γ = 1 is satisfied.

Put k for
cosβ

cos ρ
, that is for

cos
b

2
cos

c

2

cos
a

2

;

put X for cot r{1− k cos(s− a)}, and Y for cot r1{1− k cos s}.

Then (1) and (2) may be written respectively thus:

(X cos ρ+ sin ρ) sin
A

2
= sinβ cos γ, (10)

(Y cos ρ− sin ρ) sin
A

2
= sinβ cos γ. (11)

From (10) and (11) by addition

(X + Y ) sin
A

2
cos ρ = 2 sinβ cos γ;

therefore 4 sin2 β cos2 γ = (X2 + Y 2 + 2XY ) sin2 A

2
cos2 ρ. (12)

But from (10) and (11) by subtraction

(X − Y ) cos ρ = −2 sin ρ;

therefore (X2 + Y 2) cos2 ρ = 4 sin2 ρ+ 2XY cos2 ρ.

Substitute in (12) and we obtain

sin2 β cos2 γ = (sin2 ρ+XY cos2 ρ) sin2 A

2
. (13)

Again, put

X1 for cot r2{1− k cos(s− c)}, and Y1 for cot r3{1− k cos(s− b)}.

Then (3) and (4) may be written respectively thus:

(X1 cos ρ− sin ρ) cos
A

2
= sinβ sin γ, (14)

(Y1 cos ρ− sin ρ) cos
A

2
= − sinβ sin γ. (15)
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From (14) and (15) by subtraction

(X1 − Y1) cos
A

2
cos ρ = 2 sinβ sin γ,

and from (14) and (15) by addition,

(X1 + Y1) cos ρ = 2 sin ρ,

whence

sin2 β sin2 γ = (sin2 ρ−X1Y1 cos2 ρ) cos2
A

2
. (16)

Hence from (13) and (16) it follows that we have to establish the relation

sin2 β = sin2 ρ+

(
XY sin2 A

2
−X1Y1 cos2

A

2

)
cos2 ρ.

But sin2 β = 1 − cos2 β = sin2 ρ + cos2 ρ − k2 cos2 ρ, so that the relation

reduces to

1− k2 = XY sin2 A

2
−X1Y1 cos2

A

2
.

Now

XY sin2 A

2
=

cot r cot r1{1− k cos s}{1− k cos(s− a)} sin(s− b) sin(s− c)
sin b sin c

=
{1− k cos s}{1− k cos(s− a)}

sin b sin c
.

Similarly X1Y1 cos2
A

2
=
{1− k cos(s− b)}{1− k cos(s− c)}

sin b sin c
.

Subtract the latter from the former; then we obtain

k

sin b sin c
{cos(s− b) + cos(s− c)− cos s− cos(s− a)}

+
k2

sin b sin c
{cos s cos(s− a)− cos(s− b) cos(s− c)},

that is
2k cos

a

2
sin b sin c

{
cos

b− c
2
− cos

b+ c

2

}
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+
k2

sin b sin c

{
cos

b+ c+ a

2
cos

b+ c− a
2

− cos
a+ c− b

2
cos

a+ b− c
2

}

that is
4 sin

b

2
sin

c

2
cos

b

2
cos

c

2
sin b sin c

+
k2

sin b sin c

{
sin2 c− b

2
− sin2 c+ b

2

}
,

that is 1− k2; which was to be shewn.

143. Thus the existence of a circle which touches the inscribed and escribed

circles of any spherical triangle has been established.

The distance of the pole of this touching circle from the angles B and C of

the triangle will of course be determined by formulæ corresponding to (9); and

thus it follows that

cos
a

2
cos

c

2
cos ρ

cos
b

2

and
cos

a

2
cos

b

2
cos ρ

cos
c

2

,

must both be less than unity.

144. Since the circle which has been determined touches the inscribed circle

internally and touches the escribed circles externally, it is obvious that it must

meet all the sides of the spherical triangle. We will now determine the position

of the points of meeting.

Suppose the touching circle intersects the side AB at points distant λ and

µ respectively from A.

Then by Art. 134 we have

tan
λ

2
tan

µ

2
=

cos ρ− cosβ

cos ρ+ cosβ
=

cos
a

2
− cos

b

2
cos

c

2

cos
a

2
+ cos

b

2
cos

c

2

. (1)

In the same way we must have by symmetry

tan
c− λ

2
tan

c− µ
2

=
cos

b

2
− cos

a

2
cos

c

2

cos
b

2
+ cos

a

2
cos

c

2

. (2)
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From (2), when we substitute the value of tan
λ

2
tan

µ

2
given by (1), we obtain

tan
λ

2
+ tan

µ

2
=

cos2
a

2
− cos2

b

2
cos2

c

2
+ cos2

b

2
sin2 c

2

cos
b

2
sin

c

2

(
cos

a

2
+ cos

b

2
cos

c

2

)

=
cos

a

2
− cos

b

2
cos

c

2

cos
b

2
sin

c

2

+
cos

b

2
sin

c

2

cos
a

2
+ cos

b

2
cos

c

2

. (3)

From (1) and (3) we see that we may put

tan
λ

2
=

cos
a

2
− cos

b

2
cos

c

2

cos
b

2
sin

c

2

. (4)

tan
µ

2
=

cos
b

2
sin

c

2

cos
a

2
+ cos

b

2
cos

c

2

. (5)

Similar formulæ of course hold for the points of intersection of the touching

circle with the other sides.

145. Let z denote the perpendicular from the pole of the touching circle on

AB; then

sin z = sinβ sin

(
A

2
+ γ

)

= sinβ

(
sin

A

2
cos γ + cos

A

2
sin γ

)
.

But from (2) and (3) of Art. 142 we have

sinβ cos γ =
cos ρ sin

A

2
n

(
Z − sin

a

2
sin

b

2
sin

c

2

)
,
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where Z = sin(s− a)− cos s sin(s− a) cos
b

2
cos

c

2
sec

a

2
,

and sinβ sin γ =
cos ρ cos

A

2
n

(
Z1 − sin

a

2
sin

b

2
sin

c

2

)
,

where Z1 = sin(s− b)− cos(s− c) sin(s− b) cos
b

2
cos

c

2
sec

a

2
.

Therefore

sin z =
cos ρ

n

{
Z sin2 A

2
+ Z1 cos2

A

2
− sin

a

2
sin

b

2
sin

c

2

}
.

Now Z sin2 A

2

=
sin(s− a) sin(s− b) sin(s− c)

sin b sin c

{
1− cos s cos

b

2
cos

c

2
sec

a

2

}
,

and Z1 cos2
A

2

=
sin s sin(s− a) sin(s− b)

sin b sin c

{
1− cos(s− c) cos

b

2
cos

c

2
sec

a

2

}
.

Therefore Z sin2 A

2
+ Z1 cos2

A

2

is equal to the product of

sin(s− a) sin(s− b)
sin b sin c

into

sin(s− c) + sin s− cos
b

2
cos

c

2
sec

a

2

{
sin(s− c) cos s+ cos(s− c) sin s

}

=
sin(s− a) sin(s− b)

sin b sin c

{
2 sin

a+ b

2
cos

c

2
− cos

b

2
cos

c

2
sec

a

2
sin(2s− c)

}

=
sin(s− a) sin(s− b)

2 sin b sin
c

2

{
2 sin

a+ b

2
− sin(a+ b) cos

b

2
sec

a

2

}
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=
sin(s− a) sin(s− b) sin

a+ b

2

sin b sin
c

2

1−
cos

a+ b

2
cos

b

2

cos
a

2


=

sin(s− a) sin(s− b) sin2 a+ b

2
sin

b

2

sin b sin
c

2
cos

a

2

=
sin(s− a) sin(s− b) sin2 a+ b

2

2 cos
a

2
cos

b

2
sin

c

2

.

Therefore

sin z =
cos ρ

n
sin

a

2
sin

b

2
sin

c

2


2 sin2 a+ b

2
sin(s− a) sin(s− b)

sin2 c

2
sin a sin b

− 1


=

cos ρ

n
sin

a

2
sin

b

2
sin

c

2

{
2 cos2

A−B
2
− 1

}
; by (2) of Art. 54.

Thus sin z =
cos ρ

n
sin

a

2
sin

b

2
sin

c

2
cos(A−B)

= sin ρ cos(A−B).

Similar expressions hold for the perpendiculars from the pole of the touching

circle on the other sides of the spherical triangle.

146. Let P denote the point determined in Art. 139; G the point determined

in Art. 140, and N the pole of the touching circle. We shall now shew that P ,

G, and N are on a great circle.

Let x, y, z denote the perpendiculars from N on the sides a, b, c respectively

of the spherical triangle; let x1, y1, z1 denote the perpendiculars from P ; and

x2, y2, z2 the perpendiculars from G. Then by Arts. 145, 139, and 140 we have

sinx

cos(B − C)
=

sin y

cos(C −A)
=

sin z

cos(A−B)
,

sinx1
cosB cosC

=
sin y1

cosC cosA
=

sin z1
cosA cosB

,

sinx2
sinB sinC

=
sin y2

sinC sinA
=

sin z2
sinA sinB

.
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Hence it follows that

sinx = t1 sinx1 + t2 sinx2,

sin y = t1 sin y1 + t2 sin y2,

sin z = t1 sin z1 + t2 sin z2,

where t1 and t2 are certain quantities the values of which are not required for

our purpose.

Therefore by Art. 137 a certain point in the same great circle as P and G is

at the perpendicular distances x, y, z from the sides a, b, c respectively of the

spherical triangle: and hence this point must be the point N .

147. The resemblance of the results which have been obtained to those which

are known respecting the Nine points circle in Plane Geometry will be easily

seen.

The result tan ρ =
1

2
tanR corresponds to the fact that the radius of the

Nine points circle is half the radius of the circumscribing circle of the triangle.

From equation (4) of Art. 144 by supposing the radius of the sphere to

become infinite we obtain λ =
b2 + c2 − a2

2c
: this corresponds to the fact that

the Nine points circle passes through the feet of the perpendiculars from the

angles of a triangle on the opposite sides.

