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PREFACE

The present work is constructed on the same plan as my treatise on Plane
Trigonometry, to which it is intended as a sequel; it contains all the propositions
usually included under the head of Spherical Trigonometry, together with a large
collection of examples for exercise. In the course of the work reference is made
to preceding writers from whom assistance has been obtained; besides these
writers I have consulted the treatises on Trigonometry by Lardner, Lefebure de
Fourcy, and Snowball, and the treatise on Geometry published in the Library of
Useful Knowledge. The examples have been chiefly selected from the University
and College Examination Papers.

In the account of Napier’s Rules of Circular Parts an explanation has been
given of a method of proof devised by Napier, which seems to have been over-
looked by most modern writers on the subject. I have had the advantage of
access to an unprinted Memoir on this point by the late R. L. Ellis of Trinity
College; Mr Ellis had in fact rediscovered for himself Napier’s own method. For
the use of this Memoir and for some valuable references on the subject I am
indebted to the Dean of Ely.

Considerable labour has been bestowed on the text in order to render it
comprehensive and accurate, and the examples have all been carefully verified;
and thus I venture to hope that the work will be found useful by Students and
Teachers.

[. TODHUNTER.

ST JoHN’S COLLEGE,
August 15, 1859.
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In the third edition I have made some additions which I hope will be found
valuable. I have considerably enlarged the discussion on the connexion of For-
mulz in Plane and Spherical Trigonometry; so as to include an account of the
properties in Spherical Trigonometry which are analogous to those of the Nine
Points Circle in Plane Geometry. The mode of investigation is more elementary
than those hitherto employed; and perhaps some of the results are new. The
fourteenth Chapter is almost entirely original, and may deserve attention from
the nature of the propositions themselves and of the demonstrations which are
given.

CAMBRIDGE,
July, 1871.
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GREAT AND SMALL
CIRCLES.

1. A SPHERE is a solid bounded by a surface every point of which is equally
distant from a fixed point which is called the centre of the sphere. The straight
line which joins any point of the surface with the centre is called a radius. A
straight line drawn through the centre and terminated both ways by the surface

is called a diameter.

2. The section of the surface of a sphere made by any plane is a circle.

Let AB be the section of the surface of a sphere made by any plane, O the
centre of the sphere. Draw OC perpendicular to the plane; take any point D
in the section and join OD, C'D. Since OC is perpendicular to the plane, the
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2 GREAT AND SMALL CIRCLES.

angle OCD is a right angle; therefore CD = /(OD? — OC?). Now O and C
are fixed points, so that OC is constant; and OD is constant, being the radius
of the sphere; hence C'D is constant. Thus all points in the plane section are
equally distant from the fixed point C'; therefore the section is a circle of which

C' is the centre.

3. The section of the surface of a sphere by a plane is called a great circle if
the plane passes through the centre of the sphere, and a small circle if the plane
does not pass through the centre of the sphere. Thus the radius of a great circle

is equal to the radius of the sphere.

4. Through the centre of a sphere and any two points on the surface a plane
can be drawn; and only one plane can be drawn, except when the two points
are the extremities of a diameter of the sphere, and then an infinite number of
such planes can be drawn. Hence only one great circle can be drawn through
two given points on the surface of a sphere, except when the points are the
extremities of a diameter of the sphere. When only one great circle can be
drawn through two given points, the great circle is unequally divided at the two
points; we shall for brevity speak of the shorter of the two arcs as the arc of a

great circle joining the two points.

5. The axis of any circle of a sphere is that diameter of the sphere which is
perpendicular to the plane of the circle; the extremities of the axis are called
the poles of the circle. The poles of a great circle are equally distant from the
plane of the circle. The poles of a small circle are not equally distant from the
plane of the circle; they may be called respectively the nearer and further pole;

sometimes the nearer pole is for brevity called the pole.

6. A pole of a circle is equally distant from every point of the circumference of
the circle.

Let O be the centre of the sphere, AB any circle of the sphere, C' the centre of
the circle, P and P’ the poles of the circle. Take any point D in the circumference
of the circle; join CD, OD, PD. Then PD = /(PC?+CD?); and PC and CD
are constant, therefore PD is constant. Suppose a great circle to pass through
the points P and D; then the chord PD is constant, and therefore the arc of a
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great circle intercepted between P and D is constant for all positions of D on
the circle AB.

S—
P

Thus the distance of a pole of a circle from every point of the circumference
of the circle is constant, whether that distance be measured by the straight line

joining the points, or by the arc of a great circle intercepted between the points.

7. The arc of a great circle which is drawn from a pole of a great circle to any

point in its circumference is a quadrant.

P

A

Let P be a pole of the great circle ABC'; then the arc PA is a quadrant.

For let O be the centre of the sphere, and draw PO. Then PO is at right
angles to the plane ABC, because P is the pole of ABC, therefore POA is a
right angle, and the arc PA is a quadrant.

8. The angle subtended at the centre of a sphere by the arc of a great circle
which joins the poles of two great circles is equal to the inclination of the planes

of the great circles.



4 GREAT AND SMALL CIRCLES.

N
b

A

Let O be the centre of the sphere, C'D, CE the great circles intersecting at
C, A and B the poles of CD and CE respectively.

Draw a great circle through A and B, meeting CD and CE at M and N
respectively. Then AO is perpendicular to OC, which is a straight line in the
plane OCD; and BO is perpendicular to OC, which is a straight line in the
plane OCEFE; therefore OC' is perpendicular to the plane AOB (Euclid, xI. 4);
and therefore OC' is perpendicular to the straight lines OM and ON, which are
in the plane AOB. Hence MON is the angle of inclination of the planes OC'D
and OCE. And the angle

AOB = AOM — BOM = BON — BOM = MON.

9. By the angle between two great circles is meant the angle of inclination of
the planes of the circles. Thus, in the figure of the preceding Article, the angle
between the great circles CD and C'E is the angle MON.

In the figure to Art. 6, since PO is perpendicular to the plane AC'B, every
plane which contains PO is at right angles to the plane AC'B. Hence the angle
between the plane of any circle and the plane of a great circle which passes

through its poles is a right angle.

10. Two great circles bisect each other.

For since the plane of each great circle passes through the centre of the
sphere, the line of intersection of these planes is a diameter of the sphere, and
therefore also a diameter of each great circle; therefore the great circles are

bisected at the points where they meet.
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11. If the arcs of great circles joining a point P on the surface of a sphere with
two other points A and C on the surface of the sphere, which are not at opposite
extremities of a diameter, be each of them equal to a quadrant, P is a pole of
the great circle through A and C. (See the figure of Art. 7.)

For suppose PA and PC to be quadrants, and O the centre of the sphere;
then since PA and PC are quadrants, the angles POC and POA are right
angles. Hence PO is at right angles to the plane AOC, and P is a pole of the
great circle AC.

12. Great circles which pass through the poles of a great circle are called
secondaries to that circle. Thus, in the figure of Art. 8 the point C is a pole of
ABMN, and therefore CM and C'N are parts of secondaries to ABMN. And
the angle between C'M and C'N is measured by M N; that is, the angle between
any two great circles is measured by the arc they intercept on the great circle to

which they are secondaries.

13. If from a point on the surface of a sphere there can be drawn two arcs of
great circles, not parts of the same great circle, the planes of which are at right
angles to the plane of a given circle, that point is a pole of the given circle.
For, since the planes of these arcs are at right angles to the plane of the
given circle, the line in which they intersect is perpendicular to the plane of the
given circle, and is therefore the axis of the given circle; hence the point from

which the arcs are drawn is a pole of the circle.

14. To compare the arc of a small circle subtending any angle at the centre of
the circle with the arc of a great circle subtending the same angle at its centre.

Let ab be the arc of a small circle, C the centre of the circle, P the pole of the
circle, O the centre of the sphere. Through P draw the great circles PaA and
PbB, meeting the great circle of which P is a pole, at A and B respectively; draw
Ca, Cb, OA, OB. Then Ca, Cb, OA, OB are all perpendicular to OP, because
the planes aCb and AOB are perpendicular to OP; therefore Ca is parallel
to OA, and Cb is parallel to OB. Therefore the angle aCb = the angle AOB
(Euclid, x1. 10). Hence,

arcab arc AB

— Plane Tri try, Art. 18);
radius C’a radius OA’ ( ane Lrgonomerry, 3 )’
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arcab  Ca  Ca

arc AB~ OA  Oa = sin POa.

therefore,
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SPHERICAL
TRIANGLES.

15. Spherical Trigonometry investigates the relations which subsist between
the angles of the plane faces which form a solid angle and the angles at which

the plane faces are inclined to each other.

16. Suppose that the angular point of a solid angle is made the centre of a
sphere; then the planes which form the solid angle will cut the sphere in arcs of
great circles. Thus a figure will be formed on the surface of the sphere which is
called a spherical triangle if it is bounded by three arcs of great circles; this will
be the case when the solid angle is formed by the meeting of three plane angles.
If the solid angle be formed by the meeting of more than three plane angles,
the corresponding figure on the surface of the sphere is bounded by more than

three arcs of great circles, and is called a spherical polygon.

17. The three arcs of great circles which form a spherical triangle are called
the sides of the spherical triangle; the angles formed by the arcs at the points
where they meet are called the angles of the spherical triangle. (See Art. 9.)

18. Thus, let O be the centre of a sphere, and suppose a solid angle formed at
O by the meeting of three plane angles. Let AB, BC', C' A be the arcs of great

circles in which the planes cut the sphere; then ABC' is a spherical triangle, and

7



8 SPHERICAL TRIANGLES.

<D

the arcs AB, BC, CA are its sides. Suppose Ab the tangent at A to the arc
AB, and Ac the tangent at A to the arc AC, the tangents being drawn from

A towards B and C respectively; then the angle bAc is one of the angles of the
spherical triangle. Similarly angles formed in like manner at B and C are the

other angles of the spherical triangle.

19. The principal part of a treatise on Spherical Trigonometry consists of
theorems relating to spherical triangles; it is therefore necessary to obtain an
accurate conception of a spherical triangle and its parts.

It will be seen that what are called sides of a spherical triangle are really arcs
of great circles, and these arcs are proportional to the three plane angles which
form the solid angle corresponding to the spherical triangle. Thus, in the figure
of the preceding Article, the arc AB forms one side of the spherical triangle
ABC, and the plane angle AOB is measured by the fraction ar-ci; and
radius OA
thus the arc AB is proportional to the angle AOB so long as we keep to the
same sphere.

The angles of a spherical triangle are the inclinations of the plane faces which
form the solid angle; for since Ab and Ac are both perpendicular to OA, the
angle bAc is the angle of inclination of the planes OAB and OAC.

20. The letters A, B, C are generally used to denote the angles of a spherical
triangle, and the letters a, b, ¢ are used to denote the sides. As in the case of
plane triangles, A, B, and C may be used to denote the numerical values of the
angles expressed in terms of any unit, provided we understand distinctly what
the unit is. Thus, if the angle C be a right angle, we may say that C = 90°, or
that C' = g, according as we adopt for the unit a degree or the angle subtended

at the centre by an arc equal to the radius. So also, as the sides of a spherical
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triangle are proportional to the angles subtended at the centre of the sphere, we
may use a, b, ¢ to denote the numerical values of those angles in terms of any
unit. We shall usually suppose both the angles and sides of a spherical triangle

expressed in circular measure. (Plane Trigonometry, Art. 20.)

21. In future, unless the contrary be distinctly stated, any arc drawn on the

surface of a sphere will be supposed to be an arc of a great circle.

22. In spherical triangles each side is restricted to be less than a semicircle;

this is of course a convention, and it is adopted because it is found convenient.

F

Thus, in the figure, the arc ADEB is greater than a semicircumference, and
we might, if we pleased, consider ADEB, AC, and BC as forming a triangle,
having its angular points at A, B, and C. But we agree to exclude such triangles
from our consideration; and the triangle having its angular points at A, B, and
C, will be understood to be that formed by AFB, BC, and CA.

23. From the restriction of the preceding Article it will follow that any angle
of a spherical triangle is less than two right angles.

For suppose a triangle formed by BC, C'A, and BEDA, having the angle
BCA greater than two right angles. Then suppose D to denote the point at
which the arc BC, if produced, will meet AFE; then BED is a semicircle by Art.
10, and therefore BE A is greater than a semicircle; thus the proposed triangle

is not one of those which we consider.
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111

SPHERICAL
GEOMETRY.

24. The relations between the sides and angles of a Spherical Triangle, which
are investigated in treatises on Spherical Trigonometry, are chiefly such as in-
volve the Trigonometrical Functions of the sides and angles. Before proceeding
to these, however, we shall collect, under the head of Spherical Geometry, some
theorems which involve the sides and angles themselves, and not their trigono-

metrical ratios.

25. Polar triangle. Let ABC be any spherical triangle, and let the points A’,
B’, C' be those poles of the arcs BC, C A, AB respectively which lie on the

B

same sides of them as the opposite angles A, B, C; then the triangle A’B’'C’ is
said to be the polar triangle of the triangle ABC.
Since there are two poles for each side of a spherical triangle, eight triangles

can be formed having for their angular points poles of the sides of the given

11



12 SPHERICAL GEOMETRY.

triangle; but there is only one triangle in which these poles A’, B’, C’ lie towards
the same parts with the corresponding angles A, B, C'; and this is the triangle
which is known under the name of the polar triangle.

The triangle ABC'is called the primitive triangle with respect to the triangle
A'B'C".

26. If one triangle be the polar triangle of another, the latter will be the polar
triangle of the former.

Let ABC' be any triangle, A’ B’C’ the polar triangle: then ABC will be the
polar triangle of A’B’C".

For since B’ is a pole of AC, the arc AB’ is a quadrant, and since C’ is a
pole of BA, the arc AC’ is a quadrant (Art. 7); therefore A is a pole of B'C’
(Art. 11). Also A and A’ are on the same side of B'C’; for A and A’ are by
hypothesis on the same side of BC, therefore A’A is less than a quadrant; and
since A is a pole of B’C’, and AA’ is less than a quadrant, A and A’ are on the
same side of B'C".

Similarly it may be shewn that B is a pole of C'A’, and that B and B’ are
on the same side of C'A’; also that C is a pole of A’B’, and that C and C’ are
on the same side of A’B’. Thus ABC is the polar triangle of A’B’C".

27. The sides and angles of the polar triangle are respectively the supplements
of the angles and sides of the primitive triangle.

For let the arc B’C’, produced if necessary, meet the arcs AB, AC, produced
if necessary, at the points D and FE respectively; then since A is a pole of B'C’,
the spherical angle A is measured by the arc DE (Art. 12). But B'E and C'D
are each quadrants; therefore DE and B’C’ are together equal to a semicircle;
that is, the angle subtended by B’C"’ at the centre of the sphere is the supplement

of the angle A. This we may express for shortness thus; B’C’ is the supplement
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of A. Similarly it may be shewn that C’A’ is the supplement of B, and A’B’
the supplement of C.

And since ABC is the polar triangle of A’B’C’, it follows that BC, CA, AB
are respectively the supplements of A’, B’, C’; that is, A’, B’, C’ are respectively
the supplements of BC, CA, AB.

From these properties a primitive triangle and its polar triangle are some-
times called supplemental triangles.

Thus, if A, B, C, a, b, ¢ denote respectively the angles and the sides of a
spherical triangle, all expressed in circular measure, and A’, B’, C', o/, ¥, ¢

those of the polar triangle, we have

A =7m—a, B ' =7—b, C'=7m—c¢
a =7 — A, bV =m—B, d=m-C.

28. The preceding result is of great importance; for if any general theorem be
demonstrated with respect to the sides and the angles of any spherical triangle
it holds of course for the polar triangle also. Thus any such theorem will remain
true when the angles are changed into the supplements of the corresponding
sides and the sides into the supplements of the corresponding angles. We shall

see several examples of this principle in the next Chapter.

29. Any two sides of a spherical triangle are together greater than the third
side. (See the figure of Art. 18.)

For any two of the three plane angles which form the solid angle at O are
together greater than the third (Euclid, X1. 20). Therefore any two of the arcs
AB, BC, CA, are together greater than the third.

From this proposition it is obvious that any side of a spherical triangle is

greater than the difference of the other two.

30. The sum of the three sides of a spherical triangle is less than the circum-
ference of a great circle. (See the figure of Art. 18.)
For the sum of the three plane angles which form the solid angle at O is less
than four right angles (Euclid, x1. 21); therefore
AB BC

A
o2t oz + 04 s less than 27,
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therefore, AB + BC + CD is less than 27 x OA;

that is, the sum of the arcs is less than the circumference of a great circle.

31. The propositions contained in the preceding two Articles may be extended.
Thus, if there be any polygon which has each of its angles less than two right
angles, any one side is less than the sum of all the others. This may be proved
by repeated use of Art. 29. Suppose, for example, that the figure has four sides,
and let the angular points be denoted by A, B, C, D. Then

AD + BC'is greater than AC|

therefore, AB + BC + CD is greater than AC' + CD,
and a fortiori greater than AD.

Again, if there be any polygon which has each of its angles less than two
right angles, the sum of its sides will be less than the circumference of a great

circle. This follows from Euclid, X1. 21, in the manner shewn in Art. 30.

32. The three angles of a spherical triangle are together greater than two right
angles and less than siz right angles.

Let A, B, C be the angles of a spherical triangle; let a’, b, ¢’ be the sides
of the polar triangle. Then by Art. 30,

a +b + ¢ is less than 2,

that is, m—A+7m— B+ 7w —C is less than 27;
therefore, A+ B+ C'is greater than 7.

And since each of the angles A, B, C is less than 7, the sum A+ B+ C is

less than 3.

33. The angles at the base of an isosceles spherical triangle are equal.

Let ABC be a spherical triangle having AC = BC} let O be the centre of
the sphere. Draw tangents at the points A and B to the arcs AC and BC
respectively; these will meet OC' produced at the same point S, and AS will be
equal to BS.

Draw tangents AT, BT at the points A, B to the arc AB; then AT = T B;
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&

join T'S. In the two triangles SAT, SBT the sides SA, AT, T'S are equal to
SB, BT, TS respectively; therefore the angle SAT is equal to the angle SBT}
and these are the angles at the base of the spherical triangle.

The figure supposes AC and BC to be less than quadrants; if they are greater
than quadrants the tangents to AC' and BC' will meet on C'O produced through
O instead of through C, and the demonstration may be completed as before. If
AC and BC' are quadrants, the angles at the base are right angles by Arts. 11
and 9.

34. If two angles of a spherical triangle are equal, the opposite sides are equal.

Since the primitive triangle has two equal angles, the polar triangle has two
equal sides; therefore in the polar triangle the angles opposite the equal sides
are equal by Art. 33. Hence in the primitive triangle the sides opposite the

equal angles are equal.

35. If one angle of a spherical triangle be greater than another, the side oppo-
site the greater angle is greater than the side opposite the less angle.

Let ABC be a spherical triangle, and let the angle ABC be greater than the
angle BAC: then the side AC' will be greater than the side BC. At B make
the angle ABD equal to the angle BAD; then BD is equal to AD (Art. 34),
and BD + DC is greater than BC' (Art. 29); therefore AD+ DC'is greater than
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BC; that is, AC is greater than BC.

36. If one side of a spherical triangle be greater than another, the angle oppo-
site the greater side is greater than the angle opposite the less side.

This follows from the preceding Article by means of the polar triangle.

Or thus; suppose the side AC greater than the side BC, then the angle ABC
will be greater than the angle BAC'. For the angle ABC cannot be less than the
angle BAC by Art. 35, and the angle ABC' cannot be equal to the angle BAC
by Art. 34; therefore the angle ABC' must be greater than the angle BAC.

This Chapter might be extended; but it is unnecessary to do so because
the Trigonometrical formulee of the next Chapter supply an easy method of

investigating the theorems of Spherical Geometry. See Arts. 56, 57, and 58.



IV

Relations between the
Trigonometrical Functions

of the Sides and the Angles
of a Spherical Triangle.

37. To express the cosine of an angle of a triangle in terms of sines and cosines
of the sides.

Let ABC be a spherical triangle, O the centre of the sphere. Let the tangent
at A to the arc AC meet OC' produced at F, and let the tangent at A to the
arc AB meet OB produced at D; join ED. Thus the angle FAD is the angle
A of the spherical triangle, and the angle EOD measures the side a.

17



18 RELATIONS BETWEEN THE FUNCTIONS.

From the triangles ADFE and ODFE we have

DE? = AD? + AE? — 2AD . AE cos A,
DE? =0D? + OFE? —20D .0OE cosa;

also the angles OAD and OAE are right angles, so that OD? = QA% + AD?
and OE? = OA? + AE?. Hence by subtraction we have

0=20A4%4+2AD.AEcos A— 20D .0OFEcosa;

theref L,_0A 04 Ap aD
ererore CObCL—OE-OD OE-ODCOS )

that is cosa = cosbcosc—+ sinbsin ccos A.

cosa — cosbcosc

Therefore cos A = - -
sinbsin ¢

38. We have supposed, in the construction of the preceding Article, that the
sides which contain the angle A are less than quadrants, for we have assumed
that the tangents at A meet OB and OC' respectively produced. We must
now shew that the formulae obtained is true when these sides are not less than
quadrants. This we shall do by special examination of the cases in which one
side or each side is greater than a quadrant or equal to a quadrant.

(1) Suppose only one of the sides which contain the angle A to be greater
than a quadrant, for example, AB. Produce BA and BC to meet at B’; and
put AB'=¢,CB =ad'.

Then we have from the triangle AB’C, by what has been already proved,
cosa’ = cosbcosc + sinbsinc cos B'AC,
buta =7 —a,c =7 —c, BAC = 7 — A; thus

cosa = cosbcosc+ sinbsin ccos A.
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(2) Suppose both the sides which contain the angle A to be greater than
quadrants. Produce AB and AC to meet at A’; put A’B = ¢/, A’C = V'; then
from the triangle A’ BC, as before,

cosa = cosb’ cosc’ +sinb sinc’ cos A';
but ¥ =7 —b, ¢ =n—c, A’ = A; thus
b b b
cosa = cosbcosc + sinbsin ccos A.

(3) Suppose that one of the sides which contain the angle A is a quadrant,
for example, AB; on AC, produced if necessary, take AD equal to a quadrant

A4

(4]

and draw BD. If BD is a quadrant B is a pole of AC' (Art. 11); in this case
a= g and A= Z as well as ¢ = ~. Thus the formula to be verified reduces to
the identity 0 = 0. If BD be not a quadrant, the triangle BDC' gives

cosa = cosCD cos BD 4+ sinCDsin BD cosCDB,
and cosCDB =10, cosCD = cos (g — b) =sinb, cos BD = cos A;
thus cosa = sinbcos A;

and this is what the formula in Art. 37 becomes when ¢ = T

(4) Suppose that both the sides which contain the angle A are quadrants.
The formula then becomes cosa = cos A; and this is obviously true, for A is
now the pole of BC', and thus A = a.
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Thus the formula in Art. 37 is proved to be universally true.

39. The formula in Art. 37 may be applied to express the cosine of any angle
of a triangle in terms of sines and cosines of the sides; thus we have the three

formulee,

cosa = cosbcosc + sinbsin ccos A,
cosb = cosccosa + sincsinacos B,

cosc = cosacosb+ sinasinbcosC.

These may be considered as the fundamental equations of Spherical Trigonom-

etry; we shall proceed to deduce various formulee from them.

40. To express the sine of an angle of a spherical triangle in terms of trigono-

metrical functions of the sides.

cosa — cosbceosc

We have cosA =

sin bsin ¢ ’

2
cosa — cosbcosc
therefore sinA=1- ( )

sinbsin ¢

(1 — cos?b)(1 — cos? ¢) — (cosa — cosbcos c)?

sin? bsin? ¢
1 — cos?

a — cos? b — cos? ¢+ 2cosacosbcosc

)

sin® bsin? ¢

) V(1 — cos? a — cos? b — cos? ¢ + 2 cos a cos b cos ¢)
therefore sin A = - 8 .
sinbsin c

The radical on the right-hand side must be taken with the positive sign, because

sinb, sin ¢, and sin A are all positive.

41. From the value of sin A in the preceding Article it follows that

sinA sinB sinC

sina sin b sinc’
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for each of these is equal to the same expression, namely,

V(1 = cos? a — cos? b — cos? ¢ + 2 cos a cos bcos ¢)

sinasinbsinc

Thus the sines of the angles of a spherical triangle are proportional to the sines
of the opposite sides. We will give an independent proof of this proposition in

the following Article.

42. The sines of the angles of a spherical triangle are proportional to the sines
of the opposite sides.

Let ABC be a spherical triangle, O the centre of the sphere. Take any point
P in OA, draw PD perpendicular to the plane BOC, and from D draw DF,

DF perpendicular to OB, OC respectively; join PE, PF, OD.
Since PD is perpendicular to the plane BOC, it makes right angles with

every straight line meeting it in that plane; hence
PE? = PD? + DE? = PO? - OD? + DE? = PO? — OF?;

thus PEO is a right angle. Therefore PE = OPsin POE = OPsinc; and
PD = PEsin PED = PEsin B = OPsincsin B.
Similarly, PD = OPsinbsin C; therefore

OPsincsin B = OPsinbsin C

sin B sinb
therefore mo s

sinC  sinc’
The figure supposes b, ¢, B, and C each less than a right angle; it will be

found on examination that the proof will hold when the figure is modified to

meet any case which can occur. If, for instance, B alone is greater than a right
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angle, the point D will fall beyond OB instead of between OB and OC'; then
PED will be the supplement of B, and thus sin PED is still equal to sin B.

43. To shew that cotasinb = cot Asin C' + cosbcosC.

We have cosa = cosbcosc+ sinbsinccos A,

cosc = cosacosb+ sinasinbcosC,
sin C'

sinc = sina — .
sin A

Substitute the values of cos ¢ and sin ¢ in the first equation; thus

sinasinbcos Asin C
sin A ’

cosa = (cosacosb+ sinasinbcosC) cosb +
by transposition
cosasin?b = sinasinbcosbcos C + sinasin b cot Asin C;
divide by sin a sin b; thus

cotasinb = cosbcos C + cot AsinC.

44. By interchanging the letters five other formulse may be obtained like that

in the preceding Article; the whole six formule will be as follows:

cotasinb = cot Asin C' + cosbcosC,
cot bsina = cot Bsin C + cos a cos C,
cotbsinc = cot Bsin A + cosccos A,
cot csinb = cot C'sin A + cosbcos A,
cot csina = cot C'sin B 4 cosacos B,

cot asinc = cot Asin B + cos ccos B.

45. To express the sine, cosine, and tangent, of half an angle of a triangle as

functions of the sides.