From equation (5) of Art. 144 by supposing the radius of the sphere to

become infinite we obtain µ =
c

2
: this corresponds to the fact that the Nine

points circle passes through the middle points of the sides of a triangle.

From Art. 145 by supposing the radius of the sphere to become infinite we

obtain z =
1

2
R cos(A−B): this is a known property of the Nine points circle.

In Plane Geometry the points which correspond to the P , G, and N of Art.

146 are on a straight line.

148. The results which have been demonstrated with respect to the circle

which touches the inscribed and escribed circles of a spherical triangle are mainly

due to Dr Hart and Dr Salmon. See the Quarterly Journal of Mathematics,

Vol. vi. page 67.
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EXAMPLES.

1. From the formula sin
a

2
=

√{
− cosS cos(S −A)

sinB sinC

}
deduce the expression

for the area of a plane triangle, namely
a2 sinB sinC

2 sinA
, when the radius of the

sphere is indefinitely increased.

2. Two triangles ABC, abc, spherical or plane, equal in all respects, differ

slightly in position: shew that

cosABb cosBCc cosCAa+ cosACc cosCBb cosBAa = 0.

3. Deduce formulæ in Plane Trigonometry from Napier’s Analogies.

4. Deduce formulæ in Plane Trigonometry from Delambre’s Analogies.

5. From the formula cos
c

2
cos

A+B

2
= sin

C

2
cos

a+ b

2
deduce the area of a

plane triangle in terms of the sides and one of the angles.

6. What result is obtained from Example 7 to Chapter VI., by supposing

the radius of the sphere infinite?

7. From the angle C of a spherical triangle a perpendicular is drawn to

the arc which joins the middle points of the sides a and b: shew that this

perpendicular makes an angle S −B with the side a, and an angle S − A with

the side b.

8. From each angle of a spherical triangle a perpendicular is drawn to the

arc which joins the middle points of the adjacent sides. Shew that these per-

pendiculars meet at a point; and that if x, y, z are the perpendiculars from this

point on the sides a, b, c respectively,

sinx

sin(S −B) sin(S − C)
=

sin y

sin(S − C) sin(S −A)
=

sin z

sin(S −A) sin(S −B)
.

9. Through each angle of a spherical triangle an arc is drawn so as to make

the same angle with one side which the perpendicular on the base makes with

the other side. Shew that these arcs meet at a point; and that if x, y, z are the

perpendiculars from this point on the sides a, b, c respectively,

sinx

cosA
=

sin y

cosB
=

sin z

cosC
.
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10. Shew that the points determined in Examples 8 and 9, and the point N

of Art. 146 are on a great circle.

State the corresponding theorem in Plane Geometry.

11. If one angle of a spherical triangle remains constant while the adjacent

sides are increased, shew that the area and the sum of the angles are increased.

12. If the arcs bisecting two angles of a spherical triangle and terminated

at the opposite sides are equal, the bisected angles will be equal provided their

sum be less than 180◦.

[Let BOD and COE denote these two arcs which are given equal. If the

angles B and C are not equal suppose B the greater. Then CD is greater

than BE by Art. 58. And as the angle OBC is greater than the angle OCB,

therefore OC is greater than OB; therefore OD is greater than OE. Hence the

angle ODC is greater than the angle OEB, by Example 11. Then construct

a spherical triangle BCF on the other side of BC, equal to CBE. Since the

angle ODC is greater than the angle OEB, the angle FDC is greater than the

angle DFC; therefore CD is less than CF , so that CD is less than BE. See

the corresponding problem in Plane Geometry in the Appendix to Euclid, page

317.]



XIII

POLYHEDRONS.

149. A polyhedron is a solid bounded by any number of plane rectilineal figures

which are called its faces. A polyhedron is said to be regular when its faces are

similar and equal regular polygons, and its solid angles equal to one another.

150. If S be the number of solid angles in any polyhedron, F the number of its

faces, E the number of its edges, then S + F = E + 2.

Take any point within the polyhedron as centre, and describe a sphere of

radius r, and draw straight lines from the centre to each of the angular points

of the polyhedron; let the points at which these straight lines meet the surface

of the sphere be joined by arcs of great circles, so that the surface of the sphere

is divided into as many polygons as the polyhedron has faces.

Let s denote the sum of the angles of any one of these polygons, m the

number of its sides; then the area of the polygon is r2{s− (m−2)π} by Art. 99.

The sum of the areas of all the polygons is the surface of the sphere, that is,

4πr2. Hence since the number of the polygons is F , we obtain

4π =
∑
s− π

∑
m+ 2Fπ.

Now
∑
s denotes the sum of all the angles of the polygons, and is therefore

equal to 2π× the number of solid angles, that is, to 2πS; and
∑
m is equal to

the number of all the sides of all the polygons, that is, to 2E, since every edge

121
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gives rise to an arc which is common to two polygons. Therefore

4π = 2πS − 2πE + 2Fπ;

therefore S + F = E + 2.

151. There can be only five regular polyhedrons.

Let m be the number of sides in each face of a regular polyhedron, n the

number of plane angles in each solid angle; then the entire number of plane

angles is expressed by mF , or by nS, or by 2E; thus

mF = nS = 2E, and S + F = E + 2;

from these equations we obtain

S =
4m

2(m+ n)−mn
, E =

2mn

2(m+ n)−mn
, F =

4n

2(m+ n)−mn
.

These expressions must be positive integers, we must therefore have 2(m+n)

greater than mn; therefore

1

m
+

1

n
must be greater than

1

2
;

but n cannot be less than 3, so that
1

n
cannot be greater than

1

3
, and therefore

1

m
must be greater than

1

6
; and as m must be an integer and cannot be less

than 3, the only admissible values of m are 3, 4, 5. It will be found on trial

that the only values of m and n which satisfy all the necessary conditions are

the following: each regular polyhedron derives its name from the number of its

plane faces.

m n S E F Name of regular Polyhedron.

3 3 4 6 4 Tetrahedron or regular Pyramid.

4 3 8 12 6 Hexahedron or Cube.

3 4 6 12 8 Octahedron.

5 3 20 30 12 Dodecahedron.

3 5 12 30 20 Icosahedron.
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It will be seen that the demonstration establishes something more than the

enunciation states; for it is not assumed that the faces are equilateral and equian-

gular and all equal. It is in fact demonstrated that, there cannot be more than

five solids each of which has all its faces with the same number of sides, and all

its solid angles formed with the same number of plane angles.

152. The sum of all the plane angles which form the solid angles of any poly-

hedron is 2(S − 2)π.

For if m denote the number of sides in any face of the polyhedron, the sum

of the interior angles of that face is (m− 2)π by Euclid I. 32, Cor. 1. Hence the

sum of all the interior angles of all the faces is
∑

(m−2)π, that is
∑
mπ−2Fπ,

that is 2(E − F )π, that is 2(S − 2)π.

153. To find the inclination of two adjacent faces of a regular polyhedron.

Let AB be the edge common to the two adjacent faces, C and D the centres

of the faces; bisect AB at E, and join CE and DE; CE and DE will be

perpendicular to AB, and the angle CED is the angle of inclination of the two

adjacent faces; we shall denote it by I. In the plane containing CE and DE

draw CO and DO at right angles to CE and DE respectively, and meeting

at O; about O as centre describe a sphere meeting OA, OC, OE at a, c, e

respectively, so that cae forms a spherical triangle. Since AB is perpendicular

to CE and DE, it is perpendicular to the plane CED, therefore the plane AOB

which contains AB is perpendicular to the plane CED; hence the angle cea of

the spherical triangle is a right angle. Let m be the number of sides in each

face of the polyhedron, n the number of the plane angles which form each solid

angle. Then the angle ace = ACE =
2π

2m
=

π

m
; and the angle cae is half one of

the n equal angles formed on the sphere round a, that is, cae =
2π

2n
=
π

n
. From
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the right-angled triangle cae

cos cae = cos cOe sin ace,

that is cos
π

n
= cos

(
π

2
− I

2

)
sin

π

m
;

therefore sin
I

2
=

cos
π

n

sin
π

m

.

154. To find the radii of the inscribed and circumscribed spheres of a regular

polyhedron.

Let the edge AB = a, let OC = r and OA = R, so that r is the radius of

the inscribed sphere, and R is the radius of the circumscribed sphere. Then

CE = AE cotACE =
a

2
cot

π

m
,

r = CE tanCEO = CE tan
I

2
=
a

2
cot

π

m
tan

I

2
;

also r = R cos aOc = R cot eca cot eac = R cot
π

m
cot

π

n
;

therefore R = r tan
π

m
tan

π

n
=
a

2
tan

I

2
tan

π

n
.

155. To find the surface and volume of a regular polyhedron.

The area of one face of the polyhedron is
ma2

4
cot

π

m
, and therefore the sur-

face of the polyhedron is
mFa2

4
cot

π

m
.

Also the volume of the pyramid which has one face of the polyhedron for

base and O for vertex is
r

3
�
ma2

4
cot

π

m
, and therefore the volume of the poly-

hedron is
mFra2

12
cot

π

m
.

156. To find the volume of a parallelepiped in terms of its edges and their

inclinations to one another.
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Let the edges be OA = a, OB = b, OC = c; let the inclinations be BOC = a,

COA = β, AOB = γ. Draw CE perpendicular to the plane AOB meeting it at

E. Describe a sphere with O as a centre, meeting OA, OB, OC, OE at a, b, c,

e respectively.

The volume of the parallelepiped is equal to the product of its base and

altitude = ab sin γ � CE = abc sin γ sin cOe. The spherical triangle cae is right-

angled at e; thus

sin cOe = sin cOa sin cae = sinβ sin cab,

and from the spherical triangle cab

sin cab =

√
(1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ)

sinβ sin γ
;

therefore the volume of the parallelepiped

= abc
√

(1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ).

157. To find the diagonal of a parallelepiped in terms of the three edges which

it meets and their inclinations to one another.