—cosb
We have, by Art. 37, cos A = cosa —cosbcosc

sinbsin e
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cosa —cosbeosc  cos(b—c¢) —cosa
therefore 1—cosA=1-— - - = ( - - ;
sinbsin ¢ sinbsin ¢

g A sini(a+b—c)sini(a—b+c)
sin® — = :

therefore
2 sinbsin ¢

Let 2s = a+ b+ ¢, so that s is half the sum of the sides of the triangle; then

a+b—c=2s—2c=2(s—c¢), a—b+c=2s—2b=2(s—b);

thus, sin? 4 = sin(s — ) s%n(s — C),
2 sinbsin ¢

and sin A _ sin(s - b) s¥n(3 —¢)
2 sinbsin c

cosa —cosbcosc  cosa — cos(b+ c)

Also, 1+cosA=1+ - - = - -
sinbsin ¢ sinbsin ¢

therefore

cos? A sind(a+b+c)sini(b+c—a) _ sin ssin(s — a)
2 sin bsin ¢ sinbsin ¢

and cos A _ sms.sm(.s —a)
2 sinbsinc

A A
From the expressions for sin 2 and cos 5 we deduce

(o)

The positive sign must be given to the radicals which occur in this Article,

because 3 is less than a right angle, and therefore its sine, cosine, and tangent

are all positive.
A A
46. Since sin A = 2sin 5 cos 5, we obtain

2 1
3 — = 3 _ 3 _ 3 _ 5
sin A Snbene {sin ssin(s — a)sin(s — b) sin(s — ¢)} 2.

It may be shewn that the expression for sin A in Art. 40 agrees with the

present expression by putting the numerator of that expression in factors, as in
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Plane Trigonometry, Art. 115. We shall find it convenient to use a symbol for

the radical in the value of sin A; we shall denote it by n, so that

n? = sin ssin(s — a)sin(s — b) sin(s — ¢),

2

and 4n? =1 —cos®a — cos? b — cos® ¢ + 2 cos a cos b cos c.

47. To express the cosine of a side of a triangle in terms of sines and cosines
of the angles.

In the formula of Art. 37 we may, by Art. 28, change the sides into the
supplements of the corresponding angles and the angle into the supplement of

the corresponding side; thus

cos(m — A) = cos(m — B) cos(m — C) + sin(m — B) sin(m — C') cos(w — a),

that is, cos A = — cos B cos C + sin Bsin C cos a.
Similarly cos B = —cosC cos A 4 sin C'sin A cos b,
and cos C' = — cos A cos B + sin A sin B cos c.

48. The formule in Art. 44 will of course remain true when the angles and
sides are changed into the supplements of the corresponding sides and angles
respectively; it will be found, however, that no new formulea are thus obtained,
but only the same formulse over again. This consideration will furnish some

assistance in retaining those formulse accurately in the memory.

49. To express the sine, cosine, and tangent, of half a side of a triangle as
functions of the angles.

A B
We have, by Art. 47, cosa = — +cos BeosC

sin Bsin C ’

therefore

cos A+ cos BecosC ~ cos A+ cos(B+C)

1—cosa=1- =
“ sin B sin C sin Bsin C '

1 1
therefore Sin2ﬁ:_COS§(A+B+C)COS§(B+07A).
2 sin Bsin C

Let 25 = A+ B+ C; then B+ C — A =2(S — A), therefore
sa _ cosScos(S—A)

sin® — = - :
2 sin BsinC
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and sin = ~ cos Scos(S — A)
2 sin B sin C '
cos A+ cosBecosC  cos A+ cos(B—C)
Al‘ 1 S = 1 — .
50 +eosa + sin Bsin C sin B sin C ’
therefore

2@ _ s 5(A-B+C)eosj(A+ B - C) _ cos(S— B)cos(S — C)

2 sin Bsin C sin Bsin C

a cos(S — B) cos(S — C)
and 5= \/{ sin B sin C '

0 tan & — _cosScos(S—A)
enee ho T cos(S — B)cos(S—C) | °

The positive sign must be given to the radicals which occur in this Article,

a
because 5 is less than a right angle.

50. The expressions in the preceding Article may also be obtained immediately

from those given in Art. 45 by means of Art. 28.

a a a
It may be remarked that the values of sin 2 cos —, and tan 3 are real. For

2
S is greater than one right angle and less than three right angles by Art. 32;
therefore cos S is negative. And in the polar triangle any side is less than the
sum of the other two; thus w— A is less than m— B+ — C’; therefore B+C — A is

less than 7; therefore S — A is less than g, and B+C' — A is algebraically greater

than —m, so that S — A is algebraically greater than —g; therefore cos(S — A)
is positive. Similarly also cos(S — B) and cos(S — C) are positive. Hence the

. a a a
values of sin 2 cos > and tan 5 are real.

. . . a a .
51. Since sina = 2sin 5 cos 5 we obtain

2 1
1 = = - - - - 2
sina = - {—cos S cos(S — A) cos(S — B)cos(S —C)}2.

1
We shall use N for {—cos S cos(S — A) cos(S — B) cos(S — C)}2.
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52. To demonstrate Napier’s Analogies.

sinA sinB
‘We have - = — = m suppose;
sina sin b

then, by a theorem of Algebra,

sin A + sin B
m=-——-——, (1)
sina 4+ sinb
sin A — sin B
and also m= T2 (2)
sina — sinb
Now cos A + cos B cos C = sin Bsin C cosa = msin C'sinbcos a,
and cos B + cos Acos C = sin Asin C cosb = m sin C'sin a cos b,

therefore, by addition,
(cos A+ cos B)(1 + cos C') = msin C'sin(a + b); (3)

therefore by (1) we have

sin A + sin B sina +sinb 1+ cosC

cosA+cosB  sin(a+b) sinC

1,
cos 2(@ b) cot g 1)
cos 3(a +b) 2

that is, tan 3(A + B) =

Similarly from (3) and (2) we have

sinA —sin B sina —sinb 1+ cosC

cosA+cosB  sin(a+b) sinC

)

—-b
that is, tan = (A B) = 7sm (a=0) cot 9 (5)
sin %(a + b) 2

By writing 7 — A for a, and so on in (4) and (5) we obtain

cos (A — B)
t b 2 6
ang(a+b) = cos%(A+B) ©)
1
1 _ sing(A—B) E
tan 5 (a b)_sm%(AJrB) tan (7)

The formule (4), (5), (6), (7) may be put in the form of proportions or

analogies, and are called from their discoverer Napier’s Analogies: the last two
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may be demonstrated without recurring to the polar triangle by starting with
the formulee in Art. 39.

53. In equation (4) of the preceding Article, cos 5 (a —b) and cot% are nec-
essarily positive quantities; hence the equation shews that tan 3 (A + B) and
cos 2(a + b) are of the same sign; thus 1(A + B) and %(a + b) are either both
less than a right angle or both greater than a right angle. This is expressed by
saying that (A + B) and %(a + b) are of the same affection.

54. To demonstrate Delambre’s Analogies.

We have cos c = cosa cos b + sinasin b cos C; therefore

1+cosc =1+ cosacosb+ sinasinb(cos® $C — sin® 3C)

= {1+ cos(a — b)}cos2 %C + {1 + cos(a + b)}sin2 %C;

therefore cos® 3¢ = cos® 1(a — b) cos® $C + cos® §(a + b) sin® %C.

Similarly, sin® 1¢ = sin® 1 (a — b) cos® C + sin® 1 (a + b) sin® C.

Now add unity to the square of each member of Napier’s first two analogies;

hence by the formulae just proved

cos? Lc
sec2l(A+ B 2 ,
5 )= cos? 2 (a+b)sin® 1C
21
sec’ 2(A—B) = sin” p¢

sin® 2 (a +b)sin® 1C°

Extract the square roots; thus, since 1(A+ B) and %(a + b) are of the same

affection, we obtain
cos 3(A + B) cos ¢ = cos 3 (a+ b) sin £C, (1)
cos (A — B)sin 3¢ = sin §(a + b) sin 5C. (2)
Multiply the first two of Napier’s analogies respectively by these results; thus

sin 2(A + B) cos ¢ = cos 3(a — b) cos 1C, (3)

sin 2(A — B) sin 2¢ = sin 3(a — b) cos 3C. (4)
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The last four formulee are commonly, but improperly, called Gauss’s Theo-
rems; they were first given by Delambre in the Connaissance des Tems for 1809,

page 445. See the Philosophical Magazine for February, 1873.

55. The properties of supplemental triangles were proved geometrically in
Art. 27, and by means of these properties the formulse in Art. 47 were ob-
tained; but these formulee may be deduced analytically from those in Art. 39,
and thus the whole subject may be made to depend on the formulae of Art. 39.

For from Art. 39 we obtain expressions for cos A, cos B, cosC; and from
these we find

cos A + cos BcosC

(cosa — cosbcos ¢) sin? a + (cos b — cos a cos ¢)(cos ¢ — cos a cos b)
5 .

sin“ asinbsinc

In the numerator of this fraction write 1 — cos? a for sin? a; thus the numerator

will be found to reduce to
cosa(l — cos? a — cos® b — cos? ¢ + 2 cosa cos b cos c),

and this is equal to cosasin Bsin C'sin® asinbsin ¢, (Art. 41);
therefore cos A+ cosBcosC — cosasin Bsin C.

Similarly the other two corresponding formulse may be proved.

Thus the formulee in Art. 47 are established; and therefore, without assuming
the existence and properties of the Polar Triangle, we deduce the following
theorem: If the sides and angles of a spherical triangle be changed respectively
into the supplements of the corresponding angles and sides, the fundamental

formule of Art. 39 hold good, and therefore also all results deducible from them.

56. The formulae in the present Chapter may be applied to establish analyti-
cally various propositions respecting spherical triangles which either have been
proved geometrically in the preceding Chapter, or may be so proved. Thus, for
example, the second of Napier’s analogies is

(a—b)

sin  C.
(a—l—b)co 2’

tan (A — B) = —
sin

N[N
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1
this shews that %(A — B) is positive, negative, or zero, according as i(a -
b) is positive, negative, or zero; thus we obtain all the results included in
Arts. 33...36.

57. If two triangles have two sides of the one equal to two sides of the other,
each to each, and likewise the included angles equal, then their other angles will
be equal, each to each, and likewise their bases will be equal.

We may shew that the bases are equal by applying the first formula in Art. 39
to each triangle, supposing b, ¢, and A the same in the two triangles; then the
remaining two formulae of Art. 39 will shew that B and C' are the same in the
two triangles.

It should be observed that the two triangles in this case are not necessarily
such that one may be made to coincide with the other by superposition. The
sides of one may be equal to those of the other, each to each, but in a reverse

order, as in the following figures.

Two triangles which are equal in this manner are said to be symmetrically
equal; when they are equal so as to admit of superposition they are said to be

absolutely equal.

58. If two spherical triangles have two sides of the one equal to two sides of
the other, each to each, but the angle which is contained by the two sides of the
one greater than the angle which is contained by the two sides which are equal
to them of the other, the base of that which has the greater angle will be greater
than the base of the other; and conversely.

Let b and ¢ denote the sides which are equal in the two triangles; let a be the

base and A the opposite angle of one triangle, and a’ and A’ similar quantities
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for the other. Then

cosa = cosbcosc+ sinbsinccos A,

cosa’ = cosbcosc+sinbsinccos A';

therefore cosa — cosa’ + sinbsinc(cos A — cos A');
that is,

sin(a+a')sini(a—a’) =sinbsinesini(4A+ A')sin (A — A');

this shews that $(a —a’) and 1(A — A’) are of the same sign.

59. If on a sphere any point be taken within a circle which is not its pole, of all
the arcs which can be drawn from that point to the circumference, the greatest is
that in which the pole is, and the other part of that produced is the least; and of
any others, that which is nearer to the greatest is always greater than one more
remote; and from the same point to the circumference there can be drawn only
two arcs which are equal to each other, and these make equal angles with the

shortest arc on opposite sides of it.

This follows readily from the preceding three Articles.

60. We will give another proof of the fundamental formula in Art. 39, which
is very simple, requiring only a knowledge of the elements of Co-ordinate Ge-

ometry.

Suppose ABC' any spherical triangle, O the centre of the sphere, take O as
the origin of co-ordinates, and let the axis of z pass through C. Let x1, y1, 21
be the co-ordinates of A, and s, y2, 2o those of B; let r be the radius of the
sphere. Then the square on the straight line AB is equal to

(21— 32)% + (11 — y2)* + (21 — 22)°,

and also to r2 + 12 — 2r? cos AOB;

and 2% +y? + 27 =12, 23 + y3 + 23 = r?, thus

T1T2 + Y1Y2 + 2122 = r2 cos AOB.
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Now make the usual substitutions in passing from rectangular to polar co-

ordinates, namely,

z1 = rcosfy, r1 = rsinfy cos ¢q, y1 = 7sinf sin ¢y,

Zo = 1 c0S 0y, To = 1 sin 65 cos ¢o, Yo = 7 8in O3 sin ¢o;
thus we obtain
cos 05 cos 01 + sin s sin 0 cos(¢1 — ¢2) = cos AOB,
that is, in the ordinary notation of Spherical Trigonometry,
cosacosb + sinasinbcos C = cos c.

This method has the advantage of giving a perfectly general proof, as all the

equations used are universally true.

EXAMPLES.

1. If A = a, shew that B and b are equal or supplemental, as also C' and c.

2. If one angle of a triangle be equal to the sum of the other two, the greatest

side is double of the distance of its middle point from the opposite angle.
3. When does the polar triangle coincide with the primitive triangle?

4. If D be the middle point of AB, shew that
cos AC + cos BC = 2 cos %AB cosCD.

5. If two angles of a spherical triangle be respectively equal to the sides op-
posite to them, shew that the remaining side is the supplement of the remaining
angle; or else that the triangle has two quadrants and two right angles, and then

the remaining side is equal to the remaining angle.
a A
6. In an equilateral triangle, shew that 2 cos 3 sin 3= 1.
a
7. In an equilateral triangle, shew that tan? — = 1 — 2 cos A;

hence deduce the limits between which the sides and the angles of an equilateral

triangle are restricted.
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8. In an equilateral triangle, shew that sec A = 1 4 seca.

9. If the three sides of a spherical triangle be halved and a new triangle

b
formed, the angle § between the new sides 3 and g is given by cosf = cos A +
b
% tan 3 tan g sin? 6.

10. AB, CD are quadrants on the surface of a sphere intersecting at E, the

extremities being joined by great circles: shew that
cos AEC = cos AC' cos BD — cos BC' cos AD.

11. If b+ ¢ = 7, shew that sin2B + sin 2C = 0.

12. If DE be an arc of a great circle bisecting the sides AB, AC of a spherical
triangle at D and F, P a pole of DE, and PB, PD, PE, PC be joined by arcs
of great circles, shew that the angle BPC = twice the angle DPFE.

13. In a spherical triangle shew that
sinbsin ¢ 4+ cosbcos ccos A = sin Bsin C' — cos B cos C cos a.
14. If D be any point in the side BC' of a triangle, shew that
cos AD sin BC = cos AB sin DC + cos AC'sin BD.

15. In a spherical triangle shew that 6, ¢, ¥ be the lengths of arcs of great
circles drawn from A, B, C perpendicular to the opposite sides,

sina sin @ = sin bsin ¢ = sin csin

= /(1 —cos? a — cos® b — cos® ¢ + 2 cos acosbcos ¢).

16. In a spherical triangle, if 6, ¢, ¥ be the arcs bisecting the angles A, B,
C respectively and terminated by the opposite sides, shew that

A B C
COt@COS§ +cotgz5cos§ +cotwcos§ = cota + cot b + cot c.

17. Two ports are in the same parallel of latitude, their common latitude
being [ and their difference of longitude 2X: shew that the saving of distance in

sailing from one to the other on the great circle, instead of sailing due East or



RELATIONS BETWEEN THE FUNCTIONS. 33

West, is
2r{\cosl — sin"*(sin Acos 1)},

A being expressed in circular measure, and r being the radius of the Earth.

18. If a ship be proceeding uniformly along a great circle and the observed
latitudes be Iy, I, I3, at equal intervals of time, in each of which the distance
traversed is s, shew that

1 sin %(ll + 13) [¢0)] %(ll — 13)

s = rcos - ,
sin Iy

r denoting the Earth’s radius: and shew that the change of longitude may also

be found in terms of the three latitudes.
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vV

SOLUTION OF
RIGHT-ANGLED
TRIANGLES.

61. In every spherical triangle there are six elements, namely, the three sides
and the three angles, besides the radius of the sphere, which is supposed con-
stant. The solution of spherical triangles is the process by which, when the
values of a sufficient number of the six elements are given, we calculate the
values of the remaining elements. It will appear, as we proceed, that when the
values of three of the elements are given, those of the remaining three can gen-
erally be found. We begin with the right-angled triangle: here two elements, in
addition to the right angle, will be supposed known.

62. The formule requisite for the solution of right-angled triangles may be
obtained from the preceding Chapter by supposing one of the angles a right an-
gle, as C for example. They may also be obtained very easily in an independent
manner, as we will now shew.

Let ABC be a spherical triangle having a right angle at C; let O be the
centre of the sphere. From any point P in OA draw PM perpendicular to
OC, and from M draw M N perpendicular to OB, and join PN. Then PM
is perpendicular to M N, because the plane AOC is perpendicular to the plane

35
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BOC'; hence

PN? = PM? + MN? = OP? — OM? + OM? — ON? = OP%? — ON?;

A

SOLUTION OF RIGHT-ANGLED TRIANGLES.

|

Q

therefore PNO is a right angle. And

ON _ON OM that i B b

OP — OM "' OP' at is, cosc¢ = cosa cos b,

PM PM PN

0P — PN OP that is, sinb = sin Bsinc |
Similarly, sina = sin Asinc

MY _MN PN ihats, tana = cos Bia

ON N " ON’ at is, tana = cos nc |
Similarly, tanb = cos Atanc

PM PM MN . .

OM — VN OM that is, tanb = tan Bsina

Similarly, tana = tan Asinb

Multiply together the two formulae (4); thus,

tan Atan B =

therefore

tanatanb 1 1

= = by (1);
sinasin b cosacosb cosc y (1)

cos ¢ = cot A cot B.

(5)

Multiply crosswise the second formula in (2) and the first in (3); thus

sin a cos B tan ¢ = tan asin A sin c¢;

therefore

sin A cos ¢

cos B= ————— =sin Acosb by (1).

cos a
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Thus cos B = sin Acosb
(6)

Similarly cos A = sin B cosa

These six formulae comprise ten equations; and thus we can solve every case
of right-angled triangles. For every one of these ten equations is a distinct
combination involving three out of the five quantities a, b, ¢, A, B; and out of
five quantities only ten combinations of three can be formed. Thus any two of
the five quantities being given and a third required, some one of the preceding

ten equations will serve to determine that third quantity.

63. As we have stated, the above six formule may be obtained from those
given in the preceding Chapter by supposing C a right angle. Thus (1) follows
from Art. 39, (2) from Art. 41, (3) from the fourth and fifth equations of Art. 44,
(4) from the first and second equations of Art. 44, (5) from the third equation
of Art. 47, (6) from the first and second equations of Art. 47.

Since the six formulae may be obtained from those given in the preceding
Chapter which have been proved to be universally true, we do not stop to shew
that the demonstration of Art. 62 may be applied to every case which can
occur; the student may for exercise investigate the modifications which will be
necessary when we suppose one or more of the quantities a, b, ¢, A, B equal to

a right angle or greater than a right angle.

64. Certain properties of right-angled triangles are deducible from the formulae
of Art. 62.

From (1) it follows that cosc has the same sign as the product cosa cosb;
hence either all the cosines are positive, or else only one is positive. Therefore
i a right-angled triangle either all the three sides are less than quadrants, or
else one side is less than a quadrant and the other two sides are greater than
quadrants.

From (4) it follows that tan a has the same sign as tan A. Therefore A and a
are either both greater than g, or both less than g; this is expressed by saying
that A and a are of the same affection. Similarly B and b are of the same

affection.

65. The formulea of Art. 62 are comprised in the following enunciations, which

the student will find it useful to remember; the results are distinguished by the
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same numbers as have been already applied to them in Art. 62; the side opposite

the right angle is called the hypotenuse:

Cos hyp = product of cosines of sides ............... (1),
Cos hyp = product of cotangents of angles .......... (5),
Sine side = sine of opposite angle x sine hyp ........ (2),
Tan side = tan hyp X cos included angle ............ (3),
)
).

66. Napier’s Rules. The formulae of Art. 62 are comprised in two rules, which
are called, from their inventor, Napier’s Rules of Circular Parts. Napier was
also the inventor of Logarithms, and the Rules of Circular Parts were first
published by him in a work entitled Mirifici Logarithmorum Canonis Descrip-
tio...... Edinburgh, 1614. These rules we will now explain.

The right angle is left out of consideration; the two sides which include the
right angle, the complement of the hypotenuse, and the complements of the

other angles are called the circular parts of the triangle. Thus there are five

T
2
ranged round a circle in the order in which they naturally occur with respect to

7r ™
circular parts, namely, a, b, 5~ A, — —c, 5~ B; and these are supposed to be
the triangle.

Any one of the five parts may be selected and called the middle part, then
the two parts next to it are called adjacent parts, and the remaining two parts

are called opposite parts. For example, if g — B is selected as the middle part,
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™ ™
then the adjacent parts are a and 5 — ¢, and the opposite parts are b and 5 —A.

Then Napier’s Rules are the following:
sine of the middle part = product of tangents of adjacent parts,

sine of the middle part = product of cosines of opposite parts.

67. Napier’s Rules may be demonstrated by shewing that they agree with the
results already established. The following table shews the required agreement:
in the first column are given the middle parts, in the second column the results
of Napier’s Rules, and in the third column the same results expressed as in

Art. 62, with the number for reference used in that Article.

g —c sin (g —c) = tan (g —A) tan (g —B) cosc=cot Acot B...(5),
sin(%—c) = cosacosb cosc = cosacosb....(1),
™ ™
— — Bsin (5 - B) = tanatan (5 - c) cos B =tanacotc....(3),
. 7T m .
sin (§—B) = cos bcos (§—A> cos B =cosbsin A ....(6),
a sina = tanbtan (g —B) sina = tanbcot B....(4),
sina:cos(g—A) cos(g—c) sina =sinAsinc... .(2),
b sinb = tan (ng> tana sinb = cot Atana .. .(4),
sinbzcos(%—B) cos (g—c) sinb =sin Bsinc... .(2),
g — A sin (g — A) = tanbtan (g — c) cos A =tanbcote... .(3),
. ™ 77 .
sm(E—A) = COS a COS (§—B> cos A =cosasinB....(6).

The last four cases need not have been given, since it is obvious that they
are only repetitions of what had previously been given; the seventh and eighth
are repetitions of the fifth and sixth, and the ninth and tenth are repetitions of
the third and fourth.
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68. It has been sometimes stated that the method of the preceding Article
is the only one by which Napier’s Rules can be demonstrated; this statement,
however, is inaccurate, since besides this method Napier himself indicated an-
other method of proof in his Mirifici Logarithmorum Canonis Descriptio, pp.

32, 35. This we will now briefly explain.

Let ABC' be a spherical triangle right-angled at C; with B as pole describe
a great circle DEFG, and with A as pole describe a great circle HF KL, and
produce the sides of the original triangle ABC' to meet these great circles. Then
since B is a pole of DEFG the angles at D and G are right angles, and since
A is a pole of HF KL the angles at H and L are right angles. Hence the five
triangles BAC, AED, EFH, FKG, KBL are all right-angled; and moreover it
will be found on examination that, although the elements of these triangles are
different, yet their circular parts are the same. We will consider, for example,
the triangle AFED; the angle EAD is equal to the angle BAC', the side AD is the
complement of AB; as the angles at C' and G are right angles E is a pole of GC
(Art. 13), therefore E A is the complement of AC; as B is a pole of DFE the angle
BED is a right angle, therefore the angle AED is the complement of the angle
BEC, that is, the angle AED is the complement of the side BC (Art. 12);
and similarly the side DFE is equal to the angle DBE, and is therefore the
complement of the angle ABC. Hence, if we denote the elements of the triangle
ABC as usual by a, b, ¢, A, B, we have in the triangle AED the hypotenuse

T i
equal to 5 b, the angles equal to A and 5 a, and the sides respectively

opposite these angles equal to g — B and g — ¢. The circular parts of AED
are therefore the same as those of ABC'. Similarly the remaining three of the
five right-angled triangles may be shewn to have the same circular parts as the
triangle ABC' has.
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Now take two of the theorems in Art. 65, for example (1) and (3); then
the truth of the ten cases comprised in Napier’s Rules will be found to follow
from applying the two theorems in succession to the five triangles formed in the
preceding figure. Thus this method of considering Napier’s Rules regards each
Rule, not as the statement of dissimilar properties of one triangle, but as the

statement of similar properties of five allied triangles.

69. In Napier’s work a figure is given of which that in the preceding Article
is a copy, except that different letters are used; Napier briefly intimates that
the truth of the Rules can be easily seen by means of this figure, as well as by
the method of induction from consideration of all the cases which can occur.
The late T. S. Davies, in his edition of Dr Hutton’s Course of Mathematics,
drew attention to Napier’s own views and expanded the demonstration by a
systematic examination of the figure of the preceding Article.

It is however easy to evade the necessity of examining the whole figure; all
that is wanted is to observe the connexion between the triangle AED and the
triangle BAC'. For let a1, as, as, a4, as represent the elements of the triangle
BAC taken in order, beginning with the hypotenuse and omitting the right
angle; then the elements of the triangle AED taken in order, beginning with
the hypotenuse and omitting the right angle, are g —asg, g —ay, g —as, g —as,
and ao. If, therefore, to characterise the former we introduce a new set of
quantities py, p2, p3, P4, Ps, such that a; +p; = az +p2 = a5 +ps = g and
that ps = a3 and py = a4, then the original triangle being characterised by pq,
P2, D3, P4, Ps, the second triangle will be similarly characterised by ps, p4, ps,
p1, p2. As the second triangle can give rise to a third in like manner, and so on,
we see that every right-angled triangle is one of a system of five such triangles
which are all characterised by the quantities p1, p2, ps, P4, ps, always taken in
order, each quantity in its turn standing first.

The late R. L. Ellis pointed out this connexion between the five triangles,
and thus gave the true significance of Napier’s Rules. The memoir containing
Mr Ellis’s investigations, which was unpublished when the first edition of the
present work appeared, will be found in pages 328...335 of The Mathematical
and other writings of Robert Leslie Ellis...Cambridge, 1863.

Napier’s own method of considering his Rules was neglected by writers on

the subject until the late T. S. Davies drew attention to it. Hence, as we
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have already remarked in Art. 68, an erroneous statement was made respecting
the Rules. For instance, Woodhouse says, in his Trigonometry: “There is no
separate and independent proof of these rules;....” Airy says, in the treatise on
Trigonometry in the Encyclopedia Metropolitana: “These rules are proved to
be true only by showing that they comprehend all the equations which we have

just found.”

70. Opinions have differed with respect to the wtility of Napier’s Rules in
practice. Thus Woodhouse says, “In the whole compass of mathematical sci-
ence there cannot be found, perhaps, rules which more completely attain that
which is the proper object of rules, namely, facility and brevity of computation.”
(Trigonometry, chap. X.) On the other hand may be set the following sentence
from Airy’s Trigonometry (Encyclopedia Metropolitana): “In the opinion of
Delambre (and no one was better qualified by experience to give an opinion)
these theorems are best recollected by the practical calculator in their uncon-
nected form.” See Delambre’s Astronomie, vol. 1. p. 205. Professor De Morgan
strongly objects to Napier’s Rules, and says (Spherical Trigonometry, Art. 17):
“There are certain mnemonical formulee called Napier’s Rules of Circular Parts,
which are generally explained. We do not give them, because we are convinced

that they only create confusion instead of assisting the memory.”

71. We shall now proceed to apply the formulee of Art. 62 to the solution of
right-angled triangles. We shall assume that the given quantities are subject to
the limitations which are stated in Arts. 22 and 23, that is, a given side must
be less than the semicircumference of a great circle, and a given angle less than

two right angles. There will be six cases to consider.

72. Having given the hypotenuse ¢ and an angle A.
Here we have from (3), (5) and (2) of Art. 62,

tanb = tanccos A, cotB =cosctan A, sina = sincsin A.

Thus b and B are determined immediately without ambiguity; and as a must
be of the same affection as A (Art. 64), a also is determined without ambiguity.
It is obvious from the formulee of solution, that in this case the triangle is

always possible.
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If ¢ and A are both right angles, a is a right angle, and b and B are indeter-

minate.

73. Having given a side b and the adjacent angle A.
Here we have from (3), (4) and (6) of Art. 62,

tanb
tanc= ——, tana =tanAsinb, cosB = cosbsin A.
cos A

Here ¢, a, B are determined without ambiguity, and the triangle is always

possible.

74. Having given the two sides a and b.
Here we have from (1) and (4) of Art. 62,

cosc = cosacosh, cotA=cotasinb, cotB = cotbsina.

Here ¢, A, B are determined without ambiguity, and the triangle is always

possible.

75. Having given the hypotenuse ¢ and a side a.
Here we have from (1), (3) and (2) of Art. 62,
osc tana . sina

¢
cosb = , cosB= , sinA=——.
cosa tanc sinc

Here b, B, A are determined without ambiguity, since A must be of the same
affection as a. It will be seen from these formulae that there are limitations of
the data in order to insure a possible triangle; in fact, ¢ must lie between a
and m — @ in order that the values found for cosb, cos B, and sin A may be
numerically not greater than unity.

If ¢ and a are right angles, A is a right angle, and b and B are indeterminate.

76. Having given the two angles A and B.
Here we have from (5) and (6) of Art. 62,

cos A cos B

cosc = cot Acot B cosa = —— = — .
’ sin B’ sin A
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Here ¢, a, b are determined without ambiguity. There are limitations of the

T
data in order to insure a possible triangle. First suppose A less than 3 then
B must lie between g — A and g + A; next suppose A greater than g, then B

must lie between g — (m — A) and g + (m — A), that is, between A — g and
3m

— — A
2

77. Having given a side a and the opposite angle A.
Here we have from (2), (4) and (6) of Art. 62,

sinb = tana cot A, sin B =

Here there is an ambiguity, as the parts are determined from their sines.
If sina be less than sin A, there are two values admissible for ¢; corresponding
to each of these there will be in general only one admissible value of b, since
we must have cosc = cosa cosb, and only one admissible value of B, since we
must have cos ¢ = cot Acot B. Thus if one triangle exists with the given parts,
there will be in general two, and only two, triangles with the given parts. We
say in general in the preceding sentences, because if a = A there will be only
one triangle, unless a and A are each right angles, and then b and B become
indeterminate.

It is easy to see from a figure that the ambiguity must occur in general.

For, suppose BAC to be a triangle which satisfies the given conditions;
produce AB and AC' to meet again at A’; then the triangle A’BC also satisfies
the given conditions, for it has a right angle at C'; BC' the given side, and A’ = A
the given angle.

If a = A, then the formulee of solution shew that ¢, b, and B are right angles;
in this case A is the pole of BC, and the triangle A’BC is symmetrically equal
to the triangle ABC' (Art. 57).

If @ and A are both right angles, B is the pole of AC; B and b are then
equal, but may have any value whatever.

There are limitations of the data in order to insure a possible triangle. A
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and a must have the same affection by Art. 64; hence the formulae of solution
shew that a must be less than A if both are acute, and greater than A if both

are obtuse.

EXAMPLES.

If ABC be a triangle in which the angle C is a right angle, prove the following

relations contained in Examples 1 to 5.

b b
% cos? 3 + cos? % sin? 3

1. Sin? g = sin?

b
2. Tan (c+ a) tan §(c — a) = tan? 7

A
3. Sin(c — b) = tan? 3 sin(c +b).

4. Sina tan 3A — sinb tan 3B = sin(a — b).

5. Sin(c — a) = sinb cosa tan B,

Sin(c — a) = tanb cosc tan 3 B.

6. If ABC be a spherical triangle, right-angled at C, and cos A = cos?a,

shew that if A be not a right angle b+ ¢ = %71’ or 57 according as b and ¢ are

both less or both greater than %

7. If a, B be the arcs drawn from the right angle respectively perpendicular

to and bisecting the hypotenuse ¢, shew that
. o9 C ) )
sin” o (14 sin” o) = sin” S.

8. In a triangle, if C be a right angle and D the middle point of AB, shew
that

c . . .
4 cos? 5 sin? CD = sin® a + sin® b.

9. In a right-angled triangle, if § be the length of the arc drawn from C
perpendicular to the hypotenuse AB, shew that

cot & = /(cot? a + cot? b).
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10. OAA; is a spherical triangle right-angled at A; and acute-angled at A;
the arc A1 A5 of a great circle is drawn perpendicular to OA, then A; A3 is drawn
perpendicular to OA;, and so on: shew that A, A, vanishes when n becomes

infinite; and find the value of cos AA; cos A1 Ay cos AxAs. ... .. to infinity.

11. ABC is a right-angled spherical triangle, A not being the right angle:

shew that if A = a, then ¢ and b are quadrants.

12. If § be the length of the arc drawn from C perpendicular to AB in any

triangle, shew that
2 2 1
cos d = cosec ¢ (cos” a + cos” b — 2 cosa cosb cosc)2.

13. ABC is a great circle of a sphere; AA’, BB’, CC’, are arcs of great
circles drawn at right angles to ABC and reckoned positive when they lie on
the same side of it: shew that the condition of A’, B, C’ lying in a great circle
is

tan AA’ sin BC + tan BB’ sin CA + tan CC’ sin AB = 0.

14. Perpendiculars are drawn from the angles A, B, C of any triangle

meeting the opposite sides at D, E, F respectively: shew that
tan BD tan CE tan AF = tan DC tan EA tan F'B.

15. Ox, Oy are two great circles of a sphere at right angles to each other, P
is any point in AB another great circle. OC = p is the arc perpendicular to AB
from O, making the angle COx = a with Ox. PM, PN are arcs perpendicular
to Oz, Oy respectively: shew that if OM = x and ON =y,

cosa tanx + sina tany = tanp.

16. The position of a point on a sphere, with reference to two great circles
at right angles to each other as axes, is determined by the portions 6, ¢ of these
circles cut off by great circles through the point, and through two points on the
axes, each T from their point of intersection: shew that if the three points (6,
@), (0, &), (8", ¢") lie on the same great circle

tan ¢ (tan @’ — tan 0”) + tan ¢’ (tan " — tan 6)
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+tan¢” (tan @ — tan ') = 0.

17. If a point on a sphere be referred to two great circles at right angles
to each other as axes, by means of the portions of these axes cut off by great
circles drawn through the point and two points on the axes each 90° from their

intersection, shew that the equation to a great circle is
tan 6 cot o + tan ¢ cot § = 1.

18. In a spherical triangle, if A = g, B = -, and, C = g, shew that

T
3
a—l—b—i—c=I

5"
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V1

SOLUTION OF
OBLIQUE-ANGLED
TRIANGLES.

78. The solution of oblique-angled triangles may be made in some cases to
depend immediately on the solution of right-angled triangles; we will indicate

these cases before considering the subject generally.

(1) Suppose a triangle to have one of its given sides equal to a quadrant. In
this case the polar triangle has its corresponding angle a right angle; the polar
triangle can therefore be solved by the rules of the preceding Chapter, and thus

the elements of the primitive triangle become known.

(2) Suppose among the given elements of a triangle there are two equal sides
or two equal angles. By drawing an arc from the vertex to the middle point
of the base, the triangle is divided into two equal right-angled triangles; by
the solution of one of these right-angled triangles the required elements can be
found.

(3) Suppose among the given elements of a triangle there are two sides, one
of which is the supplement of the other, or two angles, one of which is the
supplement of the other. Suppose, for example, that b + ¢ = m, or else that
B + C = m; produce BA and BC to meet at B’ (see the first figure to Art.

38); then the triangle B’ AC has two equal sides given, or else two equal angles

49
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given; and by the preceding case the solution of it can be made to depend on

the solution of a right-angled triangle.

79. We now proceed to the solution of oblique-angled triangles in general.

There will be six cases to consider.

80. Having given the three sides.

cosa — cosbcosc L
Here we have cos A = e , and similar formulee for cos B and
sinbsin ¢

cos C. Or if we wish to use formula suited to logarithms, we may take the for-

mula for the sine, cosine, or tangent of half an angle given in Art. 45. In select-
ing a formula, attention should be paid to the remarks in Plane Trigonometry,
Chap. XII. towards the end.

81. Having given the three angles.

cos A + cos BcosC
Here we have cosa = ,+ - , and similar formule for cosb and
sin BsinC
cosc. Or if we wish to use formule suited to logarithms, we may take the

formula for the sine, cosine, or tangent of half a side given in Art. 49.
There is no ambiguity in the two preceding cases; the triangles however may

be impossible with the given elements.

82. Having given two sides and the included angle (a, C, b).

By Napier’s analogies

cos +(a — b)
tan (A + B) = —2 t 10,
an 5 ) cos 3(a+b) bz
. l _b
tan 3(A — B) = s%n?(a )cot%C;
sin 5 (a + b)

these determine (A + B) and 3(A — B), and thence A and B.
sina sin C
sin A
c is found from its sine, it may be uncertain which of two values is to be given

Then ¢ may be found from the formula sin ¢ = ; in this case, since
to it; the point may be sometimes settled by observing that the greater side of a
triangle is opposite to the greater angle. Or we may determine ¢ from equation
(1) of Art. 54, which is free from ambiguity.

Or we may determine ¢, without previously determining A and B, from the

formula cosc = cosa cosb + sina sinb cos C; this is free from ambiguity. This
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formula may be adapted to logarithms thus:
cosc = cosb (cosa + sinatanbcos C);

assume tan @ = tanb cos C’; then

b -0
cosc = cosb(cosa+ sina tanf) = M.

)

cosf

this is adapted to logarithms.

Or we may treat this case conveniently by resolving the triangle into the
sum or difference of two right-angled triangles. From A draw the arc AD per-
pendicular to CB or C'B produced; then, by Art. 62, tan CD = tanbcos C, and
this determines C'D, and then DB is known. Again, by Art. 62,

cosb
= ADcos DB = DB———;
Cos c = Cos cos cos osCD’

this finds c. It is obvious that C'D is what was denoted by 6 in the former part
of the Article.
By Art. 62,

tan AD = tanC'sin CD, and tan AD = tan ABD sin DB;
thus tan ABD sin DB = tan C'sin 6,

where DB = a — 6 or 6 — a, according as D is on CB or C'B produced, and
ABD is either B or the supplement of B; this formula enables us to find B
independently of A.

Thus, in the present case, there is no real ambiguity, and the triangle is

always possible.

83. Having given two angles and the included side (A, c,B).



52 SOLUTION OF OBLIQUE-ANGLED TRIANGLES.

By Napier’s analogies,

cos (A — B)
tan 1 b) = 2 tan 4
ang(a+b) cos (A + B) e
sin (A — B)
tan 3(a — b) = sing(AJrB) tan 3c;

these determine % (a + b) and % (a — b), and thence a and b.

sin Asinc

Then C may be found from the formula sinC' = ; in this case,

sina
since C is found from its sine, it may be uncertain which of two values is to be
given to it; the point may be sometimes settled by observing that the greater
angle of a triangle is opposite to the greater side. Or we may determine C' from

equation (3) of Art. 54, which is free from ambiguity.

Or we may determine C' without previously determining a and b from the
formula cos C' = — cos A cos B + sin A sin B cos ¢. This formula may be adapted

to logarithms, thus:
cos C' = cos B(— cos A + sin A tan B cos ¢);

assume cot ¢ = tan B cos¢; then

cos Bsin(A — ¢)

cos C' = cos B(—cos A+ cot ¢psin A) = o :
in

this is adapted to logarithms.

Or we may treat this case conveniently by resolving the triangle into the
sum or difference of two right-angled triangles. From A draw the arc AD
perpendicular to CB (see the right-hand figure of Art. 82); then, by Art. 62,
cosc = cot Bcot DAB, and this determines DAB, and then CAD is known.
Again, by Art. 62,

cos ADsin CAD = cosC, and cos ADsin BAD = cos B;

cos C cos B )
sinCAD  sin BAD’ this finds C.

It is obvious that DAB is what was denoted by ¢ in the former part of the
Article.

therefore
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By Art. 62,
tan AD = tan AC' cosCAD, and tan AD = tan AB cos BAD;

thus tanbcos CAD = tanccos ¢,

where CAD = A — ¢; this formula enables us to find b independently of a.
Similarly we may proceed when the perpendicular AD falls on C'B produced;
(see the left-hand figure of Art. 82).
Thus, in the present case, there is no real ambiguity; moreover the triangle

is always possible.

84. Having given two sides and the angle opposite one of them (a, b, A).
The angle B may be found from the formula

cos = (a — b)
taniC = 2 t1(A+ B),
A cos%(a—I—b)CO 2(4+B)
cos + (A + B)
tan 3¢ = cosg(A—B) tan 3 (a + b).

In this case, since B is found from its sine, there will sometimes be two solutions;
and sometimes there will be no solution at all, namely, when the value found for
sin B is greater than unity. We will presently return to this point. (See Art. 86.)

We may also determine C' and ¢ independently of B by formulse adapted to
logarithms. For, by Art. 44,

cot A
cota sinb = cosb cos C' +sinC cot A = cosb (cos C + 5 sin C');
cos
cot A
assume tan ¢ = ——; thus
cosb

cosb cos(C — ¢)

)

cota sinb = cosb(cos C 4+ tan ¢ sinC) = "

therefore cos(C — ¢) = cos ¢ cot a tan b
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from this equation C' — ¢ is to be found, and then C. The ambiguity still exists;
for if the last equation leads to C'— ¢ = «, it will be satisfied also by ¢ —C = q;
so that we have two admissible values for C, if ¢ + « is less than 7, and ¢ — «
is positive.

And
cosa = cosbeosc + sinbsin ccos A = cosb(cos ¢ + sin c tan b cos A);

assume tan f = tanbcos A; thus

cosbcos(c — )

cosa = cosb(cosc + sinctan ) = ;
cos 0

cos a cos 0
therefore cos(c — ) = ——;

)

cosb
from this equation ¢ — 6 is to be found, and then ¢; and there may be an
ambiguity as before.

Or we may treat this case conveniently by resolving the triangle into the

sum or difference of two right-angled triangles.

[4

Let CA = b, and let CAE = the given angle A; from C draw CD per-
pendicular to AE, and let CB and CB’ = a; thus the figure shews that
there may be two triangles which have the given elements. Then, by Art. 62,
cosb = cot Acot ACD; this finds ACD. Again, by Art. 62,

tan CD = tan AC cos ACD,
and tan CD = tan CB cos BCD, or tan CB’ cos B'CD,

therefore tan AC cos ACD = tan CB cos BC'D, or tan C'B’ cos B'C'D; this finds
BCD or B'CD.

It is obvious that ACD is what was denoted by ¢ in the former part of the
Article.
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Also, by Art. 62, tan AD = tan AC cos A; this finds AD. Then
cos AC' = cosC'D cos AD,
cos CB = cosCD cos BD,
or cos CB’ = cos CD cos B'D;

cos AC cosCB cosCB’

theref =
eretore cosAD  cosBD or cos B'D’

this finds BD or B’'D.

It is obvious that AD is what was denoted by 6 in the former part of the
Article.

85. Having given two angles and the side opposite one of them (A, B, a).
This case is analogous to that immediately preceding, and gives rise to the

same ambiguities. The side b may be found from the formula

sin Bsina

sinb = -
sin A

and then C and ¢ may be found from Napier’s analogies,

cos % (a — b)
tan 30 = —2 t (A + B),
an 3 cos%(a—i—b)co 5(A+DB)
cos 2 (A + B)
tan 2c = cosz(A—B) tan 3 (a +b),

We may also determine C' and ¢ independently of b by formulze adapted to

logarithms. For

cos A = —cos BcosC + sin BsinC cosa

= cos B(—cos C' + tan Bsin C cos a),

assume cot ¢ = tan B cos a; thus

cos Bsin(C' — ¢)

cos A = cos B(—cos C' + sin C cot ¢) = o ;
in
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therefore sin(C — ¢) = cosAsing

3

cos B
from this equation C' — ¢ is to be found and then C. Since C' — ¢ is found from

its sine there may be an ambiguity. Again, by Art. 44,
cos B

. . cotasinc
cot Asin B = cotasinc — cosccos B = cos B <cosc+ > ,

cota

assume cot 6 = then

3

COS

cos Bsin(c — )

cot Asin B = cos B(— cosc + sinccot §) = ;

sin 6
therefore sin(c — 6) = cot A tan Bsin 6;

from this equation ¢ — 6 is to be found, and then c¢. Since ¢ — 6 is found from
its sine there may be an ambiguity. As before, it may be shewn that these
results agree with those obtained by resolving the triangle into two right-angled
triangles; for if in the triangle ACB’ the arc CD be drawn perpendicular to
AB’, then B'CD will = ¢, and B'D = 6.

86. We now return to the consideration of the ambiguity which may occur in
the case of Art. 84, when two sides are given and the angle opposite one of them.
The discussion is somewhat tedious from its length, but presents no difficulty.
Before considering the problem generally, we will take the particular case in
which a = b; then A must = B. The first and third of Napier’s analogies give

cot %C = tan A cosa, tan %c = tanacos A;

1
2

same affection. Hence, when a = b, there will be no solution at all, unless A and

now cot %C’ and tan ¢ must both be positive, so that A and a must be of the

a are of the same affection, and then there will be only one solution; except when

1

A and a are both right angles, and then cot %C’ and tan ;

¢ are indeterminate,
and there is an infinite number of solutions.

We now proceed to the general discussion.

If sin b sin A be greater than sin a, there is no triangle which satisfies the given
conditions; if sin bsin A is not greater than sin a, the equation sin B = w

ina
furnishes two values of B, which we will denote by 8 and /', so that 8/ = 7 — §3;
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we will suppose that g is the one which is not greater than the other.

Now, in order that these values of B may be admissible, it is necessary and
sufficient that the values of cot %C and of tan %c should both be positive, that
is, A— B and a—b must have the same sign by the second and fourth of Napier’s
analogies. We have therefore to compare the sign of A— ( and the sign of A— 3’
with that of a — b.

We will suppose that A is less than a right angle, and separate the corre-

sponding discussion into three cases.

I. Let b be less than g

sinb
sin A make (3 greater than
a

(1) Let a be less than b; the formula sin B =

A, and a fortiori B greater than A. Hence there are two solutions.

(2) Let a be equal to b; then there is one solution, as previously shewn.

(3) Let a be greater than b; we may have then a+b less than 7 or equal to 7
or greater than 7. If a+b is less than 7, then sin a is greater than sin b; thus 3 is
less than A and therefore admissible, and /3’ is greater than A and inadmissible.
Hence there is one solution. If a + b is equal to m, then S is equal to A, and 3’
greater than A, and both are inadmissible. Hence there is no solution. If a + b
is greater than m, then sina is less than sinb, and S and 3’ are both greater

than A, and both inadmissible. Hence there is no solution.

II. Let b be equal to g

(1) Let a be less than b; then 8 and ' are both greater than A, and both
admissible. Hence there are two solutions.

(2) Let a be equal to b; then there is no solution, as previously shewn.

(3) Let a be greater than b; then sina is less than sinb, and 8 and ' are

both greater than A, and inadmissible. Hence there is no solution.

ITI. Let b be greater than g

(1) Let a be less than b; we may have then a + b less than 7 or equal to 7
or greater than 7. If a + b is less than 7, then sin a is less than sinb, and § and
B’ are both greater than A and both admissible. Hence there are two solutions.
If a + b is equal to m, then 8 is equal to A and inadmissible, and 8’ is greater
than A and admissible. Hence there is one solution. If a + b is greater than ,
then sin a is greater than sin b; 3 is less than A and admissible, and /3’ is greater
than A and admissible. Hence there is one solution.

(2) Let a be equal to b; then there is no solution, as previously shewn.
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(3) Let a be greater than b; then sina is less than sinb, and 8 and 8’ are
both greater than A and both inadmissible. Hence there is no solution.

We have then the following results when A is less than a right angle.

A< b two solutions,
b< T)a=b. .. one solution,
2 la>banda+b<m oot one solution,
a>banda+b=mor > ...l no solution.
po T { A< b oo two solutions,
2la=bora>b ..o no solution.
a<banda+4+b<mT ... two solutions,
b>g a<banda+b=mor >7T ..., one solution,
a=bor >b ... .. no solution.

It must be remembered, however, that in the cases in which two solutions
are indicated, there will be no solution at all if sin a be less than sin bsin A.
In the same manner the cases in which A is equal to a right angle or greater

than a right angle may be discussed, and the following results obtained.

When A is equal to a right angle,

a<bora=>b ....... i no solution,
b<-<Sa>banda+b<m ... one solution,
a>banda+b=mor >T .......ciiiii... no solution.
b T a<bora>b ........ i no solution,
2 la=b ..o infinite number of solutions.
a<banda+b>7m ... one solution,
7r
b>§ a<banda+b=mor <m ...l no solution,
a=bora>b ...... i no solution.

When A is greater than a right angle,
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a<bora=u>b .......c i no solution,
T
b<§ a>banda+b=mor <7 ........... ..., one solution,
a>banda+b>m ... two solutions.
b— Tla<bora=b ..., no solution,
A I two solutions.
a<banda+b>m ... one solution,
b>7r a<banda+b=mor <@ ........iii... no solution,
2 a=0b one solution,

a > b two solutions.

As before in the cases in which two solutions are indicated, there will be no
solution at all if sina be less than sin bsin A.

It will be seen from the above investigations that if a lies between b and
7 — b, there will be one solution; if a does not lie between b and m — b either
there are two solutions or there is no solution; this enunciation is not meant to

include the cases in which a = b or = 7 — b.

87. The results of the preceding Article may be illustrated by a figure.
Vi

Let ADA'E be a great circle; suppose PA and PA’ the projections on the
plane of this circle of arcs which are each equal to b and inclined at an angle A
to ADA’; let PD and PE be the projections of the least and greatest distances
of P from the great circle (see Art. 59). Thus the figure supposes A and b each

0
less than —.
ess than
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If a be less than the arc which is represented by PD there is no triangle; if
a be between PD and PA in magnitude, there are two triangles, since B will
fall on ADA’, and we have two triangles BPA and BPA’; if a be between PA
and PH there will be only one triangle, as B will fall on A’H or AH’, and the
triangle will be either APB with B between A’ and H, or else A’PB with B
between A and H’; but these two triangles are symmetrically equal (Art. 57); if
a be greater than PH there will be no triangle. The figure will easily serve for

all the cases; thus if A is greater than g, we can suppose PAE and PA'E to

be equal to A; if b is greater than 27 we can take PH and PH' to represent b.

88. The ambiguities which occur in the last case in the solution of oblique-
angled triangles (Art. 85) may be discussed in the same manner as those in Art.
86; or, by means of the polar triangle, the last case may be deduced from that
of Art. 86.

EXAMPLES.

1. The sides of a triangle are 105°, 90°, and 75° respectively: find the sines
of all the angles.

sin(s — ¢)

2. Shew that tan %Atan %B = - . Solve a triangle when a side, an
sin s

adjacent angle, and the sum of the other two sides are given.

3. Solve a triangle having given a side, an adjacent angle, and the sum of

the other two angles.

4. A triangle has the sum of two sides equal to a semicircumference: find

the arc joining the vertex with the middle of the base.

5. If a, b, ¢ are known, ¢ being a quadrant, determine the angles: shew also
that if 6 be the perpendicular on ¢ from the opposite angle, cos?§ = cos?a +

cos? b.

6. If one side of a spherical triangle be divided into four equal parts, and 6,
02, 03, 04, be the angles subtended at the opposite angle by the parts taken in

order, shew that

sin(fy + 63) sin 02 sin 8, = sin(f3 + 64) sin 0y sin b5.
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7. In a spherical triangle if A = B = 2C, shew that

8 sin (a + g) sin? g CcoSs g = sin® a.

8. In a spherical triangle if A = B = 2C, shew that

c
cos —

8311129 cosersing 2:1
2 2 ) cosa

9. If the equal sides of an isosceles triangle ABC be bisected by an arc DF,
and BC be the base, shew that

DE | . BC _AC

10. If ¢1, co be the two values of the third side when A, a, b are given and

the triangle is ambiguous, shew that

tan%1 tan%2 =tani(b—a)tan i(b+ a).
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VII

CIRCUMSCRIBED AND
INSCRIBED CIRCLES.

89. To find the angular radius of the small circle inscribed in a given triangle.

A

B
¥ 4

Let ABC be the triangle; bisect the angles A and B by arcs meeting at P;
from P draw PD, PE, PF perpendicular to the sides. Then it may be shewn
that PD, PE, PF are all equal; also that AE = AF, BFF = BD, CD = CE.
Hence BC + AF = half the sum of the sides = s; therefore AF = s — a. Let
PF =r.