Let the edges be OA = a, OB = b, OC = c; let the inclinations be BOC = α,

COA = β, AOB = γ. Let OD be the diagonal required, and let OE be the

diagonal of the face OAB. Then

OD2 = OE2 + ED2 + 2OE � ED cosCOE

= a2 + b2 + 2ab cos γ + c2 + 2cOE cosCOE.

Describe a sphere with O as centre meeting OA, OB, OC, OE at a, b, c, e

respectively; then (see Example 14, Chap. iv.)
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cos cOe =
cos cOb sin aOe+ cos cOa sin bOe

sin aOb

=
cosα sin aOe+ cosβ sin bOe

sin γ
;

therefore

OD2 = a2 + b2 + c2 + 2ab cos γ +
2cOE

sin γ
(cosα sin aOe+ cosβ sin bOe),

and OE sin aOe = b sin γ, OE sin bOe = a sin γ;

therefore OD2 = a2 + b2 + c2 + 2ab cos γ + 2bc cosα+ 2ca cosβ.

158. To find the volume of a tetrahedron.

A tetrahedron is one-sixth of a parallelepiped which has the same altitude

and its base double that of the tetrahedron; thus if the edges and their incli-

nations are given we can take one-sixth of the expression for the volume in

Art. 156. The volume of a tetrahedron may also be expressed in terms of its six

edges; for in the figure of Art. 156 let BC = a′, CA = b′, AB = c′; then

cosα =
b2 + c2 − a′2

2bc
, cosβ =

c2 + a2 − b′2

2ca
, cos γ =

a2 + b2 − c′2

2ab
,

and if these values are substituted for cosα, cosβ, and cos γ in the expression

obtained in Art. 156, the volume of the tetrahedron will be expressed in terms

of its six edges.

The following result will be obtained, in which V denotes the volume of the

tetrahedron,

144 V 2 = −a′2b′2c′2
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+ a2a′2(b′2 + c′2 − a′2) + b2b′2(c′2 + a′2 − b′2) + c2c′2(a′2 + b′2 − c′2)

− a′2(a2 − b2)(a2 − c2)− b′2(b2 − c2)(b2 − a2)− c′2(c2 − a2)(c2 − b2).

Thus for a regular tetrahedron we have 144 V 2 = 2a6.

159. If the vertex of a tetrahedron be supposed to be situated at any point

in the plane of its base, the volume vanishes; hence if we equate to zero the

expression on the right-hand side of the equation just given, we obtain a rela-

tion which must hold among the six straight lines which join four points taken

arbitrarily in a plane.

Or we may adopt Carnot’s method, in which this relation is established

independently, and the expression for the volume of a tetrahedron is deduced

from it; this we shall now shew, and we shall add some other investigations

which are also given by Carnot.

It will be convenient to alter the notation hitherto used, by interchanging

the accented and unaccented letters.

160. To find the relation holding among the six straight lines which join four

points taken arbitrarily in a plane.

Let A, B, C, D be the four points. Let AB = c, BC = a, CA = b; also let

DA = a′, DB = b′, DC = c′.

If D falls within the triangle ABC, the sum of the angles ADB, BDC, CDA

is equal to four right angles; so that

cosADB = cos (BDC + CDA).

Hence by ordinary transformations we deduce

1 = cos2ADB + cos2BDC + cos2 CDA− 2 cosADB cosBDC cosCDA.

If D falls without the triangle ABC, one of the three angles at D is equal to

the sum of the other two, and the result just given still holds.

Now cosADB =
a′2 + b′2 − c2

2a′b′
, and the other cosines may be expressed in a

similar manner; substitute these values in the above result, and we obtain the
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required relation, which after reduction may be exhibited thus,

0 = −a2b2c2

+a′2a2(b2 + c2 − a2) + b′2b2(c2 + a2 − b2) + c′2c2(a2 + b2 − c2)

−a2(a′2 − b′2)(a′2 − c′2)− b2(b′2 − c′2)(b′2 − a′2)− c2(c′2 − a′2)(c′2 − b′2).

161. To express the volume of a tetrahedron in terms of its six edges.

Let a, b, c be the lengths of the sides of a triangle ABC forming one face of

the tetrahedron, which we may call its base; let a′, b′, c′ be the lengths of the

straight lines which join A, B, C respectively to the vertex of the tetrahedron.

Let p be the length of the perpendicular from the vertex on the base; then the

lengths of the straight lines drawn from the foot of the perpendicular to A, B, C

respectively are
√

(a′2 − p2),
√

(b′2 − p2),
√

(c′2 − p2). Hence the relation given

in Art. 160 will hold if we put
√

(a′2 − p2) instead of a′,
√

(b′2 − p2) instead of

b′, and
√

(c′2 − p2) instead of c′. We shall thus obtain

p2(2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4) = −a2b2c2

+ a′2a2(b2 + c2 − a2) + b′2b2(c2 + a2 − b2) + c′2c2(a2 + b2 − c2)

− a2(a′2 − b′2)(a′2 − c′2)− b2(b′2 − c′2)(b′2 − a′2)− c2(c′2 − a′2)(c′2 − b′2).

The coefficient of p2 in this equation is sixteen times the square of the area

of the triangle ABC; so that the left-hand member is 144V 2, where V denotes

the volume of the tetrahedron. Hence the required expression is obtained.

162. To find the relation holding among the six arcs of great circles which join

four points taken arbitrarily on the surface of a sphere.

Let A, B, C, D be the four points. Let AB = γ, BC = α, CA = β; let

DA = α′, DB = β′, DC = γ′.

As in Art. 160 we have

1 = cos2ADB + cos2BDC + cos2 CDA− 2 cosADB cosBDC cosCDA.

Now cosADB =
cos γ − cosα′ cosβ′

sinα′ sinβ′
, and the other cosines may be ex-

pressed in a similar manner; substitute these values in the above result, and we
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obtain the required relation, which after reduction may be exhibited thus,

1 = cos2 α+ cos2 β + cos2 γ + cos2 α′ + cos2 β′ + cos2 γ′

− cos2 α cos2 α′ − cos2 β cos2 β′ − cos2 γ cos2 γ′

− 2(cosα cosβ cos γ + cosα cosβ′ cos γ′

+ cosβ cosα′ cos γ′ + cos γ cosα′ cosβ′)

+ 2(cosα cosβ cosα′ cosβ′ + cosβ cos γ cosβ′ cos γ′

+ cos γ cosα cos γ′ cosα′).

163. To find the radius of the sphere circumscribing a tetrahedron.

Denote the edges of the tetrahedron as in Art. 161. Let the sphere be

supposed to be circumscribed about the tetrahedron, and draw on the sphere

the six arcs of great circles joining the angular points of the tetrahedron. Then

the relation given in Art. 162 holds among the cosines of these six arcs.

Let r denote the radius of the sphere. Then

cosα = 1− 2 sin2 α

2
= 1− 2

( a
2r

)2
= 1− a2

2r2
;

and the other cosines may be expressed in a similar manner. Substitute these

values in the result of Art. 162, and we obtain, after reduction, with the aid of

Art. 161,

4× 144V 2r2 =

2a2b2a′2b′2 + 2b2c2b′2c′2 + 2c2a2c′2a′2 − a4a′4 − b4b′4 − c4c′4.

The right-hand member may also be put into factors, as we see by recollecting

the mode in which the expression for the area of a triangle is put into factors.

Let aa′ + bb′ + cc′ = 2σ; then

36 V 2r2 = σ(σ − aa′)(σ − bb′)(σ − cc′).

EXAMPLES.

1. If I denote the inclination of two adjacent faces of a regular polyhedron,

shew that cos I = 1
3 in the tetrahedron, = 0 in the cube, = − 1

3 in the octahedron,
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= − 1
5

√
5 in the dodecahedron, and = − 1

3

√
5 in the icosahedron.

2. With the notation of Art. 153, shew that the radius of the sphere which

touches one face of a regular polyhedron and all the adjacent faces produced is
1
2a cot

π

m
cot 1

2I.

3. A sphere touches one face of a regular tetrahedron and the other three

faces produced: find its radius.

4. If a and b are the radii of the spheres inscribed in and described about a

regular tetrahedron, shew that b = 3a.

5. If a is the radius of a sphere inscribed in a regular tetrahedron, and R

the radius of the sphere which touches the edges, shew that R2 = 3a2.

6. If a is the radius of a sphere inscribed in a regular tetrahedron, and R′

the radius of the sphere which touches one face and the others produced, shew

that R′ = 2a.

7. If a cube and an octahedron be described about a given sphere, the sphere

described about these polyhedrons will be the same; and conversely.

8. If a dodecahedron and an icosahedron be described about a given sphere,

the sphere described about these polyhedrons will be the same; and conversely.

9. A regular tetrahedron and a regular octahedron are inscribed in the same

sphere: compare the radii of the spheres which can be inscribed in the two

solids.

10. The sum of the squares of the four diagonals of a parallelepiped is equal

to four times the sum of the squares of the edges.

11. If with all the angular points of any parallelepiped as centres equal

spheres be described, the sum of the intercepted portions of the parallelepiped

will be equal in volume to one of the spheres.

12. A regular octahedron is inscribed in a cube so that the corners of the

octahedron are at the centres of the faces of the cube: shew that the volume of

the cube is six times that of the octahedron.

13. It is not possible to fill any given space with a number of regular poly-

hedrons of the same kind, except cubes; but this may be done by means of
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tetrahedrons and octahedrons which have equal faces, by using twice as many

of the former as of the latter.

14. A spherical triangle is formed on the surface of a sphere of radius ρ; its

angular points are joined, forming thus a pyramid with the straight lines joining

them with the centre: shew that the volume of the pyramid is

1
3ρ

3√(tan r tan r1 tan r2 tan r3),

where r, r1, r2, r3 are the radii of the inscribed and escribed circles of the

triangle.

15. The angular points of a regular tetrahedron inscribed in a sphere of

radius r being taken as poles, four equal small circles of the sphere are described,

so that each circle touches the other three. Shew that the area of the surface

bounded by each circle is 2πr2
(

1− 1√
3

)
.

16. If O be any point within a spherical triangle ABC, the product of the

sines of any two sides and the sine of the included angle

= sinAO sinBO sinCO

{
cotAO sinBOC

+ cotBO sinCOA+ cotCO sinAOB

}
.
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XIV

ARCS DRAWN TO FIXED

POINTS ON THE

SURFACE OF A SPHERE.

164. In the present Chapter we shall demonstrate various propositions relating

to the arcs drawn from any point on the surface of a sphere to certain fixed points

on the surface.

165. ABC is a spherical triangle having all its sides quadrants, and therefore

all its angles right angles; T is any point on the surface of the sphere: to shew

that

cos2 TA+ cos2 TB + cos2 TC = 1.

133
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By Art. 37 we have

cosTA = cosAB cosTB + sinAB sinTB cosTBA

= sinTB cosTBA.

Similarly cosTC = sinTB cosTBC = sinTB sinTBA.

Square and add; thus

cos2 TA+ cos2 TC = sin2 TB = 1− cos2 TB;

therefore cos2 TA+ cos2 TB + cos2 TC = 1.

166. ABC is a spherical triangle having all its sides quadrants, and therefore

all its angles right angles; T and U are any points on the surface of the sphere:

to shew that

cosTU = cosTA cosUA+ cosTB cosUB + cosTC cosUC.

By Art. 37 we have

cosTU = cosTA cosUA+ sinTA sinUA cosTAU,

and cosTAU = cos(BAU −BAT )

= cosBAU cosBAT + sinBAU sinBAT

= cosBAU cosBAT + cosCAU cosCAT ;

therefore cosTU = cosTA cosUA

+ sinTA sinUA(cosBAU cosBAT + cosCAU cosCAT );
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and cosTB = sinTA cosBAT,

cosUB = sinUA cosBAU,

cosTC = sinTA cosCAT,

cosUC = sinUA cosCAU ;

therefore

cosTU = cosTA cosUA+ cosTB cosUB + cosTC cosUC.

167. We leave to the student the exercise of shewing that the formulæ of the

two preceding Articles are perfectly general for all positions of T and U , outside

or inside the triangle ABC: the demonstrations will remain essentially the same

for all modifications of the diagrams. The formulæ are of constant application

in Analytical Geometry of three dimensions, and are demonstrated in works on

that subject; we have given them here as they may be of service in Spherical

Trigonometry, and will in fact now be used in obtaining some important results.

168. Let there be any number of fixed points on the surface of a sphere; denote

them by H1, H2, H3,. . . . Let T be any point on the surface of a sphere. We

shall now investigate an expression for the sum of the cosines of the arcs which

join T with the fixed points.

Denote the sum by Σ; so that

Σ = cosTH1 + cosTH2 + cosTH3 + . . . .

Take on the surface of the sphere a fixed spherical triangle ABC, having all

its sides quadrants, and therefore all its angles right angles.

Let λ, µ, ν be the cosines of the arcs which join T with A, B, C respectively;

let l1, m1, n1 be the cosines of the arcs which join H1 with A, B, C respectively;

and let a similar notation be used with respect to H2, H3,. . . .

Then, by Art. 166,

Σ = l1λ+m1µ+ n1ν + l2λ+m2µ+ n2ν + . . .

= Pλ+Qµ+Rν;

where P stands for l1 + l2 + l3 + . . ., with corresponding meanings for Q and R.
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169. It will be seen that P is the value which Σ takes when T coincides with

A, that Q is the value which Σ takes when T coincides with B, and that R is

the value which Σ takes when T coincides with C. Hence the result expresses

the general value of Σ in terms of the cosines of the arcs which join T to the

fixed points A, B, C, and the particular values of Σ which correspond to these

three points.

170. We shall now transform the result of Art. 168.

Let G =
√

(P 2 +Q2 +R2);

and let α, β, γ be three arcs determined by the equations

cosα =
P

G
, cosβ

Q

G
, cos γ

R

G
;

then Σ = G(λ cosα+ µ cosβ + ν cos γ).

Since cos2 α+ cos2 β+ cos2 γ = 1, it is obvious that there will be some point

on the surface of the sphere, such that α, β, γ are the arcs which join it to A,

B, C respectively; denote this point by U : then, by Art. 166,

cosTU = λ cosα+ µ cosβ + ν cos γ;

and finally

Σ = G cosTU.

Thus, whatever may be the position of T , the sum of the cosines of the arcs

which join T to the fixed points varies as the cosine of the single arc which joins

T to a certain fixed point U .

We might take G either positive or negative; it will be convenient to suppose

it positive.

171. A sphere is described about a regular polyhedron; from any point on the

surface of the sphere arcs are drawn to the solid angles of the polyhedron: to

shew that the sum of the cosines of these arcs is zero.

From the preceding Article we see that if G is not zero there is one position

of T which gives to Σ its greatest positive value, namely, when T coincides with

U . But by the symmetry of a regular polyhedron there must always be more
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than one position of T which gives the same value to Σ. For instance, if we take

a regular tetrahedron, as there are four faces there will at least be three other

positions of T symmetrical with any assigned position.

Hence G must be zero; and thus the sum of the cosines of the arcs which

join T to the solid angles of the regular polyhedron is zero for all positions of T.

172. Since G = 0, it follows that P , Q, R must each be zero; these indeed are

particular cases of the general result of Art. 171. See Art. 169.

173. The result obtained in Art. 171 may be shewn to hold also in some other

cases. Suppose, for instance, that a rectangular parallelepiped is inscribed in

a sphere; then the sum of the cosines of the arcs drawn from any point on

the surface of the sphere to the solid angles of the parallelepiped is zero. For

here it is obvious that there must always be at least one other position of T

symmetrical with any assigned position. Hence by the argument of Art. 171 we

must have G = 0.

174. Let there be any number of fixed points on the surface of a sphere; denote

them by H1, H2, H3, . . . Let T be any point on the surface of the sphere. We

shall now investigate a remarkable expression for the sum of the squares of the

cosines of the arcs which join T with the fixed points.

Denote the sum by Σ; so that

Σ = cos2 TH1 + cos2 TH2 + cos2 TH3 + . . . .

Take on the surface of the sphere a fixed spherical triangle ABC, having all

its sides quadrants, and therefore all its angles right angles.

Let λ, µ, ν be the cosines of the arcs which join T with A, B, C respec-

tively; let l1, m1, n1 be the cosines of the angles which join H1 with A, B, C

respectively; and let a similar notation be used with respect to H2, H3,. . . .

Then, by Art. 166,

Σ = (l1λ+m1µ+ n1ν)2 + (l2λ+m2µ+ n2ν)2 + . . . .



138 ARCS DRAWN TO FIXED POINTS.

Expand each square, and rearrange the terms; thus

Σ = Pλ2 +Qµ2 +Rν2 + 2pµν + 2qνλ+ 2rλµ,

where P stands for l21 + l22 + l23 + . . . ,

and p stands for m1n1 +m2n2 +m3n3 + . . . ,

with corresponding meanings for Q and q, and for R and r.

We shall now shew that there is some position of the triangle ABC for which

p, q, and r will vanish; so that we shall then have

Σ = Pλ2 +Qµ2 +Rν2.

Since Σ is always a finite positive quantity there must be some position, or

some positions, of T for which Σ has the largest value which it can receive.

Suppose that A has this position, or one of these positions if there are more

than one. When T is at A we have µ and ν each zero, and λ equal to unity, so

that Σ is then equal to P .

Hence, whatever be the position of T , P is never less than Pλ2 + Qµ2 +

Rν2 + 2pµν + 2qνλ+ 2rλµ, that is, by Art. 165,

P (λ2 + µ2 + ν2) is never less than

Pλ2 +Qµ2 +Rν2 + 2pµν + 2qνλ+ 2rλµ;

therefore

(P −Q)µ2 + (P −R)ν2 is never less than 2pµν + 2qνλ+ 2rλµ.

Now suppose ν = 0; then T is situated on the great circle of which AB is a

quadrant, and whatever be the position of T we have

(P −Q)µ2 not less than 2rλµ,

and therefore P −Q not less than
2rλ

µ
.

But now
λ

µ
is equal to

cosTA

cosTB
; this is numerically equal to tanTB, and so

may be made numerically as great as we please, positive or negative, by giving
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a suitable position to T . Thus P −Q must in some cases be less than
2rλ

µ
if r

have any value different from zero.

Therefore r must = 0.

In like manner we can shew that q must = 0.

Hence with the specified position for A we arrive at the result that whatever

may be the position of T

Σ = Pλ2 +Qµ2 +Rν2 + 2pµ ν.

Let us now suppose that the position of B is so taken that when T coincides

with B the value of Σ is as large as it can be for any point in the great circle of

which A is the pole. When T is at B we have λ and ν each zero, and µ equal to

unity, so that Σ is then equal to Q. For any point in the great circle of which

A is the pole λ is zero; and therefore for any such point

Q is not less than Qµ2 +Rν2 + 2pµ ν,

that is, by Art. 165,

Q(µ2 + ν2) is not less than Qµ2 +Rν2 + 2pµ ν;

therefore Q−R is not less than
2pµ

ν
.

Hence by the same reasoning as before we must have p = 0.

Therefore we see that there must be some position of the triangle ABC, such

that for every position of T

Σ = Pλ2 +Qµ2 +Rν2.

175. The remarks of Art. 169 are applicable to the result just obtained.

176. In the final result of Art. 174 we may shew that R is the least value which

Σ can receive. For, by Art. 165,

Σ = Pλ2 +Qµ2 +R(1− λ2 − µ2)

= R+ (P −R)λ2 + (Q−R)µ2;
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and by supposition neither P − R nor Q − R is negative, so that Σ cannot be

less than R.

177. A sphere is described about a regular polyhedron; from any point on the

surface of the sphere arcs are drawn to the solid angles of the polyhedron: it is

required to find the sum of the squares of the cosines of these arcs.