Now tan PF = tan PAF sin AF (Art. 62);

thus tanr = tan 3 sin(s — a). (1)

63
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The value of tanr may be expressed in various forms; thus from Art. 45, we

A \/sin(s—b) sin(s —¢)

2 sin s sin(s — a)

obtain

tan

substitute this value in (1), thus

tam\/{sm(sa)sm(sb)sm(sc)} "arae). ()

sin s sin s

Again

sin(s — a) = sin{%(b+¢) — 3a}

=sin3(b+c)cosia—cosi(b+c)sinia

sinlacosia
= s2in7%142{cos 3(B—C)—cos3(B+C)}, (Art. 54)

sin a sin %B sin %C

)

1
sin 5 A

. 1 . 1
sin 5 Bsin 5C

therefore from (1) tanr = n
cos 5 A

sin a; (3)

hence, by Art. 51,

V{—cosScos(S — A)cos(S — B) cos(S — C)}
2 cos %A oS %B cos %C’

tanr =

N
2 cos %A cos %B cos %C'

(4)

It may be shewn by common trigonometrical formulee that
4costAcos 3B cos 1C = cos S + cos(S — A) + cos(S — B) + cos(S — O);
hence we have from (4)

cotr = %{COSS + cos(S — A) + cos(S — B) + cos(S — O) }. (5)
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90. To find the angular radius of the small circle described so as to touch one
side of a given triangle, and the other sides produced.

B

4

Let ABC be the triangle; and suppose we require the radius of the small
circle which touches BC, and AB and AC produced. Produce AB and AC' to
meet at A’; then we require the radius of the small circle inscribed in A’'BC, and
the sides of A’BC' are a, m — b, ™ — c respectively. Hence if 7; be the required

radius, and s denote as usual %(a + b+ ¢), we have from Art. 89,
tanr, = tanisins. (1)

From this result we may derive other equivalent forms as in the preceding
Article; or we may make use of those forms immediately, observing that the
angles of the triangle A’BC are A, m — B, m — C respectively. Hence s being
1(a+b+c) and S being 1(A+ B + C) we shall obtain

B sinssin(s —b)sin(s —c) | n
tanr; = \/{ sin(s — a) ~ s —a) (2)
cosiBcosiC
tanr; = ;)57%142 sin a, (3)
— cos (S — A) cos(S — B) cos(S —
tan = V/{—cos S cos(S ) cos(S )cos(S — C)} (4)

2 cos %A sin %B sin %C’

N
2 cos %A sin %B sin %C’

cotry = %{—CCOSS —cos(S — A) 4 cos(S — B) + cos(S — C)}. (5)

These results may also be found independently by bisecting two of the an-
gles of the triangle A’BC, so as to determine the pole of the small circle, and

proceeding as in Art. 89.

91. A circle which touches one side of a triangle and the other sides produced

is called an escribed circle; thus there are three escribed circles belonging to a
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given triangle. We may denote the radii of the escribed circles which touch C'A
and AB respectively by ro and r3, and values of tan s and tan s may be found
from what has been already given with respect to tanr; by appropriate changes
in the letters which denote the sides and angles.

In the preceding Article a triangle A’ BC was formed by producing AB and
AC to meet again at A’; similarly another triangle may be formed by producing
BC and BA to meet again, and another by producing C'A and C'B to meet
again. The original triangle ABC and the three formed from it have been called
associated triangles, ABC being the fundamental triangle. Thus the inscribed
and escribed circles of a given triangle are the same as the circles inscribed in
the system of associated triangles of which the given triangle is the fundamental

triangle.

92. To find the angular radius of the small circle described about a given tri-

angle.

Let ABC be the given triangle; bisect the sides CB, C A at D and FE respec-
tively, and draw from D and FE arcs at right angles to C' B and C A respectively,
and let P be the intersection of these arcs. Then P will be the pole of the small
circle described about ABC'. For draw PA, PB, PC; then from the right-angled
triangles PCD and PBD it follows that PB = PC; and from the right-angled
triangles PCE and PAEFE it follows that PA = PC; hence PA = PB = PC.
Also the angle PAB = the angle PBA, the angle PBC' = the angle PC'B, and
the angle PCA = the angle PAC; therefore PCB + A = £(A+ B + (), and
PCB=S5-A.
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Let PC = R.
Now tan CD = tan CP cos PCD, (Art. 62,)
thus tan $a = tan R cos(S — A),
theref tan R = A3 (1)
erefore an R = xS —A)’

The value of tan R may be expressed in various forms; thus if we substitute

for tan = from Art. 49, we obtain

tan ft = \/ { cos(S — A) cos_(goisza) cos(S = C) } = COJSVS : @)

Again cos(S — A) =cos {3(B+C)— A}
=cos3(B+C)costA+sin3(B+C)sinid

sin %A cos %A

= I {cos3(b+¢c)+cosi(b—c)}, (Art. 54,)

Cos 5a
_ sind 1) cos Lo
710085 COSEC,
COs 5a

2

therefore from (1)
sin %a

tan R = — " i -
sin A cos 5bcos ;¢

Substitute in the last expression the value of sin A from Art. 46; thus

indogain 1bhain L
2sin sasin 5bsin ¢

tan R = V{sin ssin(s — a) sin(s — b) sin(s — ¢)}

S DR P |
B 2sin 5asin 5bsin 5c¢

n

It may be shewn, by common trigonometrical formulese that

4sin fasin $bsin ¢ = sin(s — a) + sin(s — b) + sin(s — ¢) — sin s;
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hence we have from (4)

tan R = %{sin(s —a) +sin(s — b) + sin(s — ¢) — sin s}. (5)

93. To find the angular radii of the small circles described round the triangles

associated with a given fundamental triangle.

Let R; denote the radius of the circle described round the triangle formed by
producing AB and AC to meet again at A’; similarly let Ry and R3 denote the
radii of the circles described round the other two triangles which are similarly
formed. Then we may deduce expressions for tan Ry, tan Ry, and tan R3 from
those found in Art. 92 for tan R. The sides of the triangle A’BC are a, m — b,
m — ¢, and its angles are A, m — B, m — C; hence if s = %(a + b+ ¢) and
S = 1(A+ B+ C) we shall obtain from Art. 92

tan %a
tan Ry =

—cos S’

B cos(S — A) _cos(S — A)
tan fy = \/{ —cos S cos(S — B) cos(S — C) } B N ’ @)

i1
sin sa
tan Ry = — § 12 — (3)
sin A sin 5bsin 5¢

tan R — 2sin %acos%bcos %c @
= V{sin ssin(s — a) sin(s — b) sin(s — ¢)} ’
1
tan Ry = 27{sins — sin(s — a) + sin(s — b) +sin(s — ¢)}. (5)
n

Similarly we may find expressions for tan Ry and tan Rs.

94. Many examples may be proposed involving properties of the circles in-
scribed in and described about the associated triangles. We will give one that

will be of use hereafter.

To prove that

tr+tan R)* =
(cotr + tan R) 2

(sina +sinb + sinc¢)? — 1.



CIRCUMSCRIBED AND INSCRIBED CIRCLES. 69

‘We have

24 — cos? b — cos® ¢+ 2cosacosbceosc;

4n® =1 — cos
therefore

(sina + sinb + sinc¢)? — 4n?

=2 (1+4sinasinb+ sinbsinc + sincsina — cosacosbeosc ).
1

Also cotr +tan R = 2—{sins + sin(s — a) + sin(s — b) + sin(s — c)}; and by
n

squaring both members of this equation the required result will be obtained.

For it may be shewn by reduction that
sin? s + sin?(s — a) + sin®(s — b) + sin?(s — ¢) = 2 — 2cosacosbcos ¢,
and

sin ssin(s — a) + sin ssin(s — b) + sin s sin(s — ¢)
+ sin(s — a) sin(s — b) + sin(s — b) sin(s — ¢) + sin(s — ¢) sin(s — a)

= sinasinb + sin bsin ¢ + sin ¢sin a.

Similarly we may prove that

1
(cotr; — tan R)? = ﬁ(sinb—i— sinc — sina)? — 1.
n

95. In the figure to Art. 89, suppose DP produced through P to a point A’
such that DA’ is a quadrant, then A’ is a pole of BC, and PA' = g—r; similarly,
suppose EP produced through P to a point B’ such that FB’ is a quadrant,
and F'P produced through P to a point C’ such that FC’ is a quadrant. Then
A’'B'C" is the polar triangle of ABC, and PA' = PB' = PC' = g —r. Thus P
is the pole of the small circle described round the polar triangle, and the angular
radius of the small circle described round the polar triangle is the complement
of the angular radius of the small circle inscribed in the primitive triangle. And
in like manner the point which is the pole of the small circle inscribed in the
polar triangle is also the pole of the small circle described round the primitive

triangle, and the angular radii of the two circles are complementary.
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EXAMPLES.

In the following examples the notation of the Chapter is retained. Shew that

in any triangle the following relations hold contained in Examples 1 to 7:

1.

2.

8.

9.

Tanr tanrs tanrg = tanr sin? s.

Tan R + cotr = tan Ry + cot r; = tan Ry + cot ro

= tan R3 + cotrg = %(cotr + cotry + cot ry + cot r3).

Tan? R + tan? Ry + tan® Ry + tan® Ry

= cot?r + cot? r1+ cot? ro + cot? 3.

Tanr tanr tanrs — tanr
1+ tanrs + tanrs n = 1(1 4 cosa + cosb + cosc).

cotry +cotry +cotrg —cotr

Cosec? r = cot(s — a) cot(s — b) 4 cot(s — b) cot(s — ¢) + cot(s — ¢)(s — a).
Cosec? 11 = cot(s — b) cot(s — ¢) — cot s cot(s — b) — cot s cot(s — ¢).
Tan R tan Ry tan Rs = tan Rsec? S.

Shew that in an equilateral triangle tan R = 2tanr.

If ABC be an equilateral spherical triangle, P the pole of the circle

circumscribing it, @ any point on the sphere, shew that

cos QA + cos QB + cos QC = 3 cos PA cos PQ.

10. If three small circles be inscribed in a spherical triangle having each of

its angles 120°, so that each touches the other two as well as two sides of the

triangle, shew that the radius of each of the small circles = 30°, and that the

centres of the three small circles coincide with the angular points of the polar

triangle.
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AREA OF A SPHERICAL
TRIANGLE. SPHERICAL
EXCESS.

96. To find the area of a Lune.
A Lune is that portion of the surface of a sphere which is comprised between

two great semicircles.

A

B

Let ACBDA, ADBFEA be two lunes having equal angles at A; then one of
these lunes may be supposed placed on the other so as to coincide exactly with
it; thus lunes having equal angles are equal. Then by a process similar to that

used in the first proposition of the Sixth Book of Euclid it may be shewn that

71
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lunes are proportional to their angles. Hence since the whole surface of a sphere
may be considered as a lune with an angle equal to four right angles, we have

for a lune with an angle of which the circular measure is A,

area of lune A

surface of sphere 27

Suppose r the radius of the sphere, then the surface is 47r? (Integral Calcu-

lus, Chap. VIIL.); thus

A
area of lune = —4mr? = 2A4r2.
21

97. To find the area of a Spherical Triangle.

Let ABC be a spherical triangle; produce the arcs which form its sides until
they meet again two and two, which will happen when each has become equal
to the semicircumference. The triangle ABC now forms a part of three lunes,
namely, ABDC'A, BCEAB, and CAFBC. Now the triangles CDFE and AF'B
are subtended by vertically opposite solid angles at O, and we will assume that
their areas are equal; therefore the lune CAF BC' is equal to the sum of the two
triangles ABC and CDE. Hence if A, B, C' denote the circular measures of the

angles of the triangle, we have

triangle ABC' 4+ BGDC = lune ABDCA = 2Ar?,
triangle ABC' + AHEC = lune BCEAB = 2Br?,
triangle ABC' + triangle CDE = lune CAFBC = 2Cr?;
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hence, by addition,

twice triangle ABC + surface of hemisphere = 2(A + B + C)r?;

therefore triangle ABC = (A+ B+ C — m)r?.
The expression A+ B + C — 7 is called the spherical excess of the triangle;
and since
(A+B+C —m)r* = A—FBQ——;C_WZWTQ,

the result obtained may be thus enunciated: the area of a spherical triangle is
the same fraction of half the surface of the sphere as the spherical excess is of

four right angles.

98. We have assumed, as is usually done, that the areas of the triangles CDFE
and AF' B in the preceding Article are equal. The triangles are, however, not ab-
solutely equal, but symmetrically equal (Art. 57), so that one cannot be made to
coincide with the other by superposition. It is, however, easy to decompose two
such triangles into pieces which admit of superposition, and thus to prove that
their areas are equal. For describe a small circle round each, then the angular
radii of these circles will be equal by Art. 92. If the pole of the circumscribing
circle falls inside each triangle, then each triangle is the sum of three isosceles
triangles, and if the pole falls outside each triangle, then each triangle is the
excess of two isosceles triangles over a third; and in each case the isosceles tri-
angles of one set are respectively absolutely equal to the corresponding isosceles

triangles of the other set.

99. To find the area of a spherical polygon.

Let n be the number of sides of the polygon, ¥ the sum of all its angles.
Take any point within the polygon and join it with all the angular points; thus
the figure is divided into n triangles. Hence, by Art. 97,

area of polygon = (sum of the angles of the triangles — n7r)r2,

and the sum of the angles of the triangles is equal to X together with the four

right angles which are formed round the common vertex; therefore

area of polygon = {E —(n— 2)7r}r2.



74 AREA OF A SPHERICAL TRIANGLE. SPHERICAL EXCESS.

This expression is true even when the polygon has some of its angles greater
than two right angles, provided it can be decomposed into triangles, of which

each of the angles is less than two right angles.

100. We shall now give some expressions for certain trigonometrical functions
of the spherical excess of a triangle. We denote the spherical excess by F, so
that E=A+B+C — .

101. Clagnoli’s Theorem. To shew that

V/{sin ssin(s —la) sin(s — b) ?in(s - c)}a:

.1 1
2 cos 5a cos 2bcos 5C

1 _
sin §E =

SintE=sin(A+B+C—n)=sin{3(A+B) - i(r—-C)}
=sin (A + B)sin $C — cos 3(A + B) cos :C

. lC lC
— w&;os%(a —b) — COS%(G —b)},  (Art. 54),

(¢0)] §C

1, 1
5asin §b
1

COS §C

sin C'sin

S |
sin 5asin 50 2 . . . .
= . «v/{sinssin(s — a)sin(s — b) sin(s — ¢
cos %c sinasin b VA ( ) sin ) sin )}

V{sin ssin(s — a) sin(s — b) sin(s — c)}

1 1 1
2 cos 5a cos §bcos 5C

102. Lhuilier’s Theorem. To shew that
tan 1 F = \/{tan $stan 1(s — a) tan (s — b) tan 3 (s — ¢)}.

ini(A+B+C -
TaniE:i:;?((AiB:C—:))
4

in3(A+B) —sin3(r—C

_ SIH%( + B) — sin 21(’/T )’ (Plane Trig. Art. 84),
cos 5(A+ B) +cos 5(m — C)
sin (A—FB)—COS%C

[N

cos 2(A+ B) +sin :C
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75
_ cos 3(a—b) —cosgc cos1C (Art. 54)
cos 3(a+b) +cosgc sinzC’ e

Hence, by Art. 45, we obtain

tanlE_sini(c—!—a—b)sin%(c—kb—a) \/{ sin ssin(s — ¢) }
7 cosi(a+b+c)cost(a+b—rc) sin(s — a) sin(s — b)

= /{tan istan (s — a)tan 1 (s — b) tan 1 (s — ¢)}.

103. We may obtain many other formulae involving trigonometrical functions

of the spherical excess. Thus, for example,
cosiE =cos{i(A+B)—i(r—0C)}
= cos 3(A + B)sin 3C +sin 3(A + B) cos :C
= {cos 1(a+b)sin® LC + cos L (a — b) cos® 1C} sec 2c, (Art. 54),

2

— 1 1 2 in2 1
= {COSQ(ZCOS2b(COS C +sin” 50)

ol Ay 21 21 oo L
+ sin jasin 5b(cos” 5C — sin 2C)}bec2c

= {cos 2acos $b + sin 2asin 2bcos C'} sec L. (1)
Again, it was shewn in Art. 101, that

sin %E = sin C'sin %a sin %b sec %c;

sin Lasin LbsinC
E — 2 2

: (2)
cos %a cos %b + sin %a sin %b cos C

therefore tan

NO[—=

Again, we have from above

cos %E = {cos %a cos %b + sin %a sin %bcos C} sec %c

(14 cosa)(1l+ cosb) +sinasinbcosC

1 1 1
4 cos 5a cos Ebcos 5C
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1+ cosa+ cosbceose cos? %a—|—cos2 %b—i-COS2 %C— 1

- .1 1 1. .1 .1 1
4 cos 5acos 5bcos 5¢ 2 cos 5acos 5bcos 5¢

(3)

21 1p.
In (3) put 1 — 2sin” 3 E for cos 5 E; thus

. 14 2cos2acosibcosic — cos? a —cos? 1b — cos? ic

21 2 2 2 2 2 2

sin® 3 F = 7 T T .
4 cos 5acos 5bcos 5¢

By ordinary development we can shew that the numerator of the above

fraction is equal to

1

4sinissini(s —a)sin (s —b)sin (s —c);

2
therefore
91 sin 2ssin2(s —a)sini(s—b)sini(s —c)
sin” g B/ = cos +acos 2bcos Le ' )
2 2 2
Similarly
91 cos scos 3(s — a) cos £ (s — b) cos 3(s — c)
cos” g B = cos 2acos 2bcos Lc ' (5)
2 2 2

Hence by division we obtain Lhuilier’s Theorem.

Again,

: 1
sin(C — 5 F) )
.715:51nCc0t%E—COSC
sin 5
2
.1 s1p £ sin Lasin 1bcosC
cos 5a cos 5b + sin sasin 5b cos
sin%asin%bsinC’

=sinC

—cosC, by (2),
= cos %a cot %b;
therefore, by Art. 101,

V/{sin ssin(s — a) sin(s — b) sin(s — c)}

sin(C — LE) =

2sin ~a sin %bcos %c
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Again, cos(C — 1E) = cosCcos 1 E 4+ sinCsin 1 E

(1+cosa)(1+cosb)cosC +sinasinbcos’C . o . | . 1
= T T T +sin” C'sin 5asin 5bsec 5¢
4 cos 5acos 5bcos 3¢

(14 cosa)(1l+ cosb)cosC +sinasinb
4 cos %a cos %b cos %c

{cos %a cos %b cos C' + sin %a sin %b} sec %c

sin a sin bcos C + 4 sin? %asin2 %b
P N | 1
4sm§asm§bcos§c

cosc — cosacosb+ (1 —cosa)(l — cosb)

S | 1
4s1n§asm§bcos§c
1 1 1
1+ cosc—cosa — cosb cos? 5C— cos? 50— cos? §b +1 (©)
T Acinlacinlbencle Gl ain 1 1 ’
4sin asin 5bcos ¢ 2sin sasin 5bcos ¢

From this result we can deduce two other results, in the same manner as (4)
and (5) were deduced from (3); or we may observe that the right-hand member
of (6) can be obtained from the right-hand member of (3) by writing 7 — a and
7w — b for a and b respectively, and thus we may deduce the results more easily.
We shall have then

cos %ssin%(s — a)sin %(S —b)cos %(5 —c)
sin%asin %bcos%c ’

sin®(3C — 1E) =

sin 2scos (s —a)cosi(s—b)sini(s —c)
: :

201 Ly —
cos”(3C — 3 E) = T i Tpoos
sin sasin 5bcos ;¢

EXAMPLES.

1. Find the angles and sides of an equilateral triangle whose area is one-
fourth of that of the sphere on which it is described.

2. Find the surface of an equilateral and equiangular spherical polygon of
n sides, and determine the value of each of the angles when the surface equals

half the surface of the sphere.

3. Ifa=b= 57 and ¢ = I, shew that E = cos™! g

3 2
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4. If the angle C' of a spherical triangle be a right angle, shew that

miF —qiniosin L 1 1l 1 1 1
sin 5 F = sin 5asin 5bsec 5¢, cos 5 F = cos 5acos 5bsec 5c.

5. If the angle C be a right angle, shew that

sin? ¢ sin?a  sin?b
cos b = .
cosc cosa cosb
s sin® a
6. If a =b and C = —, shew that tan F = .
2 2cosa

7. The sum of the angles in a right-angled triangle is less than four right
angles.
8. Draw through a given point in the side of a spherical triangle an arc of a

great circle cutting off a given part of the triangle.

b
9. In a spherical triangle if cos C = — tan g tan 2 then C' = A+ B.

10. If the angles of a spherical triangle be together equal to four right angles
cos? %a + cos? %b + cos? %c =1

11. If r1, ro, r3 be the radii of three small circles of a sphere of radius r
which touch one another at P, @, R, and A, B, C be the angles of the spherical

triangle formed by joining their centres,

area PQR = (Acosr, + Bcosry + Ccosrs — m)r.

12. Shew that

D=

{sin§Bsin(4 — LB)sin(B — 1B)sin(C - 3 F)}

2sin %A sin %B sin %C

sin s =

13. Given two sides of a spherical triangle, determine when the area is a
maximum.

14. Find the area of a regular polygon of a given number of sides formed by
arcs of great circles on the surface of a sphere; and hence deduce that, if o be
the angular radius of a small circle, its area is to that of the whole surface of

the sphere as versin « is to 2.
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15. A, B, C are the angular points of a spherical triangle; A’, B’, C’ are the
middle points of the respectively opposite sides. If E be the spherical excess of
the triangle, shew that

Eo cos A'B'  cos B'C'  cosC'A’

1 1 1
oS 5¢ cos 5a cos 5b

(SIS

COSs

16. If one of the arcs of great circles which join the middle points of the
sides of a spherical triangle be a quadrant, shew that the other two are also

quadrants.
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IX

ON CERTAIN
APPROXIMATE
FORMULA.

104. We shall now investigate certain approximate formulee which are often
useful in calculating spherical triangles when the radius of the sphere is large

compared with the lengths of the sides of the triangles.

105. Given two sides and the included angle of a spherical triangle, to find the

angle between the chords of these sides.

Let AB, AC be the two sides of the triangle ABC; let O be the centre of
the sphere. Describe a sphere round A as a centre, and suppose it to meet AQO,
AB, AC at D, E, F respectively. Then the angle EDF is the inclination of the

81
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planes OAB, OAC, and is therefore equal to A. From the spherical triangle
DEF

cos EF = cos DE cos DF + sin DE sin DF cos A;
and DE =1L(r—¢), DF = }(m—Db);

therefore cos EF = sin %b sin %c + cos %b cos %c cos A.

If the sides of the triangle are small compared with the radius of the sphere,

EF will not differ much from A; suppose FF = A — 6, then approximately

cos EF = cos A + 0sin A;

and sin 1bsin 2¢ = sin® 1(b+ ¢) — sin® 2 (b — ¢),

cosibcos e = cos® +(b+c) —sin® 1 (b — ¢);

therefore

cos A+ 0sin A = sin® 2(b+ ¢) —sin® 1 (b —¢)
+ {1 —sin® 1(b+¢) —sin® 1 (b — c)}cosA;

therefore
fsin A = (1 — cos A) sin® 2(b+ ¢) — (1 + cos A) sin® (b — ¢),
therefore 0 = tan 3 A sin? $(b+c)—cot 34 sin? 1(b—c).

This gives the circular measure of 8; the number of seconds in the angle is
found by dividing the circular measure by the circular measure of one second,
or approximately by the sine of one second (Plane Trigonometry, Art. 123). If
the lengths of the arcs corresponding to a and b respectively be o and 3, and

r the radius of the sphere, we have ¢ and — as the circular measures of a and
r r
e
b respectively; and the lengths of the sides of the chordal triangle are 2r sin o
r
and 2r sing respectively. Thus when the sides of the spherical triangle and
r

the radius of the sphere are known, we can calculate the angles and sides of the

chordal triangle.
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106. Legendre’s Theorem. If the sides of a spherical triangle be small compared
with the radius of the sphere, then each angle of the spherical triangle exceeds by
one third of the spherical excess the corresponding angle of the plane triangle,

the sides of which are of the same length as the arcs of the spherical triangle.

Let A, B, C be the angles of the spherical triangle; a, b, ¢ the sides; r the
radius of the sphere; «, (3, v the lengths of the arcs which form the sides, so

B . .
that —, —, — are the circular measures of a, b, ¢ respectively. Then
r’r’or
cosa — cosbcosc
cos A = . - ;
sinbsin ¢
X o2 . at
now cosa=1— —+—— ...
2r2  24rt ’
) a? N
sina=—— — +....
r  6r3

Similar expressions hold for cos b and sin b, and for cos ¢ and sin ¢ respectively.

Hence, if we neglect powers of the circular measure above the fourth, we have
2 4 2 4 2 4
T (TR . A (I I |
2r2  24rt 2r2  24r4 2r2 247t
2 2
By B\ ({_ 2
r2 672 612

%(52 +97—a?) + g (et = B =" - 68%y7)
By (1 B+ 72)

cos A =

r2 612
1 2, 2 2 2 a2 2 2.2 B*+~°
== - i 1
55 {/3 Tyt —at o5 (et = 7= =657 p 14—
BP0l . ad 4 B 4 4d — 20262 — 28242 — 24202
B 2By 243yr? -

Now let A’, B’, C’ be the angles of the plane triangle whose sides are «, 3,
~ respectively; then

cos A’ = 762 +7° -
28y
2 Al
A
thus cos A =cos A’ — Brysin” A .

672
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Suppose A = A’ + 0; then

cos A = cos A’ — fsin A’ approximately;

pysinA” S
6r2  3r2’

where S denotes the area of the plane triangle whose sides are «, 8, 7. Similarly

therefore 0=

S S
Y _ .
B—B+3T2andC C’—|—3T27

hence approximately

S

R
r2

A+B+C:A’+B’+C’+%:w+

2
triangle, and thus the theorem is established.

S
therefore — is approximately equal to the spherical excess of the spherical
r

It will be seen that in the above approximation the area of the spherical
triangle is considered equal to the area of the plane triangle which can be formed

with sides of the same length.

107. Legendre’s Theorem may be used for the approximate solution of spher-
ical triangles in the following manner.

(1) Suppose the three sides of a spherical triangle known; then the values of
a, B3, v are known, and by the formulae of Plane Trigonometry we can calculate
S and A’, B, C'; then A, B, C are known from the formulze.

S S S
A=A +—, B=B+-—, C=C+ —.
+ 3r2’ + 3r2’ + 3r2
(2) Suppose two sides and the included angle of a spherical triangle known,

for example A, b, c. Then

S = %57 sin A’ = %B’y sin A approximately.
/. , S : :
Then A’ is known from the formula A’ = A — 3,2 Thus in the plane triangle
r
two sides and the included angle are known; therefore its remaining parts can
be calculated, and then those of the spherical triangle become known.

(3) Suppose two sides and the angle opposite to one of them in a spherical
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triangle known, for example A, a, b. Then

B . B

sin B’ = o, sin A = o sin A approximately;
and C' =7 — A’ — B' = 7 — A— B’ approximately; then S = 1a3sin C’. Hence
A’ is known and the plane triangle can be solved, since two sides and the angle
opposite to one of them are known.
(4) Suppose two angles and the included side of a spherical triangle known,
for example A, B, c.

v*sin A’sin B"  4?sin Asin B

Th = =
en S 2sin(A’4+ B’)  2sin(A+ B)

nearly.

Hence in the plane triangle two angles and the included side are known.

(5) Suppose two angles and the side opposite to one of them in a spherical

triangle known, for example A, B, a. Then

C'=n—-A - B =7 — A~ B, approximately, and

B o2 sin B’ sin C’
~ 2sin(B' + )’

which can be calculated, since B’ and C’ are approximately known.

108. The importance of Legendre’s Theorem in the application of Spherical
Trigonometry to the measurement of the Earth’s surface has given rise to various
developments of it which enable us to test the degree of exactness of the approx-
imation. We shall finish the present Chapter with some of these developments,
which will serve as exercises for the student. We have seen that approximately
the spherical excess is equal to ok and we shall begin with investigating a closer

approximate formula for the spherical excess.

109. To find an approximate value of the spherical excess.

Let E denote the spherical excess; then

1 sin %asin%bsinC
sin - F = £ ;
2 Cos 5¢
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therefore approximately

2 2 2\ !
in 1E — sin oY a B g
S §E = S1ln C@ (1 — 247"2) (1 — 247’2> (1 — 87‘2>

o (14 3w,

= sin 04—7“2 + 21y ;
therefore E =sin C’% (1 + W) ) (1)
and sin C' = sin (C” + ;,E> =sinC’ + +Ecos C'
:sinC'JrW%:sinC' <1+W>. (2)
From (1) and (2)
E = sinC'% <1—|— W)

Hence to this order of approximation the area of the spherical triangle ex-

2 2 2
ceeds that of the plane triangle by the fraction % of the latter.
r

in A
110. 7o find an approzimate value of s.m .
sin B

SinA  sina

SinB  sinb’

a2 044
1 — 4+ =
sind ( 62 " 120r4>

hence approximately nB ; ( iz 5 )

T2 T 1200

a2 ot 2 232 4 4
1 5+ 1T 52 54 o 1T 6 4
6r 120r 6r 36r 120r 36r

+

52 _ 0[2 a4 _ 54 52(62 _ a2)
{1 + 612 12074 + 3674
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o« B2 — o2 76% — 30
_,8{1+ 612 (H 6072 )}

111. To express cot B — cot A approximately.

1 sin B
_ - _ A):
Cot B —cot A ) (cos B A O );
hence, approximately, by Art. 110,
2 _ p2
cot B —cot A = SinB(COSB - gcosA - ga 67’25 cos A).

Now we have shewn in Art. 106, that approximately

B2 442 — a2 . at 4 B4t — 20282 — 26247 — 29202
283~ 243yr? ’
o2 2

cos A =

therefore  cos B — é cos A = approximately,
e

ay
a2—52_a2—6252+72—a2
aysinB  avysin B 1272

_012—52 1_62"’_’}’2_0‘2
"~ aysinB 1272 '

and cot B — cot A =

112. The approximations in Arts. 109 and 110 are true so far as terms involv-
ing r#; that in Art. 111 is true so far as terms involving 72, and it will be seen
that we are thus able to carry the approximations in the following Article so far

as terms involving 7.

113. To find an approximate value of the error in the length of a side of a

spherical triangle when calculated by Legendre’s Theorem.

Suppose the side 8 known and the side « required; let 3u denote the spherical

(A —
excess which is adopted. Then the approximate value M is taken for
sin(B — p)
B(A—n)

the side of which « is the real value. Let x = o — ; we have then to

sin(B — )
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find x approximately. Now approximately

2
. B
sin(A — ) SlIlA—,uCOSA—;SlnA

(B — 5
sin 2 sin B — pcos B — % sin B

. 2 2\ —1
= sin A (1,ucotA “) <1,ucotB M)

sin B 2 2
in A

= EEB {1+ p(cot B — cot A) + p* cot B(cot B — cot A) }
sinA  psin A

=~ snB + - (cot B — cot A)(1 + pcot B).

Also the following formulae are true so far as terms involving 72 :

sinA_a(1+ﬂ2_a2>’

sihnB S 672
2 _ B2 2 2 2
cot B—cot A 0 (1 BHT =Ty
aysin B 1272
a? 4% - B2
1 tB=1+ ——5—
+ pco + 12,2
Hence, approximately,
sin A a? — B2
t B —cot A)(1 tB) = ———.
sin B (co cot A)(1+ pcot B) Bvysin B
in A 2 _ 02
Therefore rT=a-— stm — pla - 5)
sin B vsin B
a(B? —a?) 61 1 3a?-7p82
= - =+ ———, by Art. 110.
6 aysinB  r? + 6074 v AT
aysin B .
If we calculate p from the formula y = ——— we obtain

612

v a(B? —a?)(3a® — 78?%)

36074
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If we calculate p from an equation corresponding to (1) of Art. 109, we have

)

__aysinB 1+3527a2772
=62 2472
o(B? - 0?)(0? + B2 — 5+?)

theref = .
erefore x 5074

MISCELLANEOUS EXAMPLES.

1. If the sides of a spherical triangle AB, AC be produced to B’, C’, so
that BB’, CC" are the semi-supplements of AB, AC respectively, shew that the

arc B'C’ will subtend an angle at the centre of the sphere equal to the angle
between the chords of AB and AC.

2. Deduce Legendre’s Theorem from the formula
. o, A sini(a+b—c)sini(c+a—0b)
n‘ — = .
R sin(b+c—a)sini(a+b+c)

3. Four points A, B, C, D on the surface of a sphere are joined by arcs of
great circles, and E, F' are the middle points of the arcs AC, BD: shew that

cos AB + cos BC + cosCD + cos DA = 4 cos AE cos BF cos F'E.

4. If a quadrilateral ABC' D be inscribed in a small circle on a sphere so that
two opposite angles A and C' may be at opposite extremities of a diameter, the

sum of the cosines of the sides is constant.

5. In a spherical triangle if A = B = 2C, shew that
¢ con e+ 2)
cosacos 5 =cos(c+ 5 ).

6. ABC' is a spherical triangle each of whose sides is a quadrant; P is any

point within the triangle: shew that
cos PA cos PB cos PC + cot BPC cot CPAcot APB =0,

and tan ABPtan BCPtanCAP = 1.

7. If O be the middle point of an equilateral triangle ABC, and P any point
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on the surface of the sphere, then

1 (tan PO tan OA)?(cos PA 4 cos PB + cos PC)? =
cos? PA + cos® PB + cos?2 PC — cos PA cos PB — cos PB cos PC — cos PC cos PA.

8. If ABC be a triangle having each side a quadrant, O the pole of the

inscribed circle, P any point on the sphere, then
(cos PA + cos PB + cos PC)? = 3 cos® PO.

9. From each of three points on the surface of a sphere arcs are drawn on
the surface to three other points situated on a great circle of the sphere, and
their cosines are a, b, ¢; a’, b, ¢/; a”, b”, ¢’. Shew that ab”c’ + a’bc” + a"'b'c =

ab'd’ +a'b’c+a’'bc.
10. From Arts. 110 and 111, shew that approximately
. . S
log 8 = log « + log sin B — log sin A + ﬁ(cotA — cot B).
r
11. By continuing the approximation in Art. 106 so as to include the terms
involving 7%, shew that approximately

Bysin? A’ n By(a? — 382 — 3y?)sin® A’

A = cos A' -
cos A= oo 612 18074

12. From the preceding result shew that if A = A’ + 6 then approximately

90— By sin A’ 14+ 782 + 792 + o?
62 12072 '



X

GEODETICAL
OPERATIONS.

114. One of the most important applications of Trigonometry, both Plane
and Spherical, is to the determination of the figure and dimensions of the Earth
itself, and of any portion of its surface. We shall give a brief outline of the
subject, and for further information refer to Woodhouse’s Trigonometry, to the
article Geodesy in the English Cyclopedia, and to Airy’s treatise on the Figure
of the Earth in the Encyclopedia Metropolitana. For practical knowledge of the
details of the operations it will be necessary to study some of the published
accounts of the great surveys which have been effected in different parts of the
world, as for example, the Account of the measurement of two sections of the
Meridional arc of India, by Lieut.-Colonel Everest, 1847; or the Account of the
Observations and Calculations of the Principal Triangulation in the Ordnance

Survey of Great Britain and Ireland, 1858.

115. An important part of any survey consists in the measurement of a hor-
izontal line, which is called a base. A level plain of a few miles in length is
selected and a line is measured on it with every precaution to ensure accuracy.
Rods of deal, and of metal, hollow tubes of glass, and steel chains, have been
used in different surveys; the temperature is carefully observed during the op-
erations, and allowance is made for the varying lengths of the rods or chains,

which arise from variations in the temperature.

91
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116. At various points of the country suitable stations are selected and signals
erected; then by supposing lines to be drawn connecting the signals, the country
is divided into a series of triangles. The angles of these triangles are observed,
that is, the angles which any two signals subtend at a third. For example,
suppose A and B to denote the extremities of the base, and C' a signal at a
third point visible from A and B; then in the triangle ABC the angles ABC
and BAC are observed, and then AC' and BC' can be calculated. Again, let
D be a signal at a fourth point, such that it is visible from C and A; then the
angles ACD and CAD are observed, and as AC' is known, CD and AD can be

calculated.

117. Besides the original base other lines are measured in convenient parts
of the country surveyed, and their measured lengths are compared with their
lengths obtained by calculation through a series of triangles from the original
base. The degree of closeness with which the measured length agrees with the
calculated length is a test of the accuracy of the survey. During the progress
of the Ordnance Survey of Great Britain and Ireland, several lines have been
measured; the last two are, one near Lough Foyle in Ireland, which was measured
in 1827 and 1828, and one on Salisbury Plain, which was measured in 1849. The
line near Lough Foyle is nearly 8 miles long, and the line on Salisbury Plain is
nearly 7 miles long; and the difference between the length of the line on Salisbury
Plain as measured and as calculated from the Lough Foyle base is less than 5

inches (An Account of the Observations ... page 419).

118. There are different methods of effecting the calculations for determining
the lengths of the sides of all the triangles in the survey. One method is to use
the exact formulee of Spherical Trigonometry. The radius of the Earth may be
considered known very approximately; let this radius be denoted by r, then if o
be the length of any arc the circular measure of the angle which the arc subtends

@
at the centre of the earth is —. The formulae of Spherical Trigonometry gives
r
e @
expressions for the trigonometrical functions of —, so that — may be found
r r

and then «. Since in practice Y s always very small, it becomes necessary to
pay attention to the methods otzn securing accuracy in calculations which involve
the logarithmic trigonometrical functions of small angles (Plane Trigonometry,
Art. 205).
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Instead of the exact calculation of the triangles by Spherical Trigonometry,
various methods of approximation have been proposed; only two of these meth-
ods however have been much used. One method of approximation consists in
deducing from the angles of the spherical triangles the angles of the chordal
triangles, and then computing the latter triangles by Plane Trigonometry (see
Art. 105). The other method of approximation consists in the use of Legendre’s
Theorem (see Art. 106).

119. The three methods which we have indicated were all used by Delambre
in calculating the triangles in the French survey (Base du Systéme Métrique,
Tome I11. page 7). In the earlier operations of the Trigonometrical survey of
Great Britain and Ireland, the triangles were calculated by the chord method;
but this has been for many years discontinued, and in place of it Legendre’s
Theorem has been universally adopted (An Account of the Observations ...
page 244). The triangles in the Indian Survey are stated by Lieut.-Colonel
Everest to be computed on Legendre’s Theorem. (An Account of the Measure-

ment ... page CLVIIL.)

120. If the three angles of a plane triangle be observed, the fact that their sum
ought to be equal to two right angles affords a test of the accuracy with which
the observations are made. We shall proceed to shew how a test of the accuracy
of observations of the angles of a spherical triangle formed on the Earth’s surface

may be obtained by means of the spherical excess.

121. The area of a spherical triangle formed on the Farth’s surface being
known in square feet, it is required to establish a rule for computing the spherical
excess in seconds.

Let n be the number of seconds in the spherical excess, s the number of
square feet in the area of the triangle, » the number of feet in the radius of the

Earth. Then if E be the circular measure of the spherical excess,

s = Er?,
nmw n
‘ b= - imately;
an 130.60.60 — 206265 2PProximately;
2
therefore nr

* = 206265
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Now by actual measurement the mean length of a degree on the Earth’s
surface is found to be 365155 feet; thus

mr
— = 365155.
T5p = 365155

With the value of r obtained from this equation it is found by logarithmic
calculation, that
logn =logs — 9.326774.

Hence n is known when s is known.

This formula is called General Roy’s rule, as it was used by him in the
Trigonometrical survey of Great Britain and Ireland. Mr Davies, however,
claims it for Mr Dalby. (See Hutton’s Course of Mathematics, by Davies, Vol. 11.
p. 47.)

122. In order to apply General Roy’s rule, we must know the area of the
spherical triangle. Now the area is not known ezactly unless the elements of the
spherical triangle are known exactly; but it is found that in such cases as occur
in practice an approximate value of the area is sufficient. Suppose, for example,
that we use the area of the plane triangle considered in Legendre’s Theorem,

instead of the area of the Spherical Triangle itself; then it appears from Art.
2 2 2
HIHY
2472
the former area, and this fraction is less than .0001, if the sides do not exceed

109, that the error is approximately denoted by the fraction

100 miles in length. Or again, suppose we want to estimate the influence of

errors in the angles on the calculation of the area; let the circular measure of

afsinC afsin(C + h) th

e Y T the
)

error then bears to the area approximately the ratio expressed by h cot C. Now

an error be h, so that instead of we ought to use
in modern observations A will not exceed the circular measure of a few seconds,

so that, if C' be not very small, hcot C' is practically insensible.

123. The following example was selected by Woodhouse from the triangles
of the English survey, and has been adopted by other writers. The observed
angles of a triangle being respectively 42° 2/ 32" 67° 55’ 39", 70° 1/ 48", the sum
of the errors made in the observations is required, supposing the side opposite

to the angle A to be 27404.2 feet. The area is calculated from the expression
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a? sin B sin C
2sin A
of the observed angles is 180° — 1”7, and as it ought to have been 180° + .23", it

follows that the sum of the errors of the observations is 1”.23. This total error

, and by General Roy’s rule it is found that n = .23. Now the sum

may be distributed among the observed angles in such proportion as the opinion
of the observer may suggest; one way is to increase each of the observed angles

by one-third of 1”.23, and take the angles thus corrected for the true angles.

124. An investigation has been made with respect to the form of a triangle,
in which errors in the observations of the angles will exercise the least influence
on the lengths of the sides, and although the reasoning is allowed to be vague
it may be deserving of the attention of the student. Suppose the three angles
of a triangle observed, and one side, as a, known, it is required to find the form
of the triangle in order that the other sides may be least affected by errors in
the observations. The spherical excess of the triangle may be supposed known
with sufficient accuracy for practice, and if the sum of the observed angles does
not exceed two right angles by the proper spherical excess, let these angles be
altered by adding the same quantity to each, so as to make their sum correct. Let
A, B, C be the angles thus furnished by observation and altered if necessary;
and let A, 0B and dC denote the respective errors of A, B and C. Then
0A + 6B + 6C = 0, because by supposition the sum of A, B and C' is correct.

Considering the triangle as approximately plane, the true value of the side c is
asin(C + 0C') asin(C + 6C)

—————— 7 that i
sin(A +0A4) ™ Gn(A - 0B — 60)

. Now approximately

sin(C' 4+ 6C) = sinC + §C cos C,  (Plane Trig. Chap. XI1.),
sin(A —dB — 6C) =sin A — (6B + 6C') cos A.

Hence approximately

asinC -1
= {1+6CcotC}{1~ (6B +6C) cot A}
asinC
= Sn A {1+5BcotA+5C(cotC+cotA)},

sin(A + C) sin B i
d cot t A= = tely.
and cot €'+ co sin Asin C' sin Asin C APPTOXIMALELy




96 GEODETICAL OPERATIONS.

Hence the error of ¢ is approximately

asin B asinC cos A

0B.
sin? A sin? A)

Similarly the error of b is approximately

asinCéB+ asinBcosA(sC.

sin® A sin® A

Now it is impossible to assign exactly the signs and magnitudes of the errors
6B and 0C, so that the reasoning must be vague. It is obvious that to make the
error small sin A must not be small. And as the sum of A, § B and dC is zero,
two of them must have the same sign, and the third the opposite sign; we may
therefore consider that it is more probable than any two as B and 6C have
different signs, than that they have the same sign.

If 6 B and §C have different signs the errors of b and ¢ will be less when cos A
is positive than when cos A is negative; A therefore ought to be less than a right
angle. And if B and §C' are probably not very different, B and C' should be
nearly equal. These conditions will be satisfied by a triangle differing not much
from an equilateral triangle.

If two angles only, A and B, be observed, we obtain the same expressions as
before for the errors in b and ¢; but we have no reason for considering that 6 B
and §C' are of different signs rather than of the same sign. In this case then the

supposition that A is a right angle will probably make the errors smallest.

125. The preceding article is taken from the Treatise on Trigonometry in the
Encyclopedia Metropolitana. The least satisfactory part is that in which it is
considered that § B and dC may be supposed nearly equal; for since §A + 6B +
6C = 0, if we suppose 0B and 6C' nearly equal and of opposite signs, we do
in effect suppose dA = 0 nearly; thus in observing three angles, we suppose
that in one observation a certain error is made, in a second observation the
same numerical error is made but with an opposite sign, and in the remaining

observation no error is made.

126. We have hitherto proceeded on the supposition that the Earth is a sphere;
it is however approximately a spheroid of small eccentricity. For the small

corrections which must in consequence be introduced into the calculations we
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must refer to the works named in Art. 114. One of the results obtained is that the
error caused by regarding the Earth as a sphere instead of a spheroid increases
with the departure of the triangle from the well-conditioned or equilateral form
(An Account of the Observations ... page 243). Under certain circumstances
the spherical excess is the same on a spheroid as on a sphere (Figure of the

Earth in the Encyclopedia Metropolitana, pages 198 and 215).

127. In geodetical operations it is sometimes required to determine the hori-
zontal angle between two points, which are at a small angular distance from the
horizon, the angle which the objects subtend being known, and also the angles

of elevation or depression.

<

B

D

Suppose OA and OB the directions in which the two points are seen from
O; and let the angle AOB be observed. Let OZ be the direction at right angles
to the observer’s horizon; describe a sphere round O as a centre, and let vertical
planes through OA and OB meet the horizon at OC and OD respectively: then
the angle COD is required.

Let AOB=0,COD =0+ x, AOC = h, BOD = k; from the triangle AZB

cos) —cos ZA cos ZB _ cos —sinh sink

cos AZB = sin ZA sin ZB a cosh cosk




98 GEODETICAL OPERATIONS.

and cos AZB = cos COD = cos(f + z); thus

cosf —sinh sink

cos(0 + ) = cosh cosk

This formula is exact; by approximation we obtain

cos — hk

cosf —xsinf = ———;
1— 3(h?+k?)

therefore zsin® = hk — 2(h* 4+ k*) cos 0, nearly,

2hk — (h? + k?)(cos®10 — sin® 10)
and T = -
2sin 6

=L(h+k)?tani0 — 1(h —k)*cot 16.

— 4

This process, by which we find the angle COD from the angle AOB, is called

reducing an angle to the horizon.



XI

ON SMALL VARIATIONS
IN THE PARTS OF A
SPHERICAL TRIANGLE.

128. It is sometimes important to know what amount of error will be intro-
duced into one of the calculated parts of a triangle by reason of any small error

which may exist in the given parts. We will here consider an example.

129. A side and the opposite angle of a spherical triangle remain constant:
determine the connexion between the small variations of any other pair of ele-
ments.

Suppose C' and c¢ to remain constant.

(1) Required the connexion between the small variations of the other sides.
We suppose a and b to denote the sides of one triangle which can be formed with
C and c as fixed elements, and a + da and b + db to denote the sides of another
such triangle; then we require the ratio of da to db when both are extremely

small. We have

cosc =cosa cosb+sina sinb cos C,
and cos ¢ = cos(a + da) cos(b + 6b) + sin(a + da) sin(b + 6b) cos C

also cos(a + da) = cosa — sin a da, nearly,

99
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and sin(a + da) = sina + cos a da, nearly,

with similar formulee for cos(b + db) and sin(b + 0b). (See Plane Trigonometry,
Chap. x11.) Thus

cosc = (cosa — sina da)(cosb — sin b db)

+ (sina + cosa da)(sinb + cos b db) cos C.

Hence by subtraction, if we neglect the product da, &b,

0 = da(sina cosb — cosa sinb cos C)

+ 0b(sinb cosa — cosb sina cos C);

this gives the ratio of da to db in terms of a, b, C. We may express the ratio more

simply in terms of A and B; for, dividing by sin asin b, we get from Art. 44,

'a cot B sinC + ,(S—bcotA sinC' = 0;
sina sinb

therefore da cos B + 6b cos A = 0.

(2) Required the connexion between the small variations of the other angles.
In this case we may by means of the polar triangle deduce from the result just
found, that
0A cosb+ 6B cosa = 0;

this may also be found independently as before.

(3) Required the connexion between the small variations of a side and the

opposite angle (4, a).

Here sin Asinc = sin C sina,

and sin(A + §A) sinc = sin C sin(a + da);
hence by subtraction

cos A sincdA =sinC cosada,

and therefore 0Acot A = dacota.
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(4) Required the connexion between the small variations of a side and the
adjacent angle (a, B).

We have cot C'sin B = cot ¢sina — cos B cosa;

proceeding as before we obtain

cot C cos B6B = cot ccosada + cos B sin ada + cos a sin B B;

therefore
(cot C cos B — cosasin B)dB = (cot ccosa + cos Bsina)da;
A b
therefore — C,OS 0B = C?S da;
sinC sinc
therefore 0B cos A= —dacotbsinB.

130. Some more examples are proposed for solution at the end of this Chapter;

as they involve no difficulty they are left for the exercise of the student.

EXAMPLES.

1. In a spherical triangle, if C' and ¢ remain constant while a and b receive

the small increments da and db respectively, shew that

da ob sin C'

+ =0 wh =—.
V(1 =n?sin®a) /(1 —n2sin?b) W T e

2. If C and c remain constant, and a small change be made in a, find the
consequent changes in the other parts of the triangle. Find also the change in

the area.

3. Supposing A and ¢ to remain constant, prove the following equations,

connecting the small variations of pairs of the other elements:

sinC'éb = sinadB, dbsinC = —6Ctana, datanC = §Bsina,
datanC = —6C'tana, dbcosC =da, OBcosa= —0C.

4. Supposing b and ¢ to remain constant, prove the following equations
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connecting the small variations of pairs of the other elements:

0Btan C' = §C'tan B, dacot C = —iBsina,
da = §Asin csin B, dAsin BcosC = —)Bsin A.

5. Supposing B and C to remain constant, prove the following equations

connecting the small variations of pairs of the other elements:

dbtanc = dctanb, dAcotc=dbsin A,
0A = dasinbsin C, dasin B cosc = dbsin A.

6. If A and C are constant, and b be increased by a small quantity, shew
that a will be increased or diminished according as c is less or greater than a

quadrant.



XI1

ON THE CONNEXION
OF FORMULA IN PLANE
AND SPHERICAL
TRIGONOMETRY.

131. The student must have perceived that many of the results obtained
in Spherical Trigonometry resemble others with which he is familiar in Plane
Trigonometry. We shall now pay some attention to this resemblance. We shall
first shew how we may deduce formulee in Plane Trigonometry from formulee in
Spherical Trigonometry; and we shall then investigate some theorems in Spheri-
cal Trigonometry which are interesting principally on account of their connexion

with known results in Plane Geometry and Trigonometry.

132. From any formula in Spherical Trigonometry involving the elements of
a triangle, one of them being a side, it is required to deduce the corresponding

formula in Plane Trigonometry.

Let a, B, v be the lengths of the sides of the triangle, r the radius of the

@
sphere, so that —, —, Y are the circular measures of the sides of the triangle;
roror
. « . . .
expand the functions of —, —, J which occur in any proposed formula in powers
rorr

103
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of

limiting form of the proposed formula will be a relation in Plane Trigonometry.

respectively; then if we suppose 7 to become indefinitely great, the

) )

2[R

B
r’or
For example, in Art. 106, from the formula

cosa — cosbceosc
cos A =

sinbsin ¢
we deduce

B2 42— 2 +a4+ﬁ4+74—2a252—2ﬁ272—272a2
26 24517

cos A = + ..

now suppose r to become infinite; then ultimately

2 2 2
cosA= D Fr =
2y

and this is the expression for the cosine of the angle of a plane triangle in terms
of the sides.

Again, in Art. 110, from the formula

sinA sina

sinB  sinb
sind o af?—a?)

ded -2
e deciee snB B 657

+ ...

now suppose r to become infinite; then ultimately

sind  «
simnB B’

that is, in a plane triangle the sides are as the sines of the opposite angles.

133. 7o find the equation to a small circle of the sphere.
The student can easily draw the required diagram.

Let O be the pole of a small circle, S a fixed point on the sphere, SX a
fixed great circle of the sphere. Let OS = o, OSX = §3; then the position of O
is determined by means of these angular co-ordinates @ and 8. Let P be any
point on the circumference of the small circle, PS = 6, PSX = ¢, so that § and
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¢ are the angular co-ordinates of P. Let OP = r. Then from the triangle OSP
cosr = cos acos f + sin asin 0 cos(¢p — B); (1)

this gives a relation between the angular co-ordinates of any point on the cir-
cumference of the circle.

If the circle be a great circle then r = g; thus the equation becomes
0 = cosacos @ + sinasin 6 cos(¢p — 3). (2)

It will be observed that the angular co-ordinates here used are analogous to
the latitude and longitude which serve to determine the positions of places on

the Earth’s surface; 0 is the complement of the latitude and ¢ is the longitude.

134. Equation (1) of the preceding Article may be written thus:

cost ( cos? Q + sin? Q
2 2

0 0 06 0
= cos (COS2 5~ sin? 2> + 2sin asin 5C085 cos(¢ — B).
. 50
Divide by cos 3 and rearrange; hence
50 0 .
tan i(cosr + cosa) — 2tan 3 sin accos(¢p — ) + cosr — cosa = 0.

0 6 0
Let tan 31 and tan 52 denote the values of tan 3 found from this quadratic
equation; then by Algebra, Chapter XXII.
o  cosr —cosa a+r a—r

1
tan —tan — = ———— = tan —— tan
2 2 COST + CcoS v 2 2

0 0
Thus the value of the product tan 51 tan 52 is independent of ¢; this result
corresponds to the well-known property of a circle in Plane Geometry which is

demonstrated in Euclid 111. 36 Corollary.

135. Let three arcs OA, OB, OC meet at a point. From any point P in OB
draw PM perpendicular to OA, and PN perpendicular to OC. The student
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can easily draw the required diagram.