With the notation of Art. 174 we have

Σ = Pλ2 +Qµ2 +Rν2.

We shall shew that in the present case P , Q, and R must all be equal. For

if they are not, one of them must be greater than each of the others, or one of

them must be less than each of the others.

If possible let the former be the case; suppose that P is greater than Q, and

greater than R.

Now Σ = P (1− µ2 − ν2) +Qµ2 +Rν2

= P − (P −Q)µ2 − (P −R)ν2;

this shews that Σ is always less than P except when µ = 0 and ν = 0: that is Σ

is always less than P except when T is at A, or at the point of the surface which

is diametrically opposite to A. But by the symmetry of a regular polyhedron

there must always be more than two positions of T which give the same value

to Σ. For instance if we take a regular tetrahedron, as there are four faces

there will be at least three other positions of T symmetrical with any assigned

position. Hence P cannot be greater than Q and greater than R.

In the same way we can shew that one of the three P , Q, and R, cannot be

less than each of the others.

Therefore P = Q = R; and therefore by Art. 165 for every position of T we

have Σ = P .

Since P = Q = R each of them = 1
3 (P +Q+R)

=
1

3
{l12 +m1

2 + n1
2 + l2

2 +m2
2 + n2

2 + . . . }

=
S

3
, by Art. 165,
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where S is the number of the solid angles of the regular polyhedron.

Thus the sum of the squares of the cosines of the arcs which join any point

on the surface of the sphere to the solid angles of the regular polyhedron is one

third of the number of the solid angles.

178. Since P = Q = R in the preceding Article, it will follow that when the

fixed points of Art. 174 are the solid angles of a regular polyhedron, then for

any position of the spherical triangle ABC we shall have p = 0, q = 0, r = 0.

For taking any position for the spherical triangle ABC we have

Σ = Pλ2 +Qµ2 +Rν2 + 2pµν + 2qνλ+ 2rλµ;

then at A we have µ = 0 and ν = 0, so that P is then the value of Σ; similarly

Q and R are the values of Σ at B and C respectively. But by Art. 177 we have

the same value for Σ whatever be the position of T ; thus

P = P (λ2 + µ2 + ν2) + 2pµν + 2qνλ+ 2rλµ;

therefore 0 = 2pµν + 2qνλ+ 2rλµ.

This holds then for every position of T . Suppose T is at any point of the

great circle of which A is the pole; then λ = 0: thus we get pµν = 0, and

therefore p = 0. Similarly q = 0, and r = 0.

179. Let there be any number of fixed points on the surface of a sphere; denote

them by H1, H2, H3, . . . ; from any two points T and U on the surface of the

sphere arcs are drawn to the fixed points: it is required to find the sum of the

products of the corresponding cosines, that is

cosTH1 cosUH1 + cosTH2 cosUH2 + cosTH3 cosUH3 + . . . .

Let the notation be the same as in Art. 174; and let λ′, µ′, ν′ be the cosines

of the arcs which join U with A, B, C respectively. Then by Art. 166,

cosTH1 cosUH1 = (λl1 + µm1 + νn1)(λ′l1 + µ′m1 + ν′n1) =

λλ′l1
2 + µµ′m1

2 + νν′n1
2 + (λµ′ + µλ′)l1m1 + (µν′ + νµ′)m1n1 + (νλ′ + λν′)n1l1.
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Similar results hold for cosTH2 cosUH2, cosTH3 cosUH3,. . . . Hence, with

the notation of Art. 174, the required sum is

λλ′P + µµ′Q+ νν′R+ (µν′ + νµ′)p+ (νλ′ + λν′)q + (λµ′ + µλ′)r.

Now by properly choosing the position of the triangle ABC we have p, q,

and r each zero as in Art. 174; and thus the required sum becomes

λλ′P + µµ′Q+ νν′R.

180. The result obtained in Art. 174 may be considered as a particular case

of that just given; namely the case in which the points T and U coincide.

181. A sphere is described about a regular polyhedron; from any two points

on the surface of the sphere arcs are drawn to the solid angles of the polyhedron:

it is required to find the sum of the products of the corresponding cosines.

With the notation of Art. 179 we see that the sum is

λλ′P + µµ′Q+ νν′R.

And here P = Q = R =
S

3
, by Art. 177.

Thus the sum =
S

3
(λλ′ + µµ′ + νν′) =

S

3
cosTU .

Thus the sum of the products of the cosines is equal to the product of the

cosine TU into a third of the number of the solid angles of the regular polyhedron.

182. The result obtained in Art. 177 may be considered as a particular case

of that just given; namely, the case in which the points T and U coincide.

183. If TU is a quadrant then cosTU is zero, and the sum of the products of

the cosines in Art. 181 is zero. The results p = 0, q = 0, r = 0, are easily seen

to be all special examples of this particular case.



XV

MISCELLANEOUS

PROPOSITIONS.

184. To find the locus of the vertex of a spherical triangle of given base and

area.

Let AB be the given base, = c suppose, AC = θ, BAC = φ. Since the area

is given the spherical excess is known; denote it by E; then by Art. 103,

cot 1
2E = cot 1

2θ cot 1
2c cosecφ+ cotφ;

therefore sin(φ− 1
2E) = cot 1

2θ cot 1
2c sin 1

2E;

therefore 2 cot 1
2c sin 1

2E cos2
θ

2
= sin θ sin(φ− 1

2E);

therefore

cos θ cot 1
2c sin 1

2E + sin θ cos
(
φ− 1

2E +
π

2

)
= − cot 1

2c sin 1
2E.

Comparing this with equation (1) of Art. 133, we see that the required locus

is a circle. If we call α, β the angular co-ordinates of its pole, we have

tanα =
1

cot 1
2c sin 1

2E
=

tan 1
2c

sin 1
2E

,

β = 1
2E −

π

2
.

143
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It may be presumed from symmetry that the pole of this circle is in the great

circle which bisects AB at right angles; and this presumption is easily verified.

For the equation to that great circle is

0 = cos θ cos
(π

2
− c

2

)
+ sin θ sin

(π
2
− c

2

)
cos(φ− π)

and the values θ = α, φ = β satisfy this equation.

185. To find the angular distance between the poles of the inscribed and cir-

cumscribed circles of a triangle.

Let P denote the pole of the inscribed circle, and Q the pole of the circum-

scribed circle of a triangle ABC; then PAB = 1
2A, by Art. 89, and QAB =

S − C, by Art. 92; hence

cosPAQ = cos 12 (B − C);

and cosPQ = cosPA cosQA+ sinPA sinQA cos 1
2 (B − C).

Now, by Art. 62 (see the figure of Art. 89),

cosPA = cosPE cosAE = cos r cos(s− a),

sinPA =
sinPE

sinPAE
=

sin r

sin 1
2A

;

thus

cosPQ = cosR cos r cos(s− a) + sinR sin r cos
1

2
(B − C) cosec 1

2A.

Therefore, by Art. 54

cosPQ = cosR cos r cos(s− a) + sinR sin r sin 1
2 (b+ c) cosec 1

2a,

therefore
cosPQ

cosR sin r
= cot r cos(s− a) + tanR sin

1

2
(b+ c) cosec

1

2
a.

Now cot r =
sin s

n
, tanR =

2 sin 1
2a sin 1

2b sin 1
2c

n
,
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therefore
cosPQ

cosR sin r
=

1

n

{
sin s cos(s− a) + 2 sin 1

2 (b+ c) sin 1
2b sin 1

2c
}

=
1

2n
(sin a+ sin b+ sin c).

Hence

(
cosPQ

cosR sin r

)2

− 1 =
1

4n2
(sin a+ sin b+ sin c)2 − 1

= (cot r + tanR)2 (by Art. 94);

therefore cos2 PQ = cos2R sin2 r + cos2(R− r),

and sin2 PQ = sin2(R− r)− cos2R sin2 r.

186. To find the angular distance between the pole of the circumscribed circle

and the pole of one of the escribed circles of a triangle.

Let Q denote the pole of the circumscribed circle, and Q1 the pole of the

escribed circle opposite to the angle A. Then it may be shewn that QBQ1 =
1
2π + 1

2 (C −A), and

cosQQ1 = cosR cos r1 cos(s− c)− sinR sin r1 sin 1
2 (C −A) sec 1

2B

= cosR cos r1 cos(s− c)− sinR sin r1 sin 1
2 (c− a) cosec

1

2
b.

Therefore

cosQQ1

sin r1 cosR
= cot r1 cos(s− c)− tanR sin 1

2 (c− a) cosec 1
2b;

by reducing as in the preceding Article, the right-hand member of the last

equation becomes
1

2n
(sin b+ sin c− sin a);

hence

(
cosQQ1

cosR sin r1

)2

− 1 = (tanR− cot r1)2, (Art. 94);

therefore cos2QQ1 = cos2R sin2 r1 + cos2(R+ r1),

and sin2QQ1 = sin2(R+ r1)− cos2R sin2 r1.

187. The arc which passes through the middle points of the sides of any triangle

upon a given base will meet the base produced at a fixed point, the distance of
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which from the middle point of the base is a quadrant.

Let ABC be any triangle, E the middle point of AC, and F the middle point

of AB; let the arc which joins E and F when produced meet BC produced at

Q. Then
sinBQ

sinBF
=

sinBFQ

sinBQF
,

sinAQ

sinAF
=

sinAFQ

sinAQF
;

therefore
sinBQ

sinAQ
=

sinAQF

sinBQF
,

similarly
sinCQ

sinAQ
=

sinAQF

sinCQF
;

therefore sinBQ = sinCQ; therefore BQ+ CQ = π.

Hence if D be the middle point of BC

DQ = 1
2 (BQ+ CQ) = 1

2π.

188. If three arcs be drawn from the angles of a spherical triangle through

any point to meet the opposite sides, the products of the sines of the alternate

segments of the sides are equal.