Then, by Art. 65,

sin PM = sinOPsin AOB, sin PN = sin OP sin COB;

sin PM  sin AOB
sin PN = sinCOB’

therefore

Thus the ratio of sin PM to sin PN is independent of the position of P on
the arc OB.

136. Conversely suppose that from any other point p arcs pm and pn are

drawn perpendicular to OA and OC respectively; then if

sinpm _ sin PM

sinpn  sin PN’

it will follow that p is on the same great circle as O and P.

137. From two points P; and P, arcs are drawn perpendicular to a fixed arc;
and from a point P on the same great circle as P; and P, a perpendicular
is drawn to the same fixed arc. Let PP; = 0y and PP, = 65; and let the
perpendiculars drawn from P, P;, and P, be denoted by x, 1 and zs. Then
will

sin 0, sin 01

SINY = ————— SINXq + m

sin(01 + 92) St L2

Let the arc P, P, produced if necessary, cut the fixed arc at a point O; let «
denote the angle between the arcs. We will suppose that P; is between O and
P,, and that P is between P; and Ps.

Then, by Art. 65,

sinz) = sinasin OP; = sinasin(OP — 6;)
= sin a(sin OP cos §; — cos OP sin 01 );
sinzy = sinasin OPy = sinasin(OP + 63)

= sin a(sin OP cos 2 + cos OP sin 0y).
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Multiply the former by sin 5, and the latter by sin 6, and add; thus

sin g sin 21 + sin 61 sin 25 = sin(f; + 0) sin asin OP

= sin(f; + 02) sin x.

The student should convince himself by examination that the result holds
for all relative positions of P, P; and P», when due regard is paid to algebraical

signs.

138. The principal use of Art. 137 is to determine whether three given points

are on the same great circle; an illustration will be given in Art. 146.

139. The arcs drawn from the angles of a spherical triangle perpendicular to

the opposite sides respectively meet at a point.

By

4]

D (4

Let C'F be perpendicular to AB. From F' suppose arcs drawn perpendicular
to C'B and CA respectively; denote the former by ¢ and the latter by 7. Then,

by Art. 135,
sin{ sin FCB
sinn  sin FCA’

But, by Art. 65,

cos B=cosCFsin FCB, cosA = cosCF'sin FCA,;

sin cos B cos B cos C
therefore § =

sinp cosA cosAcosC’

And if from any point in C'F arcs are drawn perpendicular to CB and CA
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respectively, the ratio of the sine of the former perpendicular to the sine of the

SInC o Art. 135,

latter perpendicular is equal to

sinn
In like manner suppose AD perpendicular to BC’; then if from any point in
AD arcs are drawn perpendicular to AC' and AB respectively, the ratio of the

sine of the former perpendicular to the sine of the latter perpendicular is equal
cos A cosC

cos Acos B’

Let CF and AD meet at P, and from P let perpendiculars be drawn on
the sides a, b, ¢ of the triangle; and denote these perpendiculars by x, y, z

respectively: then we have shewn that

sinx  cos BcosC

siny cosAcosC’

si cos AcosC
and that Y _ ;

sinz  cos Acos B’
hence it follows that

sinx  cos BcosC

sinz cosBcosA’

and this shews that the point P is on the arc drawn from B perpendicular to
AC.
Thus the three perpendiculars meet at a point, and this point is determined

by the relations

sinx siny sin z

cos BcosC  cosCcosA cosAcosB’

140. In the same manner it may be shewn that the arcs drawn from the angles
of a spherical triangle to the middle points of the opposite sides meet at a point;
and if from this point arcs z, y, z are drawn perpendicular to the sides a, b, ¢

respectively, ) ) )
sin x siny sin z

sin BsinC ~ sinCsinA ~ sinAsin B’

141. It is known in Plane Geometry that a certain circle touches the inscribed
and escribed circles of any triangle; this circle is called the Nine points circle:

see Appendiz to Fuclid, pages 317, 318, and Plane Trigonometry, Chapter XXIV.
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We shall now shew that a small circle can always be determined on the

sphere to touch the inscribed and escribed circles of any spherical triangle.

142. Let « denote the distance from A of the pole of the small circle inscribed
within a spherical triangle ABC. Suppose that a small circle of angular radius
p touches this inscribed circle internally; let 8 be the distance from A of the
pole of this touching circle; let v be the angle between arcs drawn from A to
the pole of the inscribed circle and the pole of the touching circle respectively.

Then we must have
cos(p — r) = cosa.cos 8 + sin asin 5 cos . (1)

Suppose that this touching circle also touches externally the escribed circle of
angular radius rq; then if ; denote the distance from A of the pole of this

escribed circle, we must have

cos(p 4+ r1) = cos ay cos 8 + sin a sin 5 cos 7. (2)

Similarly, if as and a3 denote the distances from A of the poles of the other
escribed circles, in order that the touching circle may touch these escribed circles

externally, we must also have
cos(p + ra) = cos az cos 8 + sin s sin B cos (g —7) , (3)
cos(p + r3) = cos as cos 8 + sin g sin B cos (g +fy) . (4)

We shall shew that real values of p, 3, and v can be found to satisfy these

four equations.

Eliminate cos+y from (1) and (2); thus

cos p(cosTsinp — cos r sin ) + sin p(sinr sin @y + sinrq sin @)

= cos B(cosasina; — cosay sina).  (5)

Suppose that the inscribed circle touches AB at the distance m from A, and

that the escribed circle of angular radius r; touches AB at the distance m; from
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A. Then, by Art. 65,
cot @ = cot m cos 3 CcoOSQ = cosTrcosm, sinr = sinasin 5;

COST cot « 1 A
therefore 8 = = — CcoS —.
sin o cosm sinm 2

Similarly we may connect a; and r1 with m;. Thus we obtain from (5)

A 1 1 . A
— +2smps1n§

cospcos — | — -
sinm  sinmy

2

A
= cos 3 cos 5 (cotm — cotmy);

therefore cosp(sinm; — sinm) + 2sin psin msinmy tan 3

= cos Bsin(my — m).

But by Arts. 89 and 90 we have m = s — a, and m; = s; therefore by the
aid of Art. 45 we obtain

+c

b
2 cos psin % cos + 2nsin p = cos Bsina, (6)

where n has the meaning assigned in Art. 46.

In like manner if we eliminate siny between (3) and (4), putting ms for s—e¢,

and mg for s — b, we obtain

cos p(sin ma + sin m3) — 2 sin p sin mg sin mg cot 5

= cos fsin(mg + ms),

a
therefore 2 cos psin 5 cos — 2nsin p = cos fsina. (7)

From (6) and (7) we get

.a . b . ¢
sin S sinSsins
tanp:M = itanR7 by Art. 92 (8)
n
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b c
COS — COS = COS p
and cos B = %. (9)

coS —
2

We may suppose that cos a4 is not less than cosg or cos g, so that we are
sure of a possible value of cos 8 from (9).

It remains to shew that when p and § are thus determined, all the four
fundamental equations are satisfied.

It will be observed that, p and 8 being considered known, cos~y can be found
from (1) or (2), and sin+y can be found from (3) or (4): we must therefore shew
that (1) and (2) give the same value for cos, and that (3) and (4) give the same
value for sin~y; and we must also shew that these values satisfy the condition
cos?y +sin?y = 1.

From (1) we have

cos psinr

cos 3 )
cotr + tanp — cosmcotr = sin 8 cos 7y,
Cos p

sin «

that is,

. . c

cos psin — cos(s — a) sin s cos 3 cos 3
sin s + sin %asin %bsin %c— a
n z
cos 3

= sin 8 cos;
this reduces to

. in(b + ) b c
cos psin — sin €) cos = cos =
P cos Lsin 2T ¢ 22 | _ . .
sin a =sinfcos~y :
n 2 2 20055

and it will be found that (2) reduces to the same; so that (1) and (2) give the
same value for cos~y.

In like manner it will be found that (3) and (4) agree in reducing to

. b c
co8 pcos o a c—b sin(c — b) cos 50085

cos — sin — a = sin B cos 7.
n 2 2 2 cos 3
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It only remains to shew that the condition cos? v + sin?~y = 1 is satisfied.

b c
COS = COS —
Put & for COSB, that is for #;
cosp cos 5

put X for cot {1 — kcos(s —a)}, and Y for cotri {1 — k cos s}.

Then (1) and (2) may be written respectively thus:
. A
(X cos p + sin p) sin 5= sin 3 cos 7, (10)
A
(Y cos p — sin p) Sin§ = sin S cos . (11)
From (10) and (11) by addition
. A .
(X +Y)sin 5 08P = 2sin B cos~y;
A
therefore  4sin? Bcos?y = (X% 4+ Y2 +2XY)sin? 3 cos? p. (12)
But from (10) and (11) by subtraction

(X —Y)cosp = —2sinp;
therefore (X2 +Y?)cos? p =4sin? p+ 2XY cos? p.

Substitute in (12) and we obtain

A
sin? B cos? vy = (sin® p + XY cos? p) sin? 7 (13)

Again, put
X1 for cot ro{1 — kcos(s — ¢)}, and Y7 for cot r3{1 — kcos(s — b)}.
Then (3) and (4) may be written respectively thus:

A
(X1 cos p — sin p) cos 5= sin 3 sin~, (14)

A
(Y1 cos p — sin p) cos =" sin 5 sin 7. (15)
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From (14) and (15) by subtraction
(X1 — Y1) cos g cos p = 2sin fsin~y,
and from (14) and (15) by addition,
(X1 4+ Y1) cosp = 2sinp,

whence n
sin? Bsin? v = (sin® p — X1Y; cos? p) cos® 3 (16)

Hence from (13) and (16) it follows that we have to establish the relation

A A
sin? B = sin® p + (XY sin? 5~ X1Y; cos? 2) cos? p.

But sin? 8 = 1 — cos? 8 = sin? p + cos? p — k? cos? p, so that the relation
reduces to A n
1 —k? = XY sin? 5~ X,Y; cos? 3

Now

XY sin g _ cotrcot r1{l — kcos s}{1 — kcos(s — a)}sin(s — b) sin(s — ¢)

sinbsin ¢

_ {1 — kcoss}{l — kcos(s — a)}.

sinbsin ¢

Similarly X7Y; cos? 4_ {1 = kcos(s = b)H1 = keos(s = )}
1t 2 sin bsin ¢ '

Subtract the latter from the former; then we obtain
" fcos(s—b N B B
sin bsin C{COS(S )+ cos(s —¢) —coss — cos(s —a)}
k2

sinbsin ¢

2% cos %
Ccos —
b— b
that is - - 2 cos €_ cos te
sinbsin ¢ 2 2

{cos s cos(s — a) — cos(s — b) cos(s — ¢)},
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k2 b+c+a b+c—a a+c—>b a+b—c
cos cos — cos cos
2 2 2 2

sinbsin ¢

that is

Asi b . ¢ b c

sin — sin — cos — cos — 2

k —-b b

2 _2 2 2, - sin? =2 _gin2 1 ,
sinbsin ¢ sinbsin ¢ 2

that is 1 — k2; which was to be shewn.

143. Thus the existence of a circle which touches the inscribed and escribed
circles of any spherical triangle has been established.

The distance of the pole of this touching circle from the angles B and C' of
the triangle will of course be determined by formulse corresponding to (9); and
thus it follows that

a ¢ a
COS — COS = COS P COS — COS — COS P
2 2 d 2 2
2 an z ,
cos — cos 3
9 2

must both be less than unity.

144. Since the circle which has been determined touches the inscribed circle
internally and touches the escribed circles externally, it is obvious that it must
meet all the sides of the spherical triangle. We will now determine the position
of the points of meeting.

Suppose the touching circle intersects the side AB at points distant A and
1 respectively from A.

Then by Art. 134 we have

a b c

A _ COS — — COS = COS —

tan = tan & = S5P cos f = 2 2 2. (1)
2 2  cosp+cospf

a n b c
€OS — + COS — COoSs —
2 2 2

In the same way we must have by symmetry

a c
c— A C_u_cosﬁ—cosicosi. @

+ a c
(¢0)] B (¢0)] B COs B
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A
From (2), when we substitute the value of tan 5 tan % given by (1), we obtain

b b
A " cos? g — cos? 3 cos? g + cos? 3 sin? g
tan = + tan = =
) +tan 2 b . ¢ a b c
cos — sin = | cos = + cos = cos =
2 2 2 2 2
a b c b . c
€08 5 — €08 5 €08 5 cos 5 sin o
- b . ¢ + a b c’ (3)
cos = sin — COS = + COS = COS =
2 2 2 2 2
From (1) and (3) we see that we may put
a b c
)\  COS_ — oS cos
tan 5 = 2 2c 2. (4)
cos 5 sin 5
e
cos = sin —
tan% = 2 2 . (5)

a n b c
COS — + COS — Cos —
2 2 2

Similar formulae of course hold for the points of intersection of the touching

circle with the other sides.

145. Let z denote the perpendicular from the pole of the touching circle on
AB; then

. o (A
sin z = sin sin 3 + v

. A A
=sinf sm;cos*y+cos,5s1nfy .
But from (2) and (3) of Art. 142 we have

cos psin — a b c
sin fcosy = ——= (Z—Sin281n2sin 2) ,
n
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. . b c a
where Z =sin(s — a) — cos ssin(s — a) cos 5 C08 5 sec o,

A
COS p COS — b
and sin Bsin~y = - 2 (Zl —singsin§sin ;) ,
. . b c a
where Zy = sin(s — b) — cos(s — ¢) sin(s — b) cos 5 c08 5 sec o
Therefore

A A b
sinz:COS’o ZsinQ—Jercosz—fsingsinfsinE .
n 2 2 2 2 2

A
Now Z sin? 3

sin(s — a) sin(s — b) sin(s — c) {

b c a
- - 1 — cosscos = cos = sec — »,
sinbsine 2

2 2

A
and Z; cos? 3

L ssin(s — a)sin(s — b b
_ Hns Sm(sjn b(sli)nsln(s ) {1 — cos(s — ¢) cos 5 cos g sec g} .

A A
Therefore 7 sin? 3 + 7 cos? 3

is equal to the product of

sin(s — a) sin(s — b)

sinbsin ¢

into

. . b ¢ af. .
sin(s — ¢) + sin s — cos 5 cos 5 sec o sin(s — ¢) cos s + cos(s — ¢) sin s

c b c a .
COS 5 — €O 5 €08 3 sec o sin(2s — c)}

2 2

_ sin(s - a) S.IH(S —b) 9 sin & +b
sinbsin ¢ 2

_ sin(s —a) Sm(i i) {2 sin & b_ sin(a + b) cos b sec a,}
2sin bsin 3 2 2 2
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. . . a+b a+b b
sin(s — a) sin(s — b) sin cos cos —
_ 2 ), 2 ")
= c a
sinbsin - cos =
2 2
b . b b
sin(s — a) sin(s — b) sin” a4 sin 3 sin(s — a) sin(s — b) sin® at
sin bsin - cos — 92 cos % cos b sin &
2 2 9

Therefore
. oa+b . .
. cosp . a . . 2 sin’ sin(s — a) sin(s — b)

sinz = sin — sin = sin - - -1

2 2 2 sin? = sinasinb

b A-B
=l inLsin 2sin S {2cos2 22 1 ; by (2) of Art. 54.
n 2 2 2 2
. cosp . a . b ¢
Thus sinz = sin o sin o sin 5 cos(A — B)

= sinpcos(A — B).

Similar expressions hold for the perpendiculars from the pole of the touching

circle on the other sides of the spherical triangle.

146. Let P denote the point determined in Art. 139; G the point determined
in Art. 140, and N the pole of the touching circle. We shall now shew that P,

G, and N are on a great circle.

Let x, y, z denote the perpendiculars from N on the sides a, b, ¢ respectively
of the spherical triangle; let z1, y1, 21 denote the perpendiculars from P; and

T2, Y2, 22 the perpendiculars from G. Then by Arts. 145, 139, and 140 we have

sinx siny sin z

cos(B—C) cos(C—A) cos(A—B)’

sin 1 sin 1 sin zq
cos BcosC  cosCcosA cosAcosB’

sin a9 sin s sin z9
sin BsinC  sinCsinA  sin Asin B’
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Hence it follows that

sinx =ty sinxy + to sin xo,
siny =t siny; + to sinys,

sin z = t1 sin 21 + t2 sin 29,

where t; and t, are certain quantities the values of which are not required for

our purpose.

Therefore by Art. 137 a certain point in the same great circle as P and G is
at the perpendicular distances z, y, z from the sides a, b, ¢ respectively of the

spherical triangle: and hence this point must be the point N.

147. The resemblance of the results which have been obtained to those which
are known respecting the Nine points circle in Plane Geometry will be easily

seen.

1
The result tanp = 3 tan R corresponds to the fact that the radius of the

Nine points circle is half the radius of the circumscribing circle of the triangle.

From equation (4) of Art. 144 by supposing the radius of the sphere to
b2 + c? — a?
become infinite we obtain A = +27: this corresponds to the fact that
c
the Nine points circle passes through the feet of the perpendiculars from the

angles of a triangle on the opposite sides.

From equation (5) of Art. 144 by supposing the radius of the sphere to
become infinite we obtain p = g: this corresponds to the fact that the Nine

points circle passes through the middle points of the sides of a triangle.
From Art. 145 by supposing the radius of the sphere to become infinite we
obtain z = %RCOS(A — B): this is a known property of the Nine points circle.
In Plane Geometry the points which correspond to the P, G, and N of Art.

146 are on a straight line.

148. The results which have been demonstrated with respect to the circle
which touches the inscribed and escribed circles of a spherical triangle are mainly
due to Dr Hart and Dr Salmon. See the Quarterly Journal of Mathematics,
Vol. V1. page 67.
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EXAMPLES.
— —A
1. From the formula sin a_ COS,S COS_(S ) deduce the expression
2 sin B sin C
24in BsinC
for the area of a plane triangle, namely %, when the radius of the

sphere is indefinitely increased.

2. Two triangles ABC, abc, spherical or plane, equal in all respects, differ

slightly in position: shew that
cos ABbcos BCccos CAa + cos ACccos CBbcos BAa = 0.

3. Deduce formula in Plane Trigonometry from Napier’s Analogies.

4. Deduce formula in Plane Trigonometry from Delambre’s Analogies.

A+ B C

b
= sin 5 cos deduce the area of a

c
5. From the formula cos = cos

plane triangle in terms of the sides and one of the angles.

6. What result is obtained from Example 7 to Chapter VI., by supposing

the radius of the sphere infinite?

7. From the angle C' of a spherical triangle a perpendicular is drawn to
the arc which joins the middle points of the sides a and b: shew that this
perpendicular makes an angle S — B with the side a, and an angle S — A with
the side b.

8. From each angle of a spherical triangle a perpendicular is drawn to the
arc which joins the middle points of the adjacent sides. Shew that these per-
pendiculars meet at a point; and that if z, y, z are the perpendiculars from this

point on the sides a, b, ¢ respectively,

sinx siny sin z

sin(S — B)sin(S — C)  sin(S — C)sin(S — A4)  sin(S — A)sin(S — B)’

9. Through each angle of a spherical triangle an arc is drawn so as to make
the same angle with one side which the perpendicular on the base makes with
the other side. Shew that these arcs meet at a point; and that if x, y, z are the

perpendiculars from this point on the sides a, b, ¢ respectively,

sin x siny sin z

cosA  cosB  cosC’
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10. Shew that the points determined in Examples 8 and 9, and the point N
of Art. 146 are on a great circle.

State the corresponding theorem in Plane Geometry.

11. If one angle of a spherical triangle remains constant while the adjacent

sides are increased, shew that the area and the sum of the angles are increased.

12. If the arcs bisecting two angles of a spherical triangle and terminated
at the opposite sides are equal, the bisected angles will be equal provided their
sum be less than 180°.

[Let BOD and COE denote these two arcs which are given equal. If the
angles B and C' are not equal suppose B the greater. Then CD is greater
than BE by Art. 58. And as the angle OBC is greater than the angle OCB,
therefore OC is greater than OB; therefore OD is greater than OFE. Hence the
angle ODC is greater than the angle OEB, by Example 11. Then construct
a spherical triangle BCF on the other side of BC, equal to CBE. Since the
angle ODC is greater than the angle OEB, the angle FDC' is greater than the
angle DFC’; therefore CD is less than CF, so that CD is less than BE. See
the corresponding problem in Plane Geometry in the Appendix to Euclid, page
317.]



XIII

POLYHEDRONS.

149. A polyhedron is a solid bounded by any number of plane rectilineal figures
which are called its faces. A polyhedron is said to be regular when its faces are

similar and equal regular polygons, and its solid angles equal to one another.

150. IfS be the number of solid angles in any polyhedron, F the number of its
faces, E the number of its edges, then S+ F = E + 2.

Take any point within the polyhedron as centre, and describe a sphere of
radius r, and draw straight lines from the centre to each of the angular points
of the polyhedron; let the points at which these straight lines meet the surface
of the sphere be joined by arcs of great circles, so that the surface of the sphere

is divided into as many polygons as the polyhedron has faces.

Let s denote the sum of the angles of any one of these polygons, m the
number of its sides; then the area of the polygon is 72{s — (m —2)7} by Art. 99.
The sum of the areas of all the polygons is the surface of the sphere, that is,

47r?. Hence since the number of the polygons is F', we obtain

dr=>"s—m> m+2Fm.

Now > s denotes the sum of all the angles of the polygons, and is therefore
equal to 2w x the number of solid angles, that is, to 27S; and > m is equal to

the number of all the sides of all the polygons, that is, to 2F, since every edge

121
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gives rise to an arc which is common to two polygons. Therefore
47 =278 — 2w E + 2F T,
therefore S+F=FE+2.

151. There can be only five reqular polyhedrons.
Let m be the number of sides in each face of a regular polyhedron, n the
number of plane angles in each solid angle; then the entire number of plane

angles is expressed by mF, or by nS, or by 2F; thus
mF =nS=2F, and S+ F =FE +2;

from these equations we obtain

4m 2mn 4n

2(m +n) —mn’ 2(m+n) —mn’ 2(m+n) —mn’

These expressions must be positive integers, we must therefore have 2(m-+n)

greater than mn; therefore

1 1 1
— + — must be greater than —;
mon 2

1 1
but n cannot be less than 3, so that — cannot be greater than 3’ and therefore
n

1 must be greater than 1; and as m must be an integer and cannot be less
‘gﬁan 3, the only admissible values of m are 3, 4, 5. It will be found on trial
that the only values of m and n which satisfy all the necessary conditions are
the following: each regular polyhedron derives its name from the number of its

plane faces.

min| S| E|F Name of regular Polyhedron.

3 13| 4| 6 | 4 | Tetrahedron or regular Pyramid.
4 13| 8 |12 | 6 | Hexahedron or Cube.

3 14| 6 | 12| 8 | Octahedron.

5 13120 | 30| 12 | Dodecahedron.
3 | 5] 12| 30 | 20 | Icosahedron.
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It will be seen that the demonstration establishes something more than the
enunciation states; for it is not assumed that the faces are equilateral and equian-
gular and all equal. It is in fact demonstrated that, there cannot be more than
five solids each of which has all its faces with the same number of sides, and all

its solid angles formed with the same number of plane angles.

152. The sum of all the plane angles which form the solid angles of any poly-
hedron is 2(S — 2)m.

For if m denote the number of sides in any face of the polyhedron, the sum
of the interior angles of that face is (m — 2)7 by Euclid 1. 32, Cor. 1. Hence the
sum of all the interior angles of all the faces is > (m — 2)m, that is > mn —2F'r,
that is 2(F — F)m, that is 2(S — 2)7.

153. To find the inclination of two adjacent faces of a regular polyhedron.

Let AB be the edge common to the two adjacent faces, C and D the centres
of the faces; bisect AB at F, and join CE and DF; CE and DE will be
perpendicular to AB, and the angle CED is the angle of inclination of the two
adjacent faces; we shall denote it by I. In the plane containing CE and DE
draw CO and DO at right angles to CE and DE respectively, and meeting
at O; about O as centre describe a sphere meeting OA, OC, OF at a, c, e
respectively, so that cae forms a spherical triangle. Since AB is perpendicular
to CE and DE, it is perpendicular to the plane CE D, therefore the plane AOB
which contains AB is perpendicular to the plane C'E'D; hence the angle cea of
the spherical triangle is a right angle. Let m be the number of sides in each
face of the polyhedron, n the number of the plane angles which form each solid
angle. Then the angle ace = ACE = 22—;; = %; and the angle cae is half one of

2r 7
the n equal angles formed on the sphere round a, that is, cae = — = —. From
n o n
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the right-angled triangle cae

cos cae = cos cOe sin ace,

. T ™ I\ . =w
that is cos— =cos | — — = | sin —;
n 2 2 m
] cos—
therefore sin = = .
2 .
sin —

154. To find the radii of the inscribed and circumscribed spheres of a regular
polyhedron.
Let the edge AB = a, let OC = r and OA = R, so that r is the radius of

the inscribed sphere, and R is the radius of the circumscribed sphere. Then

CE = AEcot ACE = 4 cot 1,
2 m

r=CFEtanCEO :CEtang = gCotztanz;

2 m 2
T T
also r = RcosaOc = Rcot eca cot eac = R cot — cot —;
m n
T T a I T
therefore R =rtan —tan — = 3 tan 3 tan —.

155. To find the surface and volume of a regular polyhedron.

2
ma 0
The area of one face of the polyhedron is cot —, and therefore the sur-
m
mFa?
face of the polyhedron is cot .
m

Also the volume of the pyramid which has one face of the polyhedron for
2

r
base and O for vertex is 3T cot E, and therefore the volume of the poly-
m
Fra? T
hedron is cot —.
m

156. To find the volume of a parallelepiped in terms of its edges and their

inclinations to one another.
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Let the edges be OA = a, OB = b, OC = ¢; let the inclinations be BOC = a,
COA = B, AOB = v. Draw C'E perpendicular to the plane AOB meeting it at
E. Describe a sphere with O as a centre, meeting OA, OB, OC, OF at a, b, c,
e respectively.

The volume of the parallelepiped is equal to the product of its base and
altitude = absin~y . CE = abcsinysincOe. The spherical triangle cae is right-
angled at e; thus

sin cOe = sin cOa sin cae = sin (3 sin cab,

and from the spherical triangle cab

/(1 — cos? a — cos® 3 — cos® y 4 2 cos acos 3 cos )

sin cab =

)

sin Bsin 7y

therefore the volume of the parallelepiped

= abey/(1 — cos® a — cos? B — cos® 7 + 2 cos a cos 3 cos ).

157. To find the diagonal of a parallelepiped in terms of the three edges which
1t meets and their inclinations to one another.

Let the edges be OA = a, OB = b, OC = c; let the inclinations be BOC = «
COA = 8, AOB = ~. Let OD be the diagonal required, and let OF be the
diagonal of the face OAB. Then

OD? = OE* + ED* 4 20E . ED cos COE
=a® + b + 2abcosy + ¢ + 2cOE cos COE.

Describe a sphere with O as centre meeting OA, OB, OC, OF at a, b, ¢, €
respectively; then (see Example 14, Chap. 1v.)
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cos cObsin aOe + cos cOa sin bOe
sin aOb

cos asin aOe + cos 3 sin bOe

cos cOe =

)

sin 7y
therefore

2cOFE
OD? = a® + b*> + ¢® + 2abcosy + ¢

siny

(cos asin aOe + cos (sin bOe),

and OFE sinaOe = bsin v, OFE sinbOe = asiny;
therefore  OD? = a? + b% 4 ¢? + 2abcosy + 2bccos o + 2ca cos S.

158. To find the volume of a tetrahedron.

A tetrahedron is one-sixth of a parallelepiped which has the same altitude
and its base double that of the tetrahedron; thus if the edges and their incli-
nations are given we can take one-sixth of the expression for the volume in

Art. 156. The volume of a tetrahedron may also be expressed in terms of its six
edges; for in the figure of Art. 156 let BC =a', CA =1V, AB = ¢; then

b2 4 2 — g2 24 g2 — 2 a2 4+ b2 — 2
cosq = ———, coSf=———— coSY=———,
2ab

2bc 2ca

and if these values are substituted for cosa, cos 3, and cos+y in the expression
obtained in Art. 156, the volume of the tetrahedron will be expressed in terms
of its six edges.

The following result will be obtained, in which V' denotes the volume of the

tetrahedron,

144 V2 — —a/2b/20'2
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—|—a2a'2(b’2 +C,2 _a/2) +b2b/2(cl2 +a/2 _ b/2) -‘1-020/2(&/2 +b/2 _ 0/2)

_a/2(a2 —b2)(a2 _02) _b/2(b2 —02)(b2 _a2) —6’2(62 —a2)(c2 —b2).

Thus for a regular tetrahedron we have 144 V2 = 2a5.

159. If the vertex of a tetrahedron be supposed to be situated at any point
in the plane of its base, the volume vanishes; hence if we equate to zero the
expression on the right-hand side of the equation just given, we obtain a rela-
tion which must hold among the six straight lines which join four points taken
arbitrarily in a plane.

Or we may adopt Carnot’s method, in which this relation is established
independently, and the expression for the volume of a tetrahedron is deduced
from it; this we shall now shew, and we shall add some other investigations
which are also given by Carnot.

It will be convenient to alter the notation hitherto used, by interchanging

the accented and unaccented letters.

160. To find the relation holding among the siz straight lines which join four
points taken arbitrarily in a plane.

Let A, B, C, D be the four points. Let AB = ¢, BC' = a, CA = b; also let
DA=d,DB=V,DC=C.

If D falls within the triangle ABC', the sum of the angles ADB, BDC, CDA

is equal to four right angles; so that
cos ADB = cos (BDC + CDA).
Hence by ordinary transformations we deduce
1 = cos? ADB + cos®> BDC + cos> CDA — 2 cos ADB cos BDC cos CDA.

If D falls without the triangle ABC, one of the three angles at D is equal to

the sum of the other two, and the result just given still holds.

a/2 + le _ c2
Now cos ADB = gy and the other cosines may be expressed in a
a
similar manner; substitute these values in the above result, and we obtain the
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required relation, which after reduction may be exhibited thus,

0= —a?h?c?
+a’2a2(b2 - a2) +b’2b2(02 +a?— b2) + 0/202(a2 52— 02)

7012(01/2 o b/2)(a/2 o C/2) o b2(bl2 o 0/2)(bI2 o (ll2) o 62(0/2 o a/2)(cl2 o b/2).

161. To express the volume of a tetrahedron in terms of its sixz edges.

Let a, b, ¢ be the lengths of the sides of a triangle ABC' forming one face of
the tetrahedron, which we may call its base; let a’, b, ¢’ be the lengths of the
straight lines which join A, B, C respectively to the vertex of the tetrahedron.
Let p be the length of the perpendicular from the vertex on the base; then the
lengths of the straight lines drawn from the foot of the perpendicular to A, B, C'
respectively are \/(a’? — p?), /(b'? — p?), v/(¢'* — p?). Hence the relation given
in Art. 160 will hold if we put /(a’? — p?) instead of o, \/(b'?> — p?) instead of
b, and /(c’? — p?) instead of ¢/. We shall thus obtain

p?(2a%6% + 2% + 2c%a® — a* — b — &) = —a?b? P
+a'2a2(b2 +C2 —(12) +b/2b2(62 —|—CL2 _ b2) _|_C/262(a2 —|—b2 _CZ)

_ a2(a/2 _ b/2)(a/2 _ 012) _ bQ(b/Q _ 6/2)(b/2 _ a/2) _ 62(0/2 _ a/2)(c/2 _ b/2).

The coefficient of p? in this equation is sixteen times the square of the area
of the triangle ABC'; so that the left-hand member is 144 V2, where V denotes

the volume of the tetrahedron. Hence the required expression is obtained.

162. To find the relation holding among the six arcs of great circles which join
four points taken arbitrarily on the surface of a sphere.

Let A, B, C, D be the four points. Let AB = v, BC = a, CA = j3; let
DA=d,DB=p" DC=+.

As in Art. 160 we have

1 = cos? ADB + cos? BDC + cos? CDA — 2 cos ADB cos BDC cos CDA.

Now cos ADB — cosy — cosa’ cos 3/

— , and the other cosines may be ex-
sin o’ sin
pressed in a similar manner; substitute these values in the above result, and we
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obtain the required relation, which after reduction may be exhibited thus,

1 = cos? a + cos? § + cos? v + cos? @’ + cos® B’ + cos? 4/
— cos? accos® o — cos? fcos® B — cos® v cos®
— 2(cos a.cos 3 cosy + cos a cos 3 cos '
+ cos Bcosa’ cosy’ + cosycosa’ cos B)
+ 2(cos a.cos B cos a’ cos B’ + cos 8 cosy cos B cos '

+ cos 7y cos acosy cos ).

163. To find the radius of the sphere circumscribing a tetrahedron.

Denote the edges of the tetrahedron as in Art. 161. Let the sphere be
supposed to be circumscribed about the tetrahedron, and draw on the sphere
the six arcs of great circles joining the angular points of the tetrahedron. Then
the relation given in Art. 162 holds among the cosines of these six arcs.

Let r denote the radius of the sphere. Then

a2

T g2

« a2
cosa:172sin2—:172(—> =1
2 2r
and the other cosines may be expressed in a similar manner. Substitute these
values in the result of Art. 162, and we obtain, after reduction, with the aid of

Art. 161,

4x144V?2r2 =

2a2b2a/2b/2 + 2b262b/26/2 + 202a20/2a/2 _ a4a/4 _ b4b/4 _ C4CI4.

The right-hand member may also be put into factors, as we see by recollecting
the mode in which the expression for the area of a triangle is put into factors.

Let aa’ + bb' + cc’ = 20; then

36 V2r? = g(0 — ad') (o — bb')(0 — ).

EXAMPLES.

1. If I denote the inclination of two adjacent faces of a regular polyhedron,

1 _1

shew that cos I = 5 in the tetrahedron, = 0 in the cube, = —3 in the octahedron,
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= —$/5 in the dodecahedron, and = —%+/5 in the icosahedron.

2. With the notation of Art. 153, shew that the radius of the sphere which
touches one face of a regular polyhedron and all the adjacent faces produced is

1 m 1
5acot o cot 5 1.
3. A sphere touches one face of a regular tetrahedron and the other three

faces produced: find its radius.

4. If a and b are the radii of the spheres inscribed in and described about a

regular tetrahedron, shew that b = 3a.

5. If a is the radius of a sphere inscribed in a regular tetrahedron, and R

the radius of the sphere which touches the edges, shew that R? = 3a2.

6. If a is the radius of a sphere inscribed in a regular tetrahedron, and R’
the radius of the sphere which touches one face and the others produced, shew
that R’ = 2a.

7. If a cube and an octahedron be described about a given sphere, the sphere

described about these polyhedrons will be the same; and conversely.

8. If a dodecahedron and an icosahedron be described about a given sphere,

the sphere described about these polyhedrons will be the same; and conversely.

9. A regular tetrahedron and a regular octahedron are inscribed in the same
sphere: compare the radii of the spheres which can be inscribed in the two

solids.

10. The sum of the squares of the four diagonals of a parallelepiped is equal

to four times the sum of the squares of the edges.

11. If with all the angular points of any parallelepiped as centres equal
spheres be described, the sum of the intercepted portions of the parallelepiped

will be equal in volume to one of the spheres.

12. A regular octahedron is inscribed in a cube so that the corners of the
octahedron are at the centres of the faces of the cube: shew that the volume of

the cube is six times that of the octahedron.

13. It is not possible to fill any given space with a number of regular poly-

hedrons of the same kind, except cubes; but this may be done by means of
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tetrahedrons and octahedrons which have equal faces, by using twice as many

of the former as of the latter.

14. A spherical triangle is formed on the surface of a sphere of radius p; its
angular points are joined, forming thus a pyramid with the straight lines joining

them with the centre: shew that the volume of the pyramid is
%p?’\/(tan rtanry tanrg tanrs),

where r, r1, T2, 73 are the radii of the inscribed and escribed circles of the

triangle.

15. The angular points of a regular tetrahedron inscribed in a sphere of
radius r being taken as poles, four equal small circles of the sphere are described,
so that each circle touches the other three. Shew that the area of the surface

bounded by each circle is 2772 [ 1 — — |.
V3
16. If O be any point within a spherical triangle ABC, the product of the

sines of any two sides and the sine of the included angle

= sin AO sin BO sin CO{cot AOsin BOC

+ cot BOsin COA + cot COsin AOB}.
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X1V

ARCS DRAWN TO FIXED
POINTS ON THE
SURFACE OF A SPHERE.

164. In the present Chapter we shall demonstrate various propositions relating
to the arcs drawn from any point on the surface of a sphere to certain fixed points

on the surface.

165. ABC is a spherical triangle having all its sides quadrants, and therefore
all its angles right angles; T" is any point on the surface of the sphere: to shew
that

cos? TA+ cos? TB + cos> TC = 1.

133
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By Art. 37 we have

cosTA =cos ABcosTB +sin ABsinTB cosTBA
=sinTBcosTBA.

Similarly cosTC =sinTBcosTBC =sinTBsinTBA.
Square and add; thus

cos’TA + cos?TC =sin? TB = 1 — cos? TB;
therefore cos?TA+ cos?TB + cos?TC = 1.

166. ABC is a spherical triangle having all its sides quadrants, and therefore
all its angles right angles; T' and U are any points on the surface of the sphere:
to shew that

cosTU = cosTAcosUA + cosTBcosUB + cosTC cosUC.

By Art. 37 we have

cosTU = cosTAcosUA +sinTAsinUAcosTAU,
and cos TAU = cos(BAU — BAT)
= cos BAU cos BAT + sin BAU sin BAT
= cos BAU cos BAT + cos C AU cos C AT
therefore cosTU = cosTAcosUA
+ sin T Asin U A(cos BAU cos BAT + cos C AU cos CAT);
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and cosTB =sinTAcos BAT,
cosUB =sinU A cos BAU,
cosTC =sinT A cos CAT,
cosUC =sinUA cos CAU,

therefore

cosTU =cosTAcosUA + cosTBcosUB + cosTC cosUC.

167. We leave to the student the exercise of shewing that the formulee of the
two preceding Articles are perfectly general for all positions of T' and U, outside
or inside the triangle ABC" the demonstrations will remain essentially the same
for all modifications of the diagrams. The formulz are of constant application
in Analytical Geometry of three dimensions, and are demonstrated in works on
that subject; we have given them here as they may be of service in Spherical

Trigonometry, and will in fact now be used in obtaining some important results.

168. Let there be any number of fixed points on the surface of a sphere; denote
them by Hy, Hs, Hs,.... Let T be any point on the surface of a sphere. We
shall now investigate an expression for the sum of the cosines of the arcs which
join T with the fixed points.

Denote the sum by X; so that

¥ =cosTHy +cosTHy+cosTHs;+....

Take on the surface of the sphere a fixed spherical triangle ABC, having all
its sides quadrants, and therefore all its angles right angles.

Let A, i, v be the cosines of the arcs which join T with A, B, C respectively;
let Iy, m1, nq be the cosines of the arcs which join H; with A, B, C respectively;
and let a similar notation be used with respect to Hs, Hs,. ...

Then, by Art. 166,

YS=UlA+mip+nv+LbA+mop+nov+ ...
= PX+ Qu+ Ry;

where P stands for [y 4+ 1o + 13+ ..., with corresponding meanings for () and R.
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169. It will be seen that P is the value which ¥ takes when T coincides with
A, that @ is the value which ¥ takes when T coincides with B, and that R is
the value which ¥ takes when T coincides with C. Hence the result expresses
the general value of ¥ in terms of the cosines of the arcs which join T to the
fixed points A, B, C, and the particular values of ¥ which correspond to these

three points.

170. We shall now transform the result of Art. 168.
Let G =/(P*+ Q@+ R?;
and let «, 5, v be three arcs determined by the equations

cosozfg COSﬂQ cos i3
- G7 G7 VG7

then Y =G(Acosa+ pcos + vcosy).
Since cos? a + cos? 3+ cos? v = 1, it is obvious that there will be some point
on the surface of the sphere, such that «, 3, v are the arcs which join it to A,

B, C respectively; denote this point by U: then, by Art. 166,
cosTU = Acosa + pcos 8+ v cos;

and finally
¥ =GcosTU.

Thus, whatever may be the position of T, the sum of the cosines of the arcs
which join T to the fixed points varies as the cosine of the single arc which joins
T to a certain fixed point U.

We might take G either positive or negative; it will be convenient to suppose

it positive.

171. A sphere is described about a regular polyhedron; from any point on the
surface of the sphere arcs are drawn to the solid angles of the polyhedron: to
shew that the sum of the cosines of these arcs is zero.

From the preceding Article we see that if G is not zero there is one position
of T which gives to X its greatest positive value, namely, when T coincides with

U. But by the symmetry of a regular polyhedron there must always be more
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than one position of T" which gives the same value to . For instance, if we take
a regular tetrahedron, as there are four faces there will at least be three other
positions of T' symmetrical with any assigned position.

Hence G must be zero; and thus the sum of the cosines of the arcs which

join T to the solid angles of the reqular polyhedron is zero for all positions of T.

172. Since G =0, it follows that P, @, R must each be zero; these indeed are
particular cases of the general result of Art. 171. See Art. 169.

173. The result obtained in Art. 171 may be shewn to hold also in some other
cases. Suppose, for instance, that a rectangular parallelepiped is inscribed in
a sphere; then the sum of the cosines of the arcs drawn from any point on
the surface of the sphere to the solid angles of the parallelepiped is zero. For
here it is obvious that there must always be at least one other position of T
symmetrical with any assigned position. Hence by the argument of Art. 171 we

must have G = 0.

174. Let there be any number of fixed points on the surface of a sphere; denote
them by Hy, Hs, Hs,... Let T be any point on the surface of the sphere. We
shall now investigate a remarkable expression for the sum of the squares of the

cosines of the arcs which join T with the fixed points.

Denote the sum by X; so that

Y =cos®’THy + cos?THy 4+ cos> THs + . ...

Take on the surface of the sphere a fixed spherical triangle ABC, having all
its sides quadrants, and therefore all its angles right angles.

Let A, p, v be the cosines of the arcs which join T with A, B, C respec-
tively; let Iy, mq1, ny be the cosines of the angles which join H; with A, B, C

respectively; and let a similar notation be used with respect to Ho, Hs,. ...

Then, by Art. 166,

Y=UA+mip+ nlz/)2 + (IgA + map + TLQI/)2 +....
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Expand each square, and rearrange the terms; thus

Y = PX2 + Qu® + Rv? + 2puv + 2qu\ + 2rp,
where P stands for I3 415 4+13 4 ...,

and p stands for miny + mons + manz + ...,

with corresponding meanings for ) and ¢, and for R and r.

We shall now shew that there is some position of the triangle ABC' for which

p, q, and r will vanish; so that we shall then have
¥ = PA\ + Qu’® + RV,

Since ¥ is always a finite positive quantity there must be some position, or
some positions, of T for which ¥ has the largest value which it can receive.
Suppose that A has this position, or one of these positions if there are more
than one. When T is at A we have p and v each zero, and A equal to unity, so

that ¥ is then equal to P.

Hence, whatever be the position of T, P is never less than P2 + Qu? +
Rv? + 2puv + 2qu\ + 2r Ay, that is, by Art. 165,

P(\? + p? 4+ v?) is never less than
PX\2 + Qu? + Rv? + 2puv + 2qu\ + 2r\y;

therefore

(P —Q)u? + (P — R)V? is never less than 2puv + 2qu\ + 2r\pu.

Now suppose v = 0; then T is situated on the great circle of which AB is a

quadrant, and whatever be the position of T' we have

(P — Q)p? not less than 2r\u,

2r\
and therefore P — @ not less than o
1

osT
———; this is numerically equal to tanT'B, and so
cosTB
may be made numerically as great as we please, positive or negative, by giving

A
But now — is equal to
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a suitable position to T. Thus P — ) must in some cases be less than @ if r
have any value different from zero.

Therefore » must = 0.

In like manner we can shew that ¢ must = 0.

Hence with the specified position for A we arrive at the result that whatever

may be the position of T’
Y =P\ 4 Qu® + Rv? 4 2puv.

Let us now suppose that the position of B is so taken that when T coincides
with B the value of ¥ is as large as it can be for any point in the great circle of
which A is the pole. When T is at B we have A and v each zero, and p equal to
unity, so that X is then equal to Q). For any point in the great circle of which

A is the pole X is zero; and therefore for any such point

Q is not less than Qu? + Rv* + 2puv,
that is, by Art. 165,

Q(p? + v?) is not less than Qu? + Rv? + 2puv;

2
therefore () — R is not less than LB
v

Hence by the same reasoning as before we must have p = 0.
Therefore we see that there must be some position of the triangle ABC, such

that for every position of T

¥ = P\? + Qu’® + RV2.
175. The remarks of Art. 169 are applicable to the result just obtained.

176. In the final result of Art. 174 we may shew that R is the least value which
3} can receive. For, by Art. 165,

Y =PN+Qu*+R(1— X\ —?)
=R+ (P-RMN+(Q- Ry
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and by supposition neither P — R nor () — R is negative, so that ¥ cannot be
less than R.

177. A sphere is described about a regular polyhedron; from any point on the
surface of the sphere arcs are drawn to the solid angles of the polyhedron: it is
required to find the sum of the squares of the cosines of these arcs.

With the notation of Art. 174 we have
Y = P\ 4+ Qu*® + RV2.

We shall shew that in the present case P, Q, and R must all be equal. For
if they are not, one of them must be greater than each of the others, or one of
them must be less than each of the others.

If possible let the former be the case; suppose that P is greater than ), and
greater than R.

Now Y =P —p? 1)+ Qu* + Rv?
— P (P QP — (P~ R

this shews that ¥ is always less than P except when p = 0 and v = 0: that is ¥
18 always less than P except when T is at A, or at the point of the surface which
is diametrically opposite to A. But by the symmetry of a regular polyhedron
there must always be more than two positions of T" which give the same value
to ¥. For instance if we take a regular tetrahedron, as there are four faces
there will be at least three other positions of T' symmetrical with any assigned
position. Hence P cannot be greater than Q and greater than R.

In the same way we can shew that one of the three P, @), and R, cannot be
less than each of the others.

Therefore P = @@ = R; and therefore by Art. 165 for every position of T we
have ¥ = P.

Since P = Q = R each of them = (P + Q + R)

1
:g{l12+m12+n12+l22+m22+n22+...}

= g by Art. 165,
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where S is the number of the solid angles of the regular polyhedron.

Thus the sum of the squares of the cosines of the arcs which join any point
on the surface of the sphere to the solid angles of the regular polyhedron is one
third of the number of the solid angles.

178. Since P = @ = R in the preceding Article, it will follow that when the

fixed points of Art. 174 are the solid angles of a regular polyhedron, then for

any position of the spherical triangle ABC we shall have p =0, ¢ =0, r = 0.
For taking any position for the spherical triangle ABC we have

¥ = PX? 4+ Qu® + Rv? + 2ppv + 2qu + 2r\;

then at A we have = 0 and v = 0, so that P is then the value of ¥; similarly
Q@ and R are the values of ¥ at B and C respectively. But by Art. 177 we have

the same value for ¥ whatever be the position of T'; thus

P =P\ + u? +v2%) + 2puv + 2qu\ + 2r\y;
therefore 0 = 2puv + 2qu + 2rp.

This holds then for every position of T'. Suppose T is at any point of the
great circle of which A is the pole; then A = 0: thus we get pur = 0, and
therefore p = 0. Similarly ¢ =0, and r = 0.

179. Let there be any number of fixed points on the surface of a sphere; denote
them by Hy, Hs, Hs,...; from any two points T and U on the surface of the
sphere arcs are drawn to the fixed points: it is required to find the sum of the

products of the corresponding cosines, that is
cosTHycosUHy 4+ cosTHycosUHy + cosTHzcosUHs + .. ..

Let the notation be the same as in Art. 174; and let X, y/, v’ be the cosines
of the arcs which join U with A, B, C respectively. Then by Art. 166,

cosTHycosUHy = (Mly + pmy +vny) (Nl + p'my +v'ng) =
M2+ pp'ma? + vv'ng® + O+ pN)lmy + (uv' + v Ymang + (N + M\)naly.
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Similar results hold for cos T'Hs cos U Hy, cos T Hs cos U Hs,. ... Hence, with

the notation of Art. 174, the required sum is
MNP+ pp'Q+ v/ R+ (uv/' + v )p+ (wN + M )g+ (A’ + pX)r.

Now by properly choosing the position of the triangle ABC we have p, q,

and r each zero as in Art. 174; and thus the required sum becomes
MNP 4 ' Q + v/'R.

180. The result obtained in Art. 174 may be considered as a particular case

of that just given; namely the case in which the points 7" and U coincide.

181. A sphere is described about a regular polyhedron; from any two points
on the surface of the sphere arcs are drawn to the solid angles of the polyhedron:
it is required to find the sum of the products of the corresponding cosines.

With the notation of Art. 179 we see that the sum is
MNP+ pup/Q + vv/'R.

And here P=Q =R = g, by Art. 177.

S S
Thus the sum = g()\)\’ +pp + ) = 3 cos TU.
Thus the sum of the products of the cosines is equal to the product of the
cosine TU into a third of the number of the solid angles of the regular polyhedron.

182. The result obtained in Art. 177 may be considered as a particular case

of that just given; namely, the case in which the points 7" and U coincide.

183. If TU is a quadrant then cosTU is zero, and the sum of the products of
the cosines in Art. 181 is zero. The results p = 0, ¢ = 0, r = 0, are easily seen

to be all special examples of this particular case.



XV

MISCELLANEQOUS
PROPOSITIONS.

184. To find the locus of the vertex of a spherical triangle of given base and

area.

Let AB be the given base, = ¢ suppose, AC = 6, BAC = ¢. Since the area
is given the spherical excess is known; denote it by F; then by Art. 103,

cot %E = cot %9 cot %ccosemﬁ + cot ¢;

therefore sin(¢ — £ E) = cot 26 cot Lcsin L E;
therefi 2cot Lesin LB cos L — sinfsi LE);

erefore cot gesin g B cos” o = sin sin(¢ — 5 E);
therefore

cos 6 cot %c sin %E + sin 6 cos (gi) — %E + g) = —cot %csin %E

Comparing this with equation (1) of Art. 133, we see that the required locus

is a circle. If we call «, 8 the angular co-ordinates of its pole, we have

1

1 tan sc

tana = T = 1o

cot 5esin 5 B sin 5 B
:lE_I
B=3 5

143
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It may be presumed from symmetry that the pole of this circle is in the great
circle which bisects AB at right angles; and this presumption is easily verified.

For the equation to that great circle is
0 = cosf cos (g - g) + sin#sin (g - g) cos(¢p — )

and the values 0 = «, ¢ = (8 satisfy this equation.

185. To find the angular distance between the poles of the inscribed and cir-

cumscribed circles of a triangle.

Let P denote the pole of the inscribed circle, and @ the pole of the circum-
scribed circle of a triangle ABC'; then PAB = %A, by Art. 89, and QAB =
S — C, by Art. 92; hence

cos PAQ = cos3(B — C);
and cos PQ = cos PAcos QA + sin PAsin QA cos %(B - 0).

Now, by Art. 62 (see the figure of Art. 89),

cos PA = cos PE cos AE = cosr cos(s — a),
sin PE sinr

in PA = — ~
Sl snPAE  sinlA’

thus

1
cos PQ = cos Rcosr cos(s — a) + sin Rsinr cos §(B — C) cosec 3 A.

Therefore, by Art. 54

cos PQ = cos Rcosr cos(s — a) + sin Rsinrsin (b + ¢) cosec 1a,

cos PQ

= 1 1
————— = cot _a) 4t s 1
cosRsmr ~© rcos(s — a) + tan Rsin 2( + ¢) cosec 54

therefore

sin s 2sin %asin %bsin %c
Now cotr = ——, tanR = ,
n n
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P 1
therefore 6027,62 = f{sin scos(s — a) + 2sin 3 (b + ¢) sin $bsin %c}
cosRsinr n
1
= Q—(Sina +sinb + sinc).
n
2
cos PQ P . N2
Hence (cosRsmr) -1= w(sma—i—smb—l—smc) 1
= (cotr + tan R)? (by Art. 94);
therefore cos? PQ = cos® Rsin® r + cos?(R — 1),
and sin? PQ = sin®(R — r) — cos® Rsin?r.

186. To find the angular distance between the pole of the circumscribed circle
and the pole of one of the escribed circles of a triangle.

Let @ denote the pole of the circumscribed circle, and @1 the pole of the
escribed circle opposite to the angle A. Then it may be shewn that QBQ; =
37+ 5(C — A), and

cos Q@1 = cos Rcosry cos(s — ¢) — sin Rsinry sin 3(C — A) sec 1 B

. . . 1
= cos Rcosry cos(s — ¢) — sin Rsinry sin 3(c — a) cosec ib'

Therefore

cos QG

- = cotry cos(s — ¢) — tan Rsin £ (¢ — a) cosec £b;
sinry cos R

by reducing as in the preceding Article, the right-hand member of the last
equation becomes

1
2—(sinb+ sin ¢ — sina);
n

cosQQ1 '\’ )
hence ————— ) —1=(tanR —cotry)”, (Art. 94);
cos Rsinry
therefore cos® QQy = cos® Rsin®ry + COSQ(R +71),
and sin®? QQ, = sin2(R +7r1)— cos? Rsin® ry.