Let P be any point, and let arcs be drawn from the angles A, B, C passing

through P and meeting the opposite sides at D, E, F . Then

sinBD

sinBP
=

sinBPD

sinBDP
,

sinCD

sinCP
=

sinCPD

sinCDP
,

therefore
sinBD

sinCD
=

sinBPD

sinCPD

sinBP

sinCP
.
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Similar expressions may be found for
sinCE

sinAE
and

sinAF

sinBF
; and hence it

follows obviously that

sinBD

sinCD

sinCE

sinAE

sinAF

sinBF
= 1;

therefore sinBD sinCE sinAF = sinCD sinAE sinBF.

189. Conversely, when the points D, E, F in the sides of a spherical triangle

are such that the relation given in the preceding Article holds, the arcs which

join these points with the opposite angles respectively pass through a common

point. Hence the following propositions may be established: the perpendiculars

from the angles of a spherical triangle on the opposite sides meet at a point;

the arcs which bisect the angles of a spherical triangle meet at a point; the

arcs which join the angles of a spherical triangle with the middle points of the

opposite sides meet at a point; the arcs which join the angles of a spherical

triangle with the points where the inscribed circle touches the opposite sides

respectively meet at a point.

Another mode of establishing such propositions has been exemplified in Arts.

139 and 140.

190. If AB and A′B′ be any two equal arcs AA′ and AA′ and BB′ be bisected

at right angles by arcs meeting at P, then AB and A′B′ subtend equal angles at

P.

For PA = PA′ and PB = PB′; hence the sides of the triangle PAB are

respectively equal to those of PA′B′; therefore the angle APB = the angle

A′PB′.

This simple proposition has an important application to the motion of a

rigid body of which one point is fixed. For conceive a sphere capable of motion

round its centre which is fixed; then it appears from this proposition that any
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two fixed points on the sphere, as A and B, can be brought into any other

positions, as A′ and B′, by rotation round an axis passing through the centre of

the sphere and a certain point P . Hence it may be inferred that any change of

position in a rigid body, of which one point is fixed, may be effected by rotation

round some axis through the fixed point.

(De Morgan’s Differential and Integral Calculus, page 489.)

191. Let P denote any point within any plane angle AOB, and from P draw

perpendiculars on the straight lines OA and OB; then it is evident that these

perpendiculars include an angle which is the supplement of the angle AOB. The

corresponding fact with respect to a solid angle is worthy of notice. Let there be

a solid angle formed by three plane angles, meeting at a point O. From any point

P within the solid angle, draw perpendiculars PL, PM , PN on the three planes

which form the solid angle; then the spherical triangle which corresponds to the

three planes LPM , MPN , NPL is the polar triangle of the spherical triangle

which corresponds to the solid angle at O. This remark is due to Professor De

Morgan.

192. Suppose three straight lines to meet at a point and form a solid an-

gle; let α, β, and γ denote the angles contained by these three straight lines

taken in pairs: then it has been proposed to call the expression
√

(1− cos2 α−
cos2 β − cos2 γ + 2 cosα cosβ cos γ), the sine of the solid angle. See Baltzer’s

Theorie. . . der Determinanten, 2nd edition, page 177. Adopting this definition

it is easy to shew that the sine of a solid angle lies between zero and unity.

We know that the area of a plane triangle is half the product of two sides

into the sine of the included angle: by Art. 156 we have the following analogous

proposition; the volume of a tetrahedron is one sixth of the product of three

edges into the sine of the solid angle which they form.

Again, we know in mechanics that if three forces acting at a point are in

equilibrium, each force is as the sine of the angle between the directions of the

other two: the following proposition is analogous; if four forces acting at a point

are in equilibrium each force is as the sine of the solid angle formed by the

directions of the other three. See Statics, Chapter II.

193. Let a sphere be described about a regular polyhedron; let perpendiculars

be drawn from the centre of the sphere on the faces of the polyhedron, and
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produced to meet the surface of the sphere: then it is obvious from symmetry

that the points of intersection must be the angular points of another regular

polyhedron.

This may be verified. It will be found on examination that if S be the

number of solid angles, and F the number of faces of one regular polyhedron,

then another regular polyhedron exists which has S faces and F solid angles.

See Art. 151.

194. Polyhedrons. The result in Art. 150 was first obtained by Euler; the

demonstration which is there given is due to Legendre. The demonstration

shews that the result is true in many cases in which the polyhedron has re-

entrant solid angles; for all that is necessary for the demonstration is, that it

shall be possible to take a point within the polyhedron as the centre of a sphere,

so that the polygons, formed as in Art. 150, shall not have any coincident

portions. The result, however, is generally true, even in cases in which the

condition required by the demonstration of Art. 150 is not satisfied. We shall

accordingly give another demonstration, and shall then deduce some important

consequences from the result. We begin with a theorem which is due to Cauchy.

195. Let there be any network of rectilineal figures, not necessarily in one

plane, but not forming a closed surface; let E be the number of edges, F the

number of figures, and S the number of corner points: then F + S = E + 1.

This theorem is obviously true in the case of a single plane figure; for then

F = 1, and S = E. It can be shewn to be generally true by induction. For

assume the theorem to be true for a network of F figures; and suppose that a

rectilineal figure of n sides is added to this network, so that the network and

the additional figure have m sides coincident, and therefore m+ 1 corner points

coincident. And with respect to the new network which is thus formed, let E′,

F ′, S′ denote the same things as E, F , S with respect to the old network. Then

E′ = E + n−m, F ′ = F + 1, S′ = S + n− (m+ 1);

therefore F ′ + S′ − E′ = F + S − E.

But F + S = E + 1, by hypothesis; therefore F ′ + S′ = E′ + 1.
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196. To demonstrate Euler’s theorem we suppose one face of a polyhedron

removed, and we thus obtain a network of rectilineal figures to which Cauchy’s

theorem is applicable. Thus

F − 1 + S = E + 1;

therefore F + S = E + 2.

197. In any polyhedron the number of faces with an odd number of sides is

even, and the number of solid angles formed with an odd number of plane angles

is even.

Let a, b, c, d,. . . . . . denote respectively the numbers of faces which are tri-

angles, quadrilaterals, pentagons, hexagons,. . . . . . . Let α, β, γ, δ,. . . . . . denote

respectively the numbers of the solid angles which are formed with three, four,

five, six,. . . . . . plane angles.

Then, each edge belongs to two faces, and terminates at two solid angles;

therefore

2E = 3a+ 4b+ 5c+ 6d+ . . . . . . ,

2E = 3α+ 4β + 5γ + 6δ + . . . . . . .

From these relations it follows that a+ c+ e+ . . . . . ., and α+ γ + ε+ . . . . . .

are even numbers.

198. With the notation of the preceding Article we have

F = a+ b+ c+ d+ . . . . . . ,

S = α+ β + γ + δ + . . . . . . .

From these combined with the former relations we obtain

2E − 3F = b+ 2c+ 3d+ . . . . . . ,

2E − 3S = β + 2γ + 3δ + . . . . . . .

Thus 2E cannot be less than 3F , or less than 3S.
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199. From the expressions for E, F , and S, given in the two preceding Articles,

combined with the result 2F + 2S = 4 + 2E, we obtain

2(a+ b+ c+ d+ . . .) + 2(α+ β + γ + δ + . . .) = 4 + 3a+ 4b+ 5c+ 6d+ . . . ,

2(a+ b+ c+ d+ . . .) + 2(α+ β + γ + δ + . . .) = 4 + 3α+ 4β + 5γ + 6δ + . . . ,

therefore 2(α+ β + γ + δ + . . .)− (a+ 2b+ 3c+ 4d+ . . .) = 4, (1)

2(a+ b+ c+ d+ . . .)− (α+ 2β + 3γ + 4δ + . . .) = 4. (2)

Therefore, by addition

a+ α− (c+ γ)− 2(d+ δ)− 3(e+ ε)− . . . . . . = 8.

Thus the number of triangular faces together with the number of solid angles

formed with three plane angles cannot be less than eight.

Again, from (1) and (2), by eliminating α, we obtain

3a+ 2b+ c− e− 2f − . . . . . .− 2β − 4γ − . . . . . . = 12,

so that 3a + 2b + c cannot be less than 12. From this result various inferences

can be drawn; thus for example, a solid cannot be formed which shall have no

triangular, quadrilateral, or pentagonal faces.

In like manner, we can shew that 3α+ 2β + γ cannot be less than 12.

200. Poinsot has shewn that in addition to the five well-known regular poly-

hedrons, four other solids exist which are perfectly symmetrical in shape, and

which might therefore also be called regular. We may give an idea of the nature

of Poinsot’s results by referring to the case of a polygon. Suppose five points A,

B, C, D, E, placed in succession at equal distances round the circumference of

a circle. If we draw a straight line from each point to the next point, we form an

ordinary regular pentagon. Suppose however we join the points by straight lines

in the following order, A to C, C to E, E to B, B to D, D to A; we thus form a

star-shaped symmetrical figure, which might be considered a regular pentagon.

It appears that, in a like manner, four, and only four, new regular solids

can be formed. To such solids, the faces of which intersect and cross, Euler’s

theorem does not apply.
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201. Let us return to Art. 195, and suppose e the number of edges in the

bounding contour, and e′ the number of edges within it; also suppose s the

number of corners in the bounding contour, and s′ the number within it. Then

E = e+ e′; S = s+ s′;

therefore 1 + e+ e′ = s+ s′ + F.

But e = s;

therefore 1 + e′ = s′ + F.

We can now demonstrate an extension of Euler’s theorem, which has been

given by Cauchy.

202. Let a polyhedron be decomposed into any number of polyhedrons at plea-

sure; let P be the number thus formed, S the number of solid angles, F the

number of faces, E the number of edges: then S + F = E + P + 1.

For suppose all the polyhedrons united, by starting with one and adding one

at a time. Let e, f , s be respectively the numbers of edges, faces, and solid

angles in the first; let e′, f ′, s′ be respectively the numbers of edges, faces, and

solid angles in the second which are not common to it and the first; let e′′, f ′′,

s′′ be respectively the numbers of edges, faces, and solid angles in the third

which are not common to it and the first or second; and so on. Then we have

the following results, namely, the first by Art. 196, and the others by Art. 201;

s+ f = e+ 2,

s′ + f ′ = e′ + 1,

s′′ + f ′′ = e′′ + 1,

. . . . . . . . . . . . . . . .