187. The arc which passes through the middle points of the sides of any triangle

upon a given base will meet the base produced at a fixed point, the distance of
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which from the middle point of the base is a quadrant.
Let ABC be any triangle, E' the middle point of AC, and F' the middle point
of AB; let the arc which joins E and F' when produced meet BC produced at

Q. Then
sin BQ  sin BFQ sin AQ  sin AFQ

sin BF  sin BQF’ sin AF  sin AQF’

sin BQ  sin AQF
sin AQ  sin BQF’

therefore

sinCQ  sin AQF

sin AQ  sinCQF’

therefore sin BQ = sin CQ; therefore BQ + CQ = 7.
Hence if D be the middle point of BC'

similarly

DQ = 1(BQ+CQ) = ir.

188. If three arcs be drawn from the angles of a spherical triangle through
any point to meet the opposite sides, the products of the sines of the alternate

segments of the sides are equal.

v 4

Let P be any point, and let arcs be drawn from the angles A, B, C passing
through P and meeting the opposite sides at D, E, F'. Then

sin BD _ sin BPD sinCD _ sinCPD
sin BP ~ sin BDP’ sinCP ~ sinCDP’

sin BD _ sin BPD sin BP
sinCD ~ sinCPD sinCP’

therefore
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sinCFE sin AF
imil i be found f : and h it
Similar expressions may be found for AR an SnBF’ and hence i

follows obviously that

sin BD sinCFE sin AF B

sinCD sin AE sin BF L;

)

therefore sin BDsin CE sin AF = sin C D sin AE sin BF.

189. Conversely, when the points D, E, F' in the sides of a spherical triangle
are such that the relation given in the preceding Article holds, the arcs which
join these points with the opposite angles respectively pass through a common
point. Hence the following propositions may be established: the perpendiculars
from the angles of a spherical triangle on the opposite sides meet at a point;
the arcs which bisect the angles of a spherical triangle meet at a point; the
arcs which join the angles of a spherical triangle with the middle points of the
opposite sides meet at a point; the arcs which join the angles of a spherical
triangle with the points where the inscribed circle touches the opposite sides
respectively meet at a point.

Another mode of establishing such propositions has been exemplified in Arts.
139 and 140.

190. If AB and A'B’ be any two equal arcs AA’ and AA’ and BB’ be bisected
at right angles by arcs meeting at P, then AB and A'B’ subtend equal angles at
P.

For PA = PA’ and PB = PB’; hence the sides of the triangle PAB are
respectively equal to those of PA’B’; therefore the angle APB = the angle
A'PB'.

This simple proposition has an important application to the motion of a
rigid body of which one point is fixed. For conceive a sphere capable of motion

round its centre which is fixed; then it appears from this proposition that any
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two fixed points on the sphere, as A and B, can be brought into any other
positions, as A’ and B’, by rotation round an axis passing through the centre of
the sphere and a certain point P. Hence it may be inferred that any change of
position in a rigid body, of which one point is fixed, may be effected by rotation
round some axis through the fixed point.

(De Morgan’s Differential and Integral Calculus, page 489.)

191. Let P denote any point within any plane angle AOB, and from P draw
perpendiculars on the straight lines OA and OB; then it is evident that these
perpendiculars include an angle which is the supplement of the angle AOB. The
corresponding fact with respect to a solid angle is worthy of notice. Let there be
a solid angle formed by three plane angles, meeting at a point O. From any point
P within the solid angle, draw perpendiculars PL, PM, PN on the three planes
which form the solid angle; then the spherical triangle which corresponds to the
three planes LPM, M PN, NPL is the polar triangle of the spherical triangle
which corresponds to the solid angle at O. This remark is due to Professor De

Morgan.

192. Suppose three straight lines to meet at a point and form a solid an-
gle; let «, B, and « denote the angles contained by these three straight lines
taken in pairs: then it has been proposed to call the expression /(1 — cos? a —
cos? B — cos?y + 2cosaccos Bcosy), the sine of the solid angle. See Baltzer’s
Theorie. . . der Determinanten, 2nd edition, page 177. Adopting this definition
it is easy to shew that the sine of a solid angle lies between zero and unity.

We know that the area of a plane triangle is half the product of two sides
into the sine of the included angle: by Art. 156 we have the following analogous
proposition; the volume of a tetrahedron is one sixth of the product of three
edges into the sine of the solid angle which they form.

Again, we know in mechanics that if three forces acting at a point are in
equilibrium, each force is as the sine of the angle between the directions of the
other two: the following proposition is analogous; if four forces acting at a point
are in equilibrium each force is as the sine of the solid angle formed by the
directions of the other three. See Statics, Chapter II.

193. Let a sphere be described about a regular polyhedron; let perpendiculars

be drawn from the centre of the sphere on the faces of the polyhedron, and
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produced to meet the surface of the sphere: then it is obvious from symmetry
that the points of intersection must be the angular points of another regular

polyhedron.
This may be verified. It will be found on examination that if S be the

number of solid angles, and F' the number of faces of one regular polyhedron,
then another regular polyhedron exists which has S faces and F solid angles.
See Art. 151.

194. Polyhedrons. The result in Art. 150 was first obtained by Euler; the
demonstration which is there given is due to Legendre. The demonstration
shews that the result is true in many cases in which the polyhedron has re-
entrant solid angles; for all that is necessary for the demonstration is, that it
shall be possible to take a point within the polyhedron as the centre of a sphere,
so that the polygons, formed as in Art. 150, shall not have any coincident
portions. The result, however, is generally true, even in cases in which the
condition required by the demonstration of Art. 150 is not satisfied. We shall
accordingly give another demonstration, and shall then deduce some important

consequences from the result. We begin with a theorem which is due to Cauchy.

195. Let there be any network of rectilineal figures, not necessarily in one
plane, but not forming a closed surface; let E be the number of edges, F the

number of figures, and S the number of corner points: then F +S =E + 1.

This theorem is obviously true in the case of a single plane figure; for then
F =1,and S = E. It can be shewn to be generally true by induction. For
assume the theorem to be true for a network of F' figures; and suppose that a
rectilineal figure of n sides is added to this network, so that the network and
the additional figure have m sides coincident, and therefore m + 1 corner points
coincident. And with respect to the new network which is thus formed, let E’,
F’, S’ denote the same things as F, F, S with respect to the old network. Then

E=E+n-m, F =F+1, S=8+n—(m+1);

therefore F'+S —-FE =F+S-E.
But F + S = E + 1, by hypothesis; therefore F/ + 5" = E’ + 1.
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196. To demonstrate Euler’s theorem we suppose one face of a polyhedron
removed, and we thus obtain a network of rectilineal figures to which Cauchy’s

theorem is applicable. Thus

F-1+45=FE+1;
therefore F+S5=F-+2.

197. In any polyhedron the number of faces with an odd number of sides is

even, and the number of solid angles formed with an odd number of plane angles

18 even.
Let a, b, ¢, d,...... denote respectively the numbers of faces which are tri-
angles, quadrilaterals, pentagons, hexagons,. . ..... Let o, B, 7, 0,...... denote

respectively the numbers of the solid angles which are formed with three, four,

five, six,...... plane angles.

Then, each edge belongs to two faces, and terminates at two solid angles;

therefore
2E=3a+4b+5c+6d+...... ,
2E =3a+48+5y+60+.......
From these relations it follows that a +c+e+...... yand a+~v+e+......

are even numbers.

198. With the notation of the preceding Article we have

F=a+b+c+d+...... ,
S=a+B8+74+0+.......

From these combined with the former relations we obtain

9E —3F =b+2c+3d+...... ,
9B —35=8+2y+30+.......

Thus 2F cannot be less than 3F, or less than 35.
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199. From the expressions for F, F', and S, given in the two preceding Articles,
combined with the result 2F + 2S5 =4 4+ 2F, we obtain

2a+b+c+d+...)+2(a+B+v+6+...)=4+3a+4b+5c+6d+ ...,
2a+b+c+d+.. )+2a+B+v+0+..)=4+3a+48+5y+65+...,

therefore 2@+pB+y+0+...)—(a+2b+3c+4d+...) =4, (1)
2a+btetdt...)—(a+26+3y+40+...) =4 (2)
Therefore, by addition

at+a—(c+vy)—2(d+0)—3(e+e)—...... =38.

Thus the number of triangular faces together with the number of solid angles

formed with three plane angles cannot be less than eight.

Again, from (1) and (2), by eliminating «, we obtain
3a+2b+c—e—2f —...... 28 —dy—...... —12,

so that 3a + 2b + ¢ cannot be less than 12. From this result various inferences
can be drawn; thus for example, a solid cannot be formed which shall have no

triangular, quadrilateral, or pentagonal faces.

In like manner, we can shew that 3a + 25 4+ v cannot be less than 12.

200. Poinsot has shewn that in addition to the five well-known regular poly-
hedrons, four other solids exist which are perfectly symmetrical in shape, and
which might therefore also be called regular. We may give an idea of the nature
of Poinsot’s results by referring to the case of a polygon. Suppose five points A,
B, C, D, E, placed in succession at equal distances round the circumference of
a circle. If we draw a straight line from each point to the next point, we form an
ordinary regular pentagon. Suppose however we join the points by straight lines
in the following order, A to C, C to E, E to B, B to D, D to A; we thus form a
star-shaped symmetrical figure, which might be considered a regular pentagon.

It appears that, in a like manner, four, and only four, new regular solids

can be formed. To such solids, the faces of which intersect and cross, Euler’s

theorem does not apply.
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201. Let us return to Art. 195, and suppose e the number of edges in the
bounding contour, and e’ the number of edges within it; also suppose s the

number of corners in the bounding contour, and s’ the number within it. Then

E=e+e; S=s+4;

therefore l+e+e =s+s+F.
But e = s;
therefore 1+¢e¢ =5 +F.

We can now demonstrate an extension of Euler’s theorem, which has been

given by Cauchy.

202. Let a polyhedron be decomposed into any number of polyhedrons at plea-
sure; let P be the number thus formed, S the number of solid angles, F the
number of faces, E the number of edges: then S+ F =E+ P + 1.

For suppose all the polyhedrons united, by starting with one and adding one
at a time. Let e, f, s be respectively the numbers of edges, faces, and solid
angles in the first; let €/, f’, s’ be respectively the numbers of edges, faces, and
solid angles in the second which are not common to it and the first; let e”, f”,
s” be respectively the numbers of edges, faces, and solid angles in the third
which are not common to it and the first or second; and so on. Then we have
the following results, namely, the first by Art. 196, and the others by Art. 201;

s+f=e+2,
s/—l—f/ze’—&-l,
8//+f//:€/I+1

By addition, since s +s" +s"+... =8, f+ f + f'+... = F, and
e+e +e"+...=E, we obtain

S+F=E+P+1.

203. The following references will be useful to those who study the theory

of polyhedrons. Euler, Novi Commentarii Academic. .. Petropolitane, Vol. 1v.
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1758; Legendre, Géométrie; Poinsot, Journal de I’Ecole Polytechnique, Cahier
X; Cauchy, Journal de I'Ecole Polytechnique, Cahier Xv1; Poinsot and Bertrand,
Comptes Rendus. .. de I’Académie des Sciences, Vol. XLvI; Catalan, Théorémes
et Problémes de Géométrie Elémentaire; Kirkman, Philosophical Transactions
for 1856 and subsequent years; Listing, Abhandlungen der Kéniglichen Gesell-
schaft. . . zu Géttingen, Vol. X.

MISCELLANEOUS EXAMPLES.

1. Find the locus of the vertices of all right-angled spherical triangles having
the same hypotenuse; and from the equation obtained, prove that the locus is

a circle when the radius of the sphere is infinite.

2. AB is an arc of a great circle on the surface of a sphere, C' its middle
point: shew that the locus of the point P, such that the angle APC = the angle
BPC, consists of two great circles at right angles to one another. Explain this

when the triangle becomes plane.

3. On a given arc of a sphere, spherical triangles of equal area are described:
shew that the locus of the angular point opposite to the given arc is defined by

the equation

tan~! {wn(aw} + tan ™ {tan(o‘_@}

sin 0 sin 6
tan 6 tan 6
tan ' ——~ L tan ' ——— L =3,
tan {sm(am)}* a {sin<a—¢>} ’
where 2« is the length of the given arc, 6 the arc of the great circle drawn from
any point P in the locus perpendicular to the given arc, ¢ the inclination of the

great circle on which # is measured to the great circle bisecting the given arc at

right angles, and 8 a constant.

4. In any spherical triangle

cot Acota + cot Bcotd
cotacothb —cos Acos B’

tanc =

5. If 0, ¢, 1 denote the distances from the angles A, B, C respectively of the

point of intersection of arcs bisecting the angles of the spherical triangle ABC,



154 MISCELLANEOUS PROPOSITIONS.

shew that
cosfsin(b — ¢) + cos psin(c — a) + cosysin(a — b) = 0.

6. If A’, B, C' be the poles of the sides BC, C A, AB of a spherical triangle
ABC, shew that the great circles AA’, BB’, CC’" meet at a point P, such that

cos PAcos BC = cos PBcosCA = cos PC cos AB.

7. If O be the point of intersection of arcs AD, BE, CF drawn from the
angles of a triangle perpendicular to the opposite sides and meeting them at D,

E, F respectively, shew that

tan AD tan BE tan CF
tan OD’ tanOF’ tan OF

are respectively equal to

cos A cos B cosC

14 8 sz e
+ cos BcosC'’ cos AcosC’ cos A cos B

8. If p, q, r be the arcs of great circles drawn from the angles of a triangle
perpendicular to the opposite sides, (o, a’), (3,8'), (v,7') the segments into

which these arcs are divided, shew that

tan atan @’ = tan Btan 8’ = tan~ytan~’;

cosp cosq cosr
and i = / = 7"
COS (v COS (v cos 3 cos 8 COS Y COS 7Y

9. In a spherical triangle if arcs be drawn from the angles to the middle
points of the opposite sides, and if a, o’ be the two parts of the one which

bisects the side a, shew that

sin o a
= 2c0s —.
2

sin o

10. The arc of a great circle bisecting the sides AB, AC' of a spherical
triangle cuts BC produced at @Q): shew that
c—b . c+bd

cos AQ sin g = sin —5—sin—
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11. If ABCD be a spherical quadrilateral, and the opposite sides AB, C'D
when produced meet at F, and AD, BC meet at F, the ratio of the sines of the
arcs drawn from E at right angles to the diagonals of the quadrilateral is the

same as the ratio of those from F.

12. If ABCD be a spherical quadrilateral whose sides AB, DC' are produced
to meet at P, and AD, BC at @, and whose diagonals AC', BD intersect at R,
then

sin AB sin C'D cos P = sin AD sin BC cos @ = sin AC'sin BD cos R.

13. If A’ be the angle of the chordal triangle which corresponds to the angle
A of a spherical triangle, shew that

cos A" = sin(S — A) cos %.

14. If the tangent of the radius of the circle described about a spherical
triangle is equal to twice the tangent of the radius of the circle inscribed in the

triangle, the triangle is equilateral.

15. The arc AP of a circle of the same radius as the sphere is equal to
the greater of two sides of a spherical triangle, and the arc AQ taken in the
same direction is equal to the less; the sine PM of AP is divided at E, so that
% = the natural cosine of the angle included by the two sides, and EZ is
drawn parallel to the tangent to the circle at ). Shew that the remaining side

of the spherical triangle is equal to the arc QPZ.

16. If through any point P within a spherical triangle ABC great circles be
drawn from the angular points A, B, C' to meet the opposite sides at a, b, ¢

respectively, prove that

sin Pacos PA  sin Pbcos PB | sin Pccos PC' 1
sin Aa sin Bb sin C'c o

17. A and B are two places on the Earth’s surface on the same side of the
equator, A being further from the equator than B. If the bearing of A from B
be more nearly due East than it is from any other place in the same latitude as
B, find the bearing of B from A.

18. From the result given in example 18 of Chapter V. infer the possibility
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of a regular dodecahedron.

19. A and B are fixed points on the surface of a sphere, and P is any point
on the surface. If a and b are given constants, shew that a fixed point S can

always be found, in AB or AB produced, such that
acos AP 4+ bcos BP = scos SP,

where s is a constant.

20. A, B, C,...are fixed points on the surface of a sphere; a, b, ¢,...are

given constants. If P be a point on the surface of the sphere, such that
acos AP 4+ bcos BP + ccosCP + ... = constant,

shew that the locus of P is a circle.



XVI

NUMERICAL SOLUTION
OF SPHERICAL
TRIANGLES.

204. We shall give in this Chapter examples of the numerical solution of Spher-
ical Triangles.

We shall first take right-angled triangles, and then oblique-angled triangles.

Right-Angled Triangles.

205. Given a = 37°48 12", b = 59°44' 16", C = 90°.

To find ¢ we have

Cos ¢ = cosacos b,
Lcos37°48' 12" = 9.8976927

L cosb9° 44" 16" = 9.7023945
Lcosc+ 10 = 19.6000872
c= 66°32'6".

To find A we have

cot A = cotasinb,

157
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Lcot37°48 12" = 10.1102655

Lsin59° 44’ 16" = 9.9363770

Lcot A+ 10= 20.0466425

A= 41°55'45".

To find B we have
cot B = cot bsina,
Lcot 59° 44’ 16" = 9.7660175
Lsin37°48 12" = 9.7874272

Lcot B4+10 = 19.5534447
B= 170°1915".

206. Given A = 55°32"45" C =90°, ¢ =98° 14’ 24".

To find a we have

sina = sincsin A,

Lsin98° 14’ 24" = 9.9954932
Lsin 55° 32/ 45" = 9.9162323
Lsina + 10 = 19.9117255

a= 54°41'35".

To find B we have

cot B = cosctan A.

Here cosc is negative; and therefore cot B will be negative, and B greater

than a right angle. The numerical value of cos c is the same as that of cos 81° 45’ 36"

L cos81° 45’ 36" = 9.1563065

L tan 55° 32" 45" = 10.1636102
Lcot(180° — B) + 10 = 19.3199167
180° — B = 78°12'4"

B = 101°47 56".

To find b we have

tan b = tan ccos A.

Here tan ¢ is negative; and therefore tan b will be negative and b greater than

a quadrant.
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Ltan 81° 45’ 36" = 10.8391867

L cosb55° 32/ 45" = 9.7526221
Ltan(180° —b) + 10 = 20.5918088
180° —b = 75°38' 32"

b= 104°21'28".

207. Given A =46°15'25" C =90°, a = 42° 18’ 45".

To find ¢ we have

Lsinec =10+ Lsina — Lsin A,
10 + Lsin42°18' 45" = 19.8281272
Lsin46° 15 25" = 9.8588065
Lsinc= 9.9693207
c=168°42'59" or 111°17'1".

To find b we have

sinb = tana cot A,

Ltan42°18' 45" = 9.9591983
Lcot46° 15’ 25" = 9.9809389
Lsinb+ 10 = 19.9401372

b=60°36"10" or  119°23'50".

To find B we have

sn B — cosA’
cosa
LsinB =10+ Lcos A — Lcosa,
10 + L cos46° 15’ 25" = 19.8397454
Lcos42° 18 45" = 9.8689289
LsinB = 9.9708165

B =69°13"47" or  110°46’13".

Oblique-Angled Triangles.

208. Given a = 70° 14’ 20", b = 49° 24’ 10", ¢ = 38° 46’ 10”. We shall use the

formula given in Art. 45,

an= {000}
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Here 5 =179°12'20",
s—a =858,
s—b=29°48'10",
s —c=40°26"10".

Lsin29°48' 10" = 9.6963704
Lsin40°26'10” = 9.8119768
19.5083472

Lsin79°12' 20" = 9.9922465
Lsin8° 58 = 9.1927342
19.1849807

19.5083472

19.1849807

2) 3233665
LtantA—10= .1616832

A= 55°2538"
A =110°51"16".

1
2
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Similarly to find B,

Lsin8° 58 = 9.1927342
Lsin40° 26’ 10" = 9.8119768

19.0047110

Lsin79°12'20” = 9.9922465
Lsin29° 48 10" = 9.6963704

19.6886169

19.0047110
19.6886169

2)1.3160941
Ltan 1B —10 = 1.6580470
Ltan $B = 9.6580470

1B =24°28'2"

B =48°56'4".



162 NUMERICAL SOLUTION OF SPHERICAL TRIANGLES.

Similarly to find C,

Lsing8°58 = 9.1927342
Lsin29°48'10” = 9.6963704
18.8891046
Lsin79°12'20” = 9.9922465
Lsin40°26' 10" = 9.8119768
19.8042233
18.8891046
19.8042233
2) 1.0848813
Ltan 1C — 10 = 1.5424406
Ltan 1C = 9.5424406

10 =19°13"24"

C =38°20'48".

209. Given a = 68°20' 25", b =52°18"15", C = 117° 12/ 20".

By Art. 82,
cos = (a — b)
tani(A+ B) = 2 t 10,
an3(4+B) cos 3(a+b) 3
1 sin(a—b
tan —(A — B) = —2———cot +C.
an2( ) sin 2 (a +b) b

3(a—b)=8°15", Z(a+b) =60°19"20", C = 58°36"10".



NUMERICAL SOLUTION OF SPHERICAL TRIANGLES.

Lcos81'5” = 9.9957335
L cot 58° 36" 10" = 9.7855690

19.7813025

Lcos60°19'20” = 9.6947120
Ltan 1(A + B) = 10.0865905
L(A+ B) = 50° 40’ 28"
Lsing8 15" = 9.1445280
Lcot 58° 36/ 10" = 9.7855690

18.9300970
Lsin60° 19’ 20" = 9.9389316

Ltan 3(A— B) = 8.9911654
1(A—B) = 5°35'47".

Therefore A =056°16"15", B =45°4"41".

If we proceed to find ¢ from the formula

. sinasinC
sinc= ————
sinA

163

since sin C' is greater than sin A we shall obtain two values for ¢ both greater

than a, and we shall not know which is the value to be taken.

We shall therefore determine ¢ from formula (1) of Art. 54, which is free

from ambiguity,

1 cos 3(a+b)siniC
cos 5¢ =

2 cosi(A+B)
L cos60°19' 20" = 9.6947120
Lsin58°36" 107 = 9.9312422

19.6259542
L cos 50° 40’ 28" = 9.8019015

Lcos§c= 9.8240527

1c=48°10'22"
c = 96°20" 44",
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Or we may adopt the second method of Art. 82. First, we determine 6 from
the formula tan 6 = tanbcos C.
Here cos C is negative, and therefore tan 6 will be negative, and 6 greater

than a right angle. The numerical value of cos C'is the same as that of cos 62° 47’ 40”.

Ltan52° 18 15" =10.1119488
L cos62° 47 40" = 9.6600912

Ltan(180° — #) + 10 = 19.7720400
180° — 0 = 30° 36’ 33",
therefore 0 = 149° 23’ 27".

Next, we determine ¢ from the formula

cosbcos(a — 0)
cosc= ———F
cosd

Here cos@ is negative, and therefore cosc will be negative, and ¢ will be
greater than a right angle. The numerical value of cos is the same as that of
cos(180° — ), that is, of cos 30° 36" 33”; and the value of cos(a — 6) is the same
as that of cos(f — a), that is, of cos81°3’2".

Lcosb2°18 15" = 9.7863748
Lcos81°3 2" = 9.1919060

18.9782808
Lcos30°36’'33" = 9.9348319

Lcos(180° —¢) = 9.0434489
180° — ¢ = 83°39" 17"
¢ = 96°20"43".
Thus by taking only the nearest number of seconds in the tables the two

methods give values of ¢ which differ by 1”; if, however, we estimate fractions of

a second both methods will agree in giving about 43% as the number of seconds.

210. Given a = 50°45'20”, b = 69° 12'40"”, A = 44° 22’ 10".

sinb

s a

By Art. 84, sin B = sin A,
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Lsin69° 12/ 40" = 9.9707626
Lsin44° 22 10" = 9.8446525

19.8154151
Lsin50° 45 20" = 9.8889956

Lsin B = 9.9264195
B = 57°34'51".4, or 122°25'8".6.

In this case there will be two solutions; see Art. 86. We will calculate C' and

¢ by Napier’s analogies,

cos +(b—a)
taniC = —2—" ‘ot L(B+ A),
alta cos%(b—i—a)co 2(B+4)
cos (B + A)
tan %C = COSg(Tfl)tan%(b—’— CL).

First take the smaller value of B; thus

$(B+ A)=50°5830".7, 1(B—A) =6°3520".7,
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Lcos9°13'40” = 9.9943430
L cot 50° 58’ 30”.7 = 9.9087536

19.9030966
Lcos59°59 = 9.6991887

Ltan 1C =10.2039079
1C =57°58'55".3
C =115° 57" 50".6.
L cos50°58'30".7 = 9.7991039
L tan59° 59" = 10.2382689

20.0373728
L cos6°36’20".7 = 9.9971072

Ltan Lc = 10.0402656
c=47°39'8".2
c=95°18'16" 4.

1
2

Next take the larger value of B; thus

1(B+A)=183°2339"3, 1(B-—A)=39°1"29".3.
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Lcos 9°13'40" = 9.9943430
L cot83°23'39”7.3 = 9.0637297

19.0580727
Lcos59° 59 = 9.6991887

Ltan 3C = 9.3588840

10 =12°52'15".38

C =25°44'31".6.
Lcos83°23'39”.3 = 9.0608369
L tan 59° 59/ =10.2382689

19.2991058
Lcos39°1'29”.3 = 9.8903494

Ltan $e = 9.4087564
c=14°22'32".6
¢ =28°45'5".2

N|—

The student can obtain more examples, which can be easily verified, from
those here worked out, by interchanging the given and required quantities, or

by making use of the polar triangle.

EXAMPLES.

1. Given b=137°3"48", A=147°2"54", C =90°.
Results. ¢=47°57"15", a = 156° 10" 34", B =113°28".
2. Given c=61°4'56", a = 40°31' 20", C = 90°.
Results. b= 50°30"29", B =61°50"28", A=47°5421".
3. Given A =36°, B =60°, C =90°.
Results. a=20°54"18".5, b=31°43'3", ¢ = 37°21'38" 5.
4. Given a =59°28' 27", A=66°7 20", C =90°.
Results. ¢ =170°23"42", b=48°39'16", B = 52°50' 20",
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or, c=109°36"18", b=131°20"44", B = 127°9'40".

5. Given ¢ =90°, a =138°4", b= 109°41".

Results. C =113°28'2", A=142°11'38", B = 120°15'57".
6. Given c=90°, A=131°30', B =120°32".

Results. C = 109°40' 20", a = 127° 17/ 51", b = 113° 49’ 31".
7. Given a = 76° 35/ 36", b = 50°10"30", ¢ = 40°0"10".
Results. A =121°36"20", B=42°15"13", C = 34° 15’ 3".
8. Given A =129°528", B =142°12'42", C =105°8" 10".
Results. a = 135°49'20", b= 144° 37 15", ¢ = 60° 4’ 54",
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