By addition, since s + s′ + s′′ + . . . = S, f + f ′ + f ′′ + . . . = F , and

e+ e′ + e′′ + . . . = E, we obtain

S + F = E + P + 1.

203. The following references will be useful to those who study the theory

of polyhedrons. Euler, Novi Commentarii Academiæ. . . Petropolitanæ, Vol. iv.
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1758; Legendre, Géométrie; Poinsot, Journal de l’École Polytechnique, Cahier

x; Cauchy, Journal de l’École Polytechnique, Cahier xvi; Poinsot and Bertrand,

Comptes Rendus. . . de l’Académie des Sciences, Vol. xlvi; Catalan, Théorèmes

et Problèmes de Géométrie Elémentaire; Kirkman, Philosophical Transactions

for 1856 and subsequent years; Listing, Abhandlungen der Königlichen Gesell-

schaft. . . zu Göttingen, Vol. x.

MISCELLANEOUS EXAMPLES.

1. Find the locus of the vertices of all right-angled spherical triangles having

the same hypotenuse; and from the equation obtained, prove that the locus is

a circle when the radius of the sphere is infinite.

2. AB is an arc of a great circle on the surface of a sphere, C its middle

point: shew that the locus of the point P , such that the angle APC = the angle

BPC, consists of two great circles at right angles to one another. Explain this

when the triangle becomes plane.

3. On a given arc of a sphere, spherical triangles of equal area are described:

shew that the locus of the angular point opposite to the given arc is defined by

the equation

tan−1
{

tan(α+ φ)

sin θ

}
+ tan−1

{
tan(α− φ)

sin θ

}
+ tan−1

{
tan θ

sin(α+ φ)

}
+ tan−1

{
tan θ

sin(α− φ)

}
= β,

where 2α is the length of the given arc, θ the arc of the great circle drawn from

any point P in the locus perpendicular to the given arc, φ the inclination of the

great circle on which θ is measured to the great circle bisecting the given arc at

right angles, and β a constant.

4. In any spherical triangle

tan c =
cotA cot a+ cotB cot b

cot a cot b− cosA cosB
.

5. If θ, φ, ψ denote the distances from the angles A, B, C respectively of the

point of intersection of arcs bisecting the angles of the spherical triangle ABC,
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shew that

cos θ sin(b− c) + cosφ sin(c− a) + cosψ sin(a− b) = 0.

6. If A′, B′, C ′ be the poles of the sides BC, CA, AB of a spherical triangle

ABC, shew that the great circles AA′, BB′, CC ′ meet at a point P , such that

cosPA cosBC = cosPB cosCA = cosPC cosAB.

7. If O be the point of intersection of arcs AD, BE, CF drawn from the

angles of a triangle perpendicular to the opposite sides and meeting them at D,

E, F respectively, shew that

tanAD

tanOD
,

tanBE

tanOE
,

tanCF

tanOF

are respectively equal to

1 +
cosA

cosB cosC
, 1 +

cosB

cosA cosC
, 1 +

cosC

cosA cosB
.

8. If p, q, r be the arcs of great circles drawn from the angles of a triangle

perpendicular to the opposite sides, (α, α′), (β, β′), (γ, γ′) the segments into

which these arcs are divided, shew that

tanα tanα′ = tanβ tanβ′ = tan γ tan γ′;

and
cos p

cosα cosα′
=

cos q

cosβ cosβ′
=

cos r

cos γ cos γ′
.

9. In a spherical triangle if arcs be drawn from the angles to the middle

points of the opposite sides, and if α, α′ be the two parts of the one which

bisects the side a, shew that

sinα

sinα′
= 2 cos

a

2
.

10. The arc of a great circle bisecting the sides AB, AC of a spherical

triangle cuts BC produced at Q: shew that

cosAQ sin
a

2
= sin

c− b
2

sin
c+ b

2
.
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11. If ABCD be a spherical quadrilateral, and the opposite sides AB, CD

when produced meet at E, and AD, BC meet at F , the ratio of the sines of the

arcs drawn from E at right angles to the diagonals of the quadrilateral is the

same as the ratio of those from F .

12. If ABCD be a spherical quadrilateral whose sides AB, DC are produced

to meet at P , and AD, BC at Q, and whose diagonals AC, BD intersect at R,

then

sinAB sinCD cosP = sinAD sinBC cosQ = sinAC sinBD cosR.

13. If A′ be the angle of the chordal triangle which corresponds to the angle

A of a spherical triangle, shew that

cosA′ = sin(S −A) cos
a

2
.

14. If the tangent of the radius of the circle described about a spherical

triangle is equal to twice the tangent of the radius of the circle inscribed in the

triangle, the triangle is equilateral.

15. The arc AP of a circle of the same radius as the sphere is equal to

the greater of two sides of a spherical triangle, and the arc AQ taken in the

same direction is equal to the less; the sine PM of AP is divided at E, so that
EM

PM
= the natural cosine of the angle included by the two sides, and EZ is

drawn parallel to the tangent to the circle at Q. Shew that the remaining side

of the spherical triangle is equal to the arc QPZ.

16. If through any point P within a spherical triangle ABC great circles be

drawn from the angular points A, B, C to meet the opposite sides at a, b, c

respectively, prove that

sinPa cosPA

sinAa
+

sinPb cosPB

sinBb
+

sinPc cosPC

sinCc
= 1.

17. A and B are two places on the Earth’s surface on the same side of the

equator, A being further from the equator than B. If the bearing of A from B

be more nearly due East than it is from any other place in the same latitude as

B, find the bearing of B from A.

18. From the result given in example 18 of Chapter V. infer the possibility
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of a regular dodecahedron.

19. A and B are fixed points on the surface of a sphere, and P is any point

on the surface. If a and b are given constants, shew that a fixed point S can

always be found, in AB or AB produced, such that

a cosAP + b cosBP = s cosSP,

where s is a constant.

20. A, B, C,. . . are fixed points on the surface of a sphere; a, b, c,. . . are

given constants. If P be a point on the surface of the sphere, such that

a cosAP + b cosBP + c cosCP + . . . = constant,

shew that the locus of P is a circle.



XVI

NUMERICAL SOLUTION

OF SPHERICAL

TRIANGLES.

204. We shall give in this Chapter examples of the numerical solution of Spher-

ical Triangles.

We shall first take right-angled triangles, and then oblique-angled triangles.

Right-Angled Triangles.

205. Given a = 37◦ 48′ 12′′, b = 59◦ 44′ 16′′, C = 90◦.

To find c we have

cos c = cos a cos b,

L cos 37◦ 48′ 12′′ = 9.8976927

L cos 59◦ 44′ 16′′ = 9.7023945

L cos c+ 10 = 19.6000872

c = 66◦ 32′ 6′′.

To find A we have

cotA = cot a sin b,

157
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L cot 37◦ 48′ 12′′ = 10.1102655

L sin 59◦ 44′ 16′′ = 9.9363770

L cotA+ 10 = 20.0466425

A = 41◦ 55′ 45′′.

To find B we have

cotB = cot b sin a,

L cot 59◦ 44′ 16′′ = 9.7660175

L sin 37◦ 48′ 12′′ = 9.7874272

L cotB + 10 = 19.5534447

B = 70◦ 19′ 15′′.

206. Given A = 55◦ 32′ 45′′, C = 90◦, c = 98◦ 14′ 24′′.

To find a we have

sin a = sin c sinA,

L sin 98◦ 14′ 24′′ = 9.9954932

L sin 55◦ 32′ 45′′ = 9.9162323

L sin a+ 10 = 19.9117255

a = 54◦ 41′ 35′′.

To find B we have

cotB = cos c tanA.

Here cos c is negative; and therefore cotB will be negative, and B greater

than a right angle. The numerical value of cos c is the same as that of cos 81◦ 45′ 36′′.

L cos 81◦ 45′ 36′′ = 9.1563065

L tan 55◦ 32′ 45′′ = 10.1636102

L cot(180◦ −B) + 10 = 19.3199167

180◦ −B = 78◦ 12′ 4′′

B = 101◦ 47′ 56′′.

To find b we have

tan b = tan c cosA.

Here tan c is negative; and therefore tan b will be negative and b greater than

a quadrant.
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L tan 81◦ 45′ 36′′ = 10.8391867

L cos 55◦ 32′ 45′′ = 9.7526221

L tan(180◦ − b) + 10 = 20.5918088

180◦ − b = 75◦38′ 32′′

b = 104◦ 21′ 28′′.

207. Given A = 46◦ 15′ 25′′, C = 90◦, a = 42◦ 18′ 45′′.

To find c we have

sin c =
sin a

sinA
,

L sin c = 10 + L sin a− L sinA,

10 + L sin 42◦ 18′ 45′′ = 19.8281272

L sin 46◦ 15′ 25′′ = 9.8588065

L sin c = 9.9693207

c = 68◦ 42′ 59′′ or 111◦ 17′ 1′′.

To find b we have

sin b = tan a cotA,

L tan 42◦ 18′ 45′′ = 9.9591983

L cot 46◦ 15′ 25′′ = 9.9809389

L sin b+ 10 = 19.9401372

b = 60◦ 36′ 10′′ or 119◦ 23′ 50′′.

To find B we have

sinB =
cosA

cos a
,

L sinB = 10 + L cosA− L cos a,

10 + L cos 46◦ 15′ 25′′ = 19.8397454

L cos 42◦ 18′ 45′′ = 9.8689289

L sinB = 9.9708165

B = 69◦ 13′ 47′′ or 110◦ 46′ 13′′.

Oblique-Angled Triangles.

208. Given a = 70◦ 14′ 20′′, b = 49◦ 24′ 10′′, c = 38◦ 46′ 10′′. We shall use the

formula given in Art. 45,

tan 1
2A =

√{
sin(s− b) sin(s− c)

sin s sin(s− a)

}
.
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Here s = 79◦ 12′ 20′′,

s− a = 8◦ 58′,

s− b = 29◦ 48′ 10′′,

s− c = 40◦ 26′ 10′′.

L sin 29◦ 48′ 10′′ = 9.6963704

L sin 40◦ 26′ 10′′ = 9.8119768

19.5083472

L sin 79◦ 12′ 20′′ = 9.9922465

L sin 8◦ 58′ = 9.1927342

19.1849807

19.5083472

19.1849807

2 ) .3233665

L tan 1
2A− 10 = .1616832

1
2A = 55◦ 25′ 38′′

A = 110◦ 51′ 16′′.
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Similarly to find B,

L sin 8◦ 58′ = 9.1927342

L sin 40◦ 26′ 10′′ = 9.8119768

19.0047110

L sin 79◦ 12′ 20′′ = 9.9922465

L sin 29◦ 48′ 10′′ = 9.6963704

19.6886169

19.0047110

19.6886169

2 ) 1.3160941

L tan 1
2B − 10 = 1.6580470

L tan 1
2B = 9.6580470

1
2B = 24◦ 28′ 2′′

B = 48◦ 56′ 4′′.
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Similarly to find C,

L sin 8◦ 58′ = 9.1927342

L sin 29◦ 48′ 10′′ = 9.6963704

18.8891046

L sin 79◦ 12′ 20′′ = 9.9922465

L sin 40◦ 26′ 10′′ = 9.8119768

19.8042233

18.8891046

19.8042233

2 ) 1.0848813

L tan 1
2C − 10 = 1.5424406

L tan 1
2C = 9.5424406

1
2C = 19◦ 13′ 24′′

C = 38◦ 26′ 48′′.

209. Given a = 68◦ 20′ 25′′, b = 52◦ 18′ 15′′, C = 117◦ 12′ 20′′.

By Art. 82,

tan 1
2 (A+B) =

cos 1
2 (a− b)

cos 1
2 (a+ b)

cot 1
2C,

tan
1

2
(A−B) =

sin 1
2 (a− b)

sin 1
2 (a+ b)

cot 1
2C.

1
2 (a− b) = 8◦ 1′ 5′′, 1

2 (a+ b) = 60◦ 19′ 20′′, 1
2C = 58◦ 36′ 10′′.
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L cos 8◦ 1′ 5′′ = 9.9957335

L cot 58◦ 36′ 10′′ = 9.7855690

19.7813025

L cos 60◦ 19′ 20′′ = 9.6947120

L tan 1
2 (A+B) = 10.0865905

1
2 (A+B) = 50◦ 40′ 28′′

L sin 8◦ 1′ 5′′ = 9.1445280

L cot 58◦ 36′ 10′′ = 9.7855690

18.9300970

L sin 60◦ 19′ 20′′ = 9.9389316

L tan 1
2 (A−B) = 8.9911654

1
2 (A−B) = 5◦ 35′ 47′′.

Therefore A = 56◦ 16′ 15′′, B = 45◦ 4′ 41′′.

If we proceed to find c from the formula

sin c =
sin a sinC

sinA
,

since sinC is greater than sinA we shall obtain two values for c both greater

than a, and we shall not know which is the value to be taken.

We shall therefore determine c from formula (1) of Art. 54, which is free

from ambiguity,

cos 1
2c =

cos 1
2 (a+ b) sin 1

2C

cos 1
2 (A+B)

,

L cos 60◦ 19′ 20′′ = 9.6947120

L sin 58◦ 36′ 10′′ = 9.9312422

19.6259542

L cos 50◦ 40′ 28′′ = 9.8019015

L cos 1
2c = 9.8240527

1
2c = 48◦ 10′ 22′′

c = 96◦ 20′ 44′′.
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Or we may adopt the second method of Art. 82. First, we determine θ from

the formula tan θ = tan b cosC.

Here cosC is negative, and therefore tan θ will be negative, and θ greater

than a right angle. The numerical value of cosC is the same as that of cos 62◦ 47′ 40′′.

L tan 52◦ 18′ 15′′ = 10.1119488

L cos 62◦ 47′ 40′′ = 9.6600912

L tan(180◦ − θ) + 10 = 19.7720400

180◦ − θ = 30◦ 36′ 33′′,

therefore θ = 149◦ 23′ 27′′.

Next, we determine c from the formula

cos c =
cos b cos(a− θ)

cos θ
.

Here cos θ is negative, and therefore cos c will be negative, and c will be

greater than a right angle. The numerical value of cos θ is the same as that of

cos(180◦ − θ), that is, of cos 30◦ 36′ 33′′; and the value of cos(a− θ) is the same

as that of cos(θ − a), that is, of cos 81◦ 3′ 2′′.

L cos 52◦ 18′ 15′′ = 9.7863748

L cos 81◦ 3′ 2′′ = 9.1919060

18.9782808

L cos 30◦ 36′ 33′′ = 9.9348319

L cos(180◦ − c) = 9.0434489

180◦ − c = 83◦ 39′ 17′′

c = 96◦ 20′ 43′′.

Thus by taking only the nearest number of seconds in the tables the two

methods give values of c which differ by 1′′; if, however, we estimate fractions of

a second both methods will agree in giving about 43 1
2 as the number of seconds.

210. Given a = 50◦ 45′ 20′′, b = 69◦ 12′ 40′′, A = 44◦ 22′ 10′′.

By Art. 84, sinB =
sin b

sin a
sinA,
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L sin 69◦ 12′ 40′′ = 9.9707626

L sin 44◦ 22′ 10′′ = 9.8446525

19.8154151

L sin 50◦ 45′ 20′′ = 9.8889956

L sinB = 9.9264195

B = 57◦ 34′ 51′′.4, or 122◦ 25′ 8′′.6.

In this case there will be two solutions; see Art. 86. We will calculate C and

c by Napier’s analogies,

tan 1
2C =

cos 1
2 (b− a)

cos 1
2 (b+ a)

cot 1
2 (B +A),

tan 1
2c =

cos 1
2 (B +A)

cos 1
2 (B −A)

tan 1
2 (b+ a).

First take the smaller value of B; thus

1
2 (B +A) = 50◦ 58′ 30′′.7, 1

2 (B −A) = 6◦ 35′ 20′′.7,
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L cos 9◦ 13′ 40′′ = 9.9943430

L cot 50◦ 58′ 30′′.7 = 9.9087536

19.9030966

L cos 59◦ 59′ = 9.6991887

L tan 1
2C = 10.2039079

1
2C = 57◦ 58′ 55′′.3

C = 115◦ 57′ 50′′.6.

L cos 50◦ 58′ 30′′.7 = 9.7991039

L tan 59◦ 59′ = 10.2382689

20.0373728

L cos 6◦ 36′ 20′′.7 = 9.9971072

L tan 1
2c = 10.0402656

1
2c = 47◦ 39′ 8′′.2

c = 95◦ 18′ 16′′.4.

Next take the larger value of B; thus

1
2 (B +A) = 83◦ 23′ 39′′.3, 1

2 (B −A) = 39◦ 1′ 29′′.3.
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L cos 9◦ 13′ 40′′ = 9.9943430

L cot 83◦ 23′ 39′′.3 = 9.0637297

19.0580727

L cos 59◦ 59′ = 9.6991887

L tan 1
2C = 9.3588840

1
2C = 12◦ 52′ 15′′.8

C = 25◦ 44′ 31′′.6.

L cos 83◦ 23′ 39′′.3 = 9.0608369

L tan 59◦ 59′ = 10.2382689

19.2991058

L cos 39◦ 1′ 29′′.3 = 9.8903494

L tan 1
2c = 9.4087564

1
2c = 14◦ 22′ 32′′.6

c = 28◦ 45′ 5′′.2

The student can obtain more examples, which can be easily verified, from

those here worked out, by interchanging the given and required quantities, or

by making use of the polar triangle.

EXAMPLES.

1. Given b = 137◦ 3′ 48′′, A = 147◦ 2′ 54′′, C = 90◦.

Results. c = 47◦ 57′ 15′′, a = 156◦ 10′ 34′′, B = 113◦ 28′.

2. Given c = 61◦ 4′ 56′′, a = 40◦ 31′ 20′′, C = 90◦.

Results. b = 50◦ 30′ 29′′, B = 61◦ 50′ 28′′, A = 47◦ 54′ 21′′.

3. Given A = 36◦, B = 60◦, C = 90◦.

Results. a = 20◦ 54′ 18′′.5, b = 31◦ 43′ 3′′, c = 37◦ 21′ 38′′.5.

4. Given a = 59◦ 28′ 27′′, A = 66◦ 7′ 20′′, C = 90◦.

Results. c = 70◦ 23′ 42′′, b = 48◦ 39′ 16′′, B = 52◦ 50′ 20′′,
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or, c = 109◦ 36′ 18′′, b = 131◦ 20′ 44′′, B = 127◦ 9′ 40′′.

5. Given c = 90◦, a = 138◦ 4′, b = 109◦ 41′.

Results. C = 113◦ 28′ 2′′, A = 142◦ 11′ 38′′, B = 120◦ 15′ 57′′.

6. Given c = 90◦, A = 131◦ 30′, B = 120◦ 32′.

Results. C = 109◦ 40′ 20′′, a = 127◦ 17′ 51′′, b = 113◦ 49′ 31′′.

7. Given a = 76◦ 35′ 36′′, b = 50◦ 10′ 30′′, c = 40◦ 0′ 10′′.

Results. A = 121◦ 36′ 20′′, B = 42◦ 15′ 13′′, C = 34◦ 15′ 3′′.

8. Given A = 129◦ 5′ 28′′, B = 142◦ 12′ 42′′, C = 105◦ 8′ 10′′.

Results. a = 135◦ 49′ 20′′, b = 144◦ 37′ 15′′, c = 60◦ 4′ 54′′.
